
1

Designing Programming Language:
From Concept to Implementation

Building an Interpreter Using Modern C++

By Ayman Alheraki

ForgeVM.org

July 2025

Contents

Contents 2

Author’s Introduction 49

Preface 51

I Foundation and Architecture 58

1 Why Design a New Programming Language? 60
1.1 Motivation Behind Creating New Programming Languages 60

1.1.1 Addressing Limitations in Existing Languages 61
1.1.2 Integration of Modern Language Features with Lower-Level Control 61
1.1.3 Domain-Specific Needs and Embedded Use-Cases 62
1.1.4 Pedagogical and Research Objectives 63
1.1.5 Experimentation and Language Innovation 63
1.1.6 Performance Transparency and Predictability 64
1.1.7 Cultural and Ecosystem Reset . 65
1.1.8 Conclusion . 65

1.2 Analysis of C-Style Languages: C, Go, Rust, Zig 65
1.2.1 C: The Root of the Tree . 66

2

3

1.2.2 Go: Simplicity Over Power . 67
1.2.3 Rust: Safety with Zero-Cost Abstractions 68
1.2.4 Zig: Pragmatism Meets Control . 69
1.2.5 Comparative Summary . 71
1.2.6 Conclusion . 71

1.3 Designing Our New Language — Goals and Philosophy 73
1.3.1 Goal 1: Simplicity without Sacrificing Power 73
1.3.2 Goal 2: Deterministic and Explicit Memory Model 74
1.3.3 Goal 3: Predictable and Safe Concurrency 74
1.3.4 Goal 4: Compile-Time Programming and Meta-Evaluation 75
1.3.5 Goal 5: Strong but Flexible Type System 75
1.3.6 Goal 6: Minimal Runtime and High Portability 76
1.3.7 Goal 7: Modularity, Encapsulation, and Package Discipline 77
1.3.8 Goal 8: Syntax Familiarity with Semantic Rigor 77
1.3.9 Philosophy in Summary . 78
1.3.10 Conclusion . 78

1.4 Example Code in Our Target Language . 79
1.4.1 Hello World — Minimal Entry Point 79
1.4.2 Immutable and Mutable Variables 80
1.4.3 Ownership and Option Type . 81
1.4.4 Compile-Time Evaluation . 81
1.4.5 Struct and Pattern Matching . 82
1.4.6 Generics and Traits (Concepts) . 83
1.4.7 Concurrency with Spawn and Join 84
1.4.8 Error Handling via Result . 85
1.4.9 Slices and Bounds Safety . 85
1.4.10 Modules and Imports . 86

4

1.4.11 Conclusion . 87
1.5 Milestone — Initial Language Specification and Code Examples 88

1.5.1 Language Subset Goals for the First Milestone 88
1.5.2 Core Language Grammar (Minimal Specification) 89
1.5.3 Built-in Types and Rules . 90
1.5.4 Semantic Rules and Behaviors . 91
1.5.5 Example: Program Using the Initial Specification 91
1.5.6 Interpreter Architecture Preview (C++20/23) 92
1.5.7 Development Plan for Next Phase 93
1.5.8 Conclusion . 93

2 Language Implementation Project Structure 95
2.1 Project Structure for a Programming Language Interpreter 95

2.1.1 Overview: Goals of a Good Project Structure 96
2.1.2 High-Level Project Layout . 96
2.1.3 Core Interpreter Modules and Responsibilities 97
2.1.4 Build System and Tooling . 101
2.1.5 Modern Development Practices . 101
2.1.6 Advantages of Using Modern C++20/23 102
2.1.7 Conclusion . 102

2.2 CMake for Multi-Component Interpreter Projects 103
2.2.1 Why CMake for Language Projects? 103
2.2.2 High-Level CMake Layout for the Interpreter 104
2.2.3 Root CMakeLists.txt (Top-Level Configuration) 104
2.2.4 Example Component CMake (e.g., src/lexer/CMakeLists.txt) . 106
2.2.5 Shared Core Module (e.g., src/core/CMakeLists.txt) 106
2.2.6 Main Executable Entry Point (src/main/CMakeLists.txt) 107
2.2.7 Using C++20 Modules (Experimental Support) 107

5

2.2.8 Testing Subsystem (tests/CMakeLists.txt) 108
2.2.9 Build Commands . 108
2.2.10 IDE Integration and Tooling . 109
2.2.11 Conclusion . 109

2.3 Dependency Management — Lexer, Parser, Runtime 110
2.3.1 Why Dependency Management Matters in a Language Project . . . 110
2.3.2 High-Level Component Boundaries 111
2.3.3 Lexer: Input Tokenization Layer 111
2.3.4 Parser: Syntax Construction Layer 112
2.3.5 Runtime: Execution Layer . 113
2.3.6 Example of Dependency Direction (CMake and Code) 114
2.3.7 AST and Value Boundary . 115
2.3.8 Semantic Analysis as an Optional Intermediate Layer 116
2.3.9 Runtime Extensions and Isolation 116
2.3.10 Testing Each Component in Isolation 117
2.3.11 Conclusion . 117

2.4 Organizing Target Language Files (.lang, .test) 118
2.4.1 Purpose of Organizing Language Files 118
2.4.2 Suggested File Extensions . 119
2.4.3 Directory Layout for Target Language Files 119
2.4.4 .lang File Design Conventions . 120
2.4.5 .test File Format and Structure . 121
2.4.6 .fail File Format . 122
2.4.7 Integration with the Interpreter . 123
2.4.8 Benefits of Organized Language Files 124
2.4.9 Future Expansion . 124
2.4.10 Conclusion . 125

6

2.5 Milestone — Project Structure with First Experimental Language File . . 126
2.5.1 Context: What This Milestone Proves 126
2.5.2 Project Structure Recap . 127
2.5.3 Minimal Feature Set for First Program 127
2.5.4 Interpreter Pipeline Overview . 128
2.5.5 Implementation Detail: First Language Features in C++ 129
2.5.6 CLI Interface (main.cpp) . 130
2.5.7 Output and Success Criteria . 131
2.5.8 Testing and Next Steps . 132
2.5.9 Conclusion . 132

3 Development Environment for Language Implementation 133
3.1 Setting up C++20/23 for Building Interpreters 133

3.1.1 Introduction . 133
3.1.2 Compiler Requirements and Setup 134
3.1.3 Build Systems and Project Organization 134
3.1.4 IDE and Editor Configuration . 136
3.1.5 Compiler Tooling and Diagnostics 137
3.1.6 Testing Environment for Interpreters 137
3.1.7 C++20/23 Specific Practices Beneficial to Interpreters 138
3.1.8 Optional Tools for Interpreter Development 139
3.1.9 Conclusion . 139

3.2 Language Development Tools: ANTLR, LLVM Comparison 141
3.2.1 Introduction . 141
3.2.2 ANTLR (Another Tool for Language Recognition) 141
3.2.3 LLVM (Low-Level Virtual Machine) 143
3.2.4 Comparative Summary . 145
3.2.5 When to Use ANTLR or LLVM . 146

7

3.2.6 Conclusion . 147
3.3 IDE with Custom Language Grammar Support 148

3.3.1 Introduction . 148
3.3.2 The Role of IDEs in Language Design 148
3.3.3 Language Server Protocol (LSP): The Modern Backbone 149
3.3.4 Editors and IDEs with Strong Grammar Plugin Support 150
3.3.5 Grammar Files and Syntax Highlighting 151
3.3.6 Real-Time Diagnostics and Auto-Completion 152
3.3.7 Formatter and Style Tools . 153
3.3.8 Embedding Interpreter into IDE for Live Evaluation 154
3.3.9 Conclusion . 154

3.4 Testing and Debugging Interpreters . 155
3.4.1 Introduction . 155
3.4.2 Foundations of Interpreter Testing 155
3.4.3 Unit Testing with Modern C++ Frameworks 156
3.4.4 Integration and Regression Testing 157
3.4.5 Debugging Strategies for Interpreters 158
3.4.6 Using Modern C++ Tools for Debugging 159
3.4.7 Testing Error Handling and Edge Cases 160
3.4.8 Test Automation and Continuous Integration 160
3.4.9 Conclusion . 161

3.5 Milestone – Development Environment Ready for Interpreter Building . . . 162
3.5.1 Introduction . 162
3.5.2 Confirmed Compiler and Language Support 162
3.5.3 Project Structure Verified and Navigable 163
3.5.4 IDE and Editor Integration Complete 164
3.5.5 Core Testing Infrastructure Operational 164

8

3.5.6 Debugging and Diagnostics Functional 165
3.5.7 Optional Tools and Enhancements Ready 166
3.5.8 Initial Interpreter Command-line Interface Bootstrapped 166
3.5.9 Final Validation: Milestone Status 167
3.5.10 Conclusion . 168

II Lexical Foundation 169

4 Designing Tokens for the New Language 171
4.1 Defining Language Tokens – Keywords, Operators, Literals 171

4.1.1 Introduction . 171
4.1.2 Token Categories and Their Role 172
4.1.3 Defining Keywords . 172
4.1.4 Designing Operators . 174
4.1.5 Literal Tokens . 175
4.1.6 Literal and Identifier Differentiation 176
4.1.7 Language Token Table (Summary View) 176
4.1.8 Modern C++ Techniques for Token Design 177
4.1.9 Conclusion . 178

4.2 C-style Syntax Design: {}, ;, () . 178
4.2.1 Introduction . 178
4.2.2 Braces {}: Code Block Delimiters 179
4.2.3 Semicolon ;: Statement Terminator 181
4.2.4 Parentheses (): Grouping and Control Flow Syntax 182
4.2.5 Modern C++ Integration for Delimiter Handling 184
4.2.6 Error Handling and Resynchronization 184
4.2.7 Conclusion . 185

9

4.3 Custom Tokens for Our Language – Additional Features 185
4.3.1 Introduction . 186
4.3.2 Motivation for Custom Tokens . 186
4.3.3 Designing Custom Token Types . 187
4.3.4 Custom Tokens for Language Semantics 188
4.3.5 Interpolated String Tokens . 189
4.3.6 Annotations and Metadata: @ . 190
4.3.7 Preprocessor-style Extensions: # 191
4.3.8 Parser Considerations for Custom Tokens 191
4.3.9 Compile-Time Checks for Token Set 192
4.3.10 Conclusion . 192

4.4 Implementing Token System Using Modern C++ 193
4.4.1 Introduction . 193
4.4.2 Token Type Design Using enum class 193
4.4.3 Representing Tokens with std::string_view and std::variant . 195
4.4.4 Compile-Time Maps Using constexpr for Keywords 196
4.4.5 Token Construction and Emission 196
4.4.6 Diagnostics and Token Formatting 197
4.4.7 Modern Iteration and Token Filters with std::ranges 198
4.4.8 Error Tokens and Resilience . 198
4.4.9 Extending the Token System . 199
4.4.10 Testing Tokenization . 199
4.4.11 Optional: Using concepts for Token Validation 200
4.4.12 Conclusion . 200

4.5 Hands-on Complete Language Token Set 200
4.5.1 Introduction . 200
4.5.2 Token Structure Recap . 201

10

4.5.3 Complete Token Type Enumeration 201
4.5.4 Practical Usage in Lexer . 205
4.5.5 Testing and Validation Strategy . 207
4.5.6 Optional: Token Table Summary for Compiler Explorer or IDE

Integration . 207
4.5.7 Conclusion . 208

5 Lexical Analyzer for C-Style Language 209
5.1 Reading and Analyzing New Language Code 209

5.1.1 Introduction . 209
5.1.2 Reading Source Code into Memory 210
5.1.3 Managing Source Navigation . 210
5.1.4 Identifying Token Boundaries . 212
5.1.5 Skipping Whitespace and Comments 212
5.1.6 Character Classification for Tokens 214
5.1.7 Token Recognition Loop . 214
5.1.8 Error Detection During Reading 215
5.1.9 Token Debugging and Tracing . 216
5.1.10 Conclusion . 216

5.2 Recognizing C Patterns: int x = 5;, if (condition) {} 216
5.2.1 Introduction . 216
5.2.2 Decomposing the Pattern: int x = 5; 217
5.2.3 Decomposing the Pattern: if (condition) {} 218
5.2.4 Identifier and Literal Pattern Recognition 220
5.2.5 Delimiters and Operators . 221
5.2.6 Recognizing Common Code Patterns 221
5.2.7 Diagnostic and Error Traps . 222
5.2.8 Efficient Token Stream Assembly 223

11

5.2.9 Conclusion . 223
5.3 Handling C-style Comments: // and /* */ 224

5.3.1 Introduction . 224
5.3.2 Types of Comments in C-style Languages 224
5.3.3 Design Principles for Comment Handling in the Lexer 225
5.3.4 Integration into the Lexical Scanning Loop 225
5.3.5 Implementing Single-Line Comments 226
5.3.6 Implementing Multi-Line Comments 227
5.3.7 Optional Enhancements . 228
5.3.8 Edge Case Handling . 229
5.3.9 Unit Testing Comment Handling 230
5.3.10 Conclusion . 230

5.4 Managing Syntax Errors in Source Code 231
5.4.1 Introduction . 231
5.4.2 What is a Syntax Error at the Lexical Level? 231
5.4.3 Designing an Error Reporting System 232
5.4.4 Detecting Specific Lexical Errors 233
5.4.5 Error Token Strategy (Optional for Recovery) 235
5.4.6 Line and Column Tracking for Error Reporting 235
5.4.7 Modern C++ Features for Error Reporting 236
5.4.8 Error Resynchronization Techniques 237
5.4.9 Unit Testing Lexical Errors . 237
5.4.10 Conclusion . 238

5.5 Milestone — Analyzer That Reads New Language Files 238
5.5.1 Introduction . 238
5.5.2 Objectives of This Milestone . 239
5.5.3 File-Based Input Handling . 239

12

5.5.4 Tokenization Pipeline: Lexer Operational Flow 240
5.5.5 Token Output: Readable and Structured 241
5.5.6 Source Location Tracking . 242
5.5.7 Syntax Error Reporting During Tokenization 242
5.5.8 Unit and Integration Testing . 243
5.5.9 Optional Output Format: JSON / Token Stream Dump 243
5.5.10 CLI Tool Integration: Language Analyzer 244
5.5.11 Summary: What This Milestone Confirms 245
5.5.12 Conclusion . 245

6 REPL for the New Language – Version 1 246
6.1 Interactive Loop for Writing New Language Code 246

6.1.1 Introduction . 246
6.1.2 What is a REPL? . 247
6.1.3 REPL Architecture: Minimal Form 247
6.1.4 C++20/23 Implementation: Basic REPL Loop 247
6.1.5 Design Features and C++20/23 Enhancements 248
6.1.6 Token Buffering and Line Tracking 249
6.1.7 Handling Syntax Errors in REPL 249
6.1.8 Sample Interaction Output . 250
6.1.9 Preparing for REPL Expansion . 251
6.1.10 Optional: Line History and Scripting 251
6.1.11 Summary of Achievements in REPL v1 252
6.1.12 Conclusion . 252

6.2 Displaying Tokens Extracted from Code 253
6.2.1 Introduction . 253
6.2.2 Purpose of Token Display in REPL 253
6.2.3 Token Data Model Recap . 254

13

6.2.4 Token Display Format Design . 254
6.2.5 Implementation of Token Display 255
6.2.6 Displaying All Tokens from REPL Input 257
6.2.7 Error Tokens and Highlighting . 257
6.2.8 Supporting Minimal and Diagnostic Modes 258
6.2.9 Sample Session . 258
6.2.10 Extending Output for External Tools 258
6.2.11 Summary of Capabilities . 259
6.2.12 Conclusion . 260

6.3 Testing Basic Language Constructs . 260
6.3.1 Introduction . 260
6.3.2 Purpose of Testing Constructs in REPL v1 260
6.3.3 Scope of Basic Language Constructs to Test 261
6.3.4 Using the REPL to Test Constructs 261
6.3.5 Designing Automated REPL Test Sets (Internally or as Scripts) . . 263
6.3.6 Testing Literals and Edge Cases . 264
6.3.7 Testing Multi-line Block Input (Future Extension) 264
6.3.8 Optional: Table Format for Token Summaries 265
6.3.9 Confirming Grammar Design through Testing 265
6.3.10 Summary of REPL Construct Testing Benefits 266
6.3.11 Conclusion . 266

6.4 Milestone — Interactive Explorer for the New Language 267
6.4.1 Introduction . 267
6.4.2 Purpose of This Milestone . 267
6.4.3 What the Explorer Does . 268
6.4.4 Internals of the Interactive Explorer 268
6.4.5 Supported Input Patterns . 270

14

6.4.6 Use of Modern C++20/23 in the Explorer 270
6.4.7 Example Interactive Session . 271
6.4.8 Benefits of the Explorer at This Milestone 272
6.4.9 Future Path After This Milestone 272
6.4.10 Conclusion . 273

III Syntax and Structure 274

7 AST Design for C-Style Constructs 276
7.1 Expression vs Statement Hierarchies for C-Style Syntax 276

7.1.1 Introduction . 276
7.1.2 Understanding Expressions and Statements in C-style Languages . 277
7.1.3 C++ Class Hierarchy Overview . 278
7.1.4 Base Abstract Classes . 278
7.1.5 Expression Types in a C-style Language 279
7.1.6 Statement Types in a C-style Language 279
7.1.7 Expression Inside Statement Context 280
7.1.8 Ownership and Memory Management (C++20/23) 281
7.1.9 Variant-based AST Models (Optional Modern Alternative) 281
7.1.10 AST Debugging and Visualization 282
7.1.11 Summary Table: Expressions vs Statements 282
7.1.12 Conclusion . 283

7.2 Handling C-style Declarations: int x;, float y = 3.14; 283
7.2.1 Introduction . 283
7.2.2 Core Characteristics of C-style Declarations 284
7.2.3 Designing the Declaration Node . 285
7.2.4 Parsing C-style Declarations . 285

15

7.2.5 Expression Types as Initializers . 286
7.2.6 Optional Initialization Handling . 287
7.2.7 Use of std::optional and std::variant 287
7.2.8 Supporting const and Mutability 287
7.2.9 Example Code and AST Output 288
7.2.10 Integration with the REPL . 288
7.2.11 Summary of AST Structure for Declarations 289
7.2.12 Conclusion . 289

7.3 Block Structure and Scope Representation 289
7.3.1 Introduction . 290
7.3.2 What is a Block in C-Style Syntax? 290
7.3.3 AST Representation of a Block . 291
7.3.4 Parsing a Block Structure . 291
7.3.5 Scope Representation in Interpreter 292
7.3.6 Example: Nested Blocks and Shadowing 293
7.3.7 Block Statement Evaluation Workflow 294
7.3.8 C++20/23 Enhancements in Scope Management 294
7.3.9 Real-World Usage of Block Structures 295
7.3.10 Summary of Block Scope Representation 295
7.3.11 Conclusion . 296

7.4 Memory-Safe Tree Construction with Smart Pointers 296
7.4.1 Introduction . 296
7.4.2 Why Smart Pointers for ASTs? . 297
7.4.3 Choosing the Right Smart Pointer 297
7.4.4 Defining AST Node Ownership . 298
7.4.5 Constructing AST Nodes with std::make_unique 299
7.4.6 Moving Pointers: Avoiding Copy Mistakes 299

16

7.4.7 AST Destruction is Automatic . 300
7.4.8 Visitor and Pattern Matching with Smart Pointers 300
7.4.9 AST Nodes with Optional Members 300
7.4.10 Debugging AST with Smart Pointer Safety 301
7.4.11 Summary: Best Practices . 301
7.4.12 Example: Full AST Construction Snippet 302
7.4.13 Conclusion . 302

7.5 Hands-on – Core AST Nodes for C-Style Language 303
7.5.1 Introduction . 303
7.5.2 Base AST Node Interfaces . 303
7.5.3 Smart Pointer Aliases for Ownership 304
7.5.4 Core Expression Nodes . 304
7.5.5 Core Statement Nodes . 307
7.5.6 Visual Summary of AST Nodes . 310
7.5.7 Conclusion . 311

8 Parsing C-Style Grammar 312
8.1 Grammar Design for C-Style Syntax . 312

8.1.1 Introduction . 312
8.1.2 Objectives of C-Style Grammar Design 312
8.1.3 Lexical Considerations Before Parsing 313
8.1.4 Top-Level Grammar Rule: Translation Unit 313
8.1.5 Statements and Declarations . 314
8.1.6 Expressions and Operator Precedence 314
8.1.7 Control Flow Statements . 315
8.1.8 Function Parameters and Calls . 316
8.1.9 Grammar Error Recovery Patterns 316
8.1.10 C++20/23 Integration Ideas for Grammar Handling 317

17

8.1.11 Grammar Extensibility and Modularity 317
8.1.12 Example: Full Grammar Snippet (Subset) 318
8.1.13 Conclusion . 318

8.2 Expression Parsing with C Operator Precedence 319
8.2.1 Introduction . 319
8.2.2 Why Precedence-Based Parsing Matters 319
8.2.3 Operator Precedence and Associativity in C 320
8.2.4 Strategy: Recursive Descent with Precedence Climbing 320
8.2.5 Layered Expression Grammar (EBNF) 321
8.2.6 Implementing Precedence Parsing in C++20 321
8.2.7 Unary Expressions . 322
8.2.8 Assignment and Right-Associativity 323
8.2.9 Using Modern C++ Features . 324
8.2.10 Debugging Expression AST . 324
8.2.11 Expression Parsing Example (From Tokens to AST) 325
8.2.12 Conclusion . 326

8.3 Statement Parsing – Declarations, Blocks, and Control Flow 326
8.3.1 Introduction . 326
8.3.2 Statement Categories in C-Style Syntax 327
8.3.3 Core Parsing Function . 327
8.3.4 Variable Declarations . 328
8.3.5 Block Statements . 328
8.3.6 Expression Statements . 329
8.3.7 If Statements . 330
8.3.8 While Loops . 331
8.3.9 Return Statements . 332
8.3.10 Error Recovery: Synchronization Strategy 332

18

8.3.11 Using Modern C++20/23 Features 333
8.3.12 Visual Summary of Statement Parsing 333
8.3.13 Conclusion . 334

8.4 Integrated Testing During Development 334
8.4.1 Introduction . 335
8.4.2 Why Integrated Testing Matters for Parsing 335
8.4.3 Categories of Tests to Implement 336
8.4.4 Building a Parser Testing Framework with Modern C++ 336
8.4.5 Token Stream Validation . 337
8.4.6 Expression Parser Unit Tests . 338
8.4.7 Statement and Block Tests . 338
8.4.8 Error Reporting and Recovery Tests 339
8.4.9 Automating Test Execution . 339
8.4.10 Lightweight Testing Libraries in C++20/23 340
8.4.11 Building a Grammar Regression Suite 340
8.4.12 Conclusion . 341

8.5 Milestone — Parser Generating Valid ASTs for C-Style Code 341
8.5.1 Introduction . 341
8.5.2 What Defines a “Valid AST” in a C-Style Language 342
8.5.3 AST Node Structure and Ownership 343
8.5.4 Parser Responsibilities at This Milestone 343
8.5.5 Visual and Debug Tools for AST Inspection 344
8.5.6 Verifying AST Validity through Testing 345
8.5.7 Integrated Use of C++20/23 Features at Milestone 346
8.5.8 Final Checklist for Milestone . 347
8.5.9 Preparing for Next Stages . 347
8.5.10 Conclusion . 348

19

9 Advanced Parsing and C-Style Error Handling 349
9.1 Error Recovery in C-Style Syntax . 349

9.1.1 Introduction . 349
9.1.2 Common Sources of Syntax Errors in C-Style Languages 350
9.1.3 Two-Phase Strategy: Detection and Recovery 350
9.1.4 Implementing synchronize() Function 351
9.1.5 ParseError Exception Handling . 352
9.1.6 AST Recovery Node for Invalid Statements 353
9.1.7 Structured Error Messaging and Token Context 353
9.1.8 Example: Recovery from Missing Semicolon 353
9.1.9 Modern C++ Integration for Safer Error Control 354
9.1.10 Testing Error Recovery Scenarios 355
9.1.11 Summary and Best Practices . 355
9.1.12 Conclusion . 356

9.2 Rich Error Messages for Common C-Style Mistakes 356
9.2.1 Introduction . 357
9.2.2 Categories of Common C-Style Syntax Mistakes 357
9.2.3 Designing Human-Friendly Messages 358
9.2.4 Implementation in C++20/23: Error Reporter Design 359
9.2.5 Detecting Specific Patterns for Enhanced Diagnostics 359
9.2.6 Enabling Context-Aware Suggestions 360
9.2.7 Providing Fix-It Hints (Optional for IDE Integration) 361
9.2.8 Example Message Enhancements 361
9.2.9 Building a Diagnostic Table for All Grammar Rules 362
9.2.10 C++20 Features That Improve Diagnostics 362
9.2.11 Testing Diagnostic Accuracy . 363
9.2.12 Conclusion . 364

20

9.3 Parser Testing with C-Style Code Patterns 364
9.3.1 Introduction . 364
9.3.2 Purpose of Parser Testing . 364
9.3.3 C-Style Syntax Patterns to Cover 365
9.3.4 Test Architecture in Modern C++ 366
9.3.5 AST Structure Verification . 367
9.3.6 Token Snapshot Tests . 367
9.3.7 Expression Parsing with Precedence 368
9.3.8 Error Pattern Testing . 368
9.3.9 Parser Test Utility Functions . 369
9.3.10 Using C++20 Features in Parser Tests 369
9.3.11 Milestone: Confidence in Parser Robustness 370
9.3.12 Conclusion . 371

9.4 Milestone – Robust Parser with Excellent C-Style Error Reporting 371
9.4.1 Introduction . 371
9.4.2 Defining “Robustness” in a Parser 371
9.4.3 Key Features of the Final Parser at This Stage 372
9.4.4 Unified Error Reporting Infrastructure 373
9.4.5 Error Resilience with Synchronization Techniques 374
9.4.6 AST Structural Integrity . 374
9.4.7 Parser Test Coverage at Milestone 375
9.4.8 Using C++20/23 to Improve Parser Quality 375
9.4.9 Debug Mode with Verbose Token and Parse Logs 376
9.4.10 Code Snapshot: Final Parser API Example 377
9.4.11 Milestone Summary Checklist . 377
9.4.12 Conclusion . 378

21

IV Evaluation Engine 379

10 Value System for C-Style Types 381
10.1 Type System – int, float, bool, string, arrays 381

10.1.1 Core Goals of the Type System . 381
10.1.2 Defining the Value Type . 382
10.1.3 Primitive Types Implementation 383
10.1.4 Arrays . 384
10.1.5 Type Promotion and Compatibility Rules 385
10.1.6 Using Concepts for Type-Safe Operations (C++20/23) 386
10.1.7 Type Inspection and Debugging Utilities 386
10.1.8 Interfacing with AST Evaluation 387
10.1.9 Future-Proofing and Extensibility 387
10.1.10 Conclusion . 388

10.2 Type Checking and Conversion in C-Style Context 388
10.3 Value Operations Matching C Semantics 395

10.3.1 Core Objectives . 396
10.3.2 Unified Operator Dispatcher Using std::variant and Lambdas . . 396
10.3.3 Arithmetic Operators: +, -, *, /, % 397
10.3.4 Comparison Operators: ==, !=, <, >, <=, >= 398
10.3.5 Logical Operators: &&, ||, ! . 399
10.3.6 Unary Operators: -, +, ! . 399
10.3.7 Assignment and Compound Assignment: =, +=, -=, etc. 400
10.3.8 String and Array Specific Operations 401
10.3.9 Operator Precedence and Evaluation Order 401
10.3.10 Overflow and NaN Behavior . 401
10.3.11 Leveraging Modern C++ Features 401
10.3.12 Conclusion . 402

22

10.4 Hands-on — Value System with C-Style Type Behavior 402
10.4.1 Defining the Value System . 403
10.4.2 Boolean Context Evaluation . 405
10.4.3 Arithmetic Operations (Example: Addition) 405
10.4.4 Relational Comparison . 406
10.4.5 Logical Operations . 406
10.4.6 String Indexing and Array Access 407
10.4.7 Assignment Simulation . 408
10.4.8 Debugging and Type Introspection 409
10.4.9 Example Program Evaluation . 409
10.4.10 Optional Enhancements . 410
10.4.11 Conclusion . 410

11 Environment and C-Style Scoping 411
11.1 Symbol Table Design with C-Style Block Scoping 411

11.1.1 Goals of the Symbol Table . 411
11.1.2 Lexical Scoping Model Recap . 412
11.1.3 Core Structure: Chained Symbol Tables 412
11.1.4 Creating and Disposing Scopes . 414
11.1.5 Handling Shadowing . 415
11.1.6 Using Concepts for Type Constraints (Optional) 415
11.1.7 Scope Levels and Debugging . 416
11.1.8 Global vs Local Environments . 416
11.1.9 Integration with AST Evaluation 417
11.1.10 Memory and Performance Considerations 417
11.1.11 Conclusion . 418

11.2 Variable Resolution Following C Rules . 418
11.2.1 Overview of C Variable Resolution Semantics 418

23

11.2.2 Environment Model Recap . 419
11.2.3 Variable Lookup (get Resolution) 420
11.2.4 Variable Assignment (assign Resolution) 420
11.2.5 Declaring Variables (declare) . 421
11.2.6 Applying Resolution in AST Evaluation 422
11.2.7 Example: Block Scope Simulation 422
11.2.8 Enhancing Performance: Optional Variable Resolution Caching . . 423
11.2.9 Scoped Constants (Optional Extension) 423
11.2.10 Error Reporting and Diagnostics 424
11.2.11 Conclusion . 424

11.3 Lexical Scoping Implementation . 424
11.3.1 What is Lexical Scoping? . 425
11.3.2 Environment as Lexical Scope . 426
11.3.3 Entering and Exiting Lexical Scopes 426
11.3.4 Visualizing the Scope Chain . 427
11.3.5 Scope Chain Traversal in get and assign 427
11.3.6 Shadowing and Uniqueness . 428
11.3.7 Managing the Global Scope . 429
11.3.8 Integration with Control Structures 429
11.3.9 Optional Optimizations . 429
11.3.10 Future-Proofing . 430
11.3.11 Conclusion . 430

11.4 Milestone — Working C-Style Variable System 431
11.4.1 Goals of the Variable System Milestone 431
11.4.2 Architecture Summary . 432
11.4.3 Key Functional Behavior . 433
11.4.4 Evaluation Integration Example . 434

24

11.4.5 Demonstration and Test Case . 435
11.4.6 Error Handling Examples . 436
11.4.7 Design Conformance to C Semantics 437
11.4.8 Modern C++ Enhancements . 437
11.4.9 Diagnostic and Debugging Tools 437
11.4.10 Summary . 438

12 Expression Evaluation in C-Style 439
12.1 Binary and Unary Operations with C Precedence 439

12.1.1 Operator Categories in C . 439
12.1.2 Expression Representation in AST 440
12.1.3 Evaluating Binary Expressions . 441
12.1.4 Evaluating Unary Expressions . 442
12.1.5 Parser: Operator Precedence Parsing (Shunting Yard or

Precedence Climbing) . 443
12.1.6 Operator Table and Precedence Metadata 444
12.1.7 Short-Circuit Evaluation . 445
12.1.8 C++20/23-Specific Enhancements 446
12.1.9 Validation and Diagnostics . 446
12.1.10 Conclusion . 447

12.2 Assignment Operations and Side Effects 447
12.2.1 Assignment as an Expression in C 447
12.2.2 AST Representation of Assignments 448
12.2.3 Evaluation Strategy . 448
12.2.4 Side Effects and Evaluation Order 450
12.2.5 Variable Tracking for Side Effects 450
12.2.6 Compound Assignment as Syntax Sugar 451
12.2.7 Postfix and Prefix Increment/Decrement (Optional) 452

25

12.2.8 Constant Assignments and Immutability (Optional) 453
12.2.9 Expression Sequencing and Return Value 454
12.2.10 Test Case Examples . 454
12.2.11 Conclusion . 455

12.3 Variable Lookup Following C Scoping Rules 456
12.3.1 C Variable Lookup Semantics . 456
12.3.2 Environment Chain Overview . 457
12.3.3 Lookup Algorithm: C Rules in Practice 458
12.3.4 Expression Evaluation Integration 459
12.3.5 Handling Shadowing . 459
12.3.6 Example Execution Chain . 460
12.3.7 Lookup Failure Handling . 461
12.3.8 Optional Optimization: Static Resolution Hints 461
12.3.9 Modern C++ Enhancements . 462
12.3.10 Summary of Lookup Behavior . 462
12.3.11 Conclusion . 463

12.4 Hands-on — Calculator Supporting C-Style Expressions 463
12.4.1 Key Features . 464
12.4.2 Value System . 465
12.4.3 Environment for Variable Support 466
12.4.4 Expression AST Design . 467
12.4.5 Recursive Descent Parser with Precedence 469
12.4.6 Main Loop (REPL-like) . 470
12.4.7 Example Interactions . 470
12.4.8 Future Extensions . 471
12.4.9 Conclusion . 471

26

13 Enhanced REPL – Version 2 472
13.1 Expression Evaluation in Interactive Mode 472

13.1.1 Goals of Interactive Expression Evaluation 472
13.1.2 Essential Architecture Components 473
13.1.3 Read-Eval-Print Loop Implementation 474
13.1.4 Supported Expression Types . 474
13.1.5 Persistent Evaluation Context . 476
13.1.6 Error Detection and Recovery . 476
13.1.7 C++20/23 Features in Use . 477
13.1.8 Example REPL Session . 477
13.1.9 Test Cases for Validation . 478
13.1.10 Future Extensions . 478
13.1.11 Conclusion . 479

13.2 Variable Persistence with C-Style Scoping 479
13.2.1 C-Style Scoping Rules Recap . 479
13.2.2 Persistent Global Environment . 480
13.2.3 Environment Chaining for Block Scoping 481
13.2.4 Variable Assignment and Update 481
13.2.5 Shadowing and Restoration . 482
13.2.6 REPL Use Case . 483
13.2.7 Value Consistency and Type Safety 484
13.2.8 Error Reporting and Shadow Awareness 484
13.2.9 C++20/23 Features Used . 485
13.2.10 Summary Table . 485
13.2.11 Conclusion . 486

13.3 Enhanced Debugging Output for Language Constructs 486
13.3.1 Objectives of Enhanced Debugging 487

27

13.3.2 Core Debug Output Components 487
13.3.3 Tracing Variable Access and Mutation 488
13.3.4 Tracing Expression Evaluation . 489
13.3.5 Tracing Scope Creation and Destruction 490
13.3.6 Optional: AST Structure Visualization 491
13.3.7 Enhanced Error Context and Reporting 491
13.3.8 Toggleable Debug Mode . 492
13.3.9 Summary of Debugging Features 493
13.3.10 Conclusion . 493

13.4 Milestone — Interactive C-Style Expression Evaluator 494
13.4.1 Introduction . 494
13.4.2 Milestone Objectives . 494
13.4.3 Components Realized in This Milestone 494
13.4.4 Persistent Evaluation Environment 496
13.4.5 Expression Evaluation Lifecycle . 496
13.4.6 Modern C++ Integration . 497
13.4.7 Debugging and Trace Output (Optional) 498
13.4.8 User Experience . 498
13.4.9 Example Session . 499
13.4.10 Summary Table of Supported Features 499
13.4.11 Roadmap Beyond This Milestone 500
13.4.12 Conclusion . 501

V Control Flow and Functions 502

14 C-Style Statement Execution Engine 504
14.1 Block Scoping with {} Delimiters . 504

28

14.1.1 Purpose of Block Scoping . 504
14.1.2 Conceptual Model . 505
14.1.3 Parser Recognition of Block Statements 506
14.1.4 Executing a Block Statement . 506
14.1.5 Shadowing and Lifetime Behavior 507
14.1.6 Integration with Control Flow . 508
14.1.7 Debug Output for Block Scope . 509
14.1.8 C++20/23 Enhancements . 509
14.1.9 Example Execution Flow . 510
14.1.10 Summary . 511
14.1.11 Conclusion . 511

14.2 Conditional Statements — if, else if, else 511
14.2.1 Role of Conditional Statements . 512
14.2.2 Grammar and AST Representation 513
14.2.3 Parsing Strategy . 513
14.2.4 Execution Logic . 514
14.2.5 Block Isolation and Scope . 515
14.2.6 Error Handling . 515
14.2.7 Debug Output (Optional) . 516
14.2.8 Example Use Case . 516
14.2.9 C++20/23 Features in Use . 517
14.2.10 Future Extensions . 518
14.2.11 Summary Table . 518
14.2.12 Conclusion . 518

14.3 Loop Constructs — while, for, do-while 519
14.3.1 Overview of Loop Constructs . 519
14.3.2 Common Interpreter Requirements 520

29

14.3.3 while Loop . 520
14.3.4 do-while Loop . 522
14.3.5 for Loop . 523
14.3.6 Break and Continue Handling . 524
14.3.7 Debugging Trace Support . 525
14.3.8 C++20/23 Modernization Techniques 525
14.3.9 Example Execution . 526
14.3.10 Summary . 526
14.3.11 Conclusion . 527

14.4 Milestone — Full C-Style Statement Interpreter 527
14.4.1 Milestone Goals . 528
14.4.2 Structural Overview . 528
14.4.3 Statement Execution Engine . 529
14.4.4 Scope and Environment Integration 530
14.4.5 Supported Language Features at This Stage 530
14.4.6 Example Program Execution . 531
14.4.7 Modern C++ Practices in Use . 532
14.4.8 Debug and Tracing Infrastructure 533
14.4.9 Stability and Error Handling . 533
14.4.10 Preparing for Next Stage . 534
14.4.11 Conclusion . 534

15 Function Implementation in C-Style 535
15.1 Function Declarations — int func(int x, float y) 535

15.1.1 Purpose and Scope . 536
15.1.2 Syntax Definition . 536
15.1.3 AST Representation . 537
15.1.4 Symbol Table Registration . 537

30

15.1.5 Environment Preparation for Calls 538
15.1.6 Return Mechanism . 539
15.1.7 Type Safety and C++20/23 Usage 540
15.1.8 Example . 540
15.1.9 Error Cases . 541
15.1.10 Summary . 542
15.1.11 Conclusion . 542

15.2 Call Stack and Activation Records . 542
15.2.1 What Is the Call Stack? . 543
15.2.2 Structure of an Activation Record 543
15.2.3 The Call Stack Implementation . 544
15.2.4 Function Call Flow with the Stack 545
15.2.5 Benefits of a Proper Call Stack . 546
15.2.6 Recursive Example . 546
15.2.7 Debugging Support . 547
15.2.8 C++20/23 Modern Practices . 547
15.2.9 Future Extensions . 548
15.2.10 Summary Table . 548
15.2.11 Conclusion . 549

15.3 Parameter Passing and Type Checking . 549
15.3.1 Fundamentals of C-Style Parameter Passing 550
15.3.2 Internal Representation of Parameters 550
15.3.3 Argument Evaluation and Matching 551
15.3.4 typeMatches Implementation . 552
15.3.5 Value Binding in Local Scope . 553
15.3.6 Error Handling . 553
15.3.7 Debug Support . 554

31

15.3.8 C++20/23 Usage . 554
15.3.9 Realistic Example . 555
15.3.10 Preparing for Next Stage . 556
15.3.11 Summary Table . 556
15.3.12 Conclusion . 557

15.4 Return Statement Handling . 557
15.4.1 Purpose and Behavior of return 558
15.4.2 AST Representation of Return Statements 558
15.4.3 Runtime Handling via Exception-like Signal 559
15.4.4 Handling in the Caller Context . 559
15.4.5 Type Checking Logic . 560
15.4.6 Early Return in Nested Blocks . 561
15.4.7 Debugging and Diagnostics . 561
15.4.8 C++20/23 Techniques . 562
15.4.9 Sample Scenario . 562
15.4.10 Error Scenarios . 563
15.4.11 Summary Table . 564
15.4.12 Conclusion . 564

15.5 Hands-on — C-style Function Support with Recursion 565
15.5.1 Step-by-Step Overview . 565
15.5.2 Parsing and AST Construction . 566
15.5.3 Registering the Function . 566
15.5.4 Calling the Function . 567
15.5.5 Handling Recursion . 568
15.5.6 Runtime Value Definitions . 569
15.5.7 Call Stack Visualization . 569
15.5.8 Test Case: Recursion in REPL . 570

32

15.5.9 C++20/23 Highlights . 570
15.5.10 Summary Table . 571
15.5.11 Conclusion . 572

16 Advanced C-Style Function Features 573
16.1 Function Pointers and First-Class Functions 573

16.1.1 Understanding the Concept . 573
16.1.2 Function Pointer Syntax Design . 574
16.1.3 Internal Representation: Function Value Type 575
16.1.4 Storing and Resolving Function Values 576
16.1.5 Calling via Function Variable . 576
16.1.6 Type Checking Function Signatures 577
16.1.7 First-Class Function Operations . 578
16.1.8 Modern C++ Support . 578
16.1.9 Debugging and Tracing . 579
16.1.10 Summary Table . 580
16.1.11 Conclusion . 580

16.2 Local Function Declarations . 581
16.2.1 Local Function Use Case . 581
16.2.2 Parsing Local Functions . 582
16.2.3 Environment and Scope Design . 583
16.2.4 Resolving Function References . 583
16.2.5 Scoping Behavior . 584
16.2.6 Recursive Support in Locals . 585
16.2.7 Return Scoping and Error Prevention 585
16.2.8 Diagnostics and Debug Support . 586
16.2.9 C++20/23 Techniques . 586
16.2.10 Summary Table . 587

33

16.2.11 Conclusion . 587
16.3 Built-in Function Integration . 588

16.3.1 What Are Built-in Functions? . 588
16.3.2 Unified Function Representation 589
16.3.3 Defining Built-in Functions . 590
16.3.4 Calling Built-in Functions at Runtime 590
16.3.5 Type-Checking and Safety . 591
16.3.6 Registering Built-in Functions . 592
16.3.7 Reflection and Debugging Support 592
16.3.8 Modern C++ Integration . 593
16.3.9 Example: Advanced Built-in . 593
16.3.10 Summary Table . 594
16.3.11 Conclusion . 595

16.4 Milestone — Complete C-Style Function System 595
16.4.1 Architectural Overview . 596
16.4.2 Execution Pipeline Summary . 596
16.4.3 Language Capabilities Achieved . 598
16.4.4 Modern C++ Implementation Features 598
16.4.5 Testing and Validation Cases . 599
16.4.6 Developer-Focused Extensions . 601
16.4.7 Diagnostic and Debugging Support 601
16.4.8 Final Architecture Snapshot . 602
16.4.9 Conclusion . 602

VI Collections and Advanced Features 604

17 Arrays and C-Style Data Structures 606

34

17.1 Static and dynamic array implementation 606
17.1.1 Introduction . 606
17.1.2 Conceptual Design: Static vs Dynamic 607
17.1.3 Type Representation . 607
17.1.4 Declaration Syntax and Semantics 608
17.1.5 Runtime Value Model . 608
17.1.6 Array Initialization . 609
17.1.7 Access and Bounds Checking . 610
17.1.8 Array Type Inference and Consistency 610
17.1.9 Array Utilities and Built-ins . 611
17.1.10 C++20/23 Techniques . 611
17.1.11 Error Handling . 612
17.1.12 Summary . 613
17.1.13 Conclusion . 613

17.2 Array Indexing with Bounds Checking . 613
17.2.1 Introduction . 614
17.2.2 Understanding Indexing Semantics 614
17.2.3 Internal Value Representation . 615
17.2.4 Bounds Checking Logic . 615
17.2.5 Performance Consideration . 617
17.2.6 Compiler-Level Optimizations and C++ Tools 617
17.2.7 Error Diagnostics and User Feedback 618
17.2.8 Extended Feature: Runtime Safe Mode 618
17.2.9 Integration into AST and REPL 619
17.2.10 Test Cases . 619
17.2.11 Summary . 620
17.2.12 Conclusion . 621

35

17.3 Pointer-like Operations (Optional) . 621
17.3.1 Introduction . 621
17.3.2 Design Philosophy . 621
17.3.3 Value Representation for Pointers 622
17.3.4 Implementing & (Address-of) . 623
17.3.5 Implementing * (Dereference) . 623
17.3.6 Pointer Arithmetic (Simulated) . 624
17.3.7 Simulating Array Decay to Pointer 625
17.3.8 Debug and Trace Output . 625
17.3.9 C++20/23 Enhancements . 626
17.3.10 Test Cases . 626
17.3.11 Summary . 627
17.3.12 Conclusion . 627

17.4 Hands-on — C-Style Array Manipulation 628
17.4.1 Introduction . 628
17.4.2 Step-by-Step Implementation . 628
17.4.3 Test Programs . 632
17.4.4 Debug and REPL Tracing . 633
17.4.5 C++20/23 Features in Use . 633
17.4.6 Summary . 634
17.4.7 Conclusion . 634

18 Standard Library for C-Style Language 635
18.1 Built-in Functions — printf, scanf Equivalents 635

18.1.1 Introduction . 635
18.1.2 Objective: Design Goals . 636
18.1.3 Built-in print() Equivalent (printf-like) 636
18.1.4 Built-in input() Equivalent (scanf-like) 639

36

18.1.5 REPL Integration . 641
18.1.6 Test Scenarios . 642
18.1.7 C++20/23 Features Used . 642
18.1.8 Summary . 643
18.1.9 Conclusion . 643

18.2 File I/O Operations . 643
18.2.1 Introduction . 644
18.2.2 Design Considerations . 644
18.2.3 File Handle Representation . 645
18.2.4 Built-in: fopen(filename, mode) 645
18.2.5 Built-in: fclose(file) . 646
18.2.6 Built-in: fprintf(file, format, ...) 647
18.2.7 Built-in: freadline(file) and fwrite(file, data) 647
18.2.8 File I/O in the REPL and Scripting 648
18.2.9 Modern C++20/23 Use . 649
18.2.10 Summary . 649
18.2.11 Conclusion . 650

18.3 String Manipulation Utilities . 650
18.3.1 Introduction . 650
18.3.2 Internal Representation . 651
18.3.3 Core Built-in Functions . 651
18.3.4 Concatenation and Comparison . 652
18.3.5 Search and Replace Utilities . 653
18.3.6 Advanced String Utilities . 654
18.3.7 Modern C++20/23 Concepts in Practice 655
18.3.8 REPL Examples and Integration 656
18.3.9 Summary . 656

37

18.3.10 Conclusion . 657
18.4 Milestone — Usable Standard Library for Our Language 657

18.4.1 Introduction . 657
18.4.2 Components of the Standard Library 658
18.4.3 Architectural Strengths of the Current Design 659
18.4.4 Usability from a Language User’s View 660
18.4.5 Modern C++ Foundation . 661
18.4.6 Documentation Strategy . 662
18.4.7 Future Expansion Plan . 662
18.4.8 Summary of This Milestone . 662
18.4.9 Conclusion . 663

VII Production Quality Features 664

19 Comprehensive Error Handling 666
19.1 Runtime Error Reporting with C-Style Context 666

19.1.1 Introduction . 666
19.1.2 Runtime Error System Requirements 667
19.1.3 Error Kind Classification (Structured Typing) 667
19.1.4 Error Class Design in Modern C++ 668
19.1.5 Generating Errors in the Evaluation Engine 670
19.1.6 Centralized Error Display Logic . 671
19.1.7 REPL vs File Execution Behavior 672
19.1.8 Benefits of Structured Error Reporting 672
19.1.9 Error Propagation and Catching (Optional Feature) 672
19.1.10 Internal Logging and Debugging 673
19.1.11 Future Work . 673

38

19.1.12 Summary Checklist . 674
19.1.13 Conclusion . 675

19.2 Stack Traces for Function Calls . 675
19.2.1 Overview . 675
19.2.2 Motivation for Stack Traces in Interpreters 676
19.2.3 Architectural Design of the Call Stack 676
19.2.4 Entering and Exiting Functions . 677
19.2.5 Capturing the Stack Trace on Error 678
19.2.6 Stack Trace Presentation . 680
19.2.7 Special Considerations for REPL 680
19.2.8 Recursive and Deep Call Chains . 681
19.2.9 Filtering Internal Frames . 681
19.2.10 Language-Level Integration (Optional) 682
19.2.11 Benefits of a Structured Stack Trace System 682
19.2.12 Summary and Next Steps . 683
19.2.13 Conclusion . 684

19.3 Memory Error Detection and Reporting 684
19.3.1 Introduction: The Role of Memory Error Handling in C-Style

Interpreters . 684
19.3.2 Understanding Memory Semantics in C-Style Languages 685
19.3.3 Virtual Memory Representation . 686
19.3.4 Use-After-Free Detection . 687
19.3.5 Out-of-Bounds Access Detection 688
19.3.6 Null Pointer and Uninitialized Access 689
19.3.7 Enhanced Error Reporting . 690
19.3.8 Debugging Tools and Memory State Dump 691
19.3.9 Optional: Tagged Memory Blocks 691

39

19.3.10 Preventing Memory Leaks . 692
19.3.11 C++20/23 Features Used . 692
19.3.12 Summary of Memory Error Handling Capabilities 693
19.3.13 Conclusion . 694

19.4 Hands-on — Robust Error Handling System 694
19.4.1 Overview . 694
19.4.2 Design Objectives . 695
19.4.3 Core Error Structure . 695
19.4.4 Printing a Structured ErrorReport 697
19.4.5 Integrating with Runtime Execution 698
19.4.6 Top-Level Catch and Error Propagation 699
19.4.7 Lexical and Syntax Error Integration 699
19.4.8 Extending with Logging . 700
19.4.9 C++20/23 Features in Use . 700
19.4.10 Debug Commands in REPL . 701
19.4.11 Example Errors in Action . 701
19.4.12 Test Coverage Strategy . 702
19.4.13 Benefits and Future Expansion . 703
19.4.14 Conclusion . 703

20 Debugging and Development Tools 705
20.1 AST Visualization for C-Style Constructs 705

20.1.1 Introduction . 705
20.1.2 Goals of AST Visualization . 706
20.1.3 AST Node Representation . 706
20.1.4 Visualization of C-Style Constructs 708
20.1.5 Integration into REPL . 710
20.1.6 Exporting AST for External Tools 711

40

20.1.7 Modern C++ Enhancements . 712
20.1.8 Use Cases . 712
20.1.9 Testing Visualization Output . 713
20.1.10 Conclusion . 714

20.2 Step-by-Step Execution Tracing . 714
20.2.1 Introduction . 714
20.2.2 Objectives of Execution Tracing . 714
20.2.3 Design Strategy . 715
20.2.4 Tracer Interface Design . 716
20.2.5 Instrumenting Execution Engine 717
20.2.6 Sample Console Tracer Implementation 718
20.2.7 Step Mode vs Auto Mode . 718
20.2.8 Trace Output Example . 719
20.2.9 Trace Control API (Advanced Use) 720
20.2.10 Modern C++20/23 Enhancements 721
20.2.11 Test Coverage and Validation . 722
20.2.12 Conclusion . 722

20.3 Performance Profiling Integration . 722
20.3.1 Introduction . 722
20.3.2 Objectives of Performance Profiling 723
20.3.3 Instrumentation Architecture . 723
20.3.4 Measuring Execution Time . 724
20.3.5 Profiling Control Flow and Statements 725
20.3.6 Memory Access Profiling (Optional) 726
20.3.7 Report Generation and Visualization 727
20.3.8 Leveraging Modern C++ Features 727
20.3.9 Integration with Debugging and Tracing 728

41

20.3.10 Test Cases and Validation . 729
20.3.11 Conclusion . 729

20.4 Milestone — Complete Debugging Toolkit 729
20.4.1 Introduction . 730
20.4.2 Definition of “Complete Debugging Toolkit” 730
20.4.3 Implementation Strategy . 731
20.4.4 Step Execution and Breakpoint Engine 732
20.4.5 Watchpoints and Variable Monitoring 732
20.4.6 Value and Scope Inspector . 733
20.4.7 Call Stack View and Navigation . 733
20.4.8 Profiling Summary Integration . 734
20.4.9 Enhanced Error Reporting and Live Fixing 735
20.4.10 Modern C++ Tools Used . 735
20.4.11 Final Milestone Checklist . 736
20.4.12 Conclusion . 737

21 File Execution and Script Support 738
21.1 Executing .lang Files from Command Line 738

21.1.1 Introduction . 738
21.1.2 CLI Design Principles . 739
21.1.3 Parsing Command Line Arguments 739
21.1.4 File Loading and Parsing . 740
21.1.5 Error Handling for Script Execution 741
21.1.6 Flags and Options for Script Control 742
21.1.7 Integration with REPL and Standard I/O 743
21.1.8 Modern C++ Enhancements . 743
21.1.9 Testing and Validation . 744
21.1.10 Sample Execution Session . 744

42

21.1.11 Conclusion . 745
21.2 Basic Module/Include System . 745

21.2.1 Introduction . 745
21.2.2 Design Philosophy . 746
21.2.3 Syntax Proposal . 747
21.2.4 Parser and AST Extension . 747
21.2.5 Interpreter Execution Logic . 748
21.2.6 Scope Management: Global vs Module 748
21.2.7 Path Resolution . 749
21.2.8 Preventing Redundant Inclusion . 750
21.2.9 Command-Line and Module Search Paths 750
21.2.10 Modern C++ Enhancements . 751
21.2.11 Example Usage . 751
21.2.12 Conclusion . 752

21.3 Command-Line Interface Design . 753
21.3.1 Introduction . 753
21.3.2 CLI Roles and Requirements . 753
21.3.3 C++20/23-Oriented CLI Architecture 754
21.3.4 CLI Syntax Design . 754
21.3.5 CLI Argument Parsing in Modern C++ 755
21.3.6 Dispatch Logic . 756
21.3.7 Environment Injection . 757
21.3.8 Error and Exit Code Handling . 758
21.3.9 Logging and Output . 758
21.3.10 Testing and Validation . 758
21.3.11 Extensibility for Future Features 759
21.3.12 Conclusion . 759

43

21.4 Milestone — Standalone Interpreter for Our C-Style Language 760
21.4.1 Overview . 760
21.4.2 Interpreter Entry Point: main . 761
21.4.3 File Execution Integration . 762
21.4.4 REPL Fallback . 763
21.4.5 Integration of All Language Subsystems 763
21.4.6 Deployment Readiness . 764
21.4.7 Exit Codes and External Tooling 765
21.4.8 Optional: Static Embedding or Packaging 766
21.4.9 Summary: What This Milestone Unlocks 766

VIII Optimization and Advanced Topics 767

22 Performance Optimization 769
22.1 Optimizing C-style expression evaluation 769

22.1.1 Identifying Performance Bottlenecks 769
22.1.2 Evaluation Model: Recursive vs Iterative 770
22.1.3 Optimizing Constant Expressions: Folding and Hoisting 771
22.1.4 Short-Circuit Boolean Evaluation 772
22.1.5 Memory Efficiency and Value Reuse 772
22.1.6 AST Layout for Cache Locality . 773
22.1.7 Dispatch Optimization: std::visit vs if constexpr 774
22.1.8 Operator Table Optimization . 774
22.1.9 Inlining and Precomputed Expression Paths 775
22.1.10 Testing and Profiling Optimizations 775
22.1.11 Summary . 776

22.2 Memory Management for Language Runtime 776

44

22.2.1 Introduction . 776
22.2.2 Memory Categories in C-Style Languages 777
22.2.3 Modern C++ Memory Tools for Interpreter Design 777
22.2.4 Stack Frame and Local Variable Lifetime 778
22.2.5 Arena Allocation for AST and Environments 779
22.2.6 Managing Heap-like Memory Safely 779
22.2.7 Avoiding Memory Fragmentation 780
22.2.8 Memory Profiling and Leak Detection 781
22.2.9 Object Lifetime Contracts . 782
22.2.10 Memory Error Prevention . 782
22.2.11 Summary . 783

22.3 Profiling and Bottleneck Identification . 784
22.3.1 Introduction . 784
22.3.2 Why Profiling is Critical . 784
22.3.3 Instrumentation Using Modern C++ 785
22.3.4 Building a Centralized Profiler . 786
22.3.5 Targeting Hot Paths . 787
22.3.6 External Tools for Full-Scale Profiling 788
22.3.7 Profiling the Interpreter Lifecycle 789
22.3.8 Interpreted Language Profiling Considerations 789
22.3.9 Summary Reports . 790
22.3.10 Summary . 790

22.4 Hands-on — Performance Measurement and Tuning 791
22.4.1 Overview . 791
22.4.2 Setting Up a Benchmark Harness 791
22.4.3 Tuning Evaluation Performance . 792
22.4.4 Memory Allocation Reduction . 793

45

22.4.5 Optimize Variable Lookup . 794
22.4.6 Loop Execution Optimizations . 795
22.4.7 Real-World Benchmarking Scripts 795
22.4.8 Multi-phase Optimization Loop . 796
22.4.9 Other C++20/23 Features for Performance 797
22.4.10 Summary . 797

23 Bytecode Virtual Machine (Optional) 798
23.1 Compiling C-Style Constructs to Bytecode 798

23.1.1 Introduction . 798
23.1.2 Bytecode Overview . 799
23.1.3 Compiler Architecture . 799
23.1.4 Expression Compilation . 800
23.1.5 Control Flow Compilation . 801
23.1.6 Loop Constructs . 802
23.1.7 Function Compilation . 802
23.1.8 Optimization Before Emission (Optional) 803
23.1.9 Bytecode Format Design Considerations 804
23.1.10 Integration with VM . 804
23.1.11 Summary . 805

23.2 Stack-Based VM for Better Performance 805
23.2.1 Introduction . 806
23.2.2 Why Stack-Based? . 806
23.2.3 Core Components of the Stack-Based VM 807
23.2.4 Call Stack for Function Support . 809
23.2.5 Stack Discipline and Scope . 809
23.2.6 Performance Considerations . 810
23.2.7 Exception-Free Execution . 811

46

23.2.8 Extending the VM with New Instructions 811
23.2.9 Instruction Tracing for Debugging 811
23.2.10 Summary . 812

23.3 Instruction Set Design for C-Style Operations 812
23.3.1 Introduction . 812
23.3.2 Instruction Set Requirements for C Semantics 813
23.3.3 Instruction Structure . 813
23.3.4 Expression Evaluation Instructions 814
23.3.5 Control Flow Instructions . 815
23.3.6 Function Instructions . 816
23.3.7 Type-Specific Operations . 816
23.3.8 Variable Instructions . 817
23.3.9 Literal Handling . 817
23.3.10 Special and System Instructions . 818
23.3.11 Instruction Encoding Strategy . 818
23.3.12 Expanding the Instruction Set in Future 819
23.3.13 Summary . 819

23.4 Advanced Milestone — High-Performance VM Option 820
23.4.1 Introduction . 820
23.4.2 Key Goals for High-Performance VM 820
23.4.3 Core Optimization Strategies . 821
23.4.4 Register-Based VM (Alternative to Stack-Based) 822
23.4.5 Inlined Built-ins and Fast-Path Execution 823
23.4.6 Function Call Optimization . 823
23.4.7 Parallel Execution and Fibers (Optional) 824
23.4.8 Performance Metrics and Tuning 824
23.4.9 Modular Design for Future JIT . 825

47

23.4.10 Summary . 825

24 Language Distribution and Embedding 826
24.1 Embedding Our Language in C++ Applications 826

24.1.1 Introduction . 826
24.1.2 Embedding Architecture Overview 827
24.1.3 Creating a C++ Embedding Interface 827
24.1.4 Host Binding: From C++ to the Interpreter 828
24.1.5 Execution Context Control . 829
24.1.6 Embedding via Scripting Files . 829
24.1.7 Bi-directional Communication . 830
24.1.8 Error Handling Strategy . 830
24.1.9 Embedding Use Cases . 831
24.1.10 Modern C++ Features Used . 831
24.1.11 Summary . 831

24.2 Creating Language Runtime Library . 832
24.2.1 Introduction . 832
24.2.2 Definition and Purpose of the Runtime Library 832
24.2.3 Runtime Library Structure . 833
24.2.4 API Interface: Clean and Stable . 833
24.2.5 Compilation and Export Mechanics 834
24.2.6 C++20/23 Features for Cleaner Runtime 835
24.2.7 Standard Library Initialization . 836
24.2.8 Language Runtime as a Static vs. Dynamic Library 836
24.2.9 Versioning and Compatibility . 836
24.2.10 Example Usage in a Host App . 837
24.2.11 Testing and Continuous Validation 838
24.2.12 Distribution Guidelines . 838

48

24.2.13 Conclusion . 839
24.3 Cross-Platform Distribution . 839

24.3.1 Introduction . 839
24.3.2 Target Platforms and Considerations 839
24.3.3 Using CMake for Portable Builds 840
24.3.4 Handling Platform-Specific Differences 841
24.3.5 Compiler Compatibility . 842
24.3.6 Packaging for Distribution . 843
24.3.7 Testing Across Platforms . 843
24.3.8 Optional: WebAssembly (WASI) Target 844
24.3.9 API Compatibility Across Platforms 845
24.3.10 Summary and Best Practices . 845
24.3.11 Conclusion . 846

24.4 Final Milestone – Production-ready C-style Language 846
24.4.1 Introduction . 846
24.4.2 Checklist for Production Readiness 847
24.4.3 Packaging and Deployment . 850
24.4.4 Maintainability . 851
24.4.5 Extensibility . 851
24.4.6 Final Words . 852

Author’s Introduction

This book, Designing a New C-Style Programming Language: From Concept to
Implementation, was written to guide programmers through the complete journey
of designing and building a working interpreted language using modern C++20 and
C++23.
The core objective is to demystify the internals of programming languages
by offering a hands-on, modular, and deeply technical approach. Rather than relying
on high-level tools or code generation frameworks, the book takes a low-level,
system-oriented path — implementing each component step by step: from lexical
analysis and parsing, to scope management, expression evaluation, function calls, and
performance optimizations.
My motivation stems from decades of experience in systems programming and my
belief that many developers use languages daily without truly understanding their
structure or behavior. By building a real interpreter that mimics the semantics of C-
style languages, readers gain not only implementation skills but also deeper insight into
the fundamental principles of language design.
I wrote this book to share that journey — clearly, practically, and professionally — to
empower every capable programmer to go from user to creator.

Stay Connected
For more discussions and valuable content about Designing a Programming

49

50

Language: From Concept to Implementation : Building an Interpreter
Using Modern C++.
I invite you to follow me on LinkedIn:
https://linkedin.com/in/aymanalheraki
You can also visit my personal website:
https://simplifycpp.org

Walaa Owier

https://linkedin.com/in/aymanalheraki
https://simplifycpp.org

Preface

Designing a New C-Style Programming Language: From Concept to
Implementation Building an Interpreter Using Modern C++ (C++20/23)

Why Build a New Language?
The creation of a new programming language is a rare pursuit — one that demands
curiosity, discipline, and a deep understanding of both syntax and semantics. Yet,
throughout the last five decades, programming languages have evolved primarily
through adaptation, extension, and reinterpretation of foundational designs — and few
have been as enduring as the C family of languages.
C introduced a compact, low-level language model that influenced not only system
software but also the conceptual structure of countless modern languages — from Java
and JavaScript to C++, C#, Go, and even Rust. What made C—and later, C++—
so successful is not just performance or proximity to hardware, but its clean, minimal
syntax and expressive control over program structure.
This book is born from a simple yet bold idea: to design and implement a new
interpreted programming language using modern C++ — a language that honors
the heritage of C-style syntax, while embracing the readability, modularity, and safety
features expected in contemporary development. Unlike existing interpreters or domain-
specific languages designed for niche areas, this project aspires to be general-purpose,

51

52

educational, and production-aware.
It serves both as a hands-on implementation manual and as a case study in the
architecture of real-world programming languages. The journey begins with
tokenization and parsing, traverses deep into evaluation engines and function systems,
and ascends toward embedding, debugging, and optimization — all constructed from
scratch using C++20/23.
This book is not just about theory. It is about engineering.

Target Audience and Purpose

This book is written for a particular kind of reader — the one who wants to go beyond
using languages and instead understand how they work. If you are interested in how
source code becomes behavior, how interpreters track scope and type, and how a
runtime stack is built and maintained — then this book is for you.

This book is especially relevant to:

• Experienced C++ developers wishing to broaden their design abilities into
compilers and interpreters.

• Educators seeking a clear, practical resource for teaching language
implementation through C++.

• Systems programmers designing DSLs or configuration languages for hardware,
simulations, or compilers.

• Language hackers and language design hobbyists who want to make their
own scripting or experimental languages.

53

• Compiler researchers and tooling developers exploring fast prototyping
using modern C++ capabilities.

Prerequisites:

• Solid command of C++ syntax and semantics, especially C++17 and newer.

• Familiarity with programming language fundamentals: tokens, parsers,
expressions, statements, and scoping.

• Interest in the architecture of interpreters, not just front-end parsing but full
language execution stacks.

• Experience with modular software development, CMake, and optional
familiarity with unit testing frameworks.

This book is designed to be progressive and self-contained — each chapter builds
on the last, with increasingly sophisticated structures, while remaining grounded in
practical implementation. By the end, you will not only understand how languages are
built — you will have built one.

Book Structure and Roadmap
The book is divided into eight logically structured parts, followed by detailed
appendices. Each part represents a clear phase in the construction of the language
interpreter and runtime. Here’s what each part offers:

Part 1: Foundation and Architecture

Sets up the base project using C++20/23 and CMake. Introduces the project layout,
lexer/parser planning, and toolchain independence.

54

Part 2: Lexing and Parsing

Implements a hand-written lexer and recursive-descent parser with C-style grammar
and operator precedence. This forms the syntactic core of the language.

Part 3: Syntax and Structure

Handles blocks, declarations, conditional statements, loops, and expression-based
statements. You begin seeing your language behave like C.

Part 4: Evaluation Engine

Implements the interpreter runtime: value representations, type system, variable
scoping, function evaluation, and expression calculation.

Part 5: Control Flow and Functions

Adds support for full function definitions, recursion, parameter passing, activation
records, return values, and local scopes — the heart of C-style programming.

Part 6: Collections and Advanced Features

Introduces arrays, basic data structures, and standard library utilities (e.g., print, input,
string functions), including file I/O and expression utility functions.

Part 7: Production-Quality Features

Presents error handling, debugging, REPL, stack traces, symbol resolution, command-
line execution, and performance instrumentation.

55

Part 8: Optimization and Advanced Topics

Concludes with optional topics such as building a bytecode VM, optimizing interpreter
performance, distribution, modular architecture, and embedding the language in other
applications.
The book culminates with full appendices covering language grammar in EBNF, CMake
integration for language projects, testing strategies, benchmarks, and future work.

Philosophy, Design Goals, and Methodology

Every system in this book is driven by clear and consistent design values:

Precision Over Abstraction

Wherever feasible, components are designed with minimal abstraction. Instead of
relying on parser generators or heavy macro systems, all systems — from token
matching to AST evaluation — are written manually and explained in detail.

Realistic C-style Modeling

The language mirrors the behavior of C-like languages: block scoping with braces,
strong yet flexible typing, well-defined operator precedence, and side-effect-bearing
statements. It is not a toy — it mimics production-worthy language behavior.

C++20/23 as the Implementation Language

Modern C++ is powerful and expressive. With std::variant, std::optional, ranges,
concepts, lambdas, constexpr, smart pointers, and efficient containers, it provides the
perfect toolkit for interpreter design while avoiding the pitfalls of earlier C++ versions.

56

Separation of Concerns

Each component of the language — the lexer, parser, AST, evaluation, runtime
environment, and standard library — is clearly separated. This ensures that you can
refactor, test, and extend with confidence and modularity.

Developer Empowerment

The goal is not just to write an interpreter but to build a foundation you can evolve
— adding bytecode, building a compiler frontend, integrating with scripting tools, or
repurposing components into embedded engines.
Each chapter concludes with a Milestone, ensuring you walk away not just with theory
but a fully running feature. Hands-on coding, step-by-step diagnostics, and testable
systems are embedded throughout the book.

Final Thoughts and What You Will Accomplish

By the end of this book, you will have accomplished what few developers ever do —
created a working, extensible, modular, C-style interpreted language from scratch. You
will be capable of:

• Designing and implementing a syntax that is readable, minimal, and flexible.

• Writing a full interpreter in C++ using variant-based evaluation and modern type
safety.

• Building function dispatch, return stacks, and expression evaluation systems that
reflect real-world compiler internals.

• Creating an extensible REPL and file execution engine.

57

• Embedding your language into larger systems.

• Measuring and optimizing interpreter performance.

• Packaging your language for use across platforms.

• Planning for future features such as object systems, foreign function interfaces, or
bytecode JIT support.

The appendices serve as technical guides and reference implementations for everything
you build, ensuring your language remains usable and relevant beyond the book.
This is more than just a technical book. It is a blueprint for ownership over your
computing tools — a return to systems understanding in a world increasingly
dependent on abstraction.
Whether your goal is academic, professional, or personal, I invite you to make this book
your companion in mastering the art of language design. You will not only write code
— you will define what code means.
Let’s begin.

Part I

Foundation and Architecture

58

Chapter 1

Why Design a New Programming
Language?

1.1 Motivation Behind Creating New Programming
Languages

In the rapidly evolving domain of computer science and software engineering, the
creation of a new programming language is not merely an academic exercise or a vanity
project. It is often a response to real limitations in existing tools, a push for innovation,
or a necessity dictated by emerging domains, hardware capabilities, or architectural
patterns. Over the last five years, the resurgence in language design—particularly those
inspired by the C tradition—has been fueled by a complex interplay of technological,
practical, and philosophical motivations.
This section explores the concentrated motivations for designing a new programming
language, particularly one that aligns with C-style syntax and semantics, while
leveraging the expressiveness, safety, and abstraction capabilities introduced in C++20
and C++23.

60

61

1.1.1 Addressing Limitations in Existing Languages

Despite the dominance of legacy languages like C, C++, and Java, modern software
demands have exposed their deficiencies in various areas:

• Safety and Undefined Behavior: C and early C++ place performance above
safety, leaving programmers vulnerable to undefined behavior, memory corruption,
and data races. Designing a new language allows you to enforce compile-time
guarantees without sacrificing system-level control.

• Verbosity and Boilerplate: Even with C++17 and prior standards, writing
expressive, reusable code often involved excessive boilerplate. C++20 introduced
concepts, ranges, and coroutines to combat this, inspiring newer languages and
tools to reimagine simpler syntaxes and workflows.

• Concurrency Models: Traditional languages provide limited abstractions for
safe and ergonomic multithreading. With the emergence of std::jthread, atomic
smart pointers, and semaphores in C++20/23, we now have the vocabulary to
reimagine concurrency as a first-class citizen in language design.

1.1.2 Integration of Modern Language Features with
Lower-Level Control

Many recent systems-level languages (like Rust or Zig) aim to balance high-level
abstraction with low-level control, but their syntax or compiler complexity might be
off-putting for developers from C-style backgrounds.
Designing a new C-style language that leverages modern C++ internals (via
modules, constexpr, template metaprogramming, and ranges) gives the designer the
opportunity to:

62

• Provide compile-time reflection and introspection

• Enable efficient deterministic memory handling without garbage collection

• Build powerful DSLs using C++20 constexpr evaluators

• Enforce user-defined safety contracts via concepts and static assertions

A custom language interpreter written in modern C++ allows tight control over
performance, parsing strategies, and the ability to evolve faster than general-purpose
compilers.

1.1.3 Domain-Specific Needs and Embedded Use-Cases

Many new programming languages are born to serve specialized industries:

• Embedded systems

• Robotics and IoT

• High-frequency trading

• Scientific simulation and GPU programming

A general-purpose language may fail to offer concise constructs for these use-cases. By
creating a new language, designers can provide:

• Custom data types for hardware representation

• Deterministic memory layouts and zero-cost abstractions

• Inline real-time constraints and timing models

• Platform-aware syntax that maps closely to hardware registers or signals

63

C++23 features like constexpr dynamic allocation and std::span now allow better
memory views and compile-time memory modeling, which can be leveraged in a new
language runtime or interpreter.

1.1.4 Pedagogical and Research Objectives

Another clear motivation is educational clarity. Language design exposes students
and professionals to compilers, parsers, runtime models, and systems architecture in a
unified, project-based framework. Creating a new language helps reinforce foundational
CS concepts:

• Lexical analysis and syntax trees

• Semantic resolution

• Intermediate representations

• Memory models and garbage collection algorithms

• Just-in-time (JIT) vs Ahead-of-Time (AOT) compilation

Using modern C++ (especially ranges, variant, and coroutines), a full-featured
interpreter can be implemented in a way that is modular, readable, and maintainable,
turning abstract theory into concrete working code.

1.1.5 Experimentation and Language Innovation

Language design is often a space for experimentation—trying new models for:

• Error handling (optional types, monads, or result types)

• Immutability and purity

64

• Pattern matching and algebraic data types

• Macros or compile-time metaprogramming

• Customizable syntax and infix operators

While traditional C++ is bound by backward compatibility, a new language can
embrace new paradigms without legacy constraints. C++20 and C++23 provide all
necessary tools to build and test these concepts rapidly:

• consteval and constinit for compile-time execution

• Advanced template constraints via requires and concepts

• Lambda improvements and pipeline expressions with ranges

• Pattern-based traversal using std::visit on std::variant

1.1.6 Performance Transparency and Predictability

In modern computing, predictable performance is as important as raw speed.
A major reason behind new language creation is to avoid the opacity of runtime
optimizations, GC pauses, or unexpected heap allocations.
A new language—especially when implemented in modern C++—can guarantee:

• Explicit stack vs heap allocation rules

• Fine-grained control over function inlining and tail calls

• Trivially destructible or relocatable types

• Custom ABI rules tailored for interop or hardware targets

Using C++20/23’s [[no_unique_address]], improved constexpr capabilities, and
std::bit_cast, developers can build transparent, efficient data movement strategies
directly into the language runtime.

65

1.1.7 Cultural and Ecosystem Reset

Some motivations are philosophical rather than technical. A new language offers a
cultural reset, stripping away decades of accumulated legacy and forcing a rethinking
of best practices.
By setting new defaults—immutability, safety, module-based encapsulation, strong
typing—designers can influence coding culture from the ground up. Combined with
C++ modules (introduced in C++20), this facilitates a modern build system and
package manager, avoiding the traditional pitfalls of header-based dependency hell.

1.1.8 Conclusion

The motivation to design a new programming language stems from a deep desire to
improve expressiveness, safety, and performance while removing the friction caused
by legacy constraints. With the maturity of C++20 and C++23, developers are
uniquely positioned to create performant, readable, and maintainable language tools,
interpreters, and runtimes that not only demonstrate engineering precision but also
serve as a launching pad for language innovation. By building on modern C++’s
powerful metaprogramming, memory safety aids, and concurrency features, the creation
of a new C-style language is no longer a monumental task—but a rewarding exploration
of the very essence of software design.

1.2 Analysis of C-Style Languages: C, Go, Rust, Zig

In order to design a modern and competitive C-style programming language, it is
essential to critically analyze the dominant and emerging players within this family.
C-style languages are united by a common structural syntax—block delimiters
using braces {}, statement terminations using semicolons ;, infix expressions, and

66

relatively low-level control over memory and computation. However, the design
philosophies, target domains, and evolutionary trajectories of these languages
diverge significantly.
This section presents a focused analysis of C, Go, Rust, and Zig—each of which has
carved out a strong position in systems programming, and each with implications that
must inform any new language effort. The evaluation reflects key design principles,
recent language developments (2019–2024), and what modern C++20/23 can leverage
from or improve upon.

1.2.1 C: The Root of the Tree

Overview:
C remains the foundational language of system software and low-level development.
It is prized for its predictable performance, direct memory manipulation, and
minimal runtime overhead. However, it suffers from lack of safety guarantees,
absence of modern abstractions, and an outdated toolchain philosophy.
Strengths:

• Extremely small and portable runtime

• Full control over memory layout and hardware interaction

• ABI stability and mature compiler infrastructure (GCC, Clang)

Limitations:

• No concept of modules, generics, or strong typing beyond structs and unions

• High risk of undefined behavior and buffer overflows

• Poor support for concurrency abstraction and memory safety

67

Implications:
Any new C-style language must honor C’s performance ethos while enforcing stricter
compile-time guarantees. Using C++20/23 features like concepts, consteval,
constexpr allocation, and strong typing via variant and optional, one can address
safety and abstraction without sacrificing control. C remains a baseline reference, not a
model to replicate uncritically.

1.2.2 Go: Simplicity Over Power

Overview:
Go (or Golang), developed at Google, emphasizes simplicity, concurrency, and
developer productivity over feature-rich abstraction or low-level control. It targets
backend systems, microservices, and cloud infrastructure.
Strengths:

• Minimalist syntax; easy learning curve

• Built-in garbage collection and CSP-style goroutines for concurrency

• Static binaries and cross-compilation ease

Limitations:

• No generics until 2022; limited metaprogramming support

• Garbage collection introduces unpredictable latency

• Weak abstraction capabilities for low-level system tasks

Recent Developments:

• Introduction of type parameters (generics) in Go 1.18

68

• Continued refinement of the module and toolchain ecosystem

Implications:
Go demonstrates that developer ergonomics and consistent tooling matter,
especially for adoption. However, its lack of deterministic memory handling, compile-
time evaluation, and low-level control makes it unsuitable as a foundation for embedded
or real-time systems.
A modern C++ interpreter can adopt Go’s clean module system and error-
handling discipline (e.g., explicit error return values), but should reject its garbage-
collected runtime in favor of RAII and move semantics offered by modern C++.

1.2.3 Rust: Safety with Zero-Cost Abstractions

Overview:
Rust is the most radical rethinking of C-style programming in the last decade. Its
central feature is ownership-based memory safety, enabling deterministic memory
management without garbage collection. Rust’s goal is to eliminate entire classes of
bugs at compile-time.
Strengths:

• Ownership and borrowing model enforce memory safety

• Zero-cost abstractions via monomorphization and inlining

• Strong concurrency model: Send, Sync, and thread safety by design

• Macro system and rich type inference

Limitations:

• Complex syntax and steep learning curve

69

• Slow compile times due to heavy monomorphization

• Lack of reflection or runtime code generation

• No stable ABI; challenging to integrate with other languages dynamically

Recent Developments:

• Stabilization of const generics and async improvements

• Ecosystem growth in embedded, web (via WebAssembly), and OS development

• Initiatives like Rust-for-Linux and cargo standardization

Implications:
Rust proves that compile-time memory safety is viable without garbage collection.
However, its complexity, especially around lifetimes and trait resolution, often deters
new users.
A C++20/23-based language can adopt similar safety models using unique_ptr,
span, std::optional, and concepts, while offering easier integration with C++
or C. Moreover, with constexpr and consteval, C++ can now mimic many of Rust’s
compile-time guarantees in a more familiar syntax.

1.2.4 Zig: Pragmatism Meets Control

Overview:
Zig is a newer C-style language focused on manual memory management,
simplicity, and performance transparency. It aims to replace C in domains like
OS kernels, embedded systems, and performance-critical applications.
Strengths:

• No hidden control flow: no exceptions, macros, or GC

70

• Compile-time code execution with comptime

• Manual memory allocation with explicit ownership patterns

• Strong interop with C (drop-in C replacement)

Limitations:

• Limited ecosystem and tooling maturity

• Verbose allocation patterns compared to higher-level languages

• Fewer abstraction tools than Rust or C++

Recent Developments:

• Enhancements to the Zig build system and cross-compilation

• Growing use in game engines, graphics, and system bootloaders

• comptime as a language-native alternative to templates or macros

Implications:
Zig embraces full transparency and user control, rejecting language complexity and
automation. It shows that a well-designed compile-time execution model (akin to
consteval in C++20) can replace preprocessor macros and support meta-programming
safely.
A new C-style language built in C++ can achieve similar goals using:

• constexpr classes and expressions

• std::array, std::bit_cast, and fixed-layout structs

• concepts and tagged unions (std::variant) for compile-time safety

Zig’s design reinforces the idea that simplicity and predictability are as valuable as
expressiveness in systems programming.

71

1.2.5 Comparative Summary

Comparison of Features Across C, Go, Rust, and Zig

Feature /
Language

C Go Rust Zig

Memory Safety No Partial (GC) Yes
(Ownership)

Manual,
Explicit

Concurrency Model Low-level Goroutines Compile-time
Safe Threads

Manual

Compile-time Eval Preprocessor Limited const fn,
macros

comptime

Metaprogramming None Weak Macros,
Traits

comptime

Interop with C Native Good Good but
indirect

Excellent

Toolchain
Simplicity

High Very High Moderate Moderate

ABI Stability Yes Yes No Yes

Runtime Overhead None GC overhead None None

1.2.6 Conclusion

Each of the analyzed C-style languages provides distinct lessons for the design of a new
programming language:

72

• From C, we learn the importance of transparency and control, but also the
risks of underspecified behavior.

• From Go, we take inspiration in simplicity and developer experience, while
avoiding its runtime abstraction costs.

• From Rust, we inherit safety, concurrency, and expressive power, while
seeking a gentler learning curve and interoperability.

• From Zig, we embrace manual control, predictability, and modern
compile-time evaluation, refined with better abstraction support via modern
C++.

The modern C++20/23 standard is now powerful enough to serve as the
implementation platform of a new interpreter or language runtime that integrates
these lessons. With concepts, modules, consteval, jthread, std::span, and
rich type algebra, C++ empowers developers to encode safety, performance, and
modularity directly into their language infrastructure—delivering both pragmatism
and precision in language design.

73

1.3 Designing Our New Language — Goals and
Philosophy

The design of a new programming language is not merely a technical exercise, but an
articulation of a clear philosophy—a vision that defines the language’s purpose, its
audience, and its boundaries. Informed by decades of evolution in system programming,
the shortcomings of legacy tools, and the growing power of modern C++ (particularly
C++20 and C++23), this section defines the core goals and guiding philosophy of
our new C-style language.
Rather than reinventing syntax for novelty or copying features blindly, we aim to
deliver a cohesive, efficient, safe, and expressive language tailored for system-
level tasks, scripting, and educational use, implemented entirely using the capabilities of
modern C++.

1.3.1 Goal 1: Simplicity without Sacrificing Power

One of the critical lessons from languages like Go and Zig is the value of simplicity: a
language should be learnable, readable, and predictable. Yet, simplicity must not come
at the cost of expressive power. Our language aims to:

• Reduce cognitive overload through clean, orthogonal syntax

• Eliminate unnecessary boilerplate while preserving semantic clarity

• Adopt a small, consistent set of core constructs that serve multiple roles

Using C++20 concepts, constexpr, and clean recursive descent parsing (enabled
by std::variant, std::visit, and pattern matching constructs), we will design a
grammar and interpreter that enable simplicity at both the syntax and runtime level.

74

1.3.2 Goal 2: Deterministic and Explicit Memory Model

Memory safety is a core concern of any new language. Instead of relying on garbage
collection or complex borrow-checking like Rust, we embrace explicit ownership with
deterministic lifetime rules. This approach is enabled by:

• Stack-first allocation model with scoped lifetime (RAII style)

• Optional heap allocation with explicit ownership transfer

• Value semantics by default; references must be opt-in and visible in syntax

• Built-in types for ownership: ptr, ref, slice, and own

These concepts map cleanly to C++23 primitives like std::unique_ptr, std::span,
and std::optional, and can be mirrored in our language using similar idioms and
internal representations.

1.3.3 Goal 3: Predictable and Safe Concurrency

Concurrency is a necessity in modern computing but remains error-prone in many
languages. Our language will introduce a simplified concurrency model inspired
by the advances in C++20/23:

• Concurrency primitives built into the language (spawn, join, atomic)

• Lightweight thread abstraction using std::jthread or coroutine-based dispatch

• No shared mutable state by default; message-passing and copy semantics preferred

• Race condition mitigation through compile-time ownership enforcement

By designing the interpreter using std::atomic, std::barrier, and std::latch
where needed, concurrency can be tested and verified directly in the core runtime,
ensuring safety without over-complexity.

75

1.3.4 Goal 4: Compile-Time Programming and Meta-Evaluation

Static correctness and performance optimization often require compile-time logic. We
embrace this with first-class compile-time evaluation, inspired by both Zig’s
comptime and C++’s consteval:

• Functions and expressions can be marked to evaluate at compile time

• Constants are resolved and validated during parsing or AST building

• Type reflection and introspection tools are available in user space

• Simplified compile-time dispatch based on traits and argument types

Modern C++ provides robust compile-time execution using constexpr, consteval,
and template constraints. Our language can abstract these through a type system
capable of static dispatch, constant folding, and error generation at parse time,
not runtime.

1.3.5 Goal 5: Strong but Flexible Type System

A powerful type system helps detect errors early without overwhelming the user. Our
language will feature:

• Statically typed variables with optional type inference

• Algebraic data types and tagged unions

• Custom types, traits, and interfaces

• Structural typing for generic programming

• Optional nullability via explicit maybe<T> or option<T>

76

This design is deeply inspired by C++'s modern tools:

• std::variant and std::monostate for safe unions

• std::optional for nullable values

• concepts and requires for generic constraints

The type checker in our interpreter will be built using C++20 type traits and
std::is_... utilities, extended by custom concepts to enforce trait conformance,
making the language safe and predictable.

1.3.6 Goal 6: Minimal Runtime and High Portability

To serve embedded systems, education, and rapid tooling, our language must maintain
a minimal runtime. That means:

• No dependency on external garbage collection or JIT engines

• No dynamic linking or external runtime initialization

• Self-contained interpreter with clear execution model

• Portability across platforms and architectures

Thanks to C++ modules, constexpr allocation, and modern ABI-stable
components, we can design a runtime that is small, deterministic, and portable across
operating systems and hardware targets without external dependencies.

77

1.3.7 Goal 7: Modularity, Encapsulation, and Package
Discipline

A modern language must facilitate large-scale software construction. Our language will
include:

• Module-based code organization from the ground up

• Namespaces or packages to prevent symbol collisions

• File-based compilation units with explicit imports and exports

• Optional inline modules for scripting and REPL usage

C++20’s module system gives us the tools to build a modular interpreter backend.
This will be reflected in the new language’s compiler and runtime, allowing developers
to encapsulate logic and share reusable components cleanly.

1.3.8 Goal 8: Syntax Familiarity with Semantic Rigor

The language will remain C-style in its surface syntax to lower the learning barrier
and attract existing C/C++ developers, but it will diverge from legacy semantics by
enforcing:

• No implicit type conversions between incompatible types

• No default integer promotion rules

• Explicit pointer dereferencing and address acquisition

• Clear expression of mutability and ownership in function parameters

78

In other words, syntax will feel familiar, but behavior will be safer, stricter,
and more predictable, thanks to a rigorous parser and semantic checker built using
C++20 constructs like std::variant, std::monostate, and std::visit.

1.3.9 Philosophy in Summary

The philosophy of our language can be summarized in the following core principles:

• Clarity over cleverness: No hidden magic; behavior is explicit

• Safety by design: Eliminate undefined behavior at compile time

• Performance transparency: Developers should understand the cost of every
abstraction

• Modern by default: The language will use idioms and patterns enabled by
C++20/23

• Minimalism and completeness: Few core features, but deeply composable

• Practicality over perfection: Designed for real-world use, not theoretical
elegance

1.3.10 Conclusion

Our new language is not intended to replace C++ or compete with Rust—it is a
response to the challenges faced by developers today, using the most powerful
and refined tools C++ has introduced in the last five years. By embedding our
interpreter in modern C++20/23, we gain unparalleled performance, abstraction, and
safety in the implementation itself. At the same time, we produce a language that
serves a purpose: clarity, correctness, and control in the hands of those who build
systems.

79

1.4 Example Code in Our Target Language
To crystallize the goals and philosophy of our new C-style language, this section
introduces example source code written in the proposed syntax and semantics of the
language. This code is not only illustrative of its intended usage but also highlights the
motivations behind its design, rooted in the practical capabilities of C++20/23
which powers its interpreter.
These examples are deliberately designed to reflect the essential traits of the language:

• Simplicity and clarity in syntax

• Safety and deterministic behavior

• Explicit memory and ownership management

• Compile-time evaluation and static typing

• Concurrency primitives built into the language

• Minimal standard runtime abstractions

The language borrows its surface syntax from the C/C++ family but enforces
modern principles such as immutability by default, explicit mutability, explicit
ownership transfer, and built-in safe types like Option, Result, and Slice.

1.4.1 Hello World — Minimal Entry Point

fn main() -> int {
print("Hello, World!");
return 0;

}

80

Key Observations:

• fn is the keyword for function definition

• main returns an integer, explicitly

• print() is a built-in function in the minimal standard library

• Semicolon enforces clear statement boundaries

• No global side-effects or preprocessor use

1.4.2 Immutable and Mutable Variables

fn demo() {
let x: int = 10; // Immutable by default
let mut y: int = 20; // Mutable with 'mut'

y = y + x;
print(y); // Output: 30

}

Design Notes:

• let declares a variable; mut marks it mutable

• No implicit type promotion

• All variables are block-scoped

• Encourages value-oriented programming, discourages shared mutability

81

1.4.3 Ownership and Option Type

fn safe_divide(a: int, b: int) -> Option<int> {
if b == 0 {

return none;
}
return some(a / b);

}

fn use_divide() {
let result = safe_divide(10, 2);
if result is some(val) {

print("Result: ", val);
} else {

print("Division by zero");
}

}

Conceptual Design:

• Option<T> is a built-in tagged union: some(T) or none

• Pattern matching is minimal but expressive

• Avoids nulls entirely by requiring explicit handling

• Internally backed by std::optional in the C++ interpreter

1.4.4 Compile-Time Evaluation

82

const fn factorial(n: int) -> int {
if n <= 1 {

return 1;
}
return n * factorial(n - 1);

}

fn main() {
const fact_5: int = factorial(5); // Computed at compile time
print(fact_5); // Output: 120

}

Engine Behavior:

• const fn marks functions evaluable at compile-time

• Can be folded by the interpreter before execution

• Uses constexpr or consteval under the hood in C++20/23

• Supports embedded and systems programming via deterministic computation

1.4.5 Struct and Pattern Matching

struct Point {
x: float;
y: float;

}

fn distance(p: Point) -> float {
return sqrt(p.x * p.x + p.y * p.y);

}

83

fn example() {
let origin = Point { x: 3.0, y: 4.0 };
print("Distance: ", distance(origin)); // Output: 5.0

}

Design Insight:

• Structs have named fields and no implicit constructors

• No inheritance; instead, structural or trait-based behavior

• Internally modeled using struct and std::variant where polymorphism is
required

1.4.6 Generics and Traits (Concepts)

trait Addable {
fn add(self, other: Self) -> Self;

}

fn sum<T: Addable>(a: T, b: T) -> T {
return a.add(b);

}

Semantics:

• Traits define required behavior (similar to C++ concepts or Rust traits)

• Generics with constraint T: Addable

• Enforced at compile-time; no runtime overhead

• Backed by concepts and requires clauses in C++20

84

1.4.7 Concurrency with Spawn and Join

fn compute() -> int {
let mut result: int = 0;
for i in 0..100 {

result = result + i;
}
return result;

}

fn parallel_sum() {
let t1 = spawn compute();
let t2 = spawn compute();

let r1 = join t1;
let r2 = join t2;

print("Total: ", r1 + r2);
}

Runtime Behavior:

• spawn creates a concurrent task (internally backed by std::jthread)

• join blocks and retrieves the result

• No shared mutable state; each function returns its own value

• Thread-safe by design with no race condition primitives exposed by default

85

1.4.8 Error Handling via Result

fn open_file(path: string) -> Result<File, string> {
if path == "" {

return err("Empty path");
}
return ok(File {});

}

fn main() {
let file = open_file("log.txt");
if file is ok(f) {

print("Opened successfully");
} else if file is err(e) {

print("Error: ", e);
}

}

Design Philosophy:

• No exceptions

• All errors must be handled explicitly

• Result<T, E> is modeled using a discriminated union

• Backed internally by std::variant or equivalent C++ construct

1.4.9 Slices and Bounds Safety

86

fn print_slice(data: slice<int>) {
for i in 0..data.len {

print(data[i]);
}

}

fn use_slice() {
let arr = [1, 2, 3, 4];
print_slice(arr[1..3]); // Prints: 2, 3

}

Safety Model:

• slice<T> is a view, not an owning container

• All indexing is bounds-checked by default

• Internally uses std::span<T> with range validation in debug builds

1.4.10 Modules and Imports

module math;

fn square(x: int) -> int {
return x * x;

}
cppCopyEditimport math;

fn main() {
print(math::square(5)); // Output: 25

}

87

Module Philosophy:

• File = module; explicit import/export

• No preprocessor; no text-based inclusion

• Namespaces resolved statically; no symbol collisions

• Mirrors C++20 modules and supports layered build architecture

1.4.11 Conclusion

The example code demonstrates a realistic and coherent C-style language
that learns from the best practices of recent systems languages while avoiding their
complexity and performance compromises. Each feature shown is backed by real
capabilities in C++20/23, ensuring that both the interpreter and language design
remain aligned with proven techniques in modern software engineering.
The examples also reflect our language’s goals:

• Simplicity with clarity

• Explicit memory and concurrency handling

• Compile-time power without hidden magic

• Strong, safe typing with low abstraction overhead

88

1.5 Milestone — Initial Language Specification and
Code Examples

After identifying the motivations, evaluating similar languages, and articulating the
design philosophy, we arrive at a critical turning point: the first formal milestone
in building our new C-style language—a concrete, initial language specification
accompanied by representative code examples. This section sets the groundwork
for the parsing engine, interpreter, and further compiler stages, all to be implemented in
modern C++20/23.
Rather than attempting to deliver a complete language upfront, this milestone focuses
on a minimal but functional subset that reflects the design intent, demonstrates
language behavior, and validates the foundational choices through real examples. It
serves as a practical prototype to test the syntax, type system, memory model, and
runtime behavior using C++ as the host language for implementation.

1.5.1 Language Subset Goals for the First Milestone

The initial specification is deliberately compact, focused on proving the most essential
aspects of the language:

• Syntax familiarity for C/C++ developers

• Strong static typing and early error detection

• Deterministic and explicit variable lifetime

• Function calls and scope rules

• Minimal standard library (print, input, math)

• Compile-time constant evaluation

89

• Safe handling of optional and result values

By delivering a working interpreter for this subset, we build a strong foundation for
advanced features such as modules, traits, generics, and concurrency in later milestones.

1.5.2 Core Language Grammar (Minimal Specification)

Here is a simplified Backus-Naur Form (BNF)-like definition of the core syntax:

program ::= { function | struct }*

function ::= "fn" identifier "(" [parameters] ")" ["->" type] block
parameters ::= parameter { "," parameter }*
parameter ::= identifier ":" type
block ::= "{" statement* "}"

statement ::= variable_decl | assignment | if_stmt | while_stmt | return_stmt |
expr_stmt↪→

variable_decl ::= "let" ["mut"] identifier ":" type "=" expression ";"
assignment ::= identifier "=" expression ";"
return_stmt ::= "return" expression ";"
if_stmt ::= "if" expression block ["else" block]
while_stmt ::= "while" expression block
expr_stmt ::= expression ";"

expression ::= literal | identifier | call_expr | binary_expr | grouping
call_expr ::= identifier "(" [expression { "," expression }*] ")"
binary_expr ::= expression binary_op expression
grouping ::= "(" expression ")"

type ::= "int" | "float" | "bool" | "string" | identifier
literal ::= integer | float | string | boolean

90

This grammar defines the basic structures required to build meaningful programs.
The interpreter will tokenize, parse, and execute code written in this subset using
C++20/23 features like std::variant, std::visit, and std::monostate to represent
and handle expressions and types.

1.5.3 Built-in Types and Rules

• Primitive Types

– int: 64-bit signed integer

– float: 64-bit floating-point number

– bool: Boolean true/false

– string: UTF-8 encoded string

• Composite Types

– Option<T>: Represents a value that may or may not exist

– Result<T, E>: Represents success or failure of operations

• Rules

– All variables are immutable unless marked with mut

– No implicit type conversions (e.g., int to float requires explicit cast)

– Arithmetic follows type safety rules; overflow and underflow behavior are
defined

– All function parameters are passed by value unless specified otherwise

91

1.5.4 Semantic Rules and Behaviors

• Scope: Variables and functions are scoped to their enclosing block

• Typing: All expressions and function return types must be explicitly typed

• Control Flow: Conditional and loop expressions work with boolean types only

• Error Handling: No exceptions; Option and Result used for recoverable errors

• Ownership: All values follow value semantics; reference types will be added in a
later stage

These behaviors will be validated and enforced by the interpreter’s semantic analysis
layer, powered by modern C++’s type traits, templates, and strong typing mechanisms.

1.5.5 Example: Program Using the Initial Specification

fn factorial(n: int) -> int {
if n <= 1 {

return 1;
}
return n * factorial(n - 1);

}

fn main() -> int {
let x: int = 5;
let y: int = factorial(x);
print("Factorial: ", y);

92

return 0;
}

This code demonstrates:

• Function definition and recursion

• Immutable variable binding

• Typed function parameters and return type

• Print output using minimal standard I/O

• Basic integer arithmetic

1.5.6 Interpreter Architecture Preview (C++20/23)

The interpreter implementing this specification will include:

• Tokenizer (Lexer): Converts source code into tokens using std::regex or
custom matchers

• Parser: Generates an AST using recursive descent, backed by std::variant
nodes

• AST Types:

– Expression: base class with variants for literals, binary ops, function calls

– Statement: variants for declaration, assignment, control flow, return

• Type System: Checked statically using template-like rules with concepts and
type traits

93

• Runtime:

– Evaluation of expressions using std::visit

– Memory and variable tracking via scoped environments

– Function call stack using managed frames

C++23 features like constexpr virtual dispatch, std::expected, and structured
bindings will help us maintain readable, robust, and efficient interpreter code.

1.5.7 Development Plan for Next Phase

This milestone serves as both a deliverable and a foundation. With the initial grammar
and runtime working, the following next steps will include:

• Expanding the parser to support user-defined structs

• Adding pattern matching to Option and Result values

• Introducing loop constructs and basic collection types (array, slice)

• Establishing a standard library interface

• Modularizing the interpreter using C++20 modules and build system integration

1.5.8 Conclusion

The initial language specification outlined here is a compact yet expressive subset
that embodies the language’s core goals: simplicity, safety, clarity, and deterministic
behavior. It is designed for immediate implementation using modern C++ tools and
constructs, offering a solid launchpad for rapid iteration and refinement.

94

This milestone reflects a balance between theoretical design and practical
engineering. With carefully selected features and minimal syntax, we now have a
functional language core that can evolve into a full-fledged system through a staged
development process—driven by C++20/23’s expressive power, compile-time evaluation,
and modular infrastructure.

Chapter 2

Language Implementation Project
Structure

2.1 Project Structure for a Programming Language
Interpreter

Designing a modern interpreter for a new programming language requires a well-
thought-out and scalable project structure from the outset. A clean architecture not
only enables faster iteration during development but also improves maintainability,
testing, extensibility, and onboarding for contributors. With the capabilities introduced
in C++20 and C++23, we can now structure our interpreter using powerful modern
features such as modules, concepts, constexpr evaluation, and std::variant-
based ASTs, avoiding legacy pitfalls like monolithic headers, excessive preprocessor
usage, and rigid class hierarchies.
This section provides a focused exploration of a professional, modular project structure
for implementing our language interpreter in modern C++, targeting clarity,
correctness, and long-term sustainability.

95

96

2.1.1 Overview: Goals of a Good Project Structure

The primary goals behind a good interpreter project structure are:

• Separation of concerns between lexing, parsing, semantic analysis, runtime,
and user interface

• Incremental compilation and improved build times using C++20 modules

• Extensibility to allow future components like a bytecode VM or JIT

• Testability at every level: lexer, parser, type checker, evaluator

• Toolchain compatibility, ensuring clean builds across platforms

Each part of the interpreter pipeline must be represented as an isolated subsystem
communicating through well-defined interfaces and type-safe structures.

2.1.2 High-Level Project Layout

A recommended directory and module structure for our interpreter:

/ForgeLang
�
��� /src
� ��� /core → Core utilities, error system, memory abstractions
� ��� /lexer → Tokenization and source preprocessing
� ��� /parser → AST construction and syntax grammar
� ��� /semantics → Type checking and static validation
� ��� /runtime → Execution engine and built-in standard library
� ��� /stdlib → Language-defined standard functions (print, math)
� ��� /vm → (optional) Future bytecode or stack machine backend
� ��� /main → CLI, REPL, and entry point

97

�
��� /include → Public headers (if needed by tooling)
��� /tests → Unit and integration tests for each subsystem
��� /examples → Example programs written in our new language
��� /docs → Auto-generated and written documentation
��� /build → Out-of-source CMake build folder

This directory layout supports modular builds, isolated testing, and gradual expansion
without cross-component contamination.

2.1.3 Core Interpreter Modules and Responsibilities

Each subdirectory represents a self-contained C++ module or namespace. Below is
a breakdown of each major component:

• a. /core — Foundation Utilities

Contains:

– SourceManager: manages file loading, line/column mapping

– ErrorReporter: structured diagnostics with error codes and hints

– ArenaAllocator: optional custom allocator for AST and runtime

– Utility types: string views, IDs, file paths, hash maps

C++ Features:

– std::string_view, std::expected, std::source_location (C++20/23)

– Custom diagnostic formatting via std::format

• b. /lexer — Lexical Analyzer

Contains:

98

– TokenType: enum class defining all tokens

– Token: structure with type, value, span

– Lexer: class/function that scans source and emits tokens

Design:

– Use std::variant for token value storage (e.g., string, int, float)

– Return std::vector<Token> or token stream iterator

– Support comments, whitespace control, and source span tracking

C++ Features:

– Ranges and iterators

– Unicode support via char8_t and std::u8string_view if required

• c. /parser — Abstract Syntax Tree Construction

Contains:

– AST Nodes: Expr, Stmt, Decl, etc. implemented via std::variant

– Parser class: consumes tokens and produces typed AST nodes

– Grammar implementation using recursive descent

Design:

– Each AST node as a struct with a unique tag

– Use std::visit to process or transform AST nodes

– Error recovery strategies for invalid syntax

99

C++ Features:

– std::variant, std::optional, and pattern matching (C++23)

– concepts to constrain node processing

• d. /semantics — Type Checking and Analysis

Contains:

– Symbol table, scopes, and identifier resolution

– Static type checker and trait verifier

– Compile-time evaluation of const fn

Design:

– Use std::map or custom hash maps for scope chaining

– Rich error types returned via std::expected

– Trait system modeled with concepts or structural typing rules

C++ Features:

– constexpr and consteval for internal simulation

– Strong typing with enum class and tagged unions

• e. /runtime — Evaluation Engine

Contains:

– Evaluator or Interpreter class that runs AST nodes

– Built-in runtime functions (print, input, arithmetic)

100

– Memory stack and function call frames

Design:

– Separate call stack and value stack

– Environment model for scoped variable binding

– Optional tail-call optimization

C++ Features:

– Thread-local storage, lambdas for closures

– Coroutines or continuations if advanced control flow is desired

• f. /stdlib — Standard Library Functions

Contains:

– Native functions implemented in C++ and exposed to the interpreter

– Standard math, string, and I/O functions

– Ability to register external functions to the language

Design:

– Internal registry of functions keyed by name or ID

– C++ functions mapped to native call interface

101

2.1.4 Build System and Tooling

The project uses CMake with full C++20/23 support:

• Each module has its own CMakeLists.txt

• Compile flags enforce modern standards: -std=c++23, -Wall, -Wextra, -Werror

• Modular build using add_library(MODULE_NAME MODULE) and
target_link_libraries

• Optional Clang modules support for dependency isolation

• Precompiled headers for faster build in larger projects

2.1.5 Modern Development Practices

• Version Control: Git repository with submodules (for third-party or future
bytecode engine)

• Testing:

– Unit tests for lexer, parser, and evaluator using Catch2 or doctest

– Integration tests using language snippets in /examples

– Static analysis using Clang-Tidy and -fsanitize=address

• CI/CD:

– GitHub Actions or similar pipeline to validate builds on Linux, Windows,
macOS

– Separate jobs for unit tests, style checks, and benchmarks

102

2.1.6 Advantages of Using Modern C++20/23

• Modules allow fast and scalable builds without excessive includes

• Concepts ensure that interpreter components (e.g., visitors, type checkers) are
valid at compile time

• std::variant and std::visit enable safe and expressive AST traversal

• consteval/constexpr allow building parts of the interpreter that validate or
simulate code at compile-time

• Thread-safe execution and std::jthread for future concurrency in the
interpreter

• Pattern matching (C++23) simplifies AST and token processing

2.1.7 Conclusion

This initial structure is designed to support the full life cycle of a modern language
interpreter, from early experimentation to production-grade tools. Built on modern
C++ standards, it promotes readability, modularity, type safety, and
performance. Each module is intentionally decoupled, allowing independent testing
and iteration.
By establishing a scalable and maintainable structure now, we ensure that future
chapters—on parsing, execution, error handling, and concurrency—are built on
solid, modern foundations. This architecture reflects a 2020s-era mindset of system
programming: precise, modular, and maintainable—without sacrificing performance or
expressiveness.

103

2.2 CMake for Multi-Component Interpreter Projects

In building a modern interpreter in C++20/23, using a robust and modular build
system is essential. The complexity of a language project increases rapidly with the
addition of lexical analysis, parsing, semantic checking, runtime evaluation, testing, and
tools. This complexity must be managed with a clean build configuration that supports:

• Multiple submodules or libraries

• Dependency isolation

• Modern C++ standards

• Easy testing and documentation integration

This section explains how to structure a multi-component interpreter project
using CMake, leveraging the latest standards and practices introduced over the
past five years, including C++20 modules, target-based builds, toolchain
abstraction, and cross-platform compatibility.

2.2.1 Why CMake for Language Projects?

CMake has become the standard for large-scale C++ projects due to its flexibility, IDE
integration, cross-platform support, and compatibility with modern build systems like
Ninja, MSBuild, and Make. It supports:

• Out-of-source builds

• Fine-grained control over dependencies and targets

• Build type separation (Debug, Release, RelWithDebInfo)

104

• Test integration with CTest or external frameworks (Catch2, doctest)

• Native support for C++20/23 features, including modules and std::format

2.2.2 High-Level CMake Layout for the Interpreter

Assuming a project directory named ForgeLang, the structure would be:

/ForgeLang
��� CMakeLists.txt
��� /cmake → CMake helper modules
��� /src
� ��� /core
� ��� /lexer
� ��� /parser
� ��� /semantics
� ��� /runtime
� ��� /stdlib
� ��� /main
��� /tests
��� /examples
��� /build → Out-of-source build directory

2.2.3 Root CMakeLists.txt (Top-Level Configuration)

cmake_minimum_required(VERSION 3.25)
project(ForgeLang VERSION 0.1 LANGUAGES CXX)

Require C++23
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

105

set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

Use folders in IDEs like Visual Studio
set_property(GLOBAL PROPERTY USE_FOLDERS ON)

Modules path
list(APPEND CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")

Enable warnings and options
include(cmake/CompilerWarnings.cmake)
include(cmake/EnableSanitizers.cmake)

Add source directories
add_subdirectory(src/core)
add_subdirectory(src/lexer)
add_subdirectory(src/parser)
add_subdirectory(src/semantics)
add_subdirectory(src/runtime)
add_subdirectory(src/main)

Add tests
enable_testing()
add_subdirectory(tests)

This configuration enforces modern standards, organizes the project cleanly, and
integrates useful features (warnings, sanitizers, tests).

106

2.2.4 Example Component CMake (e.g.,
src/lexer/CMakeLists.txt)

add_library(ForgeLexer STATIC
Token.cpp
Lexer.cpp

)

target_include_directories(ForgeLexer PUBLIC ${CMAKE_SOURCE_DIR}/src)
target_link_libraries(ForgeLexer PUBLIC ForgeCore)
target_compile_features(ForgeLexer PUBLIC cxx_std_23)

set_target_properties(ForgeLexer PROPERTIES FOLDER "ForgeLang/Lexer")

Each component is built as a static library (or module, where supported). This
improves compilation time and enforces separation of concerns.

2.2.5 Shared Core Module (e.g., src/core/CMakeLists.txt)

add_library(ForgeCore STATIC
SourceManager.cpp
ErrorReporter.cpp
Utility.cpp

)

target_include_directories(ForgeCore PUBLIC ${CMAKE_SOURCE_DIR}/src)
target_compile_features(ForgeCore PUBLIC cxx_std_23)

Optional sanitizers and warnings
target_link_options(ForgeCore PRIVATE ${SANITIZER_FLAGS})

107

The core library provides foundational types and services for all modules. All other
components (lexer, parser, runtime) depend on it.

2.2.6 Main Executable Entry Point (src/main/CMakeLists.txt)

add_executable(ForgeLang
main.cpp

)

target_link_libraries(ForgeLang
PRIVATE
ForgeCore
ForgeLexer
ForgeParser
ForgeSemantics
ForgeRuntime

)

target_compile_features(ForgeLang PUBLIC cxx_std_23)
set_target_properties(ForgeLang PROPERTIES FOLDER "ForgeLang/Main")

This is the main interpreter binary. Additional REPL or debugging tools can be added
as separate executables under /tools or /cli.

2.2.7 Using C++20 Modules (Experimental Support)

If your compiler supports it (Clang >= 16, MSVC >= 19.34, GCC >= 13):

target_sources(ForgeParser
PRIVATE
FILE_SET cxx_modules TYPE CXX_MODULES

108

BASE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}
FILES

Parser.ixx
)

Modules allow replacing header files, reduce compile time, and eliminate transitive
dependencies. This is especially useful for high-level interpreter APIs.

2.2.8 Testing Subsystem (tests/CMakeLists.txt)

add_executable(ForgeTests
LexerTests.cpp
ParserTests.cpp

)

target_link_libraries(ForgeTests PRIVATE
ForgeCore
ForgeLexer
ForgeParser

)

add_test(NAME LexerTests COMMAND ForgeTests)

Use modern test frameworks that support C++20, such as Catch2 v3, with test
discovery integration for IDEs and CI.

2.2.9 Build Commands

Assuming you're using the terminal and Ninja:

109

mkdir build && cd build
cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug ..
cmake --build .
ctest --output-on-failure

This setup supports fast iteration, cross-platform builds, and integration with tools like
Clang-Tidy, Valgrind, or sanitizers.

2.2.10 IDE Integration and Tooling

CMake integrates with major IDEs:

• Visual Studio 2022 supports C++23 and modules

• CLion auto-detects compile_commands.json

• VSCode with CMake Tools and C++ extensions provides excellent workflow

You can configure per-target compiler flags, debugging info, or even cross-compilation
profiles using CMake presets.

2.2.11 Conclusion

Using CMake effectively for a multi-component interpreter project enables structured
development, fast builds, and extensibility. By dividing components into
standalone modules and libraries, leveraging C++20/23 features, and enforcing modern
build practices, the interpreter can evolve cleanly from prototype to production.
This project structure reflects modern systems programming expectations and aligns
well with the goals of the language we are creating—clarity, safety, and modularity.

110

2.3 Dependency Management — Lexer, Parser,
Runtime

In building a modular interpreter using modern C++20/23, one of the most
important engineering tasks is to carefully define and manage dependencies between
core components: the lexer, parser, and runtime. These three modules form the
heart of any language engine, and poor coupling among them can result in architectural
rigidity, untestable code, and difficult feature expansion.
This section describes how to architect dependencies between these components
using clear boundaries, modern C++ idioms, and compiler-level guarantees. The goal
is to achieve modular cohesion, minimal coupling, and maximum clarity, using
idiomatic C++20/23 design principles.

2.3.1 Why Dependency Management Matters in a Language
Project

In an interpreter or compiler, each phase of the pipeline must consume only what
it needs, and produce outputs suitable for the next stage, without relying on
runtime details of other phases. Poor separation typically manifests in:

• Lexer calling parser logic (bad design)

• Runtime logic embedded into AST nodes

• Cyclical dependencies between semantic analysis and evaluation

• Direct variable sharing or implicit globals

A clear dependency model eliminates these problems and enables unit testing,
parallel development, and future extensions, such as JIT compilation, static

111

analysis, or embedded REPLs.

2.3.2 High-Level Component Boundaries

The architecture follows a layered structure:
Only downward dependencies are allowed. Each layer depends only on the layer(s)
below it, never above.

2.3.3 Lexer: Input Tokenization Layer

Purpose:

• Accepts a source buffer (std::string_view)

• Produces a linear sequence of tokens (TokenStream)

• Does not depend on AST, parser, or runtime

Dependencies:

• core/SourceManager.hpp for span tracking

• core/ErrorReporter.hpp for structured errors

• Standard library only

Output:

• Token structure with type, lexeme, source location

• TokenStream: typically std::vector<Token> or an iterator view

Modern C++ Tools:

112

• std::string_view, std::optional, std::variant for token values

• std::source_location (C++20) for diagnostics

• constexpr lexers for testing and compile-time evaluation

2.3.4 Parser: Syntax Construction Layer

Purpose:

• Receives a stream of tokens from the lexer

• Produces an Abstract Syntax Tree (AST)

• Does not call or rely on runtime evaluation

Dependencies:

• lexer/Token.hpp

• core/SourceManager.hpp

• core/ErrorReporter.hpp

• Internal AST definitions (ast/Expr.hpp, ast/Stmt.hpp)

Output:

• AST nodes represented using std::variant or algebraic types

• For example:

113

using Expr = std::variant<BinaryExpr, LiteralExpr, CallExpr, VarExpr>;

Design Notes:

• Use recursive descent with backtracking or lookahead

• Report syntax errors gracefully via std::expected or error accumulation

Modern C++ Tools:

• std::visit, std::monostate for variant traversal

• Concepts and constraints for AST transformations

2.3.5 Runtime: Execution Layer

Purpose:

• Receives a fully parsed and semantically valid AST

• Executes the program in an environment model

• Provides built-in functions, memory, control flow, stack

Dependencies:

• AST definitions

• Symbol table or semantic results

• core/Environment.hpp, core/Value.hpp, and runtime data structures

Key Responsibilities:

114

• Interprets AST using a visitor or evaluation engine

• Manages a scoped environment (stack frames, variables, closures)

• Provides built-in I/O and standard library functions

Output:

• Result of program execution (Value)

• Can be used for REPL or scripting interface

Modern C++ Tools:

• std::variant to represent runtime values:

using Value = std::variant<IntValue, FloatValue, BoolValue, StringValue,
FunctionValue>;↪→

• std::function or lambdas for native function calls

• std::jthread, std::future, or coroutine-based async features for concurrency
(optional)

2.3.6 Example of Dependency Direction (CMake and Code)

Let’s say we define libraries like this in CMakeLists.txt:

add_library(ForgeCore ...)
add_library(ForgeLexer ...)
add_library(ForgeParser ...)
add_library(ForgeRuntime ...)

115

Dependencies
target_link_libraries(ForgeLexer PUBLIC ForgeCore)
target_link_libraries(ForgeParser PUBLIC ForgeLexer ForgeCore)
target_link_libraries(ForgeRuntime PUBLIC ForgeParser ForgeCore)

This ensures that:

• Lexer is completely independent

• Parser depends only on Lexer and Core

• Runtime depends only on Parser and Core

• No module introduces upward or cyclic dependencies

2.3.7 AST and Value Boundary

A key architectural boundary lies between:

• Parser output (AST)

• Runtime input (Value system)

The AST must never carry runtime values. This enforces purity and makes the AST
reusable for:

• Static analysis

• Code formatting

• Type checking

• Compilation or transpilation

All runtime data is generated and stored after parsing, within the evaluation engine.

116

2.3.8 Semantic Analysis as an Optional Intermediate Layer

To maintain decoupling between syntax and execution, a semantic layer can act as an
intermediate verifier:

• Ensures type correctness

• Infers return types

• Validates function signatures

• Annotates AST nodes with resolved types or symbol bindings

This layer produces either:

• A typed AST (decorated with type info)

• Or a symbol table used by the runtime

It can optionally cache or transform parts of the AST for optimization.

2.3.9 Runtime Extensions and Isolation

To maintain a clean runtime interface:

• Built-in functions (e.g., print, input, len) are registered explicitly

• External native libraries can be loaded dynamically or statically linked

• Runtime APIs are defined through interfaces and Value conversions

In C++20/23, this is aided by:

• std::function<Value(const std::vector<Value>&)> for native function
wrappers

117

• std::span for passing slices safely

• Optional use of modules to isolate standard library extensions

2.3.10 Testing Each Component in Isolation

Modular dependency design enables:

• Lexer unit tests using raw source strings

• Parser tests using token streams

• AST tests using manually constructed nodes

• Runtime tests using evaluation contexts and mock environments

Example: Test just the parser:

Lexer lexer(source);
Parser parser(lexer.tokenize());
AST ast = parser.parse_expression();
// Assertions on structure

2.3.11 Conclusion

Managing dependencies between the lexer, parser, and runtime is a foundational
engineering principle when building a modern interpreter. With modern C++20/23,
developers can enforce type-safe boundaries, minimize coupling, and structure their
interpreter as a collection of focused, testable units.
By keeping components strictly layered and avoiding runtime dependencies in
syntax and analysis phases, we enable a clean, composable, and scalable language
infrastructure that supports both growth and correctness.

118

2.4 Organizing Target Language Files (.lang, .test)
In the design and implementation of a new programming language, managing the
source files written in that language is as important as implementing its components.
These source files—used for testing, demonstration, validation, and bootstrapping—
should follow a clear structure and naming convention that reflects the language’s
evolution, helps automate test suites, and supports maintainability as the language
expands.
This section explains how to organize, name, and integrate target language files,
using extensions such as .lang for programs and .test for validation scripts, into the
interpreter infrastructure. The approach follows modern software practices from the
past five years and complements C++20/23-powered interpreter architecture.

2.4.1 Purpose of Organizing Language Files

When building a new language, you will be writing dozens to hundreds of test programs,
examples, and behavioral specifications in your target language. These files serve
multiple purposes:

• Unit testing the interpreter or compiler

• Behavioral documentation for language features

• Regression tests to prevent breaking existing features

• End-user examples for tutorials and learning

• Interactive REPL experiments or integration scripts

A disciplined file structure with dedicated extensions allows these files to be managed,
loaded, interpreted, and tested automatically.

119

2.4.2 Suggested File Extensions

To differentiate target-language files from C++ implementation files:

• .lang — for source files written in the new language

– Used for examples, programs, benchmarks, REPL inputs

• .test — for test scripts containing expected results

– Paired with .lang files for output-based assertions

• .fail — for negative tests that must produce compile-time or runtime errors

– Used to verify robustness and error diagnostics

This naming convention makes it possible to auto-discover and categorize files by
purpose.

2.4.3 Directory Layout for Target Language Files

The following is a clean and scalable directory structure:

/ForgeLang
�
��� /examples → Simple programs for demonstration
� ��� hello_world.lang
� ��� factorial.lang
� ��� file_io.lang
�
��� /tests → Formal test cases
� ��� /passing

120

� � ��� basic_arithmetic.test
� � ��� recursion.test
� � ��� variables.test
� ��� /failing
� � ��� missing_semicolon.fail
� � ��� type_mismatch.fail
� ��� /edge_cases
� ��� shadowing.test
� ��� large_loop.test
�
��� /benchmarks → Performance and stress examples
� ��� compute_pi.lang
� ��� fib_iterative.lang

Each test or example can be read independently by tools or manually executed using
the interpreter executable.

2.4.4 .lang File Design Conventions

A .lang file is a complete or partial program written in your custom C-style language.
During early development, programs will likely demonstrate:

• Arithmetic and logical expressions

• Function definitions and calls

• Variable binding and scoping

• Conditionals and loops

Example — factorial.lang:

121

fn factorial(n: int) -> int {
if n <= 1 {

return 1;
}
return n * factorial(n - 1);

}

fn main() -> int {
let value: int = 5;
print("Result: ", factorial(value));
return 0;

}

Conventions:

• Use consistent indentation and spacing

• Use comments (//) for expected behavior or notes

• Keep filenames and function names descriptive and lowercase with underscores

2.4.5 .test File Format and Structure

A .test file serves both as a program and an assertion document. It includes
embedded expectations. A simple format could be:

// INPUT
fn main() -> int {

print("Hello, world!");
return 0;

}

122

// EXPECT
Hello, world!

A test harness in C++ parses this file, extracts the input program and the expected
output, runs the interpreter, and compares actual output with expectations.
This format allows test automation without a separate database or metadata schema.
Features to support:

• // EXPECT: for single-line outputs

• // ERROR: for failure cases

• Optional // EXIT: for expected return code

2.4.6 .fail File Format

Negative tests ensure that invalid programs are rejected. These are useful for validating:

• Type system enforcement

• Syntax checking

• Name resolution

• Semantic constraints

Example — missing_semicolon.fail:

fn main() -> int {
let x: int = 10
return x;

}

123

// ERROR
Expected ';' after variable declaration

Interpreter test runners must capture the diagnostic and match it with the expected //
ERROR section.

2.4.7 Integration with the Interpreter

To support test file automation in C++:

• Create a small test runner tool (forge-test) in C++ that:

– Scans .test and .fail directories

– Parses sections into input/output pairs

– Executes the interpreter

– Captures stdout/stderr and return codes

– Compares against expectations

• Use std::filesystem (C++17/20) to traverse directories

• Use std::ifstream, std::ostringstream for file content management

• Use std::regex or simple line parsing for matching // markers

This keeps testing infrastructure entirely in modern C++ without requiring Python or
scripting languages.

124

2.4.8 Benefits of Organized Language Files

Well-organized target language files provide:

• Documentation: Each file acts as a living specification of a language feature

• Validation: Ensures language changes do not regress existing behavior

• Automation: Enables integration with CI/CD and test runners

• Onboarding: New developers and contributors can explore language behavior
easily

Moreover, the separation of .lang, .test, and .fail files enables modular testing and
filtering.

2.4.9 Future Expansion

As the language matures, the file system can expand to support:

• .mod.lang — for module or package system definitions

• .repl.test — for interactive session scripts

• .compile.test — for checking bytecode or intermediate output

• .doc.lang — for showcasing documentation-driven development

Eventually, a package manager or module loader can use this same file structure for
official standard library distribution.

125

2.4.10 Conclusion

Organizing target language files with dedicated extensions and a logical directory layout
ensures that your interpreter can scale in both features and testing capabilities.
Using .lang, .test, and .fail allows automated tooling, behavioral validation, and
integration with the interpreter’s evolution.
This strategy reflects modern C++ development practices where infrastructure,
source content, and testing are first-class citizens, maintained in parallel with
implementation.

126

2.5 Milestone — Project Structure with First
Experimental Language File

The culmination of architectural planning and toolchain setup is reached with this
milestone: successfully compiling and running the first experimental source file
in our new C-style programming language. This step validates our modular project
structure, build system, dependency boundaries, and runtime logic. It also serves as a
checkpoint that demonstrates the interpreter pipeline is connected end-to-end—
from reading a source file to executing its semantics.
This section documents the essential components and design insights required to
produce the first executable .lang program using our interpreter, implemented with
modern C++20/23.

2.5.1 Context: What This Milestone Proves

By this milestone, we aim to:

• Ensure the entire interpreter pipeline (Lexer → Parser → Evaluator) is
functional

• Verify that the project structure supports running user code from a file

• Confirm the runtime can process basic constructs like function calls and print
statements

• Execute a small .lang program with correct output

• Enable a basic CLI interface or REPL to interpret input files

This milestone serves as a working proof-of-concept interpreter, even if only for a tiny
language subset.

127

2.5.2 Project Structure Recap

Let’s revisit the C++ project structure, now populated with functional components:

/ForgeLang
��� CMakeLists.txt
��� /src
� ��� /core → SourceManager, diagnostics, utilities
� ��� /lexer → Tokenization logic
� ��� /parser → AST construction (Expr, Stmt)
� ��� /runtime → Evaluator, environment, built-ins
� ��� /main → Entry point, CLI handling
��� /examples
� ��� hello.lang → First experimental language program
��� /tests → Interpreter and syntax tests (optional)
��� /build → CMake out-of-source directory

Each module compiles independently and links via modern target-based CMake
using target_link_libraries().

2.5.3 Minimal Feature Set for First Program

The first source file (hello.lang) and the interpreter must support a minimal set of
language features:

• Function definition and execution

• Return value from main()

• Built-in print() function

• Basic arithmetic or string literals

128

Example hello.lang:

fn main() -> int {
print("Hello, world!");
return 0;

}

This program:

• Defines a main function

• Invokes a built-in print operation

• Returns an integer value to indicate successful termination

2.5.4 Interpreter Pipeline Overview

Each stage of the interpreter must now function with working integration.

• a. Lexer Module

– Tokenizes input source string into a list of Token structures

– Handles keywords, punctuation, literals, identifiers

– Reports lexical errors (if any)

• b. Parser Module

– Converts token stream into an abstract syntax tree (AST)

– Recognizes function definitions, statements, expressions

– Associates source locations for debugging and error reporting

129

• c. Runtime Module

– Resolves and invokes main()

– Registers built-in functions (like print)

– Manages environment, call frames, and execution stack

• d. Main Executable (forge)

– Reads .lang file

– Passes it through lexer → parser → evaluator

– Returns appropriate exit code and forwards any runtime output

2.5.5 Implementation Detail: First Language Features in C++

• Token Definition (Token.hpp):

enum class TokenType {
Fn, Return, Identifier, StringLiteral,
LParen, RParen, LBrace, RBrace,
Arrow, Semicolon, Comma,
IntegerLiteral, Print, EndOfFile

};

struct Token {
TokenType type;
std::string lexeme;
SourceSpan span;

};

• AST Nodes (Expr.hpp, Stmt.hpp):

130

struct CallExpr {
std::string callee;
std::vector<Expr> arguments;

};

struct PrintStmt {
Expr value;

};

using Stmt = std::variant<PrintStmt, ReturnStmt, FunctionDecl>;

• Built-in Function Handling (Runtime.hpp):

class Runtime {
public:

void register_builtin(const std::string& name, NativeFunction fn);
void run(const std::vector<Stmt>& program);

};

void builtin_print(const std::vector<Value>& args) {
std::cout << args[0].as_string() << std::endl;

}

2.5.6 CLI Interface (main.cpp)

int main(int argc, char** argv) {
if (argc < 2) {

std::cerr << "Usage: forge <file.lang>" << std::endl;
return 1;

131

}

std::string source = SourceManager::read_file(argv[1]);
auto tokens = Lexer(source).tokenize();
auto ast = Parser(tokens).parse_program();

Runtime runtime;
runtime.register_builtin("print", builtin_print);
runtime.run(ast);

return 0;
}

This minimal driver program enables direct interpretation from a file using the
command:

./forge examples/hello.lang

2.5.7 Output and Success Criteria

When running the above command, you should see:

Hello, world!

And the program should exit with code 0.
Success at this stage means:

• CMake builds all modules correctly

• Runtime system is functional for minimal execution

• Diagnostic system reports errors if the .lang file is malformed

132

• The pipeline operates in isolation and composes together seamlessly

2.5.8 Testing and Next Steps

After achieving this milestone, you can begin expanding:

• Add support for variable declarations and assignments

• Introduce expression evaluation: math, logic, comparisons

• Develop .test files for automation

• Implement control flow: if, while, for

This milestone validates the project’s architecture and marks the transition from
design to iterative language development.

2.5.9 Conclusion

This first milestone—executing a .lang file through a modern C++ interpreter—
demonstrates the viability of the architecture, the correctness of module boundaries,
and the effectiveness of C++20/23 features in building a clean, modular interpreter. It
is not just symbolic, but foundational: every future feature builds atop this working
skeleton.
The interpreter is now ready for feature expansion, testing infrastructure, error
reporting refinement, and language evolution—all of which will be addressed in
subsequent chapters.

Chapter 3

Development Environment for
Language Implementation

3.1 Setting up C++20/23 for Building Interpreters

3.1.1 Introduction

In recent years, the evolution of the C++ language has provided language designers
and systems developers with powerful tools for implementing interpreters with better
maintainability, modularity, and performance. C++20 and C++23 introduce features
such as concepts, ranges, modules, coroutines, constexpr enhancements, pattern
matching proposals, and better compile-time diagnostics. For building interpreters—
especially with a modern architecture involving lexers, parsers, ASTs, symbol tables,
and execution runtimes—these language improvements offer practical advantages.

This section focuses on configuring a robust C++20/23 development environment
tailored for designing interpreters and domain-specific languages. It addresses compiler
choices, build systems, editor setups, and the adoption of modern C++ idioms, libraries,

133

134

and tooling.

3.1.2 Compiler Requirements and Setup

• Choosing a Modern Compiler

To work with the most recent features of C++20 and C++23, ensure that your
compiler supports them fully or at least substantially. As of the past five years,
the most reliable compilers include:

– GCC (10 and above for C++20, 13+ for C++23 support)

– Clang (12 and above for C++20, 16+ for C++23 previews)

– MSVC (Visual Studio 2019 v16.10 and above for C++20, VS2022
for C++23)

For interpreter development, Clang is often preferred for its detailed diagnostics,
while GCC offers broad cross-platform performance. MSVC is excellent for
Windows-native tooling, especially if you target Windows APIs or use tools like
Visual Studio or C++Builder.

Recommended build flags for compiling with modern C++ features:

g++ -std=c++23 -Wall -Wextra -Wpedantic -O2 -g your_source.cpp -o interpreter

3.1.3 Build Systems and Project Organization

1. CMake for Cross-Platform Builds

CMake remains the dominant build system for C++ projects. With C++20
modules and newer header units becoming more prevalent, CMake has introduced

135

better support in versions 3.20+. CMake allows scalable multi-target projects,
separating lexer/parser generation, runtime engines, and test tools efficiently.

Use modern CMake practices:

cmake_minimum_required(VERSION 3.26)
project(MyLangInterpreter LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_executable(interpreter src/main.cpp src/lexer.cpp src/parser.cpp)
target_include_directories(interpreter PRIVATE include)

2. Logical Folder Structure

A typical interpreter should have a folder layout like:

/MyLangInterpreter
/src

main.cpp
lexer.cpp
parser.cpp
ast.cpp
runtime.cpp

/include
lexer.hpp
parser.hpp
ast.hpp
runtime.hpp

/tests
test_lexer.cpp
test_parser.cpp

/tools

136

codegen.cpp
CMakeLists.txt

Modularity supports testing, separation of concerns, and fast iteration.

3.1.4 IDE and Editor Configuration

To work efficiently with modern C++, consider tools that support:

• Real-time syntax checking

• Integration with clang-tidy, clang-format

• Code navigation, refactoring, and debugging support

• Git integration

• Recommended IDEs:

– CLion: Deep CMake integration, built-in Clang engine, seamless support for
C++20/23

– Visual Studio 2022: Best for Windows-native development, IntelliSense,
and debugging

– VSCode with C++ Extension: Lightweight, customizable, and
multiplatform

– Emacs/Vim with LSP and clangd for experienced users

137

3.1.5 Compiler Tooling and Diagnostics

• clang-tidy and clang-format

Use clang-tidy for code quality checks. It helps detect modern best practice
violations, especially in template-heavy or constexpr-heavy components like
parsers or evaluators.

Enable C++20/23 checkers:

clang-tidy
-checks="modernize-*,readability-*,performance-*,cppcoreguidelines-*" ...↪→

Use .clang-format with custom rules based on LLVM or Google style, adjusted
for your project's clarity needs.

3.1.6 Testing Environment for Interpreters

Unit testing is essential, especially for language features. Integrate modern C++ testing
frameworks:

• doctest: Header-only, fast compile time, perfect for TDD

• Catch2: More expressive syntax, very popular in open-source projects

• GoogleTest: Large-scale, stable, and powerful for integration testing

Organize tests in the /tests folder, and compile them as separate targets. Test lexers,
parsers, AST walkers, and execution logic independently.

138

3.1.7 C++20/23 Specific Practices Beneficial to Interpreters

1. Concepts

Use concepts to constrain template-based parser generators or AST visitors:

template<typename T>
concept TokenStream = requires(T stream) {

{ stream.next_token() } -> std::same_as<Token>;
};

2. constexpr for Compile-Time Token Tables

C++20 allows complex structures at compile-time. Lexer tables and parser
rules can be declared constexpr, speeding up runtime startup and improving
testability.

constexpr std::array<TokenRule, N> token_rules = {
TokenRule{"+", TokenType::Plus},
TokenRule{"-", TokenType::Minus},
...

};

3. std::ranges and Views

In interpreter pipelines—like transforming token streams into filtered views—
std::ranges enhances readability and lazy computation:

auto filtered = tokens | std::views::filter([](const Token& t){ return t.type
!= TokenType::Whitespace; });↪→

139

4. Modules (Experimental)

Start modularizing if your compiler supports C++20 modules. Begin with
internal tools like:

module; // global module fragment
#include <string>
#include <vector>

export module lexer;
export class Lexer {
...

};

Use cautiously until module support becomes fully stable in your toolchain.

3.1.8 Optional Tools for Interpreter Development

• Godbolt Compiler Explorer for checking generated assembly of critical
routines

• Valgrind / AddressSanitizer for memory leak detection

• Fuzzing Tools (like libFuzzer) for input testing of lexer/parser

• Graphviz integration to visualize ASTs or CFGs

• REPL Shell using C++ coroutines or threads to test runtime interactively

3.1.9 Conclusion

Setting up a solid, modern C++20/23 environment is foundational for building a future-
proof, extensible interpreter. With proper tooling, modular project layout, and modern

140

language features, you can accelerate development and enforce clean design practices.
This preparation phase ensures that upcoming chapters—focusing on lexical analysis,
parsing strategies, semantic checks, and runtime behavior—are built on a stable,
maintainable, and scalable foundation.

141

3.2 Language Development Tools: ANTLR, LLVM
Comparison

3.2.1 Introduction

As the design and implementation of a programming language require both syntactic
and semantic processing, language development tools play a vital role in automating
and optimizing various phases of language construction. Among the most important
tools that emerged or significantly evolved over the last five years are ANTLR
(Another Tool for Language Recognition) and LLVM (Low-Level Virtual Machine).
Each serves different purposes but can be effectively used together or independently
in the process of interpreter or compiler development.
This section provides a focused comparison of ANTLR and LLVM within the context
of building an interpreter using Modern C++ (C++20/23). We highlight their design
philosophy, technical integration aspects, ecosystem maturity, and their suitability
for specific stages such as lexical analysis, parsing, semantic checks, intermediate
representations, and execution models.

3.2.2 ANTLR (Another Tool for Language Recognition)

1. Overview

ANTLR is a powerful parser generator for reading, processing, executing, or
translating structured text or binary files. Over the past five years, ANTLR 4 has
continued to receive active development, making it more robust, with increased
grammar expressiveness, better error recovery, and improved code generation
backends.

ANTLR is most effective in the front-end development stages of language

142

implementation:

• Lexical Analysis (Lexer)

• Syntax Analysis (Parser)

• Optional: Parse Tree Visitor / Listener pattern

2. Strengths of ANTLR

• Grammar-Centric Development: Languages are defined with clean
EBNF-like grammars that are human-readable and modular.

• Tool Independence: Although ANTLR’s runtime is in Java, it generates
code for several target languages, including C++, C#, Python, and Go.

• Error Recovery and Reporting: Robust diagnostics, automatic
error handling, and custom exception support help detect ambiguous or
malformed syntax in user code.

• AST Construction Simplified: Generates parse trees with optional visitor
interfaces that work well in Modern C++ environments with concepts and
variants.

3. Integration with C++20/23

While ANTLR primarily generates code in C++14-style for the C++ runtime,
modern interpreter projects can wrap or extend the generated parser classes using
modern features:

• Use std::variant or std::any in visitor result types

• Combine with std::ranges and std::string_view for efficient token
processing

143

• Implement semantic validation using concepts to constrain rule-specific
checks

• Encapsulate the parse tree traversal within modular AST builder classes
using constexpr utilities for transformation logic

4. Limitations

• Dependency on Java Tools: ANTLR grammar files (.g4) are compiled
using Java-based tools, requiring a JDK and Gradle/Maven if integrated in a
pipeline.

• Heavyweight Runtime: ANTLR runtime in C++ is large compared to
hand-crafted lexers and parsers.

• Limited Direct Support for Expression Optimization or IR:
ANTLR handles parsing but leaves semantic analysis and intermediate code
generation to you.

3.2.3 LLVM (Low-Level Virtual Machine)

1. Overview

LLVM is a modular compiler infrastructure designed to support compile-time,
link-time, runtime, and ”idle-time” optimization of programs written in arbitrary
programming languages. It has become the industry standard backend for
building compilers, JIT engines, and high-performance interpreters. Over the last
five years, LLVM has matured its support for C++20/23 with stable APIs and
tooling for modern language runtimes.

LLVM is ideal for back-end development in language implementation:

• Intermediate Representation (IR) Construction

144

• Type Checking and Verification

• Optimization Passes

• Machine Code Generation or JIT Execution

2. Strengths of LLVM

• Flexible IR Design: LLVM IR is both human-readable and strongly typed,
making it excellent for targeting from a high-level language.

• Powerful Optimizations: SSA-based optimization passes improve
performance with techniques like constant folding, dead code elimination,
and loop unrolling.

• Multi-Target Code Generation: LLVM supports code generation for
multiple architectures including x86, ARM, RISC-V.

• JIT Compilation with ORC (On Request Compilation): Enables
interpreters to convert hot code paths to native code dynamically using
LLVM’s JIT APIs.

3. Integration with C++20/23

LLVM APIs are written in C++, and Modern C++ can be fully leveraged to
build high-performance, modular backend pipelines:

• Use RAII to manage LLVMContext, Module, and IRBuilder lifecycles safely.

• Implement AST to LLVM IR converters using std::variant visitors for
expression trees.

• Use constexpr AST evaluators to fold constant expressions before
emitting IR.

145

• Apply coroutines to simulate async IR generation or deferred semantic
checks.

• Embed concepts to constrain emitter functions and support static analysis
at compile-time.

4. Challenges

• Complex API and Documentation: LLVM’s API is extensive and has a
steep learning curve, especially for developers new to compiler backends.

• Build System Complexity: Integrating LLVM as a library requires careful
configuration of CMake targets and correct linking of LLVM components.

• Error Reporting and Debugging: Diagnosing LLVM IR bugs often
requires deep knowledge of internal compiler structures and passes.

3.2.4 Comparative Summary

Comparison of ANTLR and LLVM in Compiler Toolchains

Feature ANTLR LLVM

Role in Toolchain Front-End (Lexer/Parser) Back-End (IR/Codegen)

Language Style Grammar-Based API-Based, SSA
Representation

Modern C++
Compatibility

Partial (Generated
C++14), Wrappable

Full C++20/23 Support via
Native API

Integration
Complexity

Moderate High

146

Feature ANTLR LLVM

Compilation Model Static Interpreter or
Tree-Walker

JIT or AOT Compilation

Best Use Case Rapid grammar
prototyping

High-performance execution

Error Diagnostics Built-in syntax error
recovery

Requires manual error
management

Tool Dependencies Requires Java for grammar
compilation

Requires LLVM build +
linker integration

Extensibility Add semantic rules
externally

Full control over IR and
optimizations

3.2.5 When to Use ANTLR or LLVM

• Use ANTLR if:

– You are prototyping syntax quickly

– You need clear separation between grammar and logic

– You prefer declarative language design over hand-written parsers

• Use LLVM if:

– You are building a performant backend with JIT or native compilation

– You require code optimization or multi-architecture support

– You need fine-grained control over IR and runtime behavior

147

• Use Both if:

– You want a hybrid pipeline: parse with ANTLR, translate AST to LLVM IR,
and compile or JIT execute it.

– You are building a staged interpreter that starts as a tree-walker and later
evolves to a compiled model.

3.2.6 Conclusion

ANTLR and LLVM represent two powerful but different approaches in the language
development landscape. ANTLR empowers the grammar-oriented front-end, while
LLVM gives unparalleled control and performance at the back-end. For C++20/23
interpreter developers, using both strategically provides a path from clean syntax
parsing to high-performance execution. Carefully balancing both tools allows for a
modern, extensible, and scalable language implementation pipeline.

148

3.3 IDE with Custom Language Grammar Support

3.3.1 Introduction

In the lifecycle of a modern programming language—particularly one built using
Modern C++—the role of development tooling becomes critical. Beyond the command-
line and compiler infrastructure, an IDE that understands the grammar and
semantics of your custom language significantly boosts productivity, usability, and
the adoption of your language. Over the last five years, IDE platforms have matured to
support grammar-driven development through pluggable architecture, language servers,
and custom tooling extensions.
This section focuses on practical approaches to integrating custom language
grammar support into modern IDEs. It examines Language Server Protocol (LSP),
grammar-aware plugins, syntax highlighting, code completion, and diagnostic features
that can be integrated into IDEs to enable your language to compete with mainstream
tools.

3.3.2 The Role of IDEs in Language Design

Developing a language involves more than parsing and executing code—it includes
providing a friendly editing experience for the users of your language. This includes:

• Syntax highlighting based on token types

• Real-time syntax error diagnostics

• Code completion and context-aware suggestions

• Navigation (go to definition, find usages)

• Inline documentation

149

• Auto formatting and linting

These features are no longer optional. A well-designed IDE experience reflects the
maturity and usability of a language.

3.3.3 Language Server Protocol (LSP): The Modern Backbone

Introduced and standardized in recent years, the Language Server Protocol (LSP)
decouples the language logic (parsing, completion, linting) from the editor. This allows
a single language backend (the language server) to provide IDE features across
multiple editors like:

• Visual Studio Code

• Neovim

• Sublime Text

• Eclipse Theia

• JetBrains IDEs (partial LSP support via plugins)

• Building an LSP Server for Your Language

When building an LSP server in C++20/23, you can leverage:

– std::variant, std::optional, and std::map for robust JSON-RPC
protocol handling

– constexpr for compile-time grammar rules

– Threaded request handlers using std::jthread or std::async

– AST and symbol table integration for semantic operations like hover,
completion, and reference search

150

An LSP server typically handles requests such as:

– textDocument/didOpen

– textDocument/didChange

– textDocument/completion

– textDocument/definition

– textDocument/hover

– textDocument/publishDiagnostics

By integrating your ANTLR parser or custom parser, you can use your AST and
symbol data to populate these responses intelligently.

3.3.4 Editors and IDEs with Strong Grammar Plugin Support

1. Visual Studio Code (VSCode)

VSCode is currently the most flexible and widely adopted IDE for custom
language integration. You can create a VSCode extension to provide:

• TextMate grammar-based syntax highlighting for fast integration

• Tree-sitter-based parsing for advanced real-time syntax trees

• LSP client integration to connect to your language server

• Code snippets, diagnostics, and refactorings

VSCode extensions are written in TypeScript, and the language server can be
written in C++, communicating via stdio or sockets.

151

2. JetBrains Platform

JetBrains IDEs (like CLion and IntelliJ IDEA) provide a powerful plugin
architecture, but integration is more complex. You must write a custom plugin
in Java or Kotlin, defining:

• Grammar (via BNF or regex-based parser)

• Lexer/Parser (usually generated via Grammar-Kit)

• PSI (Program Structure Interface) tree structure

• Syntax highlighting, code completion, intentions, and inspections

While more complex than VSCode, JetBrains integration offers a deeply native
feel and excellent performance for large codebases.

3. Eclipse & Theia

Eclipse and Theia support LSP and custom grammar via Xtext, a framework for
building domain-specific languages with editor support. Xtext can generate both
parsers and IDE integration components based on a single grammar file.

Although Xtext is Java-centric, it can work alongside a C++ backend if the
language server is integrated properly.

3.3.5 Grammar Files and Syntax Highlighting

A crucial entry point to IDE support is the definition of grammar and token-
based styling. This typically involves:

• Defining a .tmLanguage.json or .plist file for TextMate-style grammars
(VSCode)

• Using ANTLR grammar files (.g4) to map syntax rules to color groups

152

• Registering language-specific comment, string, keyword, number, operator
patterns

• Declaring indentation and brace matching rules

Example token types for highlighting:

"tokenColors": [
{
"scope": "keyword.control.mylang",
"settings": { "foreground": "#569CD6", "fontStyle": "bold" }

},
{
"scope": "string.quoted.double.mylang",
"settings": { "foreground": "#CE9178" }

},
...

]

3.3.6 Real-Time Diagnostics and Auto-Completion

Real-time diagnostics in IDEs are often driven by:

• Incremental parsing

• On-the-fly semantic checks

• Custom linting rules

• Static analysis using AST walkers

To implement this:

153

• Use your parser or visitor to walk the AST after each keystroke or file change

• Report issues as JSON diagnostics with line, column, severity, and message

• Store symbols in a context-aware scope table to support real-time suggestions

For code completion:

• Collect available symbols from the current scope

• Suggest keywords or context-specific tokens

• Include function signatures, variable types, and documentation where possible

3.3.7 Formatter and Style Tools

Implementing formatting rules that conform to your language's style guides:

• Define formatting rules (e.g., brace placement, indentation, spacing) using a
rule engine or manual AST visitor

• Integrate with LSP’s textDocument/formatting endpoint

• Use std::ostringstream or templated formatters in C++20 for clean formatting
output

Optionally, provide CLI tools like myfmt or mylint that can also be used in CI
pipelines.

154

3.3.8 Embedding Interpreter into IDE for Live Evaluation

In interactive environments (REPLs or script runners), your language interpreter can be
embedded directly into the IDE extension or used over sockets:

• Build a REPL module using C++ coroutines for async command processing

• Provide a Run or Evaluate Selection command from the editor

• Return execution output, errors, or logs to a side panel in real time

3.3.9 Conclusion

Building an IDE with support for your custom language grammar is no longer a
luxury—it is a core part of language design. Through LSP and modern IDE extension
models, you can provide users with powerful development tools: syntax highlighting,
error feedback, smart completion, and runtime interaction. When coupled with the
expressive power of C++20/23, your interpreter project can offer a first-class editing
and execution environment that inspires trust and productivity for developers adopting
your language.

155

3.4 Testing and Debugging Interpreters

3.4.1 Introduction

Interpreter development, particularly for a new C-style language, requires rigorous
testing and debugging strategies. An interpreter’s correctness hinges on the
consistent behavior of its core components: lexer, parser, AST generator, semantic
analyzer, and runtime engine. In the last five years, Modern C++ (C++20 and
C++23) has introduced advanced tools and language features that empower developers
to write expressive, efficient, and testable interpreters.
This section explores comprehensive methodologies for unit testing, integration
testing, runtime evaluation, and debugging, tailored to modern interpreter
development using the latest features of the C++ language standard.

3.4.2 Foundations of Interpreter Testing

Testing an interpreter goes beyond checking outputs—it must ensure that:

• The lexer correctly tokenizes all valid and invalid inputs

• The parser produces valid ASTs for syntactically correct code

• The semantic analyzer identifies type errors, scope violations, and undefined
behaviors

• The runtime engine executes all constructs accurately and consistently

• Errors are reported clearly and do not crash the interpreter

To achieve this, testing must be layered, modular, and automated.

156

3.4.3 Unit Testing with Modern C++ Frameworks

1. Recommended Frameworks

Modern C++ unit testing is best supported by:

• doctest: Header-only, minimal overhead, excellent for TDD

• Catch2: Rich syntax, expressive assertions, powerful fixtures

• GoogleTest: Mature and widely used in enterprise-grade systems

2. Unit Testing Strategies

• Lexer Tests: Input a raw source string and assert the token stream

CHECK(tokenize("var x = 5;") == std::vector<Token>{
{TokenType::Keyword, "var"}, {TokenType::Identifier, "x"},
{TokenType::Operator, "="}, {TokenType::Number, "5"},
{TokenType::Semicolon, ";"}

});

• Parser Tests: Check that a valid token stream produces the correct AST
nodes

• Expression Evaluator Tests: Given AST nodes, ensure they evaluate to
the correct result

• Semantic Checks: Simulate errors (like undefined variables) and assert
error detection

3. Use of constexpr and consteval in Tests

With C++20/23, many internal components (e.g., grammar tables, type systems)
can be validated at compile time using constexpr logic:

157

constexpr bool valid = validate_syntax_rules();
static_assert(valid, "Grammar validation failed at compile time");

This improves early detection of logic errors and reduces runtime testing
overhead.

3.4.4 Integration and Regression Testing

1. Interpreter Behavior Tests

Define .lang or .test files that contain sample programs and expected output or
behavior. Use your interpreter to load, execute, and compare results.

Example format:

test_basic_math.lang
print(3 + 4 * 2);
Expected: 11

Automated C++ test code:

auto result = interpreter.run("test_basic_math.lang");
CHECK(result.output == "11");

2. Regression Testing Suite

Track previously fixed bugs and test them regularly to prevent reintroduction.
Organize regression tests with unique identifiers and link them to bug IDs or Git
commits.

158

3.4.5 Debugging Strategies for Interpreters

1. Internal Debug Logging

Use structured logging tools instead of raw std::cout. Consider:

• std::format (C++20) for clean, formatted logs

• Custom logging macros with log levels (info, warn, error)

• Toggle runtime logs via config flags or environment variables

Example:

log_debug("Parsing function '{}' with {} parameters", function_name,
param_count);↪→

2. AST Visualization

Generate DOT/Graphviz diagrams from AST nodes to visually debug structure:

digraph AST {
node0 [label="BinaryExpr +"];
node1 [label="Literal 3"];
node2 [label="Literal 4"];
node0 -> node1;
node0 -> node2;

}

Use this to verify parser behavior, nesting, and tree correctness.

3. Value Tracing

159

Introduce value traces in your evaluator. For each variable or expression, print
evaluation steps:

Evaluating: x = 5 + 2;
Token: Identifier(x)
Token: Operator(=)
SubExpression: 5 + 2 = 7
Set x = 7

This helps debug runtime errors without attaching external debuggers.

3.4.6 Using Modern C++ Tools for Debugging

1. Debugging Tools

• GDB or LLDB: For line-by-line inspection of C++ code

• Valgrind or AddressSanitizer: To detect memory leaks, invalid accesses

• Clang Static Analyzer: Helps catch logic errors at compile time

• Compiler Explorer (Godbolt): Inspect generated assembly for hot paths
in runtime

2. Assertions and Contracts

C++20 introduces [[expects]] and [[ensures]] (in preparation for contracts),
and assert-like patterns are still helpful:

void execute_statement(const Statement& stmt) {
assert(stmt.is_valid());
// proceed

}

160

This defensive approach traps logical errors early.

3.4.7 Testing Error Handling and Edge Cases

Robust interpreters must gracefully handle:

• Syntax errors

• Type mismatches

• Divide-by-zero

• Infinite recursion or loops

• Access to undefined variables

• Invalid function calls

For each scenario, develop tests that assert both error messages and absence of crashes.

CHECK_THROWS_WITH(interpreter.run("x = 10 / 0;"), "RuntimeError: Division by zero");

3.4.8 Test Automation and Continuous Integration

In modern C++ development, integrate test automation with:

• CMake and CTest: Build and run tests automatically

• GitHub Actions or GitLab CI: Trigger tests on every commit

• Code coverage tools (e.g., gcov, llvm-cov): Identify untested branches in your
interpreter

161

Sample CMake integration:

enable_testing()
add_executable(run_tests tests/test_runner.cpp)
add_test(NAME InterpreterTests COMMAND run_tests)

3.4.9 Conclusion

Testing and debugging are not side concerns in interpreter development—they are
foundational to its correctness, reliability, and future extensibility. By leveraging
C++20/23 features like constexpr, std::format, std::variant, and modern testing
frameworks, you can implement a full suite of precise, maintainable, and automated
tests for your interpreter components. Combining static and dynamic analysis, layered
testing, and visual debugging tools ensures that your interpreter behaves consistently
under all conditions and is ready for scaling into larger applications or even compilation
targets in the future.

162

3.5 Milestone – Development Environment Ready for
Interpreter Building

3.5.1 Introduction

This milestone marks the transition from environment preparation to actual
interpreter implementation. It confirms that the foundational tools, libraries,
compilers, and design scaffolding are correctly assembled to support systematic
development, testing, and extension of your custom C-style interpreted language.
In the context of the latest C++ standards, this milestone reflects not only the
completion of tooling setup, but also the integration of modern development
principles, including modular code organization, compile-time validation, test
automation, diagnostics, and IDE support. This section consolidates all previous work
into a verified state, enabling confident progression into the core phases of interpreter
construction: lexical analysis, parsing, semantic evaluation, and execution.

3.5.2 Confirmed Compiler and Language Support

Ensure that the toolchain has been validated for:

• C++20 and C++23 language features

– constexpr, consteval, concepts, std::ranges, std::format, coroutines,
and improved std::variant/std::optional

• Compilers configured and tested

– GCC (13+), Clang (16+), MSVC (Visual Studio 2022+)

• Successful compilation and linking of core interpreter modules

163

– Lexer

– Parser

– AST structures

– Token management

– Basic runtime shell

Checklist:

• CMakeLists.txt targets are defined and build successfully

• Compilation tested in debug and release configurations

• Compiler flags correctly enforce warnings (-Wall -Wextra -pedantic)

3.5.3 Project Structure Verified and Navigable

A consistent and modular project structure is in place. Key directories are organized
with clearly scoped responsibilities:

/MyLangInterpreter/
/src/ # Source files for interpreter logic
/include/ # Public and private headers
/tests/ # Unit and integration tests
/grammar/ # ANTLR or custom grammar definitions
/tools/ # Utilities: AST printers, symbol checkers, REPL
/examples/ # Example programs in .lang or .test format
/scripts/ # Build, test, deployment scripts

Checklist:

• Code navigation and IntelliSense functional in chosen IDE

164

• Headers are discoverable by the compiler and not duplicated

• Build system supports modular compilation (e.g., per component or per feature)

3.5.4 IDE and Editor Integration Complete

The editing environment supports efficient development through:

• Syntax highlighting for the custom language grammar

• Automatic formatting and linting for C++ interpreter code

• Real-time error diagnostics and navigation

• Integration of the Language Server Protocol (LSP) for .lang files (optional)

• Debugging support for the interpreter in C++

Checklist:

• Visual Studio Code or CLion configured with custom syntax files

• C++ LSP features enabled: Go to definition, Find references, Rename

• Breakpoints and variable watches functional during runtime evaluation

3.5.5 Core Testing Infrastructure Operational

The test framework is fully operational with unit, integration, and regression tests
implemented for:

• Tokenization

• Parsing correctness

165

• AST construction

• Interpreter runtime shell

• Error handling and exception diagnostics

Checklist:

• Unit tests using Catch2 or doctest compile and run

• Sample programs (in .test or .lang files) pass automated evaluation

• Edge-case behavior validated (invalid syntax, divide by zero, undefined variable)

CMake test integration:

enable_testing()
add_test(NAME LexerTests COMMAND interpreter_tests --test lexer)
add_test(NAME ParserTests COMMAND interpreter_tests --test parser)
add_test(NAME RuntimeTests COMMAND interpreter_tests --test runtime)

3.5.6 Debugging and Diagnostics Functional

Core runtime features are observable and traceable:

• Internal logs for parsing, evaluation, and symbol resolution

• AST dump functionality

• Stack trace printing for runtime exceptions

• Optional DOT/Graphviz exports for AST visual debugging

Checklist:

166

• AST printer or visualizer integrated and produces readable output

• Internal log system toggleable (e.g., INTERPRETER_LOG_LEVEL=debug)

• Value tracing or runtime execution tracing enabled for test cases

3.5.7 Optional Tools and Enhancements Ready

Advanced tools are pre-configured for deeper testing and performance tuning:

• Static analysis via clang-tidy, clang-analyzer

• Memory validation with AddressSanitizer and Valgrind

• Performance benchmarks using std::chrono or lightweight profilers

• Integration of Godbolt (Compiler Explorer) to inspect generated code from tight
evaluation loops

Checklist:

• Static analysis runs without critical errors or warnings

• Memory leak tests on runtime modules passed

• Performance-critical paths profiled and documented

3.5.8 Initial Interpreter Command-line Interface Bootstrapped

The interpreter’s initial CLI interface has been implemented and is able to:

• Read and execute .lang files

• Display errors and evaluation results

167

• Optionally start a basic REPL loop

• Return exit codes indicating success/failure

Example usage:

./interpreter examples/hello_world.lang
cppCopyEditint main(int argc, char* argv[]) {

if (argc < 2) {
start_repl();

} else {
run_file(argv[1]);

}
}

Checklist:

• Program executes and returns correct results for known examples

• REPL starts without crash and accepts input

• Error output is readable and traceable to source

3.5.9 Final Validation: Milestone Status

Table 5-2: Project Component Status Overview

Component Status

Compiler toolchain setup Ready

Project folder layout Clean and modular

168

Component Status

IDE/editor configuration Operational

Unit and integration tests Functional

Debugging and logs Active

Interpreter CLI Bootstrapped

Error diagnostics Visible and traceable

3.5.10 Conclusion

This milestone signifies the full readiness of the development environment to begin
serious interpreter construction. Every critical layer—toolchain, editor, source structure,
grammar integration, testing, and debugging—is validated and functional. This
foundation not only accelerates development of future chapters but also establishes a
professional-grade workflow that reflects modern language implementation practices
with C++20 and C++23. From this point onward, design efforts can be directed
toward the interpreter core: tokenization, parsing logic, semantic validation, and code
execution.

Part II

Lexical Foundation

169

Chapter 4

Designing Tokens for the New
Language

4.1 Defining Language Tokens – Keywords,
Operators, Literals

4.1.1 Introduction

Tokenization is the initial and foundational step in building any interpreter or compiler.
It transforms a raw source code string into a stream of tokens, each representing a
fundamental unit of the language: keywords, identifiers, operators, delimiters, literals,
and more. These tokens are consumed by the parser and directly influence syntactic
and semantic analysis.
In this section, we focus on the deliberate and structured design of tokens—
specifically the keywords, operators, and literals—for a modern C-style language.
We employ design techniques informed by interpreter architecture and enhanced with
features from Modern C++ (C++20/23), such as std::string_view, constexpr, enum

171

172

class, std::variant, and efficient data structures.

4.1.2 Token Categories and Their Role

A token consists of:

• Type (from a fixed enum)

• Lexeme (text as found in the source)

• Optional literal value (used for literals like numbers and strings)

• Source location (line/column, for diagnostics)

These components help drive parsing decisions, semantic interpretation, and error
messaging.

struct Token {
TokenType type;
std::string_view lexeme;
std::variant<std::monostate, int, double, std::string> literal;
SourceLocation location;

};

4.1.3 Defining Keywords

1. Purpose of Keywords

Keywords represent reserved words in the language. They define its structure
and control flow, and cannot be redefined or used as identifiers.

Typical keywords in a C-style language include:

173

if, else, while, for, return, break, continue, true, false, let, const,
function, import, export↪→

2. Keyword Representation in C++

Use enum class to strictly define token types:

enum class TokenType {
// Keywords
If, Else, While, For, Return, Break, Continue,
Let, Const, Function, Import, Export,
True, False,

// Other categories (partial listing)
Identifier,
...

};

Map from lexeme to token type using constexpr containers:

constexpr std::pair<std::string_view, TokenType> keyword_map[] = {
{"if", TokenType::If}, {"else", TokenType::Else}, {"while",

TokenType::While},↪→

{"return", TokenType::Return}, {"const", TokenType::Const}, {"function",
TokenType::Function}↪→

};

Use a hash table or binary search to check for keyword matches efficiently during
lexing.

174

4.1.4 Designing Operators

1. Operator Categories

Operators define expressions and logic in the language. They are divided into:

• Arithmetic: +, -, *, /, %

• Assignment: =, +=, -=, *=, /=

• Comparison: ==, !=, <, >, <=, >=

• Logical: &&, ||, !

• Bitwise: &, |, ^, ~, <<, >>

• Other: ++, --, ->, .

Optional operators for modern languages:

• Safe navigation: ?.

• Null coalescing: ??

2. Operator Token Mapping

Token types for operators are also defined in the same enum class:

enum class TokenType {
// Operators
Plus, Minus, Star, Slash, Percent,
Equal, EqualEqual, NotEqual,
Less, Greater, LessEqual, GreaterEqual,
And, Or, Not,
PlusEqual, MinusEqual, ...

};

175

Lexer logic needs greedy matching:

• Match == before =

• Match <= before <

• Handle multi-character operators with a lookahead system

4.1.5 Literal Tokens

1. Types of Literals

Literals are values written directly in the source code and include:

• Integer literals: 42, -10, 0

• Floating-point literals: 3.14, 0.001, 1e10

• String literals: "hello world", 'a'

• Boolean literals: true, false

• Null literal: null

2. Literal Parsing and Storage

Store literals in the std::variant of the token structure. During tokenization:

• Convert text to numeric using std::stoi, std::stod

• For performance, use std::from_chars in C++17+, updated in C++20

• Store string literals by stripping delimiters and handling escape sequences

if (std::isdigit(current)) {
auto [value, success] = parse_number();
tokens.push_back({TokenType::NumberLiteral, lexeme, value, location});

176

} else if (current == '"') {
auto value = parse_string();
tokens.push_back({TokenType::StringLiteral, lexeme, value, location});

}

std::variant example:

std::variant<std::monostate, int, double, std::string> literal;

4.1.6 Literal and Identifier Differentiation

Identifiers follow specific rules:

• Start with a letter or underscore

• Followed by letters, digits, or underscores

To distinguish identifiers from keywords:

TokenType resolve_identifier(std::string_view text) {
for (const auto& [kw, type] : keyword_map)

if (kw == text) return type;
return TokenType::Identifier;

}

This keeps keyword recognition fast and conflict-free.

4.1.7 Language Token Table (Summary View)

177

Table 1-1: Token Types in Language Lexical Analysis

Token Type Examples Category

Keyword if, return, let Reserved words

Operator +, !=, ==, && Expressions

Identifier myVar, sum, _temp User-defined

Literal: Integer 42, 0, -99 Literal

Literal: Float 3.14, 1e-3 Literal

Literal: String "hello", 'a' Literal

Literal: Bool true, false Literal

Literal: Null null Special value

Delimiter ;, {, }, (,) Structural

4.1.8 Modern C++ Techniques for Token Design

1. Use of constexpr and consteval

Define static token tables at compile-time:

constexpr auto is_keyword(std::string_view word) -> std::optional<TokenType> {
for (auto [kw, type] : keyword_map) {

if (kw == word) return type;
}
return std::nullopt;

}

178

2. Use of std::string_view

Avoid memory allocations by storing lexemes as views into the source buffer.

3. Use of std::variant

Literals can now be type-safe using std::variant, allowing runtime dispatch
with std::visit.

4.1.9 Conclusion

Designing language tokens is one of the most critical architectural steps in the creation
of a programming language. The token set defines the grammar’s flexibility, language
features, and expressiveness. Using the latest C++20 and C++23 capabilities,
we can build a highly efficient, readable, and extensible token system with low
memory overhead, strong type safety, and high runtime performance. With keywords,
operators, and literals defined and classified, the next step in building the interpreter is
implementing the lexer that consumes source code and emits these structured tokens.

4.2 C-style Syntax Design: {}, ;, ()

4.2.1 Introduction

C-style syntax has endured as a dominant syntactic tradition in programming
languages due to its clarity, conciseness, and familiarity. Languages such as C,
C++, Java, JavaScript, and Rust adopt and adapt this syntax for defining program
structure, expression grouping, and control flow. When designing a new C-style
interpreted language, embracing tokens such as {}, ;, and () is both a design choice
and a strategic decision to improve readability, reduce learning curve, and enable
precise parsing.

179

This section focuses on defining and formalizing these structural symbols within the
token set, and explains their roles in lexical and syntactic design. It also explores how
modern C++20 and C++23 features enable more precise and efficient handling of these
tokens during lexing and parsing phases.

4.2.2 Braces {}: Code Block Delimiters

1. Purpose and Role

Braces { and } mark compound statements, function bodies, control flow
blocks, and scopes. They indicate that the enclosed group of statements is to be
treated as a single unit.

Common usages:

• Function definitions

• Conditional and loop blocks

• Scope for variables and nested structures

Example:

if (x > 0) {
print("Positive");

}

2. Token Definition

In the lexer, define these tokens clearly and distinctly:

180

enum class TokenType {
LeftBrace, // {
RightBrace, // }
...

};

The lexer must identify braces immediately upon reading them, with no
lookahead required.

3. Parsing Considerations

Braces affect:

• Scope depth tracking: Push and pop scope stacks in the parser or
semantic analyzer

• Block AST nodes: A group of statements enclosed in {} forms a
compound node

Example parser logic (simplified):

if (current_token == TokenType::LeftBrace) {
advance();
std::vector<Stmt> statements = parse_block();
expect(TokenType::RightBrace);
return BlockStmt(statements);

}

4. Compiler Diagnostics Integration

Using std::format (C++20), structured brace mismatch errors can be reported:

181

throw std::runtime_error(std::format("Expected '}}' to match '{{' opened at
line {}", block_start.line));↪→

4.2.3 Semicolon ;: Statement Terminator

1. Purpose and Role

The semicolon ; is a statement terminator, marking the end of a logical
instruction. This is a key syntactic feature of C-style languages that allows for
unambiguous parsing of sequential code.

Examples:

x = 5;
print(x);

2. Token Representation

enum class TokenType {
Semicolon, // ;
...

};

Semicolons are single-character tokens and should be handled as such in the lexer
without requiring backtracking or lookahead.

3. Design Decision: Required vs. Optional Semicolons

You must decide:

• Should every statement require a semicolon?

182

• Will certain structures (e.g., function definitions, control blocks) allow
omitting it?

Recommendation for early stages: enforce semicolons strictly for predictability
and simpler parsing logic. Optional semicolon handling can be revisited in later
stages with contextual lookahead parsing.

4. Parser Integration

Stmt parse_expression_stmt() {
auto expr = parse_expression();
expect(TokenType::Semicolon); // Enforce required `;`
return ExpressionStmt(expr);

}

4.2.4 Parentheses (): Grouping and Control Flow Syntax

1. Purpose and Role

Parentheses serve two primary purposes:

• Expression grouping: Control evaluation precedence

• Syntax structure: Enclose conditions or parameters in control flows and
function calls

Examples:

(x + y) * z
if (x > 0)
function(x, y)

183

2. Token Representation

enum class TokenType {
LeftParen, // (
RightParen, //)
...

};

3. Parsing Rules

• Expression grouping: Parse recursively inside (and)

• Function calls: Distinguish identifier followed by (as a potential call

• Control flows: Require conditions to be parenthesized for syntactic clarity

Example:

Expr parse_grouping_expr() {
expect(TokenType::LeftParen);
auto expr = parse_expression();
expect(TokenType::RightParen);
return expr;

}

4. Optional Design Extensions

• Consider supporting tuple-like expressions in the future: (x, y)

• Support for default arguments in function calls using parentheses

184

4.2.5 Modern C++ Integration for Delimiter Handling

1. std::string_view for Lexeme Storage

Avoid copying brace, paren, or semicolon characters. Use std::string_view to
reference lexemes directly from the source buffer.

2. constexpr Sets for Delimiter Recognition

Define quick-lookup sets at compile time:

constexpr std::array<char, 6> delimiters = {'(', ')', '{', '}', ';', ','};
bool is_delimiter(char ch) {

return std::ranges::find(delimiters, ch) != delimiters.end();
}

3. AST Structural Use

Use braces and parentheses to build structured AST nodes:

• {} → BlockStmt

• () → GroupExpr, CallExpr, or ConditionExpr

• ; → Statement boundaries

Use std::variant or polymorphic class hierarchies to express these in Modern
C++.

4.2.6 Error Handling and Resynchronization

Proper handling of these delimiters is essential in error recovery:

• Unmatched { or (should trigger synchronizing strategies

185

• Recover by skipping tokens until } or ; is found depending on context

Example:

void synchronize() {
while (!is_at_end()) {

if (previous().type == TokenType::Semicolon) return;
if (current().type == TokenType::RightBrace) return;
advance();

}
}

This allows the parser to resume meaningful work after encountering an error inside a
malformed block or expression.

4.2.7 Conclusion

The correct handling of {}, ;, and () is essential in designing a C-style language. These
tokens define the structural and sequential integrity of the source code. They are easy
to tokenize but carry heavy syntactic and semantic implications. Using Modern C++
features such as std::variant, constexpr, std::string_view, and strong typing
through enum class, you can define a robust token system that lays a solid foundation
for parsing, interpretation, and diagnostics. These structural tokens will serve as the
scaffolding for all higher-level constructs, including control flow, function definitions,
and nested scopes in your new language.

4.3 Custom Tokens for Our Language – Additional
Features

186

4.3.1 Introduction

A modern C-style language should not be restricted to the token sets inherited
from classic C or C++. While foundational symbols like {}, ;, and () form the
structural core, custom tokens enable innovation, domain-specific enhancements, and
expressiveness that distinguish your language from legacy designs. Over the past five
years, language designers have embraced new token conventions to support features like
safe access, pattern matching, optional chaining, string interpolation, and embedded
metadata. These additions can improve ergonomics, reduce boilerplate, and open new
syntax possibilities.
This section explores how to design, represent, and implement custom tokens in your
language, using Modern C++ (C++20/23) to ensure high performance, maintainability,
and compile-time validation where possible.

4.3.2 Motivation for Custom Tokens

Custom tokens serve several key goals:

• Extend expressiveness and syntax clarity

• Simplify common programming idioms

• Enable future language features such as reflection, optional types, or declarative
structures

• Differentiate your language while maintaining familiar C-like aesthetics

Examples of modern syntax-enhancing tokens:

• ?. for optional (safe) member access

• ?? for null coalescing

187

• => for concise lambdas or match expressions

• $"" for interpolated strings

• @ for annotations or metadata

• # for preprocessor-style directives or compile-time blocks

4.3.3 Designing Custom Token Types

1. Token Type Extension

Extend your TokenType enum to include custom features:

enum class TokenType {
// Custom structural tokens
Arrow, // =>
QuestionDot, // ?.
DoubleQuestion, // ??
DollarString, // $"..."

// Annotation or metadata
AtSymbol, // @

// Extended literals or markers
Hash, // #
InterpolationStart, // ${
InterpolationEnd, // }

// Existing tokens...
Identifier,
StringLiteral,
...

};

188

2. Custom Lexing Rules

Modern C++20/23 supports constexpr-driven lexers or table-driven dispatching.
Custom tokens often require multi-character lookahead, handled by explicit
lexer rules.

Example: tokenizing => or ?.

if (match('=') && peek() == '>') {
advance();
return make_token(TokenType::Arrow);

}
if (match('?') && peek() == '.') {

advance();
return make_token(TokenType::QuestionDot);

}

Maintain clear token boundaries using std::string_view and non-owning
references to the source buffer.

4.3.4 Custom Tokens for Language Semantics

1. Optional Access: ?.

Supports safe member access or function calls, avoiding null reference errors:

user?.profile?.name

Lexer emits TokenType::QuestionDot, and the parser constructs a safe-access
expression node.

2. Null Coalescing: ??

189

Provides fallback expressions:

name = input ?? "Guest";

Parser interprets ?? as a binary operator node with short-circuit evaluation logic.

3. Arrow Expression: =>

Used for lightweight lambda or mapping:

(x) => x * x

Lexer identifies =>, parser recognizes it as a function or match expression.

4.3.5 Interpolated String Tokens

1. Design Syntax

Support strings with embedded expressions:

let name = "World";
print($"Hello, ${name}!");

Lexer must:

• Emit DollarString when encountering $"

• Recognize and tokenize ${ as the start of an interpolation block

• Resume normal tokenization within the string

• Track nested string boundaries

190

2. Internal Lexer Strategy

Use a mode-switching mechanism:

enum class LexerMode { Normal, Interpolation };

LexerMode mode = LexerMode::Normal;

if (current == '$' && peek() == '"') {
advance(); advance(); // skip $"
mode = LexerMode::Interpolation;
return make_token(TokenType::DollarString);

}

During interpolation, return a token for each ${ and } and delegate embedded
expressions to the parser.

4.3.6 Annotations and Metadata: @

Used for marking functions, types, or variables with compile-time metadata:

@export
function run() { ... }

• Lexer returns TokenType::AtSymbol

• Parser recognizes the annotation block and attaches metadata to AST nodes

• Later stages (semantic analysis or code generation) can inspect metadata for
special behavior

You may extend this to support parameters:

191

@route("/login")
function loginHandler() { ... }

4.3.7 Preprocessor-style Extensions: #

While not traditional in interpreters, # can introduce compile-time logic:

#define MAX 100
#debug

Depending on your language philosophy, this may:

• Trigger macro-like expansions

• Enable conditional interpretation

• Mark debug regions
Treat it as a custom directive, not tied to standard preprocessing.

4.3.8 Parser Considerations for Custom Tokens

The parser must be able to:

• Recognize custom tokens in the grammar

• Support extended expression forms (e.g., ?., ??, interpolated strings)

• Handle errors gracefully for malformed custom constructs

Using std::variant for AST nodes:

192

std::variant<BinaryExpr, SafeAccessExpr, NullCoalesceExpr, InterpolatedStringExpr,
...> Expr;↪→

And using concepts to constrain visitors in C++20:

template<typename T>
concept Expression = requires(T expr) {

{ expr.evaluate() } -> std::same_as<Value>;
};

4.3.9 Compile-Time Checks for Token Set

Validate the uniqueness of custom tokens using constexpr tests:

constexpr bool validate_token_set() {
std::set<std::string_view> seen;
for (auto& [lexeme, type] : token_map) {

if (!seen.insert(lexeme).second) return false;
}
return true;

}
static_assert(validate_token_set(), "Duplicate token lexeme found");

4.3.10 Conclusion

Custom tokens are a powerful design element that differentiate your language,
increase expressiveness, and modernize syntax. With careful planning and disciplined
implementation, they can be seamlessly integrated into the lexer and parser without
complexity. Modern C++20/23 provides elegant ways to represent, recognize, and

193

process these tokens efficiently using enum class, std::string_view, std::variant,
constexpr, and parsing concepts. Whether introducing safe access, null coalescing,
or interpolated strings, these custom tokens enrich your language’s syntax and enable
more concise, readable, and modern code.

4.4 Implementing Token System Using Modern C++

4.4.1 Introduction

Implementing a token system is the first concrete stage in building a programming
language after designing its syntax. It is responsible for transforming the source
code string into a structured sequence of tokens that drive parsing, AST generation,
semantic checks, and execution. Modern C++ (C++20/23) offers powerful tools to
implement a token system with high performance, type safety, low memory overhead,
and rich diagnostics.
This section details the implementation of a complete, extensible, and efficient token
system using advanced C++ features such as enum class, std::string_view,
std::variant, constexpr, concepts, and strong typing. This system forms the
core of the lexer (lexical analyzer) and plays a critical role throughout the interpreter
pipeline.

4.4.2 Token Type Design Using enum class

Use a strongly typed enumeration to define all possible token types. This avoids
name clashes and enables type-safe switch statements.

enum class TokenType {
// Keywords
If, Else, While, For, Return, Function, Let, Const, True, False,

194

// Identifiers and literals
Identifier,
IntegerLiteral,
FloatLiteral,
StringLiteral,
BoolLiteral,
NullLiteral,

// Operators
Plus, Minus, Star, Slash, Percent,
Equal, EqualEqual, NotEqual,
Less, LessEqual, Greater, GreaterEqual,
And, Or, Not,
Arrow, QuestionDot, DoubleQuestion,

// Delimiters
LeftParen, RightParen,
LeftBrace, RightBrace,
Semicolon, Comma,

// Special
EndOfFile,
Invalid

};

Using enum class provides scoped values, enhancing code readability and preventing
collisions.

195

4.4.3 Representing Tokens with std::string_view and
std::variant

Each token consists of:

• Type (TokenType)

• Lexeme (std::string_view)

• Literal value (std::variant of literal types)

• Source location (line/column)

struct SourceLocation {
std::size_t line;
std::size_t column;

};

using LiteralValue = std::variant<std::monostate, int, double, bool, std::string>;

struct Token {
TokenType type;
std::string_view lexeme;
LiteralValue literal;
SourceLocation location;

};

Advantages of std::string_view:

• Avoids unnecessary memory allocations

• References a slice of the original source buffer

196

• Ensures efficient memory and performance usage

std::variant ensures type safety for literal values, replacing unsafe unions or
polymorphic pointers.

4.4.4 Compile-Time Maps Using constexpr for Keywords

Use constexpr containers to check if an identifier is a keyword during tokenization:

constexpr std::pair<std::string_view, TokenType> keyword_map[] = {
{"if", TokenType::If},
{"else", TokenType::Else},
{"return", TokenType::Return},
{"true", TokenType::True},
{"false", TokenType::False},
{"null", TokenType::NullLiteral},
{"let", TokenType::Let},
{"const", TokenType::Const},

};

constexpr std::optional<TokenType> resolve_keyword(std::string_view word) {
for (auto [kw, type] : keyword_map) {

if (kw == word) return type;
}
return std::nullopt;

}

This enables the lexer to quickly and efficiently resolve identifiers into keyword tokens
at compile time.

4.4.5 Token Construction and Emission

Tokens are created by the lexer as it scans the source input character by character.

197

Sample token creation:

Token make_token(TokenType type, std::string_view lexeme, SourceLocation location) {
return Token{type, lexeme, std::monostate{}, location};

}

For literals, capture and convert the value:

Token make_int_token(std::string_view lexeme, SourceLocation location) {
int value = std::stoi(std::string(lexeme));
return Token{TokenType::IntegerLiteral, lexeme, value, location};

}

For string literals:

• Strip surrounding quotes

• Handle escape sequences (e.g., \n, \")

4.4.6 Diagnostics and Token Formatting

Use std::format (C++20) for clear and structured debug output or error diagnostics:

std::string token_to_string(const Token& token) {
return std::format("Token(type = {}, lexeme = '{}', line = {}, col = {})",

static_cast<int>(token.type), token.lexeme, token.location.line,
token.location.column);↪→

}

This facilitates error reporting during parsing and interpreter execution.
Example error:

198

throw std::runtime_error(std::format(
"Unexpected token '{}' at line {}, column {}",
token.lexeme, token.location.line, token.location.column

));

4.4.7 Modern Iteration and Token Filters with std::ranges

In token processing, use ranges and views (C++20) to process filtered or transformed
token streams:

auto identifiers = tokens | std::views::filter([](const Token& t) {
return t.type == TokenType::Identifier;

});

This allows elegant expression of patterns like:

• Finding specific token types

• Filtering out whitespace or comments

• Building matchers for syntax rules

4.4.8 Error Tokens and Resilience

Introduce TokenType::Invalid to represent unknown or malformed sequences:

Token make_invalid_token(std::string_view lexeme, SourceLocation location) {
return Token{TokenType::Invalid, lexeme, std::monostate{}, location};

}

This allows the lexer to recover from errors and continue processing, enabling better
diagnostics and partial parsing.

199

4.4.9 Extending the Token System

The token system is extensible and modular. Additions include:

• Custom structural tokens: =>, ?., ??

• Template/string interpolation markers: ${, "}"

• Directive markers: @, #

For each addition:

• Extend TokenType

• Update lexer logic to recognize new patterns

• Add test cases for token classification and formatting

4.4.10 Testing Tokenization

Automated unit tests validate lexer output against known source strings:

TEST_CASE("Lexer handles integer literals") {
Lexer lexer("42;");
auto token = lexer.next_token();
CHECK(token.type == TokenType::IntegerLiteral);
CHECK(std::get<int>(token.literal) == 42);

}

Use modern frameworks like doctest, Catch2, or GoogleTest.

200

4.4.11 Optional: Using concepts for Token Validation

C++20 concepts help constrain generic functions and validators:

template<typename T>
concept TokenWithLiteral = requires(T t) {

{ t.literal } -> std::convertible_to<LiteralValue>;
};

This helps write utility functions that apply only to tokens with embedded values.

4.4.12 Conclusion

The token system is a core building block in your interpreter, and with Modern
C++ (C++20/23), it can be implemented with clarity, safety, and performance.
Leveraging enum class, std::variant, std::string_view, constexpr, and structured
diagnostics enables an architecture that is scalable, extensible, and well-suited for future
evolution. A robust token system sets the stage for a modular lexer, a maintainable
parser, and a powerful semantic engine, all essential to the success of a modern
interpreted language.

4.5 Hands-on Complete Language Token Set

4.5.1 Introduction

At this stage of building a modern interpreter, having a well-defined and complete
token set is essential for a successful parsing pipeline. Tokens are the smallest
meaningful units of source code—each representing a structural, syntactic, or semantic
role. This section presents a comprehensive and practical token specification,

201

capturing all core, extended, and custom language constructs in a form suitable for real
implementation using C++20/23.
This hands-on token set forms the core of the lexer, parser, and semantic analyzer.
The structure is influenced by successful C-style languages while embracing modern
extensions that improve readability, safety, and expressiveness.

4.5.2 Token Structure Recap

Each token consists of:

• Type: A value from the strongly typed TokenType enum class

• Lexeme: A std::string_view pointing to the raw source text

• Literal value: Optional, typed using std::variant

• Source location: For diagnostics and debugging

enum class TokenType;
struct Token {

TokenType type;
std::string_view lexeme;
std::variant<std::monostate, int, double, bool, std::string> literal;
SourceLocation location;

};

4.5.3 Complete Token Type Enumeration

Here is the full token set, organized by category, and ready to be implemented in your
Modern C++ lexer.

202

1. Keywords

Reserved words with semantic significance. Cannot be redefined.

enum class TokenType {
// Control Flow
If, Else, While, For, Break, Continue, Return,

// Declarations
Let, Const, Var, Function,

// Boolean and Null Literals
True, False, Null,

// Modules and Metadata
Import, Export,

// Visibility and Attributes
Public, Private, Static,

// Error Recovery and Special
EndOfFile,
Invalid,

2. Identifiers

• Identifier: User-defined names for variables, functions, types, etc.

Identifier,

3. Operators

203

Support arithmetic, logical, bitwise, and assignment expressions.

// Arithmetic
Plus, // +
Minus, // -
Star, // *
Slash, // /
Percent, // %

// Assignment
Equal, // =
PlusEqual, // +=
MinusEqual, // -=
StarEqual, // *=
SlashEqual, // /=
PercentEqual, // %=

// Comparison
EqualEqual, // ==
NotEqual, // !=
Less, // <
LessEqual, // <=
Greater, // >
GreaterEqual, // >=

// Logical
And, // &&
Or, // ||
Not, // !

// Bitwise
BitAnd, // &
BitOr, // |

204

BitXor, // ^
BitNot, // ~
ShiftLeft, // <<
ShiftRight, // >>

4. Advanced and Custom Operators

Modern syntactic features adopted from newer languages.

Arrow, // =>
QuestionDot, // ?.
DoubleQuestion, // ??

5. Literals

Represent direct values embedded in source code.

IntegerLiteral,
FloatLiteral,
StringLiteral,
BoolLiteral, // from `true` and `false`
NullLiteral, // from `null`

6. Grouping and Structure Tokens

These delimit source code structures.

// Delimiters
LeftParen, // (
RightParen, //)
LeftBrace, // {

205

RightBrace, // }
LeftBracket, // [
RightBracket, //]

// Separators
Comma, // ,
Dot, // .
Semicolon, // ;
Colon, // :

7. String Interpolation and Embedded Constructs (Optional Feature)

For expressive, modern string formatting:

DollarString, // $"..." — interpolated string literal
InterpolationStart, // ${
InterpolationEnd // }

8. Metadata, Directives, and Special Symbols

Used for annotations, compiler hints, and compile-time instructions.

AtSymbol, // @
Hash, // #

4.5.4 Practical Usage in Lexer

1. Efficient Token Recognition

Using std::string_view and constexpr maps, the lexer can quickly identify
keywords, operators, and custom tokens.

206

Example for keyword recognition:

constexpr std::pair<std::string_view, TokenType> keyword_map[] = {
{"if", TokenType::If},
{"else", TokenType::Else},
{"return", TokenType::Return},
{"true", TokenType::True},
{"false", TokenType::False},
{"null", TokenType::NullLiteral},
{"function", TokenType::Function},
{"let", TokenType::Let},
{"const", TokenType::Const}

};

2. Token Matching Strategy

Multi-character tokens (e.g., ==, <=, ?., ??) are handled using lookahead logic:

if (match('=') && peek() == '=') {
advance();
return make_token(TokenType::EqualEqual);

}

Single-character tokens are handled directly:

switch (current_char) {
case '(': return make_token(TokenType::LeftParen);
case ')': return make_token(TokenType::RightParen);
case ';': return make_token(TokenType::Semicolon);
// ...

}

207

4.5.5 Testing and Validation Strategy

Each token must be testable. Use unit tests for:

• Token classification

• Keyword recognition

• Operator precedence parsing (via the parser)

• Literal parsing and value interpretation

• Error token generation

Example (Catch2 or doctest):

TEST_CASE("Lexer recognizes basic arithmetic tokens") {
Lexer lexer("1 + 2;");
auto tokens = lexer.tokenize();
CHECK(tokens[0].type == TokenType::IntegerLiteral);
CHECK(tokens[1].type == TokenType::Plus);
CHECK(tokens[2].type == TokenType::IntegerLiteral);
CHECK(tokens[3].type == TokenType::Semicolon);

}

4.5.6 Optional: Token Table Summary for Compiler Explorer or
IDE Integration

To support IDE highlighting or syntax trees, emit a structured JSON or CSV table of
all defined tokens:

208

{
"type": "Plus",
"lexeme": "+",
"category": "Operator",
"precedence": 10,
"associativity": "Left"

}

This is useful for LSP server generation and formatting tools.

4.5.7 Conclusion

This complete token set represents the concrete foundation of your interpreter’s
lexical layer. It is compatible with C-style syntax while offering room for modern
innovation. By carefully categorizing, implementing, and testing these tokens using
C++20/23 techniques such as std::variant, std::string_view, constexpr, and
scoped enumerations, your lexer becomes more performant, maintainable, and ready
for advanced parsing phases. This hands-on definition is ready to be fed into your lexer,
unit tested, and evolved as your language design expands.

Chapter 5

Lexical Analyzer for C-Style
Language

5.1 Reading and Analyzing New Language Code

5.1.1 Introduction

Before the parser, semantic analyzer, or runtime can operate on user code, the
source text must be scanned and segmented into fundamental units—tokens. This
process begins with the lexical analyzer (lexer), whose first responsibility is to
read, traverse, and analyze raw source code in preparation for structured
interpretation. In this section, we focus on the reading and low-level analysis of
source code, leveraging the power of Modern C++ (C++20/23) for safe, fast, and
efficient implementation.

Over the last five years, best practices for implementing language front-ends have
evolved significantly with the addition of std::string_view, ranges, coroutines,
constexpr, and concepts. These allow the lexer to be designed in a zero-allocation,

209

210

compile-time aware, and testable fashion.

5.1.2 Reading Source Code into Memory

The lexical analyzer operates on a source buffer, typically loaded from a file, editor,
or REPL input. The goal is to process this content as a read-only character stream.

• Using std::string or std::string_view

Modern C++ favors std::string_view for performance and safety:

std::string read_source_file(const std::filesystem::path& path) {
std::ifstream file(path);
std::stringstream buffer;
buffer << file.rdbuf();
return buffer.str(); // Full ownership

}

Internally, the lexer receives the buffer as:

Lexer lexer(std::string_view source);

This keeps the lexer non-owning, allowing for shared or embedded sources
without copies.

5.1.3 Managing Source Navigation

Lexing requires character-by-character traversal with support for peeking,
backtracking, and location tracking (line/column).

211

• Cursor-Based Navigation

Maintain a character index and location metadata:

class Lexer {
private:

std::string_view source;
std::size_t current = 0;
std::size_t line = 1;
std::size_t column = 1;
std::size_t start = 0;

char advance() {
if (at_end()) return '\0';
char ch = source[current++];
if (ch == '\n') {

++line;
column = 1;

} else {
++column;

}
return ch;

}

char peek() const {
return at_end() ? '\0' : source[current];

}

char peek_next() const {
return (current + 1 < source.size()) ? source[current + 1] : '\0';

}

bool at_end() const {

212

return current >= source.size();
}

};

Use advance(), peek(), and match(char expected) for character control.

5.1.4 Identifying Token Boundaries

A core lexer operation is determining where a token starts and ends.

• Tracking Lexeme Start

Record the start of the current token:

start = current;

Extract the lexeme at token creation:

std::string_view lexeme() const {
return source.substr(start, current - start);

}

5.1.5 Skipping Whitespace and Comments

Whitespace and comments do not produce tokens but must be recognized and skipped.

1. Whitespace Skipping

Support spaces, tabs, carriage returns, and newlines:

213

void skip_whitespace() {
while (true) {

char c = peek();
switch (c) {

case ' ':
case '\t':
case '\r':

advance(); break;
case '\n':

advance(); break; // handled in advance()
default:

return;
}

}
}

2. Line and Block Comments

• Line comment: starts with // and continues to end of line

• Block comment: starts with /* and ends with */

void skip_comments() {
if (peek() == '/' && peek_next() == '/') {

while (peek() != '\n' && !at_end()) advance();
} else if (peek() == '/' && peek_next() == '*') {

advance(); advance(); // Skip /*
while (!(peek() == '*' && peek_next() == '/') && atend())

advance();

if (at_end()) {
advance(); advance(); // Skip */

214

}
}

}

Use skip_whitespace() and skip_comments() together before each token
analysis.

5.1.6 Character Classification for Tokens

Use C++ standard functions to classify input:

bool is_alpha(char c) {
return std::isalpha(static_cast<unsigned char>(c)) || c == '_';

}

bool is_digit(char c) {
return std::isdigit(static_cast<unsigned char>(c));

}

bool is_alphanumeric(char c) {
return is_alpha(c) || is_digit(c);

}

These are used to recognize identifiers, keywords, and numeric literals.

5.1.7 Token Recognition Loop

Main driver function for token stream generation:

std::vector<Token> tokenize() {
std::vector<Token> tokens;

215

while (!at_end()) {
skip_whitespace();
skip_comments();
start = current;
Token token = scan_token();
if (token.type != TokenType::Invalid) {

tokens.push_back(token);
}

}
tokens.push_back(make_token(TokenType::EndOfFile));
return tokens;

}

Each call to scan_token() consumes one token.

5.1.8 Error Detection During Reading

Lexer errors include:

• Unterminated string literals

• Invalid characters

• Unexpected end-of-file in multi-line constructs

Example error reporting:

throw std::runtime_error(std::format(
"Unexpected character '{}' at line {}, column {}",
peek(), line, column

));

Modern C++20 enables detailed formatting of diagnostic messages with std::format.

216

5.1.9 Token Debugging and Tracing

During development, add internal logging using structured output:

void debug_token(const Token& t) {
std::cout << std::format("Token: {:<15} Lexeme: '{}' at {}:{}\n",

to_string(t.type), t.lexeme, t.location.line, t.location.column);
}

This helps during parser testing and AST debugging.

5.1.10 Conclusion

Reading and analyzing the source code is the first technical stage of interpretation. In
Modern C++ (C++20/23), a robust lexical analyzer can be built efficiently with safe
and expressive constructs like std::string_view, constexpr functions, std::format,
and character-based navigation logic. Accurate source tracking, clean skipping of
whitespace and comments, precise error diagnostics, and lexeme classification form the
foundation for the next phase: token recognition and classification, which will be
explored in the following sections of the lexer implementation.

5.2 Recognizing C Patterns: int x = 5;, if
(condition) {}

5.2.1 Introduction

Recognizing familiar C-style syntax patterns such as variable declarations (int x
= 5;) and control flow constructs (if (condition) {}) is a crucial responsibility of a
lexer tailored to a C-style interpreted language. Although these patterns will be parsed

217

and semantically analyzed in later stages, the lexer must first precisely identify and
segment their building blocks into tokens, using deterministic rules rooted in both
lexical specification and source structure.
Modern C++20/23 provides the tools for building a fast and safe lexical engine that
can recognize these constructs by scanning one character at a time, forming token
sequences such as keywords, identifiers, literals, operators, and delimiters. This section
describes how a lexer processes such patterns and prepares them for the parser.

5.2.2 Decomposing the Pattern: int x = 5;

1. Token Sequence Breakdown

For the declaration int x = 5;, the lexer must produce:
Lexeme and Corresponding Token Type

Lexeme Token Type

int Keyword/Identifier

x Identifier

= AssignmentOperator

5 IntegerLiteral

; Semicolon

2. Lexer Responsibilities

The lexer is responsible for:

• Recognizing the keyword int (from a reserved word list)

• Distinguishing the identifier x (based on character rules)

218

• Identifying = as a token (possibly distinguishing from ==)

• Parsing numeric literal 5 as an integer

• Identifying ; as a structural token

3. Code Example: Lexing Simple Declarations

if (is_alpha(current)) {
std::string_view word = scan_identifier();
if (auto keyword = resolve_keyword(word)) {

return make_token(*keyword);
} else {

return make_token(TokenType::Identifier);
}

} else if (std::isdigit(current)) {
return scan_number_literal();

} else if (match('=')) {
if (match('=')) return make_token(TokenType::EqualEqual);
return make_token(TokenType::Equal);

} else if (match(';')) {
return make_token(TokenType::Semicolon);

}

5.2.3 Decomposing the Pattern: if (condition) {}

1. Token Sequence Breakdown

For the conditional statement if (condition) {}, the lexer must emit:

219

Table 2-2: Lexeme to Token Type Mapping

Lexeme Token Type

if Keyword

(LeftParen

condition Identifier

) RightParen

{ LeftBrace

} RightBrace

2. Keyword Detection

if is matched as a keyword using constexpr keyword maps:

constexpr std::pair<std::string_view, TokenType> keywords[] = {
{"if", TokenType::If},
{"else", TokenType::Else},
{"while", TokenType::While},
{"return", TokenType::Return}

};

Lookup during scanning:

std::optional<TokenType> resolve_keyword(std::string_view word) {
for (auto [kw, type] : keywords) {

if (word == kw) return type;
}

220

return std::nullopt;
}

5.2.4 Identifier and Literal Pattern Recognition

1. Identifiers

Identifiers follow a C-style naming convention:

• Start with a letter or underscore

• Continue with letters, digits, or underscores

std::string_view scan_identifier() {
while (is_alphanumeric(peek())) advance();
return source.substr(start, current - start);

}

If the scanned identifier matches a keyword, assign a keyword token. Otherwise,
assign TokenType::Identifier.

2. Numeric Literals

Numerical detection follows digit rules:

Token scan_number_literal() {
while (std::isdigit(peek())) advance();
if (peek() == '.' && std::isdigit(peek_next())) {

advance(); // Consume '.'
while (std::isdigit(peek())) advance();
return make_token(TokenType::FloatLiteral);

221

}
return make_token(TokenType::IntegerLiteral);

}

This approach supports both integer and floating-point literals such as 5, 3.14.

5.2.5 Delimiters and Operators

The lexer must identify single-character tokens immediately:

switch (current) {
case '(': return make_token(TokenType::LeftParen);
case ')': return make_token(TokenType::RightParen);
case '{': return make_token(TokenType::LeftBrace);
case '}': return make_token(TokenType::RightBrace);
case '=':

return match('=') ? make_token(TokenType::EqualEqual) :
make_token(TokenType::Equal);↪→

case ';': return make_token(TokenType::Semicolon);
}

These structural tokens are critical in recognizing syntax forms like:

• Grouped expressions

• Block statements

• Statement endings

5.2.6 Recognizing Common Code Patterns

The lexer, though not responsible for parsing structure, indirectly supports pattern
recognition through the sequence and classification of tokens.

222

Examples:

• Variable declarations: Recognized by Keyword Identifier Equal Literal
Semicolon

• Function calls: Identifier LeftParen [args] RightParen

• Conditionals: If LeftParen Expression RightParen Block

The lexer’s accuracy ensures the parser receives meaningful, complete tokens to apply
grammatical rules.

5.2.7 Diagnostic and Error Traps

A robust lexer should gracefully report malformed versions of these patterns:

• Missing semicolons

• Unterminated parentheses or braces

• Unexpected characters

Example diagnostic:

if (peek() == '{' && !match_closing_brace()) {
throw std::runtime_error(std::format(

"Unmatched opening brace at line {}, column {}", line, column
));

}

223

5.2.8 Efficient Token Stream Assembly

Tokens are collected in order and can be consumed by the parser:

std::vector<Token> tokenize() {
std::vector<Token> tokens;
while (!at_end()) {

skip_whitespace();
skip_comments();
start = current;
Token token = scan_token();
tokens.push_back(token);

}
tokens.push_back(make_token(TokenType::EndOfFile));
return tokens;

}

This process ensures sequences like int x = 5; and if (x) {} become fully analyzable
token lists.

5.2.9 Conclusion

Recognizing core C-style patterns such as declarations (int x = 5;) and control
flow constructs (if (x) {}) is fundamental to interpreting and parsing code. The
lexer must classify each component precisely, tokenize structural characters, and
resolve keywords using fast and safe Modern C++ mechanisms. Using features like
std::string_view, constexpr keyword maps, and scoped enumerations ensures your
lexer is not only correct but performant, ready to support the full language grammar in
the parsing phase that follows.

224

5.3 Handling C-style Comments: // and /* */

5.3.1 Introduction

Comments are an essential part of any programming language, and a C-style language
is expected to support both single-line (//) and multi-line (/* */) comments.
While comments are ignored by the compiler or interpreter during execution, they must
be properly handled by the lexer to avoid corrupting the token stream.
Modern C++ (C++20/23) gives us advanced tools—such as std::string_view,
constexpr, and clean class design patterns—to implement efficient, safe, and
expressive comment handling logic in our lexical analyzer. In this section, we
concentrate on implementing accurate and robust logic to skip comments, track
line/column metadata, and optionally preserve comments for documentation or code
generation if required.

5.3.2 Types of Comments in C-style Languages

1. Single-Line Comments: //

• Starts with two forward slashes //

• Terminates at the end of the line or end of file

• Commonly used for brief inline annotations or debugging notes

2. Multi-Line Comments: /* */

• Begins with /* and ends with */

• May span multiple lines

• Can include line breaks, whitespace, symbols, and embedded text

• Cannot be nested (in standard C-style behavior)

225

5.3.3 Design Principles for Comment Handling in the Lexer

1. Comments Should Not Emit Tokens

Comments are not semantic content—they are meant to be skipped entirely
during tokenization unless explicitly preserved for documentation.

2. Accurate Line and Column Tracking

For multi-line comments, line number advancement must be tracked
accurately to preserve correct error diagnostics for subsequent tokens.

3. Robust Termination Detection

• Single-line comments: terminate on \n or EOF

• Multi-line comments: must detect */ safely

• Unterminated block comments should trigger a clear and recoverable
error

5.3.4 Integration into the Lexical Scanning Loop

In the lexer’s main scan_token() loop or advance() pipeline, comment detection is
often embedded within a skip_whitespace_and_comments() method.

void Lexer::skip_whitespace_and_comments() {
while (!at_end()) {

char c = peek();

switch (c) {
case ' ':
case '\t':
case '\r':

226

advance(); break;

case '\n':
advance();
++line;
column = 1;
break;

case '/':
if (peek_next() == '/') {

skip_single_line_comment();
} else if (peek_next() == '*') {

skip_multi_line_comment();
} else {

return; // Not a comment
}
break;

default:
return; // Not whitespace or comment

}
}

}

5.3.5 Implementing Single-Line Comments

void Lexer::skip_single_line_comment() {
advance(); // consume first '/'
advance(); // consume second '/'

while (peek() != '\n' && !at_end()) {

227

advance(); // consume characters until newline or EOF
}

}

Notes:

• Do not advance past the newline; leave it for the main loop to handle line
counting.

• std::string_view ensures no copying is required.

• Optional: store comment content for documentation extraction.

5.3.6 Implementing Multi-Line Comments

void Lexer::skip_multi_line_comment() {
advance(); // consume '/'
advance(); // consume '*'

while (!at_end()) {
if (peek() == '*' && peek_next() == '/') {

advance(); advance(); // consume '*/'
return;

}

if (peek() == '\n') {
++line;
column = 1;

}

advance(); // consume comment content

228

}

throw std::runtime_error(std::format(
"Unterminated multi-line comment starting at line {}, column {}",
start_location.line, start_location.column

));
}

Key points:

• Line counting inside block comments must be accurate

• If end of file is reached without finding */, emit an error

• start_location is recorded when /* is first encountered

5.3.7 Optional Enhancements

1. Comment Collection for Documentation

Instead of discarding comment content entirely, consider buffering it for:

• Syntax-aware editors or IDEs

• Code documentation extraction (e.g., for /// style comments)

Example structure:

struct Comment {
std::string_view text;
SourceLocation location;

};

Maintain a std::vector<Comment> if needed.

229

2. Suppressing Certain Warnings

Use tagged comments to disable features:

// @no-lint
/* @ignore-coverage */

Lexer can optionally emit meta tokens or attach flags to token streams.

5.3.8 Edge Case Handling

• Nested Multi-Line Comments

Standard C does not support nested /* ... */ blocks. Your lexer must reject
nested patterns like:

/* Outer start
/* Inner start */
Outer end */

To detect this:

– Set a depth counter

– If nesting is disallowed, throw an error when encountering a second /* before
closing */

Alternatively, support nesting by maintaining a depth++/-- counter—similar to
Rust.

230

5.3.9 Unit Testing Comment Handling

Test the comment system independently:

TEST_CASE("Single-line comment is skipped") {
Lexer lexer("// this is a comment\nlet x = 5;");
auto tokens = lexer.tokenize();
CHECK(tokens[0].type == TokenType::Let);

}

TEST_CASE("Multi-line comment is skipped") {
Lexer lexer("/* comment */ const x = 10;");
auto tokens = lexer.tokenize();
CHECK(tokens[0].type == TokenType::Const);

}

TEST_CASE("Unterminated multi-line comment throws error") {
Lexer lexer("/* unterminated...");
CHECK_THROWS_AS(lexer.tokenize(), std::runtime_error);

}

5.3.10 Conclusion

C-style comment handling is a fundamental responsibility of a lexical analyzer. By
implementing clean and efficient skipping logic for both // and /* */ forms, while
maintaining precise line tracking and optional comment preservation, you enhance
the robustness of your interpreter’s front-end. Using Modern C++ techniques—like
std::string_view, std::format, and scoped logic with early returns—ensures
performance and readability. Handling comments correctly not only avoids parsing
errors but also supports future extensibility in tooling, documentation, and IDE
integration.

231

5.4 Managing Syntax Errors in Source Code

5.4.1 Introduction

One of the most critical functions of a lexical analyzer is its ability to detect, manage,
and report syntax errors during the early stages of language processing. Although
full syntactic validation belongs to the parser, the lexer plays a vital role in
catching malformed constructs, invalid characters, unterminated literals, or
corrupted delimiters at the character level before they reach higher layers.
In this section, we explore error detection and recovery mechanisms within the
lexer using Modern C++ (C++20/23), ensuring that the lexical analyzer not only
fails gracefully but provides actionable diagnostics and resilience for continued
parsing. We also discuss strategies to balance strict enforcement with developer-friendly
behavior.

5.4.2 What is a Syntax Error at the Lexical Level?

Syntax errors in the lexer typically include:

• Unexpected or invalid characters

• Unterminated string or character literals

• Unterminated block comments

• Ill-formed numeric literals

• Invalid token sequences (@#, !?=, etc.)

• Unexpected end of input in middle of token

232

These errors prevent the lexer from producing a valid token and must be handled
carefully to avoid corrupting the token stream.

5.4.3 Designing an Error Reporting System

To manage errors, the lexer should include:

• Error reporting mechanism (report_error())

• Location metadata (line, column)

• Custom exception types or error containers

• Optional: non-terminating recovery mode

1. Example: Error Reporting Function

void report_error(const std::string_view message, SourceLocation loc) {
std::cerr << std::format("[Lexer Error] Line {}, Column {}: {}\n",

loc.line, loc.column, message);
}

2. Exception Variant (for strict mode)

struct LexerError : public std::runtime_error {
SourceLocation location;
LexerError(const std::string& msg, SourceLocation loc)

: std::runtime_error(msg), location(loc) {}
};

233

5.4.4 Detecting Specific Lexical Errors

1. Invalid Characters

Characters not part of the language character set should be flagged:

if (!is_valid_character(current)) {
throw LexerError("Invalid character in source code", current_location());

}

Define is_valid_character() to allow only letters, digits, punctuation, and
allowed symbols.

2. Unterminated String Literals

Token Lexer::scan_string_literal() {
while (peek() != '"' && !at_end()) {

if (peek() == '\n') {
++line; column = 1;

}
advance();

}

if (at_end()) {
throw LexerError("Unterminated string literal", start_location());

}

advance(); // Consume closing quote
return make_token(TokenType::StringLiteral, extract_lexeme());

}

3. Unterminated Multi-line Comments

234

void Lexer::skip_multi_line_comment() {
advance(); // consume '/'
advance(); // consume '*'

while (!at_end()) {
if (peek() == '*' && peek_next() == '/') {

advance(); advance();
return;

}

if (peek() == '\n') {
++line; column = 1;

}

advance();
}

throw LexerError("Unterminated multi-line comment",
comment_start_location);↪→

}

4. Ill-Formed Numbers

Token Lexer::scan_number() {
bool is_float = false;
while (std::isdigit(peek())) advance();

if (peek() == '.' && std::isdigit(peek_next())) {
is_float = true;
advance(); // consume '.'
while (std::isdigit(peek())) advance();

}

235

std::string_view lexeme = extract_lexeme();
try {

if (is_float)
return make_token(TokenType::FloatLiteral,

std::stod(std::string(lexeme)));↪→

else
return make_token(TokenType::IntegerLiteral,

std::stoi(std::string(lexeme)));↪→

} catch (...) {
throw LexerError("Malformed numeric literal", token_start_location);

}
}

5.4.5 Error Token Strategy (Optional for Recovery)

Instead of halting the program, some interpreters emit an invalid token to allow
continued processing:

Token Lexer::make_error_token(const std::string_view msg) {
report_error(msg, current_location());
return Token{TokenType::Invalid, extract_lexeme(), std::monostate{},

current_location()};↪→

}

The parser can skip over TokenType::Invalid and attempt recovery.

5.4.6 Line and Column Tracking for Error Reporting

Always maintain line and column counters to provide precise diagnostics:

236

char Lexer::advance() {
char ch = source[current++];
if (ch == '\n') {

++line;
column = 1;

} else {
++column;

}
return ch;

}

Attach SourceLocation to each token and error.

struct SourceLocation {
std::size_t line;
std::size_t column;

};

5.4.7 Modern C++ Features for Error Reporting

1. std::format for Cleaner Error Messages

throw LexerError(std::format("Unexpected token '{}' at line {}, column {}",
current_char, line, column), current_location());

2. std::expected and std::optional (C++23)

In non-throwing lexers, return expected values:

237

std::expected<Token, LexerError> scan_token() {
if (invalid_input()) {

return std::unexpected(LexerError("Invalid", current_location()));
}
return valid_token;

}

5.4.8 Error Resynchronization Techniques

In a resilient lexer, consider skipping to the next semicolon or newline after an error:

void Lexer::synchronize_after_error() {
while (!at_end()) {

if (peek() == ';' || peek() == '\n') {
advance();
return;

}
advance();

}
}

This allows the parser to continue from a known stable boundary.

5.4.9 Unit Testing Lexical Errors

Always write tests that:

• Expect errors with valid messages

• Catch unterminated strings, invalid symbols, and malformed numbers

238

TEST_CASE("Lexer detects unterminated string") {
Lexer lexer("\"Hello");
CHECK_THROWS_WITH(lexer.tokenize(), Catch::Contains("Unterminated string"));

}

TEST_CASE("Lexer detects invalid character") {
Lexer lexer("@@@");
CHECK_THROWS_WITH(lexer.tokenize(), Catch::Contains("Invalid character"));

}

5.4.10 Conclusion

Managing syntax errors at the lexical level is essential for building a reliable interpreter
front-end. A lexer should not only detect malformed code but also provide
meaningful, well-formatted diagnostics, and, where applicable, attempt to recover
to continue analysis. Using C++20/23 features like std::format, scoped enums,
std::expected, and structured error types, you can implement a robust and modern
error-handling system that enhances language usability, simplifies debugging, and
forms a stable base for higher-level grammar validation.

5.5 Milestone — Analyzer That Reads New
Language Files

5.5.1 Introduction

This milestone represents a foundational achievement: the lexical analyzer can now
read, scan, tokenize, and validate entire source files written in the new
language, using a fully operational and error-aware lexer engine. This section

239

consolidates everything developed thus far—from token definitions and source
navigation to comment handling and syntax error detection—into a robust, testable
module.
With this functionality, the language implementation reaches a new level of maturity:
it can process any .lang file, tokenize valid content, identify and report lexical
errors, and produce structured output suitable for parsing and interpretation. This
section describes the key capabilities and internal design of this lexical milestone using
C++20/23 techniques, and verifies it with practical insights from recent compiler front-
end development standards.

5.5.2 Objectives of This Milestone

The lexical analyzer must now:

• Load complete language source files (.lang, .test, etc.)

• Traverse and process input from start to finish

• Produce a stream of valid tokens conforming to the language specification

• Handle and report comments, whitespace, and lexical errors

• Track source location metadata (line/column/file)

• Output token diagnostics or JSON-compatible summaries (for toolchains or IDEs)

5.5.3 File-Based Input Handling

Using std::ifstream and std::filesystem to safely and portably read source code:

240

std::string read_file(const std::filesystem::path& path) {
std::ifstream file(path);
if (!file.is_open()) {

throw std::runtime_error("Failed to open source file.");
}

std::stringstream buffer;
buffer << file.rdbuf();
return buffer.str();

}

Pass the result as std::string_view to avoid unnecessary copies:

std::string source = read_file("example.lang");
Lexer lexer(source);
auto tokens = lexer.tokenize();

5.5.4 Tokenization Pipeline: Lexer Operational Flow

Finalized architecture of the lexer for file-based input:

std::vector<Token> Lexer::tokenize() {
std::vector<Token> tokens;
while (!at_end()) {

skip_whitespace_and_comments();
start = current;
try {

Token token = scan_token();
tokens.push_back(token);

} catch (const LexerError& err) {
report_error(err.message, err.location);

241

synchronize(); // optional for recovery
}

}
tokens.push_back(make_token(TokenType::EndOfFile));
return tokens;

}

This structure now includes:

• Whitespace skipping

• Comment skipping (single-line and block)

• Token scanning dispatch based on character class

• Lexical error handling with location tracking

• Optional recovery and resynchronization

5.5.5 Token Output: Readable and Structured

Output each token with details:

void print_token(const Token& token) {
std::cout << std::format("Token({:<15}): '{:<10}' at line {}, column {}\n",

to_string(token.type), token.lexeme, token.location.line,
token.location.column);↪→

}

Example output:

242

Token(Keyword): 'let' at line 1, column 1
Token(Identifier): 'x' at line 1, column 5
Token(Equal): '=' at line 1, column 7
Token(IntegerLiteral): '10' at line 1, column 9
Token(Semicolon): ';' at line 1, column 11

This gives developers and tools immediate feedback about the token stream.

5.5.6 Source Location Tracking

Line and column information is attached to every token:

struct SourceLocation {
std::size_t line;
std::size_t column;

};

Token make_token(TokenType type) {
return Token{type, current_lexeme(), {}, SourceLocation{line, column}};

}

Error messages include precise source locations using std::format.

5.5.7 Syntax Error Reporting During Tokenization

The lexer is now capable of reporting syntax errors such as:

• Invalid characters

• Unterminated string literals

• Unterminated block comments

243

• Invalid numeric formats

throw LexerError("Unterminated string", SourceLocation{line, column});

Example runtime output:

[Lexer Error] Line 4, Column 17: Unterminated string

5.5.8 Unit and Integration Testing

Create full .lang test files and validate the output:

// test_basic.lang
let x = 42;
if (x > 10) {

print("High");
}

Test code using Catch2 or doctest:

TEST_CASE("Full source file tokenization") {
std::string source = read_file("test_basic.lang");
Lexer lexer(source);
auto tokens = lexer.tokenize();
REQUIRE(tokens.back().type == TokenType::EndOfFile);

}

5.5.9 Optional Output Format: JSON / Token Stream Dump

To support IDEs, syntax highlighters, or test runners, output can be serialized:

244

[
{ "type": "Let", "lexeme": "let", "line": 1, "column": 1 },
{ "type": "Identifier", "lexeme": "x", "line": 1, "column": 5 },
...

]

This can be generated using std::format or nlohmann::json if needed in a tooling
module.

5.5.10 CLI Tool Integration: Language Analyzer

Compile the lexer as a command-line tool:

int main(int argc, char* argv[]) {
if (argc < 2) {

std::cerr << "Usage: analyzer <source.lang>\n";
return 1;

}

try {
std::string source = read_file(argv[1]);
Lexer lexer(source);
auto tokens = lexer.tokenize();

for (const auto& t : tokens)
print_token(t);

} catch (const std::exception& ex) {
std::cerr << "[Error] " << ex.what() << '\n';
return 2;

}

return 0;

245

}

Usage:

./analyzer my_program.lang

5.5.11 Summary: What This Milestone Confirms

• The lexer accepts .lang files as input

• It can handle C-style syntax with structured tokens

• It skips comments and whitespace cleanly

• It tracks and reports line and column info for each token

• It detects and reports common lexical errors

• It outputs a stream of tokens usable by the parser

• It is fully testable and scriptable

5.5.12 Conclusion

This milestone marks the completion of the lexical foundation for your new C-
style programming language. You now have a functional, extensible, and production-
ready lexical analyzer that can process real code files, tokenize them accurately, and
handle errors with precise diagnostics. The integration of Modern C++ features—
such as std::string_view, std::format, and modular error types—ensures a high-
performance and maintainable architecture. With this layer validated, the next phase
is the construction of the parser, where the token stream will be transformed into a
meaningful abstract syntax tree.

Chapter 6

REPL for the New Language –
Version 1

6.1 Interactive Loop for Writing New Language Code

6.1.1 Introduction

A REPL (Read-Eval-Print Loop) is a core tool in the early development of any
new interpreted language. It offers a fast and interactive environment for developers
to write, test, and refine language features. In this first version of the REPL for your
C-style language, the goal is to establish a minimal, responsive, and testable loop
that allows users to input lines of code, tokenize them, and inspect the output in real-
time.
This section focuses on building the REPL’s interactive loop using Modern
C++20/23, covering stream input handling, immediate feedback, integration with the
lexer, and foundational design considerations for future extension into parsing and
evaluation.

246

247

6.1.2 What is a REPL?

REPL stands for:

• Read: Accept user input (source code lines)

• Eval: Process the input (lexical analysis in this version)

• Print: Show the output (tokens or error messages)

• Loop: Return to reading more input

In early development phases, the REPL serves as a lexical playground. As the parser
and runtime are added, it becomes the primary testing interface for language behavior.

6.1.3 REPL Architecture: Minimal Form

Functional steps of the REPL v1:

1. Prompt the user

2. Read a line from standard input

3. Pass it to the lexer

4. Display the resulting tokens

5. Repeat

6.1.4 C++20/23 Implementation: Basic REPL Loop

248

void start_repl() {
std::string line;
std::cout << "Welcome to LangREPL v1\nType 'exit' or Ctrl+D to quit.\n\n";

while (true) {
std::cout << ">>> ";
if (!std::getline(std::cin, line)) break;

if (line == "exit") break;
if (line.empty()) continue;

try {
Lexer lexer(line);
auto tokens = lexer.tokenize();
for (const auto& token : tokens) {

print_token(token);
}

} catch (const LexerError& err) {
std::cerr << std::format("[Lexer Error] {} at line {}, column {}\n",

err.what(), err.location.line, err.location.column);
}

}

std::cout << "\nSession ended.\n";
}

6.1.5 Design Features and C++20/23 Enhancements

1. std::getline for Safe Line Input

Modern, buffer-safe, and non-blocking input mechanism.

249

2. std::string_view in Lexer

The line is passed into the lexer as a std::string_view, avoiding heap copies:

Lexer lexer(std::string_view source);

3. Formatted Token Output with std::format

void print_token(const Token& token) {
std::cout << std::format("Token({:<15}): '{}'\n",

to_string(token.type), token.lexeme);
}

6.1.6 Token Buffering and Line Tracking

Although each REPL line is standalone in version 1, internal structures are already
designed to support token sequences and source locations:

struct Token {
TokenType type;
std::string_view lexeme;
std::variant<std::monostate, int, double, bool, std::string> literal;
SourceLocation location; // line = 1, column = calculated

};

In REPL mode, set the initial line to 1 and column tracking within each line.

6.1.7 Handling Syntax Errors in REPL

REPLs must recover from errors without terminating the session. The lexer should:

250

• Catch unterminated strings

• Detect invalid characters

• Report errors clearly

Errors should not exit the loop:

catch (const LexerError& err) {
std::cerr << std::format("X Error: {} at line {}, col {}\n",

err.what(), err.location.line, err.location.column);
}

6.1.8 Sample Interaction Output

Welcome to LangREPL v1
Type 'exit' or Ctrl+D to quit.

>>> let x = 5;
Token(Let): 'let'
Token(Identifier): 'x'
Token(Equal): '='
Token(IntegerLiteral): '5'
Token(Semicolon): ';'

>>> if (x > 0) { print("Hi"); }
Token(If): 'if'
Token(LeftParen): '('
Token(Identifier): 'x'
Token(Greater): '>'
Token(IntegerLiteral): '0'

251

Token(RightParen): ')'
Token(LeftBrace): '{'
Token(Identifier): 'print'
Token(LeftParen): '('
Token(StringLiteral): '"Hi"'
Token(RightParen): ')'
Token(Semicolon): ';'
Token(RightBrace): '}'

>>> "unterminated
X Error: Unterminated string at line 1, col 1

6.1.9 Preparing for REPL Expansion

While REPL v1 only does lexical analysis, the following design decisions future-proof it:

• Token buffer is reusable by a parser

• Error handling already structured for semantic layers

• Integration with modules (e.g., import statements) possible

• Persistent state engine can be added to support variable definitions and execution

6.1.10 Optional: Line History and Scripting

Advanced REPLs often support:

• Command history using readline (optional)

• Multiline input for functions or blocks

252

• Saving and loading REPL sessions (.repl files)

These features can be added after full parser and evaluator integration.

6.1.11 Summary of Achievements in REPL v1

Table 1-1: Lexical System Capabilities

Capability Status

Interactive line input Ready

Real-time token generation Functional

Structured output using std::format T

Error detection and recovery T

Integration with lexer module T

Supports all token types T

Extendable for parser/evaluator T

6.1.12 Conclusion

The first version of your REPL forms the interactive foundation for experimenting
with the language syntax and validating the token system in real time. It enables
immediate feedback, streamlines development, and prepares the environment for the
integration of parsing and execution. Built entirely with Modern C++ features, this
REPL is both minimal and future-ready, embodying best practices for developing clean
and extensible tooling for a new interpreted language.

253

6.2 Displaying Tokens Extracted from Code

6.2.1 Introduction

In the first version of a REPL (Read-Eval-Print Loop), the primary purpose is to
transform user input into a meaningful sequence of tokens and then display
them clearly. This provides developers and language designers with immediate
feedback about how the lexer is interpreting each piece of input.
This section focuses on building a structured, informative, and visually readable
token display system, showing not only the token types but also their raw text
(lexemes), optional literal values, and source locations when applicable. We explore
how to format this output using modern C++20/23 features like std::format, enum
class, std::variant, and functional printing strategies to support both development
and debugging.

6.2.2 Purpose of Token Display in REPL

Displaying extracted tokens in REPL helps:

• Verify correct tokenization of keywords, identifiers, literals, and symbols

• Detect early design flaws in the token set

• Spot lexical errors or ambiguities

• Understand token-level transformations during language experimentation

• Serve as a foundational diagnostic tool for parsing and interpretation phases

254

6.2.3 Token Data Model Recap

Each token has four main components:

enum class TokenType {
Identifier, IntegerLiteral, FloatLiteral, StringLiteral, BoolLiteral,
Let, Const, If, Else, Return, Function,
Equal, Plus, Minus, Star, Slash, // and many more...
Semicolon, LeftParen, RightParen,
EndOfFile, Invalid

};

struct SourceLocation {
std::size_t line;
std::size_t column;

};

using LiteralValue = std::variant<std::monostate, int, double, bool, std::string>;

struct Token {
TokenType type;
std::string_view lexeme;
LiteralValue literal;
SourceLocation location;

};

6.2.4 Token Display Format Design

The display of each token must include:

• The token type name (aligned for readability)

• The lexeme (original text from the source)

255

• Literal value (if applicable)

• Source location (line and column)

Example:

Token(Let): 'let' at line 1, col 1
Token(Identifier): 'x' at line 1, col 5
Token(Equal): '=' at line 1, col 7
Token(IntegerLiteral): '42' -> 42
Token(Semicolon): ';' at line 1, col 9

6.2.5 Implementation of Token Display

1. Mapping TokenType to String

Use a centralized function:

std::string to_string(TokenType type) {
switch (type) {

case TokenType::Let: return "Let";
case TokenType::Const: return "Const";
case TokenType::Identifier: return "Identifier";
case TokenType::IntegerLiteral: return "IntegerLiteral";
case TokenType::Equal: return "Equal";
case TokenType::Semicolon: return "Semicolon";
// Add all token types...
default: return "Unknown";

}
}

256

2. Literal Value Conversion

Use a std::visit over the std::variant:

std::string literal_to_string(const LiteralValue& val) {
return std::visit([](auto&& v) -> std::string {

using T = std::decay_t<decltype(v)>;
if constexpr (std::is_same_v<T, std::monostate>) {

return "";
} else if constexpr (std::is_same_v<T, std::string>) {

return "\"" + v + "\"";
} else if constexpr (std::is_same_v<T, bool>) {

return v ? "true" : "false";
} else {

return std::to_string(v);
}

}, val);
}

3. Display Function Using std::format

void display_token(const Token& token) {
std::string type_str = to_string(token.type);
std::string literal_str = literal_to_string(token.literal);

if (!literal_str.empty()) {
std::cout << std::format("Token({:<16}): '{:<10}' -> {:<10} at line {},

col {}\n",↪→

type_str, token.lexeme, literal_str, token.location.line,
token.location.column);↪→

} else {
std::cout << std::format("Token({:<16}): '{:<10}' at line {}, col

{}\n",↪→

257

type_str, token.lexeme, token.location.line,
token.location.column);↪→

}
}

6.2.6 Displaying All Tokens from REPL Input

From within the REPL loop:

auto tokens = lexer.tokenize();
for (const auto& token : tokens) {

if (token.type != TokenType::EndOfFile)
display_token(token);

}

You can optionally allow toggling of extra token data (e.g., --verbose flag or a special
REPL command).

6.2.7 Error Tokens and Highlighting

Handle invalid tokens distinctly:

if (token.type == TokenType::Invalid) {
std::cerr << std::format("X Invalid token: '{}' at line {}, col {}\n",

token.lexeme, token.location.line, token.location.column);
}

This visually separates error tokens from the regular stream.

258

6.2.8 Supporting Minimal and Diagnostic Modes

For clean or debug views:

• Minimal mode: only print type and lexeme

Identifier: 'x'
IntegerLiteral: '42'

• Diagnostic mode: full info with location and literal

Token(IntegerLiteral): '42' -> 42 at line 1, col 5

Can be toggled with a REPL setting.

6.2.9 Sample Session

>>> let pi = 3.14;
Token(Let): 'let' at line 1, col 1
Token(Identifier): 'pi' at line 1, col 5
Token(Equal): '=' at line 1, col 8
Token(FloatLiteral): '3.14' -> 3.14 at line 1, col 10
Token(Semicolon): ';' at line 1, col 14
python-replCopyEdit>>> "unterminated
X Error: Unterminated string at line 1, col 1

6.2.10 Extending Output for External Tools

Later, allow output as:

259

• JSON (for integration with editors or tools)

• Syntax-colored tokens (for GUI-based REPL or CLI color support)

• Streaming to a file log for testing

Example JSON format:

{
"type": "IntegerLiteral",
"lexeme": "42",
"literal": 42,
"line": 1,
"column": 5

}

6.2.11 Summary of Capabilities

Table 2-2: Lexical Feature Status

Feature Status

Display token type and lexeme T

Support for literal values T

Source location info (line/col) T

Formatting with std::format T

Handling invalid tokens separately T

Ready for testing and parser integration T

260

6.2.12 Conclusion

Displaying tokens in a REPL is a fundamental part of language development. It bridges
raw user input and structured interpretation. Using modern C++20/23 tools such as
std::format, std::variant, std::string_view, and scoped enums, you can create a
clean and extensible display system that is both developer-friendly and toolchain-ready.
This visualization reinforces confidence in the lexer, supports early debugging, and sets
a visual standard for how your language “speaks back” to its users.

6.3 Testing Basic Language Constructs

6.3.1 Introduction

At this phase of the REPL (Read-Eval-Print Loop) development, the lexer is capable
of processing live code inputs and producing a stream of tokens. The next critical
step is to test the tokenization of basic language constructs in real-time. These
tests validate that your language's core grammar—statements, expressions, blocks, and
control structures—is being recognized correctly.
This section focuses on building a library of interactive REPL tests using various C-
style programming constructs, verifying lexer robustness and token accuracy. These
early-stage tests play a vital role in shaping the lexical model, ensuring consistency in
token recognition, and preparing the path toward syntactic parsing and evaluation.

6.3.2 Purpose of Testing Constructs in REPL v1

Testing basic language constructs in the REPL allows you to:

• Confirm correct token generation for typical code patterns

• Identify misclassified lexemes or gaps in token definitions

261

• Refine the language grammar early using live examples

• Spot inconsistencies in whitespace, comment, or literal handling

• Validate lexer behavior across multi-token statements

These tests also serve as regression safeguards when modifying or optimizing lexer logic.

6.3.3 Scope of Basic Language Constructs to Test

Typical constructs you should evaluate:

• Variable Declarations: let, const, identifiers, and initialization

• Assignments and Arithmetic: =, +, -, *, /

• Control Flow: if, else, while

• Block Syntax: {}, (), ;

• Literals: integer, float, string, boolean

• Function Calls: print("Hello"), foo(x + 1)

• Comments: //, /* */

6.3.4 Using the REPL to Test Constructs

For each construct, input the line, inspect the tokens, and validate formatting:

• Example 1: Variable Declaration

262

>>> let count = 10;
Token(Let): 'let'
Token(Identifier): 'count'
Token(Equal): '='
Token(IntegerLiteral): '10' -> 10
Token(Semicolon): ';'

• Example 2: Expression Statement

>>> x = (a + b) * 2;
Token(Identifier): 'x'
Token(Equal): '='
Token(LeftParen): '('
Token(Identifier): 'a'
Token(Plus): '+'
Token(Identifier): 'b'
Token(RightParen): ')'
Token(Star): '*'
Token(IntegerLiteral): '2' -> 2
Token(Semicolon): ';'

• Example 3: Control Flow

>>> if (x > 0) { print("positive"); }
Token(If): 'if'
Token(LeftParen): '('
Token(Identifier): 'x'
Token(Greater): '>'
Token(IntegerLiteral): '0' -> 0
Token(RightParen): ')'

263

Token(LeftBrace): '{'
Token(Identifier): 'print'
Token(LeftParen): '('
Token(StringLiteral): '"positive"' -> "positive"
Token(RightParen): ')'
Token(Semicolon): ';'
Token(RightBrace): '}'

6.3.5 Designing Automated REPL Test Sets (Internally or as
Scripts)

In addition to manual testing, REPL behavior should be tested programmatically.

• Internal Example Using Modern C++ and Catch2

TEST_CASE("Basic statement tokenization") {
std::string input = "let x = 5;";
Lexer lexer(input);
auto tokens = lexer.tokenize();

REQUIRE(tokens[0].type == TokenType::Let);
REQUIRE(tokens[1].type == TokenType::Identifier);
REQUIRE(tokens[2].type == TokenType::Equal);
REQUIRE(tokens[3].type == TokenType::IntegerLiteral);
REQUIRE(std::get<int>(tokens[3].literal) == 5);
REQUIRE(tokens[4].type == TokenType::Semicolon);

}

These tests are essential for maintaining correctness across iterations.

264

6.3.6 Testing Literals and Edge Cases

• Boolean Literals

>>> let flag = true;
Token(Let): 'let'
Token(Identifier): 'flag'
Token(Equal): '='
Token(BoolLiteral): 'true' -> true
Token(Semicolon): ';'

• String Literal with Spaces

>>> print("Hello World");
Token(Identifier): 'print'
Token(LeftParen): '('
Token(StringLiteral): '"Hello World"' -> "Hello World"
Token(RightParen): ')'
Token(Semicolon): ';'

• Unterminated Strings (Error)

>>> print("Hello
X Error: Unterminated string at line 1, col 7

6.3.7 Testing Multi-line Block Input (Future Extension)

Although REPL v1 reads single-line statements, multi-line constructs should be
simulated and validated to prepare for REPL v2:

265

>>> if (n > 0) {
... print("positive");
... }

Simulate this in REPL by joining lines internally before lexing.

6.3.8 Optional: Table Format for Token Summaries

For development tools and logging:

Table 3-3: Token Stream with Source Location Info

Token Type Lexeme Literal Line Column

Let let 1 1

Identifier x 1 5

Equal = 1 7

IntegerLiteral 42 42 1 9

Semicolon ; 1 11

6.3.9 Confirming Grammar Design through Testing

Through these REPL tests, you indirectly confirm:

• Token priority and disambiguation rules

• Lexeme-to-token mapping

• Whitespace and newline behavior

266

• Token boundary recognition

• Support for language idioms

This is essential feedback before introducing parsing logic.

6.3.10 Summary of REPL Construct Testing Benefits

Table 3-4: Benefits of Lexical Analysis Validation

Benefit Description

Ensures token type accuracy Confirms lexer grammar alignment

Validates literal extraction Shows int, float, bool, and string handling

Reveals lexical edge cases Helps catch invalid sequences

Prepares for parsing Ensures structural readiness

Enables early user feedback Language designers can test ideas live

Simplifies debugging Immediate insights into tokenization

6.3.11 Conclusion

Testing basic language constructs interactively through the REPL is more than just
verification—it is a form of live specification. It sharpens the language grammar,
builds confidence in the lexical system, and sets up a smooth transition into parsing
and evaluation. Using modern C++20/23 features, your REPL becomes not just a
development tool, but a real-time lens into the heart of your language.

267

6.4 Milestone — Interactive Explorer for the New
Language

6.4.1 Introduction

This section marks a critical milestone in the design of the new C-style interpreted
language: the creation of a functional interactive explorer, or REPL-based
language explorer. At this stage, the system offers a structured, testable, and
developer-friendly interface to input and analyze code in real time. The explorer is
not yet a full interpreter—but it behaves as a live lexical debugger, revealing the
token-level structure of each input, aiding experimentation, diagnostics, and grammar
refinement.
The interactive explorer enables developers to probe the language: experiment
with new syntax, test token recognition logic, study literal behavior, and confirm
grammar rules—all within a tightly integrated REPL environment built using Modern
C++20/23.

6.4.2 Purpose of This Milestone

This milestone confirms the successful integration of:

• Live code input handling through an interactive loop

• Dynamic token generation from raw user input

• Real-time token inspection and feedback

• Consistent source location tracking

• User-friendly error reporting for invalid syntax

268

• Modular lexer integration with future parsing support

This interactive explorer becomes the primary development interface in the early
phases of language construction.

6.4.3 What the Explorer Does

At this stage, the explorer provides:

Table 4-5: Lexer Feature Overview

Feature Description

Live tokenization Accepts input line-by-line and returns structured
tokens

Literal inspection Displays token types, lexemes, and values

Syntax awareness Detects comments, separators, keywords,
symbols

Error diagnostics Reports malformed tokens, unterminated strings,
invalid characters

Clean formatting Aligns tokens in readable tabular or formatted
layout

Stateless analysis Each input is evaluated independently

Source location display Shows line and column position of each token

6.4.4 Internals of the Interactive Explorer

1. Architecture Overview

269

int main() {
std::cout << "Lang Explorer v1 — Type `exit` to quit\n";

std::string line;
while (true) {

std::cout << ">>> ";
if (!std::getline(std::cin, line) || line == "exit") break;

Lexer lexer(line);
try {

auto tokens = lexer.tokenize();
for (const auto& t : tokens)

if (t.type != TokenType::EndOfFile)
display_token(t);

} catch (const LexerError& err) {
std::cerr << std::format("X Error: {} at line {}, col {}\n",

err.what(), err.location.line, err.location.column);
}

}
}

2. Token Display and Formatting

Tokens are displayed with precision and clarity:

void display_token(const Token& token) {
std::cout << std::format("Token({:<16}): '{:<10}'",

to_string(token.type), token.lexeme);

if (auto val = literal_to_string(token.literal); !val.empty())
std::cout << std::format(" -> {}", val);

270

std::cout << std::format(" at line {}, col {}\n",
token.location.line, token.location.column);

}

This reinforces a user’s understanding of how the language interprets each line.

6.4.5 Supported Input Patterns

The explorer is prepared to handle a wide range of basic constructs:

• Declarations: let x = 10;

• Control flow: if (x > 0) { ... }

• Arithmetic: x = a * (b + 3);

• Functions: print("debug");

• Boolean logic: flag = true && !done;

• Comments: // example and /* block */

• Strings: "Hello, REPL!"

• Edge cases: malformed or unterminated sequences

These are tokenized, validated, and printed without crashing or needing syntax parsing.

6.4.6 Use of Modern C++20/23 in the Explorer

The REPL explorer benefits from modern language features:

• std::format for clean token formatting

271

• std::variant and std::visit for handling literal values

• std::string_view for zero-copy lexeme processing

• consteval and constexpr to evaluate utility functions (optional)

• Strongly typed enums for TokenType

• if constexpr and concepts (in extension) for generic printing

These features boost clarity, type safety, and performance of the REPL system.

6.4.7 Example Interactive Session

>>> let version = 1.0;
Token(Let): 'let' at line 1, col 1
Token(Identifier): 'version' at line 1, col 5
Token(Equal): '=' at line 1, col 13
Token(FloatLiteral): '1.0' -> 1.0 at line 1, col 15
Token(Semicolon): ';' at line 1, col 18

>>> if (x < 10) { print("low"); }
Token(If): 'if'
Token(LeftParen): '('
Token(Identifier): 'x'
Token(Less): '<'
Token(IntegerLiteral): '10' -> 10
Token(RightParen): ')'
Token(LeftBrace): '{'
Token(Identifier): 'print'
Token(LeftParen): '('
Token(StringLiteral): '"low"' -> "low"
Token(RightParen): ')'

272

Token(Semicolon): ';'
Token(RightBrace): '}'

6.4.8 Benefits of the Explorer at This Milestone

Table 4-6: Benefits of Interactive Tokenization and
REPL Lexing

Benefit Impact

Encourages interactive
experimentation

Try new syntax and see token effects instantly

Reduces development/debug
time

Immediate feedback on lexical design

Confirms grammar decisions Verifies correctness of language constructs

Provides error visibility Users quickly learn token rules and boundaries

Serves as validation suite Manual and automated REPL testing
framework

Supports education and
tutorials

Helps users understand the language structure

6.4.9 Future Path After This Milestone

After this milestone, the REPL will be extended to include:

• Token buffer persistence (across multiple REPL lines)

273

• Parser integration for expression/statement recognition

• Syntax tree visualization (AST output)

• Evaluation engine (expression results and variable tracking)

• Support for multiline constructs and user-defined functions

This explorer becomes the frontend for live language growth.

6.4.10 Conclusion

This milestone finalizes the construction of the first interactive system for your
new C-style programming language. It stands as a solid lexical interface for
language designers, implementers, and testers. Backed by Modern C++20/23 features,
the interactive explorer is not just a playground—it is a practical, extensible, and
production-level component that validates core design decisions and prepares the
system for full parsing and evaluation in upcoming chapters.

Part III

Syntax and Structure

274

Chapter 7

AST Design for C-Style Constructs

7.1 Expression vs Statement Hierarchies for C-Style
Syntax

7.1.1 Introduction

A key step in language implementation is designing the Abstract Syntax Tree
(AST), which represents the parsed structure of source code in a tree form. At the
heart of this design lies a fundamental separation that most C-style languages follow:
the distinction between expressions and statements. These two categories define
the core structure of code and influence parsing, execution, and semantic analysis.

This section explains how to build a robust and extensible hierarchy of expressions
and statements using Modern C++20/23, while adhering to the syntactic and
semantic characteristics of C-style languages.

276

277

7.1.2 Understanding Expressions and Statements in C-style
Languages

• Expressions:

– Produce a value

– Can be nested within other expressions

– Can appear inside statements

Examples:

– 42

– x + y

– foo(a, b)

– a > b && c == d

• Statements:

– Perform an action

– Control flow or define structure

– May contain expressions

Examples:

– let x = 5;

– if (a > b) { ... }

– return x * 2;

– while (x < 10) { ... }

278

Understanding the conceptual difference between these helps to cleanly
separate parsing logic, semantic validation, and AST design.

7.1.3 C++ Class Hierarchy Overview

We model the hierarchy using Modern C++ class structures and smart pointers.
Expression and Statement become abstract base classes, and specific types derive
from them.

struct Expr;
struct Stmt;

using ExprPtr = std::unique_ptr<Expr>;
using StmtPtr = std::unique_ptr<Stmt>;

7.1.4 Base Abstract Classes

struct Expr {
virtual ~Expr() = default;
virtual std::string debug() const = 0;

};

struct Stmt {
virtual ~Stmt() = default;
virtual std::string debug() const = 0;

};

The debug() function will help inspect trees during development.

279

7.1.5 Expression Types in a C-style Language

Typical expression node types:

struct LiteralExpr : Expr {
std::variant<int, double, std::string, bool> value;

};

struct VariableExpr : Expr {
std::string name;

};

struct BinaryExpr : Expr {
ExprPtr left;
std::string op;
ExprPtr right;

};

struct CallExpr : Expr {
std::string functionName;
std::vector<ExprPtr> arguments;

};

All expression nodes are values or result in values. They can be composed into more
complex trees.

7.1.6 Statement Types in a C-style Language

Typical statement node types:

struct ExprStmt : Stmt {
ExprPtr expression;

280

};

struct VarDeclStmt : Stmt {
std::string name;
ExprPtr initializer;

};

struct BlockStmt : Stmt {
std::vector<StmtPtr> statements;

};

struct IfStmt : Stmt {
ExprPtr condition;
StmtPtr thenBranch;
std::optional<StmtPtr> elseBranch;

};

struct WhileStmt : Stmt {
ExprPtr condition;
StmtPtr body;

};

struct ReturnStmt : Stmt {
std::optional<ExprPtr> value;

};

These structures control the flow and define the executable structure of the program.

7.1.7 Expression Inside Statement Context

In C-style syntax, expressions often occur within statements. For example:

281

let x = 5 + y;

This is represented as:

• VarDeclStmt

– with initializer: BinaryExpr → LiteralExpr and VariableExpr

This compositional pattern is essential in recursive-descent or Pratt parsing strategies.

7.1.8 Ownership and Memory Management (C++20/23)

To model the AST with safety and performance, use std::unique_ptr and move
semantics:

• ExprPtr and StmtPtr manage object lifetimes

• std::make_unique avoids raw pointers

• C++20's [[nodiscard]] ensures safety when constructing nodes

auto expr = std::make_unique<BinaryExpr>(
std::make_unique<LiteralExpr>(5),
"+",
std::make_unique<VariableExpr>("y")

);

7.1.9 Variant-based AST Models (Optional Modern Alternative)

For projects preferring algebraic style over polymorphism, Modern C++20/23 allows:

282

using Expr = std::variant<
LiteralExpr, VariableExpr, BinaryExpr, CallExpr

>;

But this sacrifices virtual dispatch and requires std::visit, which is less intuitive for
recursive trees. Use only if your team is experienced with variant-heavy designs.

7.1.10 AST Debugging and Visualization

Using C++20’s std::format:

std::string BinaryExpr::debug() const override {
return std::format("({} {} {})", left->debug(), op, right->debug());

}

This recursive printer is used in REPL and test outputs.

7.1.11 Summary Table: Expressions vs Statements

Table 1-1: Comparison Between Expressions and
Statements

Category Expression Statement

Purpose Computes a value Performs an action

Can Nest Yes (inside other
expressions/statements)

Yes (statements inside blocks or
control)

283

Category Expression Statement

Examples a + b, true, foo(x) let x = 10;, return a + b;, if
(...)

Output Value Side-effect or control result

AST
Nodes

BinaryExpr, LiteralExpr,
CallExpr

VarDeclStmt, IfStmt, WhileStmt

7.1.12 Conclusion

Building a robust AST for a C-style language starts with a clear separation between
expressions and statements. This distinction shapes how you structure your parser,
interpreter, and evaluator. By using Modern C++20/23 techniques—smart pointers,
variants, scoped enums, and formatting—you build a maintainable, expressive, and
powerful foundation that reflects the core design of your language while remaining
extensible for future features like functions, classes, and modules.

7.2 Handling C-style Declarations: int x;, float y =
3.14;

7.2.1 Introduction

C-style variable declarations form one of the foundational building blocks in imperative
languages. They introduce variables, optionally assign values, and associate each
variable with a type and sometimes a mutability modifier like const. In this section,
we construct the AST support for such declarations in our new interpreted language,
adhering to the principles of Modern C++20/23, and ensuring extendibility, strong

284

typing, and clean integration with future semantic analysis.

7.2.2 Core Characteristics of C-style Declarations

C-style declarations typically follow this pattern:

<type> <identifier> [= <expression>] ;

Examples:

• int x;

• float y = 3.14;

• bool flag = true;

• string name = "John";

Key components:

• Type: Explicit and declared before the variable

• Name: Identifier of the variable

• Initializer (optional): An expression providing an initial value

• Semicolon: Statement terminator

These map directly to a declaration statement in the AST.

285

7.2.3 Designing the Declaration Node

We define a dedicated AST node type for variable declarations. It captures the declared
type, the name, and an optional initializer expression.

struct VarDeclStmt : Stmt {
std::string typeName; // e.g., "int", "float", "bool"
std::string variableName; // e.g., "x", "y"
std::optional<ExprPtr> initializer;

std::string debug() const override {
if (initializer)

return std::format("declare {} {} = {}", typeName, variableName,
(*initializer)->debug());↪→

else
return std::format("declare {} {}", typeName, variableName);

}
};

The typeName is kept as a string for now to simplify parsing. In future phases, it can be
replaced with a Type object for semantic analysis and type checking.

7.2.4 Parsing C-style Declarations

• Example: float y = 3.14;

The parser should:

1. Recognize the type token (float)

2. Read the variable name (y)

3. Check for =, and if found, parse the initializer expression (3.14)

4. Expect ; to terminate the statement

286

Result:

auto decl = std::make_unique<VarDeclStmt>();
decl->typeName = "float";
decl->variableName = "y";
decl->initializer = parse_expression(); // Produces a LiteralExpr with value

3.14↪→

The resulting AST subtree looks like:

VarDeclStmt
��� type: "float"
��� name: "y"
��� initializer:

��� LiteralExpr: 3.14

7.2.5 Expression Types as Initializers

The initializer can be any expression—literal, binary operation, function call, etc.
Examples:

• int x = 10; → LiteralExpr

• int y = x + 5; → BinaryExpr

• float z = sin(angle); → CallExpr

The design must support all these as valid expressions attached to initializer.

287

7.2.6 Optional Initialization Handling

Declarations like int x; are legal and produce a declaration without initialization. The
initializer field is simply std::nullopt.
In evaluation phase (in later chapters), the interpreter can assign default values like 0,
0.0, false, or empty strings based on type.

7.2.7 Use of std::optional and std::variant

C++20's std::optional cleanly expresses the presence or absence of an initializer.

std::optional<ExprPtr> initializer;

The ExprPtr itself is a std::unique_ptr<Expr>, ensuring safe and non-copyable tree
structures.

7.2.8 Supporting const and Mutability

If the language supports constants:

const float PI = 3.1415;

Extend the VarDeclStmt:

bool isConst = false; // default false

During parsing:

if (match(TokenType::Const)) {
stmt->isConst = true;
consume_type();

288

...
}

Later in the interpreter, this flag helps enforce immutability.

7.2.9 Example Code and AST Output

• Source:

int x;
float y = 3.14;
const string name = "Alice";

• AST Print (via debug()):

declare int x
declare float y = 3.14
declare const string name = "Alice"

Each statement is parsed into its own VarDeclStmt, allowing easy tree traversal,
code generation, or interpretation.

7.2.10 Integration with the REPL

Users can type declarations directly in the REPL:

>>> int a = 100;
>>> string title = "Interpreter";

The REPL should parse and evaluate these, updating a runtime environment with the
new variables.

289

7.2.11 Summary of AST Structure for Declarations

Table 2-2: Fields in Variable Declaration
Representation

Field Description

typeName Declared type as string or enum

variableName Name of the declared variable

initializer Optional expression (ExprPtr)

isConst Optional flag for immutability

debug() Utility for AST visualization

7.2.12 Conclusion

C-style declarations form the structural backbone of variables in imperative languages.
This section detailed the design and implementation of variable declarations in the
AST using Modern C++20/23 features. By encapsulating type names, identifiers,
and optional expressions inside a robust VarDeclStmt structure, we create a flexible
and extensible foundation. This AST design cleanly separates parsing concerns from
semantic analysis and will seamlessly support later interpreter stages like type checking
and environment binding.

7.3 Block Structure and Scope Representation

290

7.3.1 Introduction

C-style languages rely heavily on block structure to define the boundaries of scopes,
especially for functions, conditionals, and loops. In these languages, a block is a
sequence of zero or more statements enclosed in {} braces. Understanding how to
model block structure and variable scope in the Abstract Syntax Tree (AST) is
essential for building a correct parser, interpreter, or compiler. This section provides a
detailed blueprint for representing block structures and managing nested scopes using
modern C++ features introduced in C++20 and C++23.

7.3.2 What is a Block in C-Style Syntax?

A block is a compound statement defined by:

{
statement1;
statement2;
...

}

Blocks:

• Group statements logically

• Introduce local scopes

• Allow shadowing of variables

• Are used in functions, conditionals, loops, and standalone code

Blocks are hierarchical, and every new block can introduce its own symbol table (or
environment in interpreter terms) that overlays the outer scope.

291

7.3.3 AST Representation of a Block

A block is represented as an AST node that holds a list of child statements:

struct BlockStmt : Stmt {
std::vector<StmtPtr> statements;

std::string debug() const override {
std::string result = "{\n";
for (const auto& stmt : statements)

result += " " + stmt->debug() + "\n";
result += "}";
return result;

}
};

Each StmtPtr inside statements could point to a declaration, expression, control flow,
or even another nested BlockStmt, supporting arbitrary nesting.

7.3.4 Parsing a Block Structure

A recursive descent parser processes blocks by:

• Expecting a { token

• Repeatedly parsing valid statements until a matching } is found

• Constructing a BlockStmt with collected StmtPtr elements

Example:

292

BlockStmt parse_block() {
consume(TokenType::LeftBrace); // expects `{`
std::vector<StmtPtr> stmts;

while (check(TokenType::RightBrace) && is_at_end()) {
stmts.push_back(parse_statement());

}

consume(TokenType::RightBrace); // expects `}`
return BlockStmt{ std::move(stmts) };

}

7.3.5 Scope Representation in Interpreter

Each block introduces a new scope. Scopes are implemented as stacked symbol
tables, often using a std::unordered_map<std::string, Value> for each level.

class Environment {
std::unordered_map<std::string, Value> variables;
Environment* parent;

public:
explicit Environment(Environment* enclosing = nullptr)

: parent(enclosing) {}

void define(const std::string& name, const Value& val) {
variables[name] = val;

}

bool assign(const std::string& name, const Value& val) {
if (variables.contains(name)) {

293

variables[name] = val;
return true;

} else if (parent) {
return parent->assign(name, val);

}
return false;

}

std::optional<Value> get(const std::string& name) {
if (variables.contains(name))

return variables[name];
if (parent)

return parent->get(name);
return std::nullopt;

}
};

On entering a block, a new Environment is pushed; on exit, it is popped.

7.3.6 Example: Nested Blocks and Shadowing

• Source Code:

{
int x = 10;
{

int x = 20;
print(x); // should print 20

}
print(x); // should print 10

}

294

• AST Structure:

BlockStmt
��� VarDeclStmt (int x = 10)
��� BlockStmt
� ��� VarDeclStmt (int x = 20)
� ��� ExprStmt (print(x))
��� ExprStmt (print(x))

Each BlockStmt has its own scope. The second declaration of x shadows the
first.

7.3.7 Block Statement Evaluation Workflow

In the interpreter:

Value evaluate(const BlockStmt& block, Environment* env) {
Environment local(env); // new scope
for (const auto& stmt : block.statements)

evaluate(*stmt, &local);
return {}; // or handle return/exit values

}

This ensures isolation of variables defined in blocks.

7.3.8 C++20/23 Enhancements in Scope Management

Recent C++ standards help write cleaner and more efficient scope-handling code:

• std::move and std::unique_ptr: For memory safety without leaks

• Structured bindings: For deconstructing assignments in environments

295

• Ranges and views: To iterate over scopes and simplify lookup chains

• std::optional and std::expected: For return type safety in lookups and
assignments

• Modules (C++20): For future integration of interpreter modules and symbol
isolation

7.3.9 Real-World Usage of Block Structures

Block structures in your new language support:

• Nested control flow: if, while, for

• Function bodies

• Manual scope isolation for variables

• Future use in error-handling contexts (like try/catch)

They are the structural backbone of all non-trivial language behavior.

7.3.10 Summary of Block Scope Representation

Table 3-3: Block Scope Implementation Details

Feature Implementation Detail

AST Node BlockStmt with std::vector<StmtPtr>

Scope Layer Environment with pointer to parent scope

296

Feature Implementation Detail

Variable Lifetime Defined and destroyed within block boundaries

Nested Scope Handling Stack-like resolution using parent lookup

Shadowing Support Allowed by checking current level first

Debugging debug() method to visualize blocks

7.3.11 Conclusion

Block statements and nested scopes are central to the semantics of structured
programming. In your interpreter design, BlockStmt becomes the primary unit for
grouping logic and introducing isolated environments. C++20 and C++23 make scope
management clearer and safer through modern memory ownership, structured error
handling, and modular design. Proper implementation of block structure at the AST
and interpreter level ensures correctness, maintainability, and extensibility as your
language grows into a more powerful system.

7.4 Memory-Safe Tree Construction with Smart
Pointers

7.4.1 Introduction

Constructing an Abstract Syntax Tree (AST) for a C-style interpreted language
involves managing a hierarchical structure of nodes that represent expressions,
statements, and control constructs. In the past, building such trees in C++ required
tedious manual memory management, leading to leaks, dangling pointers, or ownership

297

confusion. With Modern C++ (C++20/23), we now have safe, elegant, and efficient
tools to build and manage these trees using smart pointers.
This section explores the best practices and techniques for memory-safe
tree construction in ASTs using std::unique_ptr, std::shared_ptr, and
std::make_unique with a focus on clarity, correctness, and performance.

7.4.2 Why Smart Pointers for ASTs?

Smart pointers automate memory management and clearly express ownership
semantics.

• AST nodes form a tree: Ownership is usually exclusive. A BinaryExpr owns
its left and right expressions.

• No shared cyclic references: So std::unique_ptr is ideal.

• Compiler errors on misuse: Safer than raw pointers.

Using smart pointers:

• Prevents memory leaks

• Prevents premature deallocation

• Encourages correct lifetime and transfer semantics

7.4.3 Choosing the Right Smart Pointer

• std::unique_ptr<T>

– Best choice for ASTs

– Models exclusive ownership

298

– Automatically deletes the owned object when destroyed

• std::shared_ptr<T> (use sparingly)

– For shared ownership scenarios (rare in ASTs)

– Slower due to atomic reference counting

– Risk of cycles if not designed carefully

• std::weak_ptr<T>

– Optional support to reference parent nodes (if needed), without ownership

Conclusion: Use std::unique_ptr<T> as the default for all AST node
relationships.

7.4.4 Defining AST Node Ownership

Create aliases for clarity:

struct Expr;
struct Stmt;

using ExprPtr = std::unique_ptr<Expr>;
using StmtPtr = std::unique_ptr<Stmt>;

Then use these in node definitions:

struct BinaryExpr : Expr {
ExprPtr left;
std::string op;
ExprPtr right;

};

299

This clearly models the tree structure: BinaryExpr owns its children.

7.4.5 Constructing AST Nodes with std::make_unique

Use std::make_unique to safely construct nodes:

auto expr = std::make_unique<BinaryExpr>(
std::make_unique<LiteralExpr>(5),
"+",
std::make_unique<VariableExpr>("x")

);

This is:

• Exception-safe

• Compact

• Clear in ownership

C++20 allows even cleaner syntax by leveraging CTAD (Class Template Argument
Deduction) where applicable.

7.4.6 Moving Pointers: Avoiding Copy Mistakes

AST pointers must be moved, not copied:

ExprPtr left = std::make_unique<LiteralExpr>(5);
ExprPtr right = std::make_unique<LiteralExpr>(10);

auto node = std::make_unique<BinaryExpr>(std::move(left), "+", std::move(right));

Once moved, the original pointer is null. This ensures single ownership is preserved.
Failing to std::move will result in compile-time errors, enforcing safety.

300

7.4.7 AST Destruction is Automatic

Once a parent node is destroyed, all its children are recursively destroyed:

void run() {
auto tree = std::make_unique<BinaryExpr>(

std::make_unique<LiteralExpr>(42),
"*",
std::make_unique<VariableExpr>("count")

);

// tree goes out of scope here → no leak, no manual delete
}

This simplifies cleanup and avoids manual memory management entirely.

7.4.8 Visitor and Pattern Matching with Smart Pointers

When implementing tree traversal (evaluation, printing, etc.), pass const Expr& or
const Expr*:

void visit(const Expr& expr);

Never pass unique_ptr directly to visitors—it transfers ownership. Instead, dereference
or use a raw pointer to observe, not own.

7.4.9 AST Nodes with Optional Members

C++20 introduced std::optional, perfect for optional children:

301

struct IfStmt : Stmt {
ExprPtr condition;
StmtPtr thenBranch;
std::optional<StmtPtr> elseBranch; // optional else block

};

This makes ASTs more expressive and readable, while maintaining full safety.

7.4.10 Debugging AST with Smart Pointer Safety

Use utility functions for printing trees:

void print_ast(const ExprPtr& node) {
if (!node) return;
std::cout << node->debug() << "\n";

}

Or overload debug() to recursively call child ExprPtrs.

7.4.11 Summary: Best Practices

Table 4-4: Modern C++ Approach for AST Handling

Task Modern C++ Approach

Create AST nodes Use std::make_unique<NodeType>()

Represent child nodes Use std::unique_ptr<T>

Optional children Use std::optional<std::unique_ptr<T>>

302

Task Modern C++ Approach

Traverse AST Use references (const T&)

Destroy AST Let smart pointers handle it

Avoid raw pointer bugs Never use new or delete directly

7.4.12 Example: Full AST Construction Snippet

auto expr = std::make_unique<BinaryExpr>(
std::make_unique<VariableExpr>("a"),
"*",
std::make_unique<BinaryExpr>(

std::make_unique<LiteralExpr>(3),
"+",
std::make_unique<LiteralExpr>(5)

)
);

This represents the code: a * (3 + 5)
Each node owns its children, and the entire structure is freed automatically.

7.4.13 Conclusion

The combination of tree hierarchy design and Modern C++ smart pointers
provides an optimal and memory-safe strategy for AST construction. By exclusively
using std::unique_ptr and embracing move semantics, you ensure correctness,
performance, and maintainability without the overhead of manual memory handling.
This approach is essential for large-scale interpreters where complex ASTs are
frequently constructed, traversed, and discarded.

303

7.5 Hands-on – Core AST Nodes for C-Style
Language

7.5.1 Introduction

A C-style language requires a well-organized and extensible Abstract Syntax Tree
(AST) to represent expressions, statements, blocks, declarations, and control structures.
In this section, we focus on concrete implementation of the core AST nodes that
form the fundamental building blocks of the language syntax.
Using Modern C++ (C++20/23), we implement a safe, expressive, and maintainable
hierarchy of AST classes leveraging smart pointers, structured enums, std::optional,
and std::variant where necessary.
This hands-on section is the bridge between theoretical design and actual interpreter
integration.

7.5.2 Base AST Node Interfaces

We start with two abstract base classes to distinguish expressions from statements:

struct Expr {
virtual ~Expr() = default;
virtual std::string debug() const = 0;

};

struct Stmt {
virtual ~Stmt() = default;
virtual std::string debug() const = 0;

};

These interfaces allow polymorphic dispatch and introspection for debugging and

304

evaluation.

7.5.3 Smart Pointer Aliases for Ownership

Use std::unique_ptr to model tree ownership relationships:

using ExprPtr = std::unique_ptr<Expr>;
using StmtPtr = std::unique_ptr<Stmt>;

All child nodes are stored and transferred using these types, ensuring memory safety
and clarity.

7.5.4 Core Expression Nodes

• Literal Expression

Represents primitive constant values (int, float, string, bool):

struct LiteralExpr : Expr {
std::variant<int, double, std::string, bool> value;

explicit LiteralExpr(auto v) : value(v) {}

std::string debug() const override {
return std::visit([](auto&& val) {

return std::to_string(val);
}, value);

}
};

• Variable Expression

305

Represents a reference to a variable:

struct VariableExpr : Expr {
std::string name;

explicit VariableExpr(std::string n) : name(std::move(n)) {}

std::string debug() const override {
return name;

}
};

• Binary Expression

Represents binary operations (e.g., a + b):

struct BinaryExpr : Expr {
ExprPtr left;
std::string op;
ExprPtr right;

BinaryExpr(ExprPtr l, std::string o, ExprPtr r)
: left(std::move(l)), op(std::move(o)), right(std::move(r)) {}

std::string debug() const override {
return "(" + left->debug() + " " + op + " " + right->debug() + ")";

}
};

• Unary Expression

Supports operators like -x, !flag:

306

struct UnaryExpr : Expr {
std::string op;
ExprPtr operand;

UnaryExpr(std::string o, ExprPtr e)
: op(std::move(o)), operand(std::move(e)) {}

std::string debug() const override {
return "(" + op + operand->debug() + ")";

}
};

• Function Call Expression

Used to represent function invocations:

struct CallExpr : Expr {
std::string callee;
std::vector<ExprPtr> arguments;

CallExpr(std::string c, std::vector<ExprPtr> args)
: callee(std::move(c)), arguments(std::move(args)) {}

std::string debug() const override {
std::string argList;
for (const auto& arg : arguments)

argList += arg->debug() + ", ";
if (!argList.empty()) argList.pop_back(); // remove last comma

return callee + "(" + argList + ")";
}

};

307

7.5.5 Core Statement Nodes

• Expression Statement

Wraps a pure expression as a standalone statement (e.g., x + 2;):

struct ExprStmt : Stmt {
ExprPtr expression;

explicit ExprStmt(ExprPtr expr) : expression(std::move(expr)) {}

std::string debug() const override {
return expression->debug() + ";";

}
};

• Variable Declaration Statement

Supports declarations like int x = 5;:

struct VarDeclStmt : Stmt {
std::string typeName;
std::string variableName;
std::optional<ExprPtr> initializer;

VarDeclStmt(std::string type, std::string name, std::optional<ExprPtr> init
= std::nullopt)↪→

: typeName(std::move(type)), variableName(std::move(name)),
initializer(std::move(init)) {}↪→

std::string debug() const override {
if (initializer)

return typeName + " " + variableName + " = " +
(*initializer)->debug() + ";";↪→

308

return typeName + " " + variableName + ";";
}

};

• Block Statement

Represents { ... } with scoped statements:

struct BlockStmt : Stmt {
std::vector<StmtPtr> statements;

explicit BlockStmt(std::vector<StmtPtr> stmts)
: statements(std::move(stmts)) {}

std::string debug() const override {
std::string result = "{\n";
for (const auto& stmt : statements)

result += " " + stmt->debug() + "\n";
result += "}";
return result;

}
};

• If Statement

Supports conditional execution:

struct IfStmt : Stmt {
ExprPtr condition;
StmtPtr thenBranch;
std::optional<StmtPtr> elseBranch;

309

IfStmt(ExprPtr cond, StmtPtr thenB, std::optional<StmtPtr> elseB =
std::nullopt)↪→

: condition(std::move(cond)), thenBranch(std::move(thenB)),
elseBranch(std::move(elseB)) {}↪→

std::string debug() const override {
std::string result = "if (" + condition->debug() + ") " +

thenBranch->debug();↪→

if (elseBranch)
result += " else " + (*elseBranch)->debug();

return result;
}

};

• While Statement

Used for looping constructs:

struct WhileStmt : Stmt {
ExprPtr condition;
StmtPtr body;

WhileStmt(ExprPtr cond, StmtPtr b)
: condition(std::move(cond)), body(std::move(b)) {}

std::string debug() const override {
return "while (" + condition->debug() + ") " + body->debug();

}
};

• Return Statement

310

Handles function returns:

struct ReturnStmt : Stmt {
std::optional<ExprPtr> value;

explicit ReturnStmt(std::optional<ExprPtr> val = std::nullopt)
: value(std::move(val)) {}

std::string debug() const override {
return value ? "return " + (*value)->debug() + ";" : "return;";

}
};

7.5.6 Visual Summary of AST Nodes

Table 5-5: Common AST Node Types

Node Type Kind Example Code AST Class

5 + 3 Expression 5 + 3 BinaryExpr

x = 10; Statement Assignment ExprStmt

int x = 0; Statement Variable
Declaration

VarDeclStmt

{ ... } Statement Block BlockStmt

if (...) {...} Statement Conditional IfStmt

while (...) {} Statement Loop WhileStmt

return x; Statement Return ReturnStmt

311

Node Type Kind Example Code AST Class

f(x, y) Expression Function Call CallExpr

"hello" Expression Literal LiteralExpr

7.5.7 Conclusion

The hands-on AST construction using Modern C++ allows your interpreter to represent
C-style syntax in a scalable and memory-safe way. Each node type is modeled using
polymorphism and std::unique_ptr, ensuring correctness and clarity. With this core
set of AST classes, you now have a solid foundation to support parsing, type checking,
interpretation, optimization, and code generation for your language.
These nodes not only reflect the expressive structure of your language but also act as
the runtime scaffolding upon which future features like functions, lambdas, classes, and
modules can be elegantly built.

Chapter 8

Parsing C-Style Grammar

8.1 Grammar Design for C-Style Syntax

8.1.1 Introduction

Designing a grammar is the first fundamental step in defining the structure and
meaning of a programming language. For a C-style language, the grammar needs
to support familiar syntax constructs such as expressions, declarations, control flow,
blocks, and function definitions, while also offering opportunities for extending the
language in a structured and deterministic way.
This section outlines how to carefully craft a recursive descent-compatible
grammar using modern parsing strategies, grammar best practices, and preparation
for implementing it in C++20/23.

8.1.2 Objectives of C-Style Grammar Design

A well-designed grammar for a C-style syntax should:

• Represent the familiar structure of C-like languages (curly braces, semicolon-

312

313

terminated statements)

• Support left-to-right evaluation with clear precedence rules

• Enable unambiguous parsing of expressions and statements

• Be implementable using recursive descent parsers (LL(1) or operator-precedence
driven)

• Be modular for extensions (such as types, user-defined functions, classes)

8.1.3 Lexical Considerations Before Parsing

Before designing grammar rules, ensure that the token set is well defined. Common
token types for a C-style grammar include:

• Keywords: if, else, while, return, int, float, bool, string, const

• Operators: +, -, *, /, %, =, ==, !=, <, >, <=, >=, &&, ||, !

• Delimiters: ;, {, }, (,), ,

• Literals: integer, floating-point, string, boolean

• Identifiers

These tokens must be clearly defined in your lexer to avoid ambiguity in the grammar.

8.1.4 Top-Level Grammar Rule: Translation Unit

At the highest level, a translation unit (file, REPL session, or input buffer) is a
sequence of declarations or statements:

314

program → declaration* EOF ;

8.1.5 Statements and Declarations

Grammar rules differentiate between statements (executed actions) and declarations
(variable/function introduction).

declaration → var_decl
| function_decl
| statement ;

var_decl → type IDENTIFIER ("=" expression)? ";" ;
function_decl → type IDENTIFIER "(" parameters? ")" block ;

statement → expr_stmt
| if_stmt
| while_stmt
| return_stmt
| block ;

expr_stmt → expression ";" ;
block → "{" declaration* "}" ;
return_stmt → "return" expression? ";" ;

This supports flexible and expandable semantics.

8.1.6 Expressions and Operator Precedence

Expression parsing is best handled using precedence-based rules, moving from lower
to higher precedence (e.g., assignment to unary).

315

expression → assignment ;

assignment → IDENTIFIER "=" assignment
| logic_or ;

logic_or → logic_and ("||" logic_and)* ;
logic_and → equality ("&&" equality)* ;
equality → comparison (("==" | "!=") comparison)* ;
comparison → term ((">" | ">=" | "<" | "<=") term)* ;
term → factor (("+" | "-") factor)* ;
factor → unary (("*" | "/" | "%") unary)* ;
unary → ("!" | "-") unary

| primary ;

primary → INTEGER | FLOAT | STRING | "true" | "false"
| IDENTIFIER
| "(" expression ")" ;

Using this precedence ordering ensures correctness when parsing expressions like:

x = a + b * (c - d) / 2;

Each rule calls the higher-precedence rules, allowing for left-associative parsing.

8.1.7 Control Flow Statements

Support for if, else, and while can follow this structure:

if_stmt → "if" "(" expression ")" statement ("else" statement)? ;
while_stmt → "while" "(" expression ")" statement ;

316

These rules integrate cleanly with block so that both single-line and block bodies are
supported.

8.1.8 Function Parameters and Calls

Function declarations and calls require grammar support for parameter lists:

parameters → type IDENTIFIER ("," type IDENTIFIER)* ;

arguments → expression ("," expression)* ;

call_expr → IDENTIFIER "(" arguments? ")" ;

Calls are integrated into primary via lookahead:

primary → IDENTIFIER ("(" arguments? ")")?
| ...

8.1.9 Grammar Error Recovery Patterns

While the parser should fail on invalid input, incorporating synchronization rules helps
recover from common mistakes.
For example, after a parse error inside a block, skip to the next semicolon or closing
brace:

void synchronize() {
while (!is_at_end()) {

if (previous().type == TokenType::Semicolon) return;
switch (peek().type) {

case TokenType::If:

317

case TokenType::While:
case TokenType::Return:
case TokenType::Int:
case TokenType::Float:
case TokenType::Bool:

return;
}
advance();

}
}

This makes the parser more robust for both script input and REPL interaction.

8.1.10 C++20/23 Integration Ideas for Grammar Handling

Although parsing is mostly logic-driven, Modern C++ helps with:

• std::variant for expression node representation

• std::optional for nullable rules like else-branch or initializer

• std::format or std::ostringstream for debug output

• Pattern matching (future in C++23+ or experimental) for visitor-style
traversal or transformation

8.1.11 Grammar Extensibility and Modularity

Each rule is designed to be modular and composable:

• Statements and declarations are independent

• Expressions are layered by precedence

318

• Function support can grow with new constructs like lambdas or closures

• New statement types (e.g., switch, for) can be plugged into the statement rule

This layered and modular approach is crucial for long-term language evolution.

8.1.12 Example: Full Grammar Snippet (Subset)

program → declaration* EOF ;
declaration → var_decl | function_decl | statement ;
var_decl → type IDENTIFIER ("=" expression)? ";" ;
function_decl → type IDENTIFIER "(" parameters? ")" block ;
statement → expr_stmt | if_stmt | while_stmt | return_stmt | block ;
expr_stmt → expression ";" ;
if_stmt → "if" "(" expression ")" statement ("else" statement)? ;
expression → IDENTIFIER "=" expression | logic_or ;
logic_or → logic_and ("||" logic_and)* ;
...
primary → IDENTIFIER | NUMBER | STRING | "true" | "false" | "(" expression ")"

;↪→

8.1.13 Conclusion

Grammar design is the architectural backbone of your language parser. A solid C-style
grammar emphasizes clarity, precedence hierarchy, and modular rules that map directly
to clean AST node construction. When combined with Modern C++ features like
smart pointers, variants, and optionals, this design ensures your language is not only
expressive and correct but also maintainable and extensible for future development.

319

8.2 Expression Parsing with C Operator Precedence

8.2.1 Introduction

Expression parsing in a C-style language is one of the most critical components
in grammar implementation. It must correctly reflect operator precedence,
associativity, and expression nesting in a way that aligns with the expectations
of C/C++ developers. Misparsing expressions can break logic, cause subtle bugs, or
produce incorrect AST structures.
In this section, we dive deep into constructing a precedence-based expression parser
using recursive descent and Modern C++ techniques, adhering closely to the operator
rules of C. The implementation is designed to support modular expansion and safe
expression evaluation through AST node generation.

8.2.2 Why Precedence-Based Parsing Matters

In C and its derivatives, operators have well-defined precedence levels and
associativity rules. For example:

int x = a + b * c - d / e;

must parse as:

x = ((a + (b * c)) - (d / e))

This parsing requires the parser to respect multiplication and division binding more
tightly than addition and subtraction, and assignment binding less tightly than
both.

320

8.2.3 Operator Precedence and Associativity in C

Here is a simplified table of common C operators in descending precedence:

Table 2-1: Operator Precedence and Associativity

Precedence Operators Associativity

1 (highest) () [] . -> Left-to-right

2 ++ -- + - ! Right-to-left

3 * / % Left-to-right

4 + - Left-to-right

5 < <= > >= Left-to-right

6 == != Left-to-right

7 && Left-to-right

8

9 = += -= *= /= Right-to-left

The parsing algorithm must honor both precedence and associativity for correctness.

8.2.4 Strategy: Recursive Descent with Precedence Climbing

There are multiple strategies for parsing expressions with precedence:

• Operator-precedence parsing (shunting-yard)

• Pratt parsing

• Precedence climbing (recursive descent)

321

For hand-written interpreters in Modern C++, precedence climbing using recursive
descent is often the clearest and most maintainable. Each level of precedence is handled
by a distinct function.

8.2.5 Layered Expression Grammar (EBNF)

Each expression level is structured from highest to lowest precedence:

expression → assignment ;
assignment → IDENTIFIER "=" assignment | logic_or ;
logic_or → logic_and ("||" logic_and)* ;
logic_and → equality ("&&" equality)* ;
equality → comparison (("==" | "!=") comparison)* ;
comparison → term ((">" | ">=" | "<" | "<=") term)* ;
term → factor (("+" | "-") factor)* ;
factor → unary (("*" | "/" | "%") unary)* ;
unary → ("!" | "-") unary | primary ;
primary → literal | IDENTIFIER | "(" expression ")" ;

This grammar structure is recursive and strictly enforces operator precedence via the
calling order.

8.2.6 Implementing Precedence Parsing in C++20

Each function parses a specific level and delegates down for tighter binding. The result
is an AST node (ExprPtr) returned upwards.

• Example: Binary Expression Parsing

ExprPtr parse_term() {
ExprPtr expr = parse_factor();

322

while (match(TokenType::Plus) || match(TokenType::Minus)) {
Token op = previous();
ExprPtr right = parse_factor();
expr = std::make_unique<BinaryExpr>(std::move(expr), op.lexeme,

std::move(right));↪→

}

return expr;
}

• Nested Composition

Each level nests lower levels:

ExprPtr parse_comparison() {
ExprPtr expr = parse_term();

while (match(TokenType::Greater, TokenType::LessEqual)) {
Token op = previous();
ExprPtr right = parse_term();
expr = std::make_unique<BinaryExpr>(std::move(expr), op.lexeme,

std::move(right));↪→

}

return expr;
}

8.2.7 Unary Expressions

Unary operators (-, !) are right-associative and only bind to a single operand:

323

ExprPtr parse_unary() {
if (match(TokenType::Minus, TokenType::Bang)) {

Token op = previous();
ExprPtr right = parse_unary();
return std::make_unique<UnaryExpr>(op.lexeme, std::move(right));

}

return parse_primary();
}

8.2.8 Assignment and Right-Associativity

Assignment has the lowest precedence and is right-associative:

ExprPtr parse_assignment() {
ExprPtr expr = parse_logical_or();

if (match(TokenType::Equal)) {
Token equals = previous();
ExprPtr value = parse_assignment();

if (auto var = dynamic_cast<VariableExpr*>(expr.get())) {
return std::make_unique<AssignExpr>(var->name, std::move(value));

} else {
throw std::runtime_error("Invalid assignment target.");

}
}

return expr;
}

This allows chaining like:

324

a = b = c = 42;

Which parses as: a = (b = (c = 42))

8.2.9 Using Modern C++ Features

C++20/23 offers improvements in parser implementation:

• std::variant for unified expression trees

• std::optional for nullable constructs

• std::ranges and std::span for streamlining token consumption

• std::format for debug-friendly output

• concepts to constrain parser utilities and error-checking

Example:

template<typename T>
concept IsExpr = std::derived_from<T, Expr>;

Used to enforce that helper functions only operate on valid AST types.

8.2.10 Debugging Expression AST

Each Expr node implements debug():

std::string BinaryExpr::debug() const {
return "(" + left->debug() + " " + op + " " + right->debug() + ")";

}

325

Helps visualize parsing correctness:
Input:

a + b * c

Output:

(a + (b * c))

8.2.11 Expression Parsing Example (From Tokens to AST)

Source:

x = 3 + 4 * (2 - 1);

Steps:

1. Parse assignment: x = <expr>

2. Parse addition: 3 + <expr>

3. Parse multiplication: 4 * (2 - 1)

4. Parse parentheses: 2 - 1

AST result:

AssignExpr
�� name: "x"
�� BinaryExpr "+"

�� LiteralExpr 3
�� BinaryExpr "*"

326

�� LiteralExpr 4
�� BinaryExpr "-"

�� LiteralExpr 2
�� LiteralExpr 1

8.2.12 Conclusion

Expression parsing with C operator precedence is one of the most critical and error-
prone areas in building a language parser. Using recursive descent and Modern
C++ features, we achieve a clean, extensible parser that respects all precedence and
associativity rules of C. This approach lays a stable foundation for a fully expressive
and reliable interpreter.

8.3 Statement Parsing – Declarations, Blocks, and
Control Flow

8.3.1 Introduction

Parsing statements is a cornerstone of any C-style language parser. Statements
define how code executes: from variable declarations and scope blocks to flow-control
instructions like if, while, and return. This section walks through the design and
implementation of a statement-level parser using recursive descent, leveraging
Modern C++20/23 for safer and clearer abstraction.
Our parser assumes that the lexer has already transformed the raw source into tokens,
and that we have successfully implemented expression parsing with proper precedence.

327

8.3.2 Statement Categories in C-Style Syntax

C-style languages typically define these categories of statements:

1. Expression statements

2. Variable declarations

3. Block statements ({ ... })

4. Control flow: if, else, while, return

5. Function definitions (higher-level, handled separately)

We define a parse_statement() dispatcher that handles all the categories.

8.3.3 Core Parsing Function

StmtPtr parse_statement() {
if (match(TokenType::If)) return parse_if_statement();
if (match(TokenType::While)) return parse_while_statement();
if (match(TokenType::Return)) return parse_return_statement();
if (match(TokenType::LeftBrace))return parse_block();
if (check_type()) return parse_variable_declaration();

return parse_expression_statement();
}

Each parse_..._statement() is responsible for its own rule.

328

8.3.4 Variable Declarations

C-style variable declarations may include optional initializers:

int x;
float y = 3.14;

Grammar:

var_decl → type IDENTIFIER ("=" expression)? ";" ;

Implementation:

StmtPtr parse_variable_declaration() {
std::string type = parse_type(); // e.g., int, float
consume(TokenType::Identifier, "Expected variable name");
std::string name = previous().lexeme;

std::optional<ExprPtr> initializer;
if (match(TokenType::Equal)) {

initializer = parse_expression();
}

consume(TokenType::Semicolon, "Expected ';' after declaration");
return std::make_unique<VarDeclStmt>(type, name, std::move(initializer));

}

8.3.5 Block Statements

Blocks define scope and allow grouping multiple statements:

329

{
int a = 10;
print(a);

}

Grammar:

block → "{" declaration* "}" ;

Implementation:

StmtPtr parse_block() {
std::vector<StmtPtr> statements;

while (check(TokenType::RightBrace) && is_at_end()) {
statements.push_back(parse_statement());

}

consume(TokenType::RightBrace, "Expected '}' after block");
return std::make_unique<BlockStmt>(std::move(statements));

}

8.3.6 Expression Statements

Used for pure expressions, such as assignments or function calls:

x = 5;
log(x);

Grammar:

330

expr_stmt → expression ";" ;

Implementation:

StmtPtr parse_expression_statement() {
ExprPtr expr = parse_expression();
consume(TokenType::Semicolon, "Expected ';' after expression");
return std::make_unique<ExprStmt>(std::move(expr));

}

8.3.7 If Statements

Handles conditional branching:

if (x > 0) print("positive");
else print("zero or negative");

Grammar:

if_stmt → "if" "(" expression ")" statement ("else" statement)? ;

Implementation:

StmtPtr parse_if_statement() {
consume(TokenType::LeftParen, "Expected '(' after 'if'");
ExprPtr condition = parse_expression();
consume(TokenType::RightParen, "Expected ')' after condition");

StmtPtr then_branch = parse_statement();
std::optional<StmtPtr> else_branch;

331

if (match(TokenType::Else)) {
else_branch = parse_statement();

}

return std::make_unique<IfStmt>(std::move(condition), std::move(then_branch),
std::move(else_branch));↪→

}

8.3.8 While Loops

Used for repeating code while a condition holds:

while (i < 10) {
i = i + 1;

}

Grammar:

while_stmt → "while" "(" expression ")" statement ;

Implementation:

StmtPtr parse_while_statement() {
consume(TokenType::LeftParen, "Expected '(' after 'while'");
ExprPtr condition = parse_expression();
consume(TokenType::RightParen, "Expected ')' after condition");

StmtPtr body = parse_statement();
return std::make_unique<WhileStmt>(std::move(condition), std::move(body));

}

332

8.3.9 Return Statements

Used to return values from functions:

return 42;

Grammar:

return_stmt → "return" expression? ";" ;

Implementation:

StmtPtr parse_return_statement() {
std::optional<ExprPtr> value;
if (!check(TokenType::Semicolon)) {

value = parse_expression();
}
consume(TokenType::Semicolon, "Expected ';' after return value");
return std::make_unique<ReturnStmt>(std::move(value));

}

8.3.10 Error Recovery: Synchronization Strategy

If a parsing error occurs in the middle of a statement, we use a synchronization
technique to avoid cascading errors.

void synchronize() {
advance();
while (!is_at_end()) {

if (previous().type == TokenType::Semicolon) return;

333

switch (peek().type) {
case TokenType::If:
case TokenType::While:
case TokenType::Return:
case TokenType::Int:
case TokenType::Float:
case TokenType::Bool:

return;
}

advance();
}

}

This helps recover from incomplete or invalid statements.

8.3.11 Using Modern C++20/23 Features

Modern C++ simplifies parser construction and memory safety:

• std::optional for optional branches (else, return values)

• std::move for efficient AST node transfer

• std::unique_ptr for owning AST memory safely

• Structured bindings and constexpr if for simplifying pattern matching (in
newer C++23-compatible compilers)

8.3.12 Visual Summary of Statement Parsing

334

Table 3-2: Code Example to AST Node Mapping

Code Example AST Node

int x = 5; VarDeclStmt

{ int y = 3; print(y); } BlockStmt

if (x > 0) print(x); IfStmt

while (i < 10) { i++; } WhileStmt

return 42; ReturnStmt

log("done"); ExprStmt

8.3.13 Conclusion

Statement parsing in a C-style language is rich in structure, requiring cleanly organized
parsing rules that support declarations, scoping blocks, and control flow. Using
recursive descent and the strength of C++20/23, we achieve a parser that is modular,
safe, and extensible.

By handling each statement type separately while maintaining a unified AST
construction model, we prepare the groundwork for later interpreter stages like
semantic analysis, type checking, and evaluation. This statement parser becomes the
core skeleton that gives structure to any program written in your custom language.

8.4 Integrated Testing During Development

335

8.4.1 Introduction

Developing a new programming language requires tight feedback loops. Integrated
testing during development plays a critical role in ensuring the correctness and
reliability of the language parser, especially when handling grammar complexity,
operator precedence, statement nesting, and error handling. This section explains how
to build an automated, incremental test system for your parser using Modern
C++20/23, with a focus on AST integrity, error detection, token coverage, and
grammar conformance.
Over the past five years, integrated testing techniques in C++ projects have become
more structured, modular, and expressive due to improvements in the language and the
availability of lightweight testing frameworks.

8.4.2 Why Integrated Testing Matters for Parsing

Parsing is a foundational phase in language interpretation. A bug in the parser not only
distorts program logic but often corrupts the internal representation (AST) silently.
Therefore, real-time, automated tests offer benefits such as:

• Early detection of invalid grammar rules

• Guaranteed consistency of expression precedence and associativity

• Validation of block scoping and control structure parsing

• Continuous feedback during parser refactoring

Integrated tests are essential at every stage of the grammar implementation — from
token sequence recognition to full AST comparison.

336

8.4.3 Categories of Tests to Implement

To properly verify the correctness of your parser, implement tests at multiple levels:

Table 4-3: Test Categories and Their Purpose

Test Category Purpose

Lexer/token tests Validate token recognition, position, and types

Expression parsing Confirm correct AST structure with operator
precedence

Statement parsing Test blocks, if, while, return, declarations

Full program tests Parse entire code snippets and validate AST

Error recovery Check whether parser can recover from invalid
syntax

Each test feeds real language input and compares the result with expected AST
patterns or diagnostics.

8.4.4 Building a Parser Testing Framework with Modern C++

Use Modern C++ features to make testing expressive, modular, and maintainable.

• Core Components:

– ParserTest class for test registration and execution

– TestCase abstraction using std::function<void()>

– AST comparison using debug serialization or node fingerprints

337

– Assertion macros with C++20 consteval checks if necessary

Example:

class ParserTest {
public:

static void register_case(std::string name, std::function<void()> fn);
static void run_all();

};

Tests are declared like:

ParserTest::register_case("Parse binary expression", []() {
std::string input = "x = 1 + 2 * 3;";
auto ast = parse(input);

assert(ast->to_string() == "(x = (1 + (2 * 3)))");
});

8.4.5 Token Stream Validation

To ensure tokens are correctly extracted:

std::string code = "int a = 5;";
Lexer lexer(code);
auto tokens = lexer.tokenize();

assert(tokens[0].type == TokenType::Int);
assert(tokens[1].lexeme == "a");
assert(tokens[3].literal == "5");

This catches problems in the tokenizer before they reach the parser.

338

8.4.6 Expression Parser Unit Tests

These tests verify precedence and associativity:

std::string input = "1 + 2 * 3";
auto expr = parse_expression(input);

assert(expr->to_string() == "(1 + (2 * 3))");

Test all operator combinations:

• Binary: + - * / %

• Logical: && || !

• Comparisons: == != < > <= >=

• Assignments: = += -=

8.4.7 Statement and Block Tests

Example: testing if-else parsing

std::string input = "if (x < 10) return x; else return 0;";
auto stmt = parse_statement(input);

assert(stmt->to_string().find("IfStmt") != std::string::npos);

Include:

• Block nesting depth

• Variable declaration scope inside { }

• Combined structures like while-if or if-return

339

8.4.8 Error Reporting and Recovery Tests

Inject errors and ensure the parser:

• Detects the error

• Does not crash

• Recovers to the next safe token (;, })

Example:

std::string input = "if x > 0 return 1;";
Parser parser(input);
parser.parse();

assert(parser.has_error());
assert(parser.recovered_tokens().size() > 0);

8.4.9 Automating Test Execution

Integrate a test runner in your development cycle:

• Run after each commit using a CMake test target

• Print summary output per test

• Fail fast on parsing regressions

Use C++20 features like consteval or concepts to enforce compile-time constraints
when validating AST types or node contracts.

340

8.4.10 Lightweight Testing Libraries in C++20/23

While you can build a custom framework, C++20/23 works well with modern test
libraries:

• doctest: Single header, expressive assertions, easy to embed

• Catch2: Popular and powerful with support for sections and data generators

• GoogleTest: Rich API, but heavier; great for large-scale validation

Example with doctest:

DOCTEST_TEST_CASE("Variable declaration parsing") {
auto stmt = parse_statement("int y = 42;");
CHECK(stmt->kind() == StmtKind::VarDecl);

}

These tools allow you to focus on grammar correctness rather than infrastructure.

8.4.11 Building a Grammar Regression Suite

Maintain a folder of .test or .lang files representing core grammar constructs:

• Each file is parsed and optionally printed as AST

• Run the parser across all files and verify no errors

• Used to guard against accidental regressions

Command-line test harness:

341

./lang_test_runner tests/grammar/*.lang

8.4.12 Conclusion

Integrated testing during parser development is not optional — it is essential. With
the rise of C++20/23, your test system can be more expressive, robust, and efficient.
Testing from token streams to full blocks ensures that your grammar remains stable,
extensible, and accurate across evolving language features.
The parser is the compiler's lens into user intent. With continuous, structured testing,
that lens remains sharp.

8.5 Milestone — Parser Generating Valid ASTs for
C-Style Code

8.5.1 Introduction

This section marks a major milestone in the implementation journey of your custom
C-style language: the ability of your parser to generate valid Abstract Syntax
Trees (ASTs) from real-world C-style code input. At this stage, the parser transforms
a linear token stream into a hierarchical structure that accurately reflects the syntactic
and semantic organization of the source code. This validates the correct design of
your grammar, expression handling, block scoping, and statement parsing.
This achievement enables the next major phases: semantic analysis, runtime
interpretation, or code generation. It is also the point where testing, REPL interaction,
and file-based compilation become functional.

342

8.5.2 What Defines a “Valid AST” in a C-Style Language

An Abstract Syntax Tree is valid when it satisfies the following:

• Matches the original program structure, respecting operator precedence,
associativity, and nesting

• Preserves source code semantics (e.g., scope, control flow)

• Has no structural gaps (e.g., empty or null branches)

• Uses consistent and unique node types with accurate ownership

• Can be walked recursively without special cases

Example:
Source code:

int x = 10;
if (x > 5) {

x = x + 1;
}

AST:

BlockStmt
��� VarDeclStmt: int x = 10
��� IfStmt

��� Condition: (x > 5)
��� BlockStmt

��� ExprStmt: x = x + 1

343

8.5.3 AST Node Structure and Ownership

Your AST classes are now concrete and organized. With Modern C++:

• Nodes use std::unique_ptr to manage tree memory

• Node types are separated into Expr, Stmt, and derived classes

• Use std::variant or tagged base classes to model polymorphism

Example:

struct Stmt {
virtual ~Stmt() = default;
virtual std::string debug() const = 0;

};

struct BlockStmt : public Stmt {
std::vector<std::unique_ptr<Stmt>> body;
std::string debug() const override {

std::string result = "{\n";
for (auto& stmt : body)

result += " " + stmt->debug() + "\n";
return result + "}";

}
};

With this foundation, ASTs can be easily traversed, debugged, and executed later.

8.5.4 Parser Responsibilities at This Milestone

The parser is now fully capable of:

• Parsing complete C-style programs

344

• Differentiating between declarations, statements, and expressions

• Respecting operator precedence and scoping rules

• Recovering from syntax errors and continuing parsing

• Generating non-null, structurally sound ASTs

Covered Grammar Rules:

program → declaration* EOF ;
declaration → var_decl | statement ;
var_decl → type IDENTIFIER ("=" expression)? ";" ;
statement → if_stmt | while_stmt | block | expr_stmt | return_stmt ;
expression → assignment ;
assignment → IDENTIFIER "=" assignment | logic_or ;
logic_or → logic_and ("||" logic_and)* ;
...
primary → literal | IDENTIFIER | "(" expression ")" ;

All of the above must now be fully implemented and mapped to AST nodes.

8.5.5 Visual and Debug Tools for AST Inspection

As part of validating this milestone, a debug representation of the AST should be
developed.

• Debug Printer:

std::string ExprStmt::debug() const {
return expr->debug();

}

345

std::string BinaryExpr::debug() const {
return "(" + left->debug() + " " + op + " " + right->debug() + ")";

}

• Input:

x = 1 + 2 * 3;

• Output:

(x = (1 + (2 * 3)))

This proves:

– AST hierarchy is correct

– Precedence was respected

– No memory leaks or dangling pointers exist

8.5.6 Verifying AST Validity through Testing

To lock in this milestone, tests should confirm:

• Token sequences yield correct AST structure

• AST traversals produce expected behavior

• Serialization from AST to debug format is stable

346

• No incorrect or partial node generation

• Example Test:

TEST_CASE("Parse variable declaration with expression") {
auto stmt = parse("int x = 5 + 2;");
CHECK(stmt->debug() == "int x = (5 + 2)");

}

Use std::variant or std::visit (C++17/20) to handle node dispatching safely.

8.5.7 Integrated Use of C++20/23 Features at Milestone

Modern C++ simplifies AST construction and parser safety:

Table 5-4: Modern C++ Feature Usage in AST and
Parser Design

Feature Usage

std::unique_ptr Ownership of AST nodes and blocks

std::optional Optional else branches or return expressions

std::variant Unified node containers if needed

concepts Enforcing parser constraints for generic AST
walkers

ranges / views Scanning tokens efficiently during parsing

consteval Compile-time validation of AST node traits
(optional)

347

This leads to robust, clear, and maintainable code structures.

8.5.8 Final Checklist for Milestone

To consider this milestone complete, the following must be true:

• Complete set of AST node classes implemented

• Parser recognizes and transforms all C-style grammar constructs

• ASTs are printed or inspected in a debug-friendly format

• Parser tested against valid and invalid input

• Memory usage is safe (no leaks, no shared mutable state)

• Nodes are modular and extensible for future semantic checks

8.5.9 Preparing for Next Stages

With valid AST generation achieved, your interpreter can now:

• Perform semantic analysis (type checks, symbol tables)

• Begin evaluating expressions and statements

• Enable step-by-step execution in REPL

• Offer code generation targets like bytecode or LLVM IR in future stages

This milestone is the true “birth” of your language’s syntactic engine.

348

8.5.10 Conclusion

The ability of the parser to produce valid ASTs for complex C-style code is a
foundational achievement in building a programming language. It confirms that your
grammar, lexer, and parser cooperate correctly, and that your AST design can express
all meaningful constructs your language intends to support.
Moving forward, this AST will be the input for semantic validation and runtime
evaluation. This milestone unlocks the power to test, execute, and visualize real
programs written in your language — a true moment of transition from theory to
functionality.

Chapter 9

Advanced Parsing and C-Style Error
Handling

9.1 Error Recovery in C-Style Syntax

9.1.1 Introduction

Error recovery is a critical yet often overlooked feature in compiler and interpreter
design. In a C-style language—where block scopes, control flow, semicolon-terminated
statements, and nested expressions dominate—the ability to detect, report, and
recover from syntax errors without halting parsing is vital for a smooth development
experience. This section focuses on implementing robust error recovery mechanisms for
your parser using structured techniques and Modern C++20/23 practices.
Error recovery ensures that the parser can continue processing the remaining code
after encountering invalid input, producing as many useful error messages as possible
in a single pass. Without recovery, a single malformed token would prevent parsing an
entire program, degrading usability for both developers and tools.

349

350

9.1.2 Common Sources of Syntax Errors in C-Style Languages

A parser must gracefully handle errors from multiple sources:

Table 1-1: Common Syntax Error Sources

Error Source Example

Missing semicolons int x = 5

Unmatched braces or parentheses if (x > 0 {

Misused keywords or identifiers return 5 5;

Invalid assignment targets 5 = x + 1;

Incomplete expressions or blocks while (x < 10)

Understanding these patterns allows you to write targeted synchronization strategies.

9.1.3 Two-Phase Strategy: Detection and Recovery

Error handling in parsing typically follows this structure:

1. Detection: Throw an error (or trigger an error state) when unexpected tokens
occur.

2. Recovery: Skip tokens until a ”safe” state is found (a sync point), then resume
parsing.

Example in Recursive Descent Parser:

351

StmtPtr parse_statement() {
try {

if (match(TokenType::If)) return parse_if_statement();
// ...
return parse_expression_statement();

} catch (const ParseError&) {
synchronize();
return nullptr; // Recover with dummy node

}
}

9.1.4 Implementing synchronize() Function

Synchronization seeks known structural tokens to realign parsing. These are usually:

• Statement terminators: ;

• Block boundaries: {, }

• Statement starters: if, while, for, return, variable types

void synchronize() {
advance(); // Skip the error token

while (!is_at_end()) {
if (previous().type == TokenType::Semicolon) return;

switch (peek().type) {
case TokenType::If:
case TokenType::While:
case TokenType::Return:

352

case TokenType::Int:
case TokenType::Float:
case TokenType::Bool:
case TokenType::LeftBrace:

return;
}

advance();
}

}

This allows parsing to resume at logical code boundaries after an error.

9.1.5 ParseError Exception Handling

Use a lightweight exception type (or std::optional return type) for managing error
propagation.

class ParseError : public std::exception {
public:

explicit ParseError(const std::string& msg) : message(msg) {}
const char* what() const noexcept override { return message.c_str(); }

private:
std::string message;

};

[[noreturn]] ParseError error(const Token& token, const std::string& message) {
report_error(token, message);
throw ParseError(message);

}

Benefit with C++20:

353

Using [[noreturn]] makes intent clear to static analyzers and tools, reducing
branching errors and improving maintainability.

9.1.6 AST Recovery Node for Invalid Statements

Instead of discarding a broken statement, optionally return a special InvalidStmt node
to preserve AST shape:

class InvalidStmt : public Stmt {
public:

std::string reason;
InvalidStmt(std::string msg) : reason(std::move(msg)) {}
std::string debug() const override { return "[InvalidStmt: " + reason + "]"; }

};

This is useful for editor-based tools, AST visualizers, or static analyzers.

9.1.7 Structured Error Messaging and Token Context

Generate helpful messages with context, including token text and position:

void report_error(const Token& token, const std::string& message) {
std::cerr << "[line " << token.line << "] Error at '" << token.lexeme << "': " <<

message << "\n";↪→

}

Extend this with file names or columns when your language supports them.

9.1.8 Example: Recovery from Missing Semicolon

• Input:

354

int x = 10
x = x + 1;

• Output:

[line 1] Error at 'x': Expected ';' after variable declaration
[line 2] Successfully resumed parsing

• Parser Reaction:

– Error is thrown at line 1

– synchronize() skips until it sees the start of the next statement

– Parsing resumes normally at line 2

9.1.9 Modern C++ Integration for Safer Error Control

Table 1-2: Modern C++ Features in Error Recovery

Feature Use in Error Recovery

std::optional Return empty result instead of exceptions
(lightweight)

constexpr Encode token types or patterns statically

ranges Scan ahead to find recovery points
(views::drop_while)

355

Feature Use in Error Recovery

concepts Type-check token categories (e.g.,
is_control_keyword)

source_location
(C++20)

Report error origin at compile-time (for parser
generator tools)

These help build robust, declarative, and testable parser components.

9.1.10 Testing Error Recovery Scenarios

Include invalid input cases in your test suite to ensure resilience:

TEST_CASE("Recovery from bad if-statement") {
auto result = parse("if x > 0 { print(x); }");
CHECK(result != nullptr); // Parsing should not crash
CHECK(contains_error(result));

}

Each test verifies:

• The parser does not halt

• AST is partially recoverable

• Errors are reported accurately

9.1.11 Summary and Best Practices

356

Table 1-3: Parser Error Handling Principles

Principle Recommendation

Fail early Detect syntax errors as soon as possible

Recover gracefully Resume parsing using synchronization heuristics

Preserve structure Use dummy AST nodes to avoid parser crashes

Report clearly Inform user of error type, location, and fix

Test thoroughly Include malformed inputs in every test cycle

By adopting these strategies, your parser becomes more professional, user-friendly, and
production-grade.

9.1.12 Conclusion

Error recovery in C-style syntax is not an afterthought; it is a cornerstone of resilient
language design. With structured synchronization, expressive error diagnostics, and
AST continuity, your language can provide meaningful feedback even when programs
are incomplete or incorrect.
This section establishes the robustness of your parser and prepares it for integration
with interactive tools like editors, REPLs, and debuggers. As a result, your parser not
only recognizes structure—it respects the developer’s experience.

9.2 Rich Error Messages for Common C-Style
Mistakes

357

9.2.1 Introduction

Clear and rich error messages are a vital part of a programming language's usability
and learning curve. Developers—especially those using new languages—depend heavily
on the quality of diagnostics when encountering syntax mistakes. In this section,
we focus on designing helpful, actionable, and context-aware error messages
for common mistakes in a C-style syntax language. The approach is fully grounded in
Modern C++20/23, using its features to produce efficient and readable diagnostics
with minimal runtime overhead.
A rich error message does more than report a problem. It tells the developer:

• What went wrong

• Where it happened

• What the parser expected

• How to fix it

9.2.2 Categories of Common C-Style Syntax Mistakes

Understanding the most frequent syntax mistakes allows you to tailor your error
reporting system.

Table 2-4: Common Syntax Mistakes and Diagnostic
Insights

Mistake Type Example Expected Message Insight

Missing semicolon int x = 5 “Expected ‘;’ after variable
declaration”

358

Mistake Type Example Expected Message Insight

Unmatched brackets if (x > 5 { “Expected ‘)’ to close condition
expression”

Invalid assignment target 3 = x + 2; “Invalid assignment target; must be
identifier”

Confused operator x === 3 “Unknown operator ‘===’; did you
mean ‘==’?”

Unterminated block while (x < 5)
{

“Expected ‘}’ to close block starting
here”

Incomplete control flow
syntax

if x > 5
return x;

“Expected ‘(’ after ‘if’ keyword”

These types represent at least 80% of early parsing errors in C-style languages.

9.2.3 Designing Human-Friendly Messages

Good error messages use natural language and specific terminology. They also
follow these guidelines:

• Describe what was expected: ”Expected) but found {”

• Show what was found: Include the actual token

• Display location: Show line number and optionally column or snippet

• Provide suggestions: Where applicable, show what might fix it

Example:

359

[line 12] Error: Expected ';' after expression
--> x = 5

^ Unexpected end of line. Did you forget a semicolon?

9.2.4 Implementation in C++20/23: Error Reporter Design

Use a structured ErrorReporter class to encapsulate logic.

class ErrorReporter {
public:

void syntax_error(const Token& token, std::string_view message);
void suggestion(std::string_view hint);

};

Use std::format (C++20) for precise string formatting:

void ErrorReporter::syntax_error(const Token& token, std::string_view message) {
std::cerr << std::format("[line {}] Error at '{}': {}\n",

token.line, token.lexeme, message);
}

To improve developer guidance, attach possible code snippets and quick fixes to the
message:

error_reporter.syntax_error(token, "Expected ')' after condition");
error_reporter.suggestion("Example: if (x > 5) {...}");

9.2.5 Detecting Specific Patterns for Enhanced Diagnostics

In the parser, tailor each rule to include enhanced error messages:

360

• Example 1: Missing Semicolon

if (!match(TokenType::Semicolon)) {
error(token, "Expected ';' after statement");
suggestion("Insert a semicolon at the end of this line.");

}

• Example 2: Invalid Expression as Assignment Target

ExprPtr expr = parse_primary();
if (!is_assignable(expr)) {

error(expr_token, "Invalid assignment target");
suggestion("Only variables can appear on the left-hand side of '='.");

}

9.2.6 Enabling Context-Aware Suggestions

Use source_location (C++20) and std::string_view for context tracking.

• Example:

void report_mismatched_token(const Token& token, TokenType expected) {
std::cerr << std::format(

"[line {}] Error at '{}': Expected '{}'\n",
token.line, token.lexeme, token_type_to_string(expected));

}

Create a mapping function token_type_to_string(TokenType) for readable
output.

361

9.2.7 Providing Fix-It Hints (Optional for IDE Integration)

Design your diagnostics to support automated fix suggestions, useful for future
editor integrations:

struct FixItHint {
std::string insert;
int position;

};

report_error_with_fix("Missing ';'", token, FixItHint{";", token.end_pos});

This enables integration with custom language servers or code editors in the future.

9.2.8 Example Message Enhancements

Table 2-5: Improving Diagnostic Messages with
Suggestions

Problem Weak Message Rich Message + Suggestion

int x = ; “Syntax error” “Expected expression after ‘=’. Did
you forget a value?”

if x > 5 { “Unexpected token” “Expected ‘(’ after ‘if’. Example: if
(x > 5) { … }”

return “Invalid syntax” “Return statement requires a value
or semicolon”

362

Problem Weak Message Rich Message + Suggestion

== vs = confusion “Unexpected
operator”

“Did you mean ‘==’ for comparison
instead of ‘=’?”

9.2.9 Building a Diagnostic Table for All Grammar Rules

As you expand your grammar, build a diagnostic table per rule:

struct DiagnosticEntry {
std::string rule;
std::string error_message;
std::string fix_hint;

};

Populate this table manually or generate it from parser metadata. It provides
centralized, maintainable error message control.

9.2.10 C++20 Features That Improve Diagnostics

Table 2-6: C++20/23 Features Benefiting Error
Messaging

C++20/23 Feature Benefit in Error Messaging

std::format Clean formatting of messages and token data

source_location Compiler-time code tracing for internal tools

std::string_view Efficient manipulation of source slices

363

C++20/23 Feature Benefit in Error Messaging

concepts Improve compile-time error messages in
metaprogramming

[[nodiscard]] Alert developers about ignored error results

These features support writing diagnostics that are efficient and scalable.

9.2.11 Testing Diagnostic Accuracy

Create a diagnostic testing suite where malformed source lines produce expected
error outputs.

• Example:

std::string input = "int x = ;";
auto result = parser.parse(input);
CHECK(result.has_error());
CHECK(result.error_message().contains("Expected expression after ‘=’"));

Include all error categories in test coverage:

– Statement terminators

– Control flow heads (if, while)

– Block matching

– Operator misuse

– Literal misuse

364

9.2.12 Conclusion

Designing rich error messages is not a cosmetic feature—it is a core aspect of
language usability and learning. With clear messages, precise context, and helpful
suggestions, developers using your language will be guided through their mistakes
confidently. Rich diagnostics built with Modern C++20/23 not only improve user
experience but also enable seamless integration with tooling ecosystems such as IDEs,
REPLs, and language servers.

9.3 Parser Testing with C-Style Code Patterns

9.3.1 Introduction

A parser is the backbone of any compiler or interpreter. It must be reliable, consistent,
and capable of handling all expected (and many unexpected) code patterns. For a
C-style programming language, parser testing must cover both syntactically valid
constructs and invalid patterns that mimic real-world mistakes. This section
describes how to design a comprehensive, automated parser test suite for a modern
interpreter project using C++20/23. It focuses on test structure, code coverage,
assertion strategies, and integration with modern C++ testing libraries.

9.3.2 Purpose of Parser Testing

The parser's job is to transform a linear token stream into a structured AST.
Testing ensures:

• Correct parsing of all language constructs

• Accurate precedence and associativity handling

365

• Robust error detection and recovery

• Structural integrity of the resulting AST

• Compatibility with future grammar expansions

9.3.3 C-Style Syntax Patterns to Cover

Parser tests must reflect realistic code usage and edge cases. These are grouped into:

• a. Declarations

int x;
float y = 3.14;
bool flag = true;

• b. Expressions

x + y * z;
(x + 3) / (z - 1);
x == 10 && y != 20;

• c. Statements and Blocks

{
int x = 5;
x = x + 1;

}

366

• d. Control Flow

if (x > 0) {
x--;

} else {
x++;

}

while (x < 10) {
x += 2;

}

• e. Errors and Incomplete Syntax

int x = ; // Missing expression
if x > 0 // Missing parentheses
{ return 1; // Unmatched braces

9.3.4 Test Architecture in Modern C++

Use modern C++ testing libraries such as doctest, Catch2, or GoogleTest. Prefer
modern features like:

• std::string_view for input slices

• std::unique_ptr and std::variant for AST integrity

• constexpr matchers (C++20)

• Compile-time grammar helpers

367

• xample using Catch2:

TEST_CASE("Parse simple variable declaration") {
std::string input = "int x = 5;";
Parser parser(input);
auto ast = parser.parse();
REQUIRE(ast != nullptr);
CHECK(ast->debug() == "int x = 5;");

}

9.3.5 AST Structure Verification

Beyond parsing success, you must validate the structure of the generated AST.

• Pattern Matching via std::variant or Visitor:

CHECK(std::holds_alternative<VarDeclStmt>(*ast));
auto& decl = std::get<VarDeclStmt>(*ast);
CHECK(decl.name == "x");
CHECK(decl.type == VarType::Int);
CHECK(decl.initializer->debug() == "5");

9.3.6 Token Snapshot Tests

To ensure that parsing is triggered correctly, write token stream snapshot tests as a
pre-parser check:

Lexer lexer("if (x > 1) { x = 2; }");
auto tokens = lexer.tokenize();
CHECK(tokens.size() == 11);

368

CHECK(tokens[0].type == TokenType::If);
CHECK(tokens[3].lexeme == ">");

This helps isolate lexer/token bugs from parser issues.

9.3.7 Expression Parsing with Precedence

You must test all major operator categories in combinations to verify precedence and
associativity:

TEST_CASE("Operator precedence: addition and multiplication") {
auto ast = parser.parse("1 + 2 * 3;");
CHECK(ast->debug() == "(1 + (2 * 3))");

}

Build tests for:

• Logical: &&, ||

• Comparison: ==, !=, <, >

• Arithmetic: +, -, *, /

• Unary: -x, !x

• Grouping: (x + y)

9.3.8 Error Pattern Testing

Test not only valid input but also faulty and ambiguous code. Each test must:

• Trigger the correct error

369

• Ensure the parser recovers and parses subsequent code

• Verify the number and kind of errors reported

• Example:

TEST_CASE("Missing semicolon in declaration") {
Parser parser("int x = 10");
auto ast = parser.parse();
CHECK(ast == nullptr);
CHECK(error_reporter.count() == 1);
CHECK(error_reporter.latest_message().contains("Expected ';'"));

}

9.3.9 Parser Test Utility Functions

Design test helpers for parsing and AST validation:

auto parse_stmt(std::string_view code) -> std::unique_ptr<Stmt>;
auto parse_expr(std::string_view code) -> std::unique_ptr<Expr>;

void assert_expr_debug(const std::string& code, const std::string& expected_debug);

These make your test cases cleaner and more maintainable.

9.3.10 Using C++20 Features in Parser Tests

370

Table 3-7: C++20/23 Features Supporting Testing and
Verification

C++20/23 Feature Use Case in Testing

std::format Formatted debug output and assertion error printing

std::ranges Analyzing tokens, validating AST shape

std::span Slicing tokens for inline test assertions

consteval Build-time grammar assertions (advanced use)

concepts Enforce AST node types during test construction

These improve clarity, performance, and error visibility during testing.

9.3.11 Milestone: Confidence in Parser Robustness

Once you implement tests for:

• Declarations, expressions, and control structures

• Operator precedence and associativity

• Syntax error handling and recovery

• Edge cases and partial input

You can consider your parser verified for correctness. The test suite becomes your
safety net as the language evolves, ensuring that even with future feature additions or
optimizations, your parser remains predictable, reliable, and structurally sound.

371

9.3.12 Conclusion

Parser testing is more than a quality assurance task—it is a form of language
specification in code. The coverage and clarity of these tests reflect the depth of
your language's grammar design. By building comprehensive tests around real-world
C-style code patterns and incorporating modern C++20/23 capabilities, you ensure the
long-term integrity of your language's core: the parser. This lays a solid foundation for
semantic analysis, interpretation, and toolchain integration in the next development
phases.

9.4 Milestone – Robust Parser with Excellent C-Style
Error Reporting

9.4.1 Introduction

This section marks a major milestone in the language implementation journey: a fully
functional, fault-tolerant parser that can process realistic C-style code and provide
clear, rich, and actionable error diagnostics. This parser becomes the backbone
for the upcoming phases—semantic analysis, interpretation, and optimization.
Achieving this milestone means more than passing syntax trees through tests. It
requires precision in grammar parsing, robust error detection and recovery, and
integration of modern C++20/23 features for expressive diagnostics and reliable
performance.

9.4.2 Defining “Robustness” in a Parser

A robust parser is characterized by:

• The ability to accurately parse valid C-style code into an AST

372

• Handling malformed or partial input gracefully

• Continuing parsing after encountering errors (not halting at first issue)

• Providing clear, context-aware diagnostics

• Maintaining structural integrity of the AST despite recoveries

• Enabling automated testing of parser behavior under normal and error
scenarios

Robustness is the quality that transforms a basic parser into a tool ready for
integration into IDEs, linters, compilers, and interpreters.

9.4.3 Key Features of the Final Parser at This Stage

At this milestone, the parser should support:

Table 4-8: Key Features of C-Style Parser
Implementation

Feature Description

Full grammar for C-style
constructs

Declarations, blocks, control flow, expressions

Precedence-correct
expression parsing

Operators grouped with correct associativity

Braced block parsing {}-scoped statements with nested structures

Statement terminators Detection of missing ; and block delimiters

Synchronization recovery Continue parsing after error via token skipping

373

Feature Description

Rich diagnostics Specific error messages with line/token context

AST construction Structure generated with unique_ptr or variant

Token feedback loop Integration with lexer and token stream navigation

9.4.4 Unified Error Reporting Infrastructure

The parser now includes a centralized error reporting mechanism that
distinguishes:

• Syntax errors (unexpected tokens, missing parts)

• Semantic hints (suggested corrections)

• Recovery notes (warnings about skipped regions)

• Sample error output:

[line 7] Error: Expected ';' after variable declaration
--> int x = 5

^

Note: Insert a semicolon to terminate the statement

This is enabled using std::format (C++20), structured ErrorReporter classes,
and clear token metadata.

374

9.4.5 Error Resilience with Synchronization Techniques

Using synchronization points (like ;, {, }, if, while, for) ensures the parser skips over
malformed input and resumes parsing cleanly.

• Example Code:

void synchronize() {
while (!is_at_end()) {

if (previous().type == TokenType::Semicolon) return;

switch (peek().type) {
case TokenType::If:
case TokenType::While:
case TokenType::For:
case TokenType::Return:
case TokenType::LeftBrace:
case TokenType::RightBrace:

return;
}
advance();

}
}

This technique is now integrated in all statement-level parsing rules,
ensuring graceful recovery.

9.4.6 AST Structural Integrity

In error cases, rather than returning nullptr, the parser now returns dummy nodes
(InvalidStmt, ErrorExpr) to maintain AST continuity. This is essential for tools that
analyze or visualize the AST even in broken code.

375

class InvalidStmt : public Stmt {
public:

std::string message;
InvalidStmt(std::string m) : message(std::move(m)) {}
std::string debug() const override { return "[InvalidStmt: " + message + "]"; }

};

9.4.7 Parser Test Coverage at Milestone

Your test suite should now include:

• Valid C-style declarations

• Complex nested expressions and blocks

• All major control flows (if, while, for, return)

• Error conditions: missing tokens, unmatched braces, invalid assignments

• Recovery tests: continuing after a failure

• AST validation checks

Each test case confirms both correct output and correct error reporting.

9.4.8 Using C++20/23 to Improve Parser Quality

376

Table 4-9: C++20/23 Features Beneficial for Parser
Implementation

Feature Benefit in Parser Implementation

std::variant Represent AST node alternatives cleanly

std::format Elegant and readable error messages

std::source_location Track source of internal parser errors (debug/dev
mode)

std::ranges Cleanly manipulate tokens when scanning for
recovery points

[[nodiscard]] Prevent silent error ignoring in parse return
values

These features lead to readable, maintainable, and type-safe parser design.

9.4.9 Debug Mode with Verbose Token and Parse Logs

At this stage, a debug mode can be toggled (via CLI or config) to print:

• Token stream

• AST hierarchy

• Errors with their recovery actions

This allows you and contributors to diagnose parser behavior in fine detail.

377

if (debug_mode) {
std::cout << "Parsed Expression Node: " << expr->debug() << "\n";

}

9.4.10 Code Snapshot: Final Parser API Example

class Parser {
public:

explicit Parser(std::vector<Token> tokens);
std::vector<std::unique_ptr<Stmt>> parse();
bool has_errors() const;
const std::vector<ParseError>& errors() const;

};

The parser now exposes its diagnostics externally, enabling integration with REPL,
editors, and test systems.

9.4.11 Milestone Summary Checklist

Table 4-10: Parser Feature Implementation Status

Feature or Goal Status

Full C-style statement parsing True

Expression precedence and associativity True

Error recovery and synchronization True

AST construction (even after errors) True

378

Feature or Goal Status

Specific and rich error messages True

Integration-ready parser API True

Modular and testable parser design True

This milestone establishes the core reliability of your language's front-end.

9.4.12 Conclusion

Reaching this parser milestone is a turning point. From this foundation, your language
becomes usable, educational, and extendable. Thanks to Modern C++ features and
structured design, you now have a production-ready parser that balances grammar
accuracy, error clarity, and resilience.
The next stages—type checking, evaluation, and runtime management—can now build
upon this solid parsing layer with full confidence in the integrity and clarity of your
program representation.

Part IV

Evaluation Engine

379

Chapter 10

Value System for C-Style Types

10.1 Type System – int, float, bool, string, arrays

Designing a reliable and efficient type system is the foundational step in implementing
a value system for a C-style programming language. This section discusses how to
define, manage, and evaluate primitive and compound types (int, float, bool, string,
and arrays) using idiomatic and modern C++20/23 techniques. The focus is on
establishing an internal representation that balances runtime flexibility with type safety
and extensibility.

10.1.1 Core Goals of the Type System

• Clarity: Simple, well-understood primitives familiar to C/C++ programmers.

• Extensibility: Ability to easily expand to support custom structs, enums, and
more complex user-defined types.

• Performance: Efficient memory and runtime behavior with optional
optimization paths.

381

382

• Compatibility: Interoperability with modern C++ constructs like
std::variant, constexpr, concepts, and modules.

10.1.2 Defining the Value Type

All types must be encapsulated in a single runtime-dispatchable Value class, commonly
implemented via std::variant in C++17+, but more effectively enhanced using
std::variant, std::visit, and constexpr if with C++20/23.

using IntType = int64_t;
using FloatType = double;
using BoolType = bool;
using StringType = std::string;
using ArrayType = std::vector<Value>; // Recursive definition

struct Value {
using VariantType = std::variant<

IntType,
FloatType,
BoolType,
StringType,
ArrayType

>;

VariantType data;

// Constructors for implicit conversion
Value(IntType v) : data(v) {}
Value(FloatType v) : data(v) {}
Value(BoolType v) : data(v) {}
Value(const StringType& v) : data(v) {}
Value(const ArrayType& v) : data(v) {}

383

template<typename T>
bool is() const {

return std::holds_alternative<T>(data);
}

template<typename T>
T& get() {

return std::get<T>(data);
}

};

10.1.3 Primitive Types Implementation

1. int

• 64-bit signed integers (int64_t) ensure uniformity across platforms.

• Operations: addition, subtraction, multiplication, division, modulus,
comparisons.

• Cast support to float and bool.

2. float

• Use double precision (double is preferred over float due to improved
numerical stability).

• Implicit widening from int.

• Comparisons and arithmetic must handle IEEE floating-point quirks (e.g.,
NaN, ±∞).

• Use std::isnan, std::isinf where needed.

384

3. bool

• Stored as bool, but in evaluation:

– 0 and 0.0 become false.

– Non-zero values become true.

• Boolean short-circuiting must be built at the AST evaluation level, not the
Value level.

4. string

• Internally represented using std::string for UTF-8 support and STL
compatibility.

• Support concatenation, equality, indexing, and slicing.

• Literal support via string interning for performance optimization (optionally
using unordered_map).

10.1.4 Arrays

Arrays are homogenous in C-style syntax but for interpreter flexibility, can be runtime-
homogenous or heterogeneous.

• Internal Representation:

using ArrayType = std::vector<Value>;

• Key Features:

– Dynamic sizing (push_back, resize, etc.)

385

– Index-based access and bounds checking

– Element-wise operations (copy, map, filter)

• Optional Enhancements:

– Type-checked arrays: Add metadata for static-like type checking.

– Slicing: Provide subviews or shallow-copies via std::span or custom slice
class.

10.1.5 Type Promotion and Compatibility Rules

Value promote(const Value& lhs, const Value& rhs) {
if (lhs.is<FloatType>() || rhs.is<FloatType>())

return FloatType{ lhs.toFloat() + rhs.toFloat() };
else if (lhs.is<IntType>() && rhs.is<IntType>())

return IntType{ lhs.get<IntType>() + rhs.get<IntType>() };
// Add rules for string, bool, etc.

}

Implement type promotion rules to allow natural C-like expression resolution:

Table 1-1: Type Promotion Rules

LHS RHS Result

int int int

int float float

float int float

bool int int

386

LHS RHS Result

bool float float

string any string (concat)

Use std::visit with lambdas and if constexpr to write compile-time dispatch logic
efficiently.

10.1.6 Using Concepts for Type-Safe Operations (C++20/23)

template<typename T>
concept Numeric = std::is_same_v<T, IntType> || std::is_same_v<T, FloatType>;

template<Numeric T>
T add(T lhs, T rhs) {

return lhs + rhs;
}

This enforces compile-time restrictions when extending the language interpreter’s core
operators.

10.1.7 Type Inspection and Debugging Utilities

std::string typeName(const Value& v) {
return std::visit([](auto&& arg) -> std::string {

using T = std::decay_t<decltype(arg)>;
if constexpr (std::is_same_v<T, IntType>) return "int";
else if constexpr (std::is_same_v<T, FloatType>) return "float";
else if constexpr (std::is_same_v<T, BoolType>) return "bool";

387

else if constexpr (std::is_same_v<T, StringType>) return "string";
else if constexpr (std::is_same_v<T, ArrayType>) return "array";
else return "unknown";

}, v.data);
}

10.1.8 Interfacing with AST Evaluation

Each node of the AST will return a Value, and expression nodes will perform type-
checked operations on these. Control flow structures (if, while, etc.) expect bool
values, and failure to evaluate to bool must trigger runtime errors with helpful
diagnostics.
Example:

if (!cond.is<BoolType>())
throw std::runtime_error("Condition must evaluate to a boolean.");

10.1.9 Future-Proofing and Extensibility

• Add support for:

– Structs (std::unordered_map<std::string, Value>)

– Enums (backed by int or strings)

– Nullable types (std::optional<Value>)

• Support C++23's std::expected for error-aware evaluations.

• C++23 deducing this and explicit object parameters can simplify fluent
API for Value.

388

10.1.10 Conclusion

This section establishes a flexible yet powerful Value type to model the foundational
types (int, float, bool, string, array) of a new C-style language. Using modern
C++20/23 constructs such as std::variant, concepts, and compile-time checks
ensures that the interpreter core remains maintainable, fast, and safe, while offering
room to scale the type system toward more complex language features in future
chapters.

10.2 Type Checking and Conversion in C-Style
Context

C-style languages like C, C++, and their derivatives are known for their flexible but
error-prone type system. In a modern interpreter inspired by such languages, designing
a robust and predictable type checking and conversion mechanism is essential
to support dynamic evaluation, meaningful diagnostics, and behavior faithful to the
original C-style semantics. In this section, we explore compile-time and runtime
type analysis, implicit and explicit conversions, and how to implement these
mechanisms effectively using C++20 and C++23 features.

10.2.0.1 2.1 Overview of C-Style Type Semantics

In C-style languages:

• Implicit type conversions (also called coercions) are common in expressions
involving mixed types.

• Type promotion occurs in arithmetic (e.g., int to float).

389

• Boolean context uses zero/non-zero or null/non-null rules rather than strict
bool types.

• Weak typing allows risky or silent conversions unless restricted by language
design.

Your interpreter must choose:

• Strict type checking with explicit casts only, or

• Relaxed C-style typing with implicit promotions and conversions.

This section assumes the latter, following familiar C/C++ behavior.

10.2.0.2 2.2 Internal Type System for the Interpreter

All values are wrapped in a Value object. This object is built using std::variant to
represent one of the defined types (int, float, bool, string, array).

using ValueType = std::variant<int64_t, double, bool, std::string,
std::vector<Value>>;↪→

A TypeKind enum may be maintained to simplify type comparison without triggering
variant visits:

enum class TypeKind { Int, Float, Bool, String, Array };

TypeKind getTypeKind(const Value& v);

This allows quick dispatching during type checking.

390

10.2.0.3 2.3 Implicit Type Conversion Rules

Following C-style rules, your interpreter should define priority levels for types in
expression evaluation:

Table 2-2: Type Promotion Rank

Rank Type

1 float

2 int

3 bool

When two types are involved:

• Promote bool → int

• Promote int → float

• Never promote string implicitly

• string participates only in concatenation or explicit casts

Example Conversion Logic:

Value promoteForArithmetic(const Value& lhs, const Value& rhs) {
if (lhs.is<double>() || rhs.is<double>())

return Value(lhs.toFloat() + rhs.toFloat());
else if (lhs.is<int64_t>() && rhs.is<int64_t>())

return Value(lhs.get<int64_t>() + rhs.get<int64_t>());
else if (lhs.is<bool>() && rhs.is<bool>())

return Value(static_cast<int64_t>(lhs.get<bool>()) +
static_cast<int64_t>(rhs.get<bool>()));↪→

391

else
throw std::runtime_error("Unsupported types in arithmetic expression.");

}

10.2.0.4 2.4 Explicit Conversion and Casting

Support explicit casting through a built-in cast() operation in the language syntax:

cast(x, "float")

In the interpreter:

Value castTo(const Value& v, TypeKind target) {
switch (target) {

case TypeKind::Int:
if (v.is<int64_t>()) return v;
if (v.is<double>()) return static_cast<int64_t>(v.get<double>());
if (v.is<bool>()) return static_cast<int64_t>(v.get<bool>());
break;

case TypeKind::Float:
if (v.is<double>()) return v;
if (v.is<int64_t>()) return static_cast<double>(v.get<int64_t>());
if (v.is<bool>()) return static_cast<double>(v.get<bool>());
break;

case TypeKind::Bool:
if (v.is<bool>()) return v;
if (v.is<int64_t>()) return static_cast<bool>(v.get<int64_t>());
if (v.is<double>()) return static_cast<bool>(v.get<double>());
break;

392

case TypeKind::String:
return Value(to_string(v)); // defined separately

default:
throw std::runtime_error("Invalid cast.");

}
throw std::runtime_error("Unsupported cast operation.");

}

Modern C++ enables this conversion logic to be simplified with std::visit, lambdas,
and if constexpr.

10.2.0.5 2.5 Type Checking in Expressions

The interpreter should perform runtime type checking for:

• Binary operations (e.g., +, -, *, /)

• Comparison operators (==, !=, <, >)

• Logical operators (&&, ||)

• Function arguments

• Conditional expressions

Use this strategy:

1. Validate expected types.

2. Promote types if needed.

3. Execute operation.

393

Example for addition:

Value evaluateAdd(const Value& lhs, const Value& rhs) {
if (lhs.is<std::string>() || rhs.is<std::string>())

return Value(to_string(lhs) + to_string(rhs));

if (lhs.is<double>() || rhs.is<double>())
return Value(lhs.toFloat() + rhs.toFloat());

if (lhs.is<int64_t>() && rhs.is<int64_t>())
return Value(lhs.get<int64_t>() + rhs.get<int64_t>());

throw std::runtime_error("Addition not supported for these types.");
}

10.2.0.6 2.6 Boolean Context Evaluation

In C-style languages, non-zero and non-null values are treated as true. To implement
this:

bool evaluateAsBool(const Value& v) {
return std::visit([](auto&& val) -> bool {

using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, bool>) return val;
else if constexpr (std::is_same_v<T, int64_t>) return val = 0;
else if constexpr (std::issamev < T, double >)returnval=0.0;

else if constexpr (std::is_same_v<T, std::string>) return val.empty();
else if constexpr (std::issamev < T, std :: vector < V alue >>)returnval.empty();

else return false;
}, v.data);

}

394

This enables evaluating conditions in if, while, and logical expressions.

10.2.0.7 2.7 Error Diagnostics and Type Mismatch Handling

For better error reporting, use type introspection:

void expectType(const Value& v, TypeKind expected, const std::string& context) {
if (getTypeKind(v) != expected) {

throw std::runtime_error("Type error in " + context + ": expected " +
to_string(expected) + ", got " + typeName(v));

}
}

Helpful diagnostics are key for a better developer experience.

10.2.0.8 2.8 Leveraging C++20/23 Features

Modern C++ aids type checking and conversion logic:

• consteval and constexpr to optimize type logic at compile-time for literals and
constant folding.

• std::visit with lambdas and if constexpr for clean and efficient dispatch.

• concepts to restrict template operations during compile-time type-safe
transformations.

• std::expected (C++23) to return value or error when casting or evaluating.

Example using std::expected:

395

std::expected<Value, std::string> safeCastToInt(const Value& v) {
if (v.is<int64_t>()) return v;
if (v.is<double>()) return static_cast<int64_t>(v.get<double>());
return std::unexpected("Cannot cast to int.");

}

10.2.0.9 Conclusion

C-style type systems are permissive but demand a clear, internally consistent
interpretation strategy when reimplemented. With C++20/23, we can build a value
system that reflects the flexibility of C-style conversions, while adding the safety and
diagnostics of modern interpreter design. This section formalizes runtime type checking,
implicit and explicit conversions, type promotions, and contextual evaluations in
conditions or expressions — forming the backbone of a realistic evaluation engine for
your new language.

10.3 Value Operations Matching C Semantics

To faithfully replicate the behavior of C-style languages in a modern interpreter, value
operations—including arithmetic, logical, relational, and assignment semantics—must
mirror those of the C language standard. This requires handling type promotions,
operator precedence, overflow behavior, short-circuit logic, and comparison logic with
precision. This section presents a detailed, modern C++20/23-based implementation
of such value operations using std::variant, std::visit, and advanced dispatching
logic.

396

10.3.1 Core Objectives

• Match C's behavior for mixed-type expressions, boolean evaluations, and
operator effects.

• Support overload dispatch for binary and unary operators using clean and
efficient code.

• Enable diagnostics and error reporting for invalid or undefined operations.

• Preserve precision and overflow behavior consistent with C's runtime
model.

10.3.2 Unified Operator Dispatcher Using std::variant and
Lambdas

Each operator (e.g., +, -, *, /, ==, <, !, &&, ||) is implemented as a standalone function
that accepts Value instances and internally performs:

• Type inspection

• Promotion (if needed)

• Evaluation

• Result construction

Value applyAdd(const Value& lhs, const Value& rhs) {
return std::visit([](auto&& a, auto&& b) -> Value {

using A = std::decay_t<decltype(a)>;
using B = std::decay_t<decltype(b)>;

397

if constexpr (std::is_same_v<A, std::string> || std::is_same_v<B,
std::string>) {↪→

return std::string(to_string(a)) + std::string(to_string(b));
} else if constexpr ((std::is_arithmetic_v<A> || std::is_same_v<A, bool>) &&

(std::is_arithmetic_v || std::is_same_v<B, bool>)) {
if constexpr (std::is_same_v<A, double> || std::is_same_v<B, double>)

return static_cast<double>(a) + static_cast<double>(b);
else

return static_cast<int64_t>(a) + static_cast<int64_t>(b);
} else {

throw std::runtime_error("Invalid operands for +");
}

}, lhs.data, rhs.data);
}

Use this pattern for every C-style operator. It allows:

• Proper handling of string + anything as string concatenation.

• int + float, bool + int, etc., promoted correctly.

• Early failure for unsupported operations.

10.3.3 Arithmetic Operators: +, -, *, /, %

Key Rules:

• Promote bool → int → float.

• % is valid only for integer types.

• Division by zero detection must mirror C's undefined behavior by throwing
runtime exceptions.

398

Value applyMod(const Value& lhs, const Value& rhs) {
if (lhs.is<int64t > ()||rhs.is< int64_t> ())

throw std::runtime_error("Modulo requires integer operands");
auto b = rhs.get<int64_t>();
if (b == 0)

throw std::runtime_error("Modulo by zero");
return lhs.get<int64_t>() % b;

}

Modern C++ enables custom overload sets using concepts if extended to static
dispatch.

10.3.4 Comparison Operators: ==, !=, <, >, <=, >=

These operations must return bool, not int. Behavior must match:

• Integers compared numerically.

• Floats follow IEEE comparison semantics.

• Strings compare lexicographically.

• Arrays may compare by size or content (optionally unsupported for simplicity).

Value applyEqual(const Value& lhs, const Value& rhs) {
return std::visit([](auto&& a, auto&& b) -> bool {

using A = std::decay_t<decltype(a)>;
using B = std::decay_t<decltype(b)>;

if constexpr (std::is_same_v<A, B>) {
return a == b;

} else if constexpr (std::is_arithmetic_v<A> && std::is_arithmetic_v) {

399

return static_cast<double>(a) == static_cast<double>(b);
} else {

return false; // Different types not equal
}

}, lhs.data, rhs.data);
}

10.3.5 Logical Operators: &&, ||, !

C-style logical operators require short-circuit evaluation, which must be handled at
the AST evaluation level, not inside Value.

Value evalLogicalAnd(const Value& lhsExpr, std::function<Value()> rhsEval) {
if (!evaluateAsBool(lhsExpr)) return Value(false);
return Value(evaluateAsBool(rhsEval()));

}

This ensures rhsEval() is not evaluated if lhsExpr is false, mimicking:

if (a && b) // b is not evaluated if a is false

10.3.6 Unary Operators: -, +, !

Unary operators act on a single operand. Implement them using std::visit.

Value applyUnaryNegate(const Value& v) {
return std::visit([](auto&& val) -> Value {

using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, int64_t>)

return -val;

400

else if constexpr (std::is_same_v<T, double>)
return -val;

else
throw std::runtime_error("Invalid operand for unary minus");

}, v.data);
}

10.3.7 Assignment and Compound Assignment: =, +=, -=, etc.

The interpreter must support assignment expressions that:

• Store a computed Value in a symbol table.

• Respect C-like l-value rules (e.g., only assignable variables or dereferenced arrays).

Value assign(SymbolTable& symbols, const std::string& name, const Value& rhs) {
symbols[name] = rhs;
return rhs;

}

Compound assignments combine binary logic and assignment:

Value applyPlusEquals(SymbolTable& symbols, const std::string& name, const Value&
rhs) {↪→

auto& lhs = symbols[name];
lhs = applyAdd(lhs, rhs);
return lhs;

}

You can optimize these using references and in-place mutation.

401

10.3.8 String and Array Specific Operations

• String + string → Concatenation.

• String[n] → Character access (return as string or int).

• Array[n] → Element access, with bounds checking.

• Array.length → Expose .length or size() via built-in syntax.

10.3.9 Operator Precedence and Evaluation Order

Although not handled directly in the value system, it must be mentioned:

• Operator precedence must be enforced during AST construction.

• Evaluation order (left-to-right, short-circuit) is defined in the parser/evaluator
logic.

10.3.10 Overflow and NaN Behavior

• Integer overflow: Can use C++ behavior (two's complement wraparound).

• Floating-point: Leverage std::isnan, std::isinf from <cmath> to detect
special cases.

• Interpreter can be extended with runtime flags for ”strict mode” to throw on
overflow.

10.3.11 Leveraging Modern C++ Features

C++20/23 tools that strengthen the implementation:

402

• std::visit and if constexpr: Type-safe dispatch.

• concepts: Restrict operator templates.

• constexpr functions: For constant folding in expressions.

• consteval (C++20): For compile-time evaluation of constant expressions.

• std::expected (C++23): For safe operator evaluation with error propagation.

10.3.12 Conclusion

This section establishes a robust, clean, and modular set of C-style value operations
implemented using the full expressive power of modern C++20/23. Arithmetic,
comparison, logic, and assignment are handled through type-aware dispatch, safe
promotion rules, and behavioral mirroring of C’s well-understood semantics. This
allows your interpreter to behave as a predictable C-style runtime while being powered
by the safety, clarity, and modularity of modern C++.

10.4 Hands-on — Value System with C-Style Type
Behavior

10.4.0.1 Introduction

This hands-on section translates theory into practice by building a fully operational
value system that captures the dynamic runtime behavior of a typical C-style
language. You will use modern C++20/23 features to implement a flexible, type-
safe, and extensible runtime type system capable of handling arithmetic, logical,
relational, and assignment operations in an interpreter context. The code is designed

403

to be integrated directly into the evaluation engine and AST traversal logic of your
language.

10.4.1 Defining the Value System

The Value type must support these runtime types:

• int (64-bit signed)

• float (double)

• bool

• string (std::string)

• array (std::vector<Value>)

Core Representation

#include <variant>
#include <string>
#include <vector>
#include <iostream>
#include <stdexcept>
#include <cmath>

struct Value;

using IntType = int64_t;
using FloatType = double;
using BoolType = bool;
using StringType = std::string;
using ArrayType = std::vector<Value>;

404

using ValueVariant = std::variant<IntType, FloatType, BoolType, StringType,
ArrayType>;↪→

struct Value {
ValueVariant data;

Value(IntType v) : data(v) {}
Value(FloatType v) : data(v) {}
Value(BoolType v) : data(v) {}
Value(const StringType& v) : data(v) {}
Value(const ArrayType& v) : data(v) {}

template<typename T>
bool is() const {

return std::holds_alternative<T>(data);
}

template<typename T>
T& get() {

return std::get<T>(data);
}

template<typename T>
const T& get() const {

return std::get<T>(data);
}

};

405

10.4.2 Boolean Context Evaluation

bool toBool(const Value& v) {
return std::visit([](auto&& val) -> bool {

using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, BoolType>) return val;
else if constexpr (std::is_same_v<T, IntType>) return val = 0;
else if constexpr (std::issamev < T,F loatType >)returnval=0.0;

else if constexpr (std::is_same_v<T, StringType>) return val.empty();
else if constexpr (std::issamev < T,ArrayType >)returnval.empty();

else return false;
}, v.data);

}

Used in if, while, logical operations.

10.4.3 Arithmetic Operations (Example: Addition)

Value add(const Value& lhs, const Value& rhs) {
return std::visit([](auto&& a, auto&& b) -> Value {

using A = std::decay_t<decltype(a)>;
using B = std::decay_t<decltype(b)>;

if constexpr (std::is_same_v<A, StringType> || std::is_same_v<B, StringType>)
{↪→

return Value(std::string(a) + std::string(b));
} else if constexpr ((std::is_arithmetic_v<A> || std::is_same_v<A, BoolType>)

&&↪→

(std::is_arithmetic_v || std::is_same_v<B,
BoolType>)) {↪→

if constexpr (std::is_same_v<A, FloatType> || std::is_same_v<B,
FloatType>)↪→

406

return static_cast<FloatType>(a) + static_cast<FloatType>(b);
else

return static_cast<IntType>(a) + static_cast<IntType>(b);
} else {

throw std::runtime_error("Invalid operands for '+'");
}

}, lhs.data, rhs.data);
}

You can replicate this pattern for sub, mul, div, and mod.

10.4.4 Relational Comparison

Value equal(const Value& lhs, const Value& rhs) {
return std::visit([](auto&& a, auto&& b) -> BoolType {

using A = std::decay_t<decltype(a)>;
using B = std::decay_t<decltype(b)>;
if constexpr (std::is_same_v<A, B>) return a == b;
else if constexpr (std::is_arithmetic_v<A> && std::is_arithmetic_v)

return static_cast<FloatType>(a) == static_cast<FloatType>(b);
else return false;

}, lhs.data, rhs.data);
}

This gives consistent behavior for numeric and string types. Extend this for !=, <, >, <=,
>=.

10.4.5 Logical Operations

C-style logic uses short-circuit evaluation, so the interpreter must delay evaluating the
right-hand expression using function wrapping.

407

Value logicalAnd(const Value& lhs, std::function<Value()> rhs) {
if (!toBool(lhs)) return Value(false);
return Value(toBool(rhs()));

}

Value logicalOr(const Value& lhs, std::function<Value()> rhs) {
if (toBool(lhs)) return Value(true);
return Value(toBool(rhs()));

}

Value logicalNot(const Value& v) {
// return Value(!toBool(v)); // just for pass overleaf compiler

}

This supports constructs like:

if (a && b) // b evaluated only if a is true

10.4.6 String Indexing and Array Access

Value index(const Value& container, const Value& idx) {
if (!idx.is<IntType>())

throw std::runtime_error("Index must be an integer");

IntType i = idx.get<IntType>();

if (container.is<StringType>()) {
const auto& s = container.get<StringType>();
if (i < 0 || i >= static_cast<IntType>(s.size()))

throw std::runtime_error("String index out of bounds");

408

return Value(std::string(1, s[i]));
} else if (container.is<ArrayType>()) {

const auto& arr = container.get<ArrayType>();
if (i < 0 || i >= static_cast<IntType>(arr.size()))

throw std::runtime_error("Array index out of bounds");
return arr[i];

} else {
throw std::runtime_error("Cannot index this type");

}
}

10.4.7 Assignment Simulation

You can simulate assignment via a variable map:

#include <unordered_map>

using SymbolTable = std::unordered_map<std::string, Value>;

void assign(SymbolTable& table, const std::string& name, const Value& value) {
table[name] = value;

}

Value get(SymbolTable& table, const std::string& name) {
if (table.find(name) == table.end())

throw std::runtime_error("Undefined variable: " + name);
return table[name];

}

409

10.4.8 Debugging and Type Introspection

std::string typeOf(const Value& v) {
return std::visit([](auto&& val) -> std::string {

using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, IntType>) return "int";
else if constexpr (std::is_same_v<T, FloatType>) return "float";
else if constexpr (std::is_same_v<T, BoolType>) return "bool";
else if constexpr (std::is_same_v<T, StringType>) return "string";
else if constexpr (std::is_same_v<T, ArrayType>) return "array";
else return "unknown";

}, v.data);
}

10.4.9 Example Program Evaluation

Sample pseudocode using the above system:

SymbolTable vars;

assign(vars, "x", Value(42));
assign(vars, "y", Value(3.14));
assign(vars, "z", add(get(vars, "x"), get(vars, "y")));

std::cout << "z = " << get(vars, "z").get<FloatType>() << "\n";
std::cout << "type(z) = " << typeOf(get(vars, "z")) << "\n";

Expected output:

410

z = 45.14
type(z) = float

10.4.10 Optional Enhancements

• Use std::expected<Value, std::string> instead of throw to allow graceful
error propagation.

• Add .length property access support via member system.

• Introduce consteval evaluations for constant-folding in the AST.

• Hook into a Visitor-based evaluation model for full interpreter support.

10.4.11 Conclusion

This hands-on section forms the backbone of your interpreter's dynamic evaluation
engine, reflecting the core of C-style behavior with type-safe and modern
C++20/23 implementation. You now have a practical system for managing and
evaluating values of various types in expressions, conditions, and function calls—
mirroring the semantics of the C language while leveraging the expressive power of
contemporary C++.

Chapter 11

Environment and C-Style Scoping

11.1 Symbol Table Design with C-Style Block
Scoping

11.1.0.1 Introduction

In C-style programming languages, variables are scoped to blocks ({ ... }) and follow
a lexical scoping model. A variable declared inside a block is visible only within that
block and its sub-blocks. Redeclaring a variable in an inner block shadows the outer
variable. This section explains how to design a symbol table system that reflects
block-level scoping semantics and supports nested environments using modern
C++20/23 idioms such as smart pointers, std::unordered_map, and concepts.

11.1.1 Goals of the Symbol Table

The symbol table must:

• Store and retrieve variables by name.

411

412

• Respect C-style block scoping rules.

• Allow variable shadowing in inner blocks.

• Support dynamic evaluation with efficient lookup.

• Facilitate future extension to function scopes and closures.

11.1.2 Lexical Scoping Model Recap

C-style scoping uses static lexical blocks, not dynamic runtime stack frames for local
scope resolution.
Example:

int x = 10;
{

int x = 20; // shadows outer x
{

int y = x; // refers to inner x
}

}

Variables are resolved from innermost to outermost scope.

11.1.3 Core Structure: Chained Symbol Tables

We implement block scoping using chained environments, where each block has a
symbol table that points to its enclosing scope.

Core Types

413

#include <unordered_map>
#include <memory>
#include <string>
#include <stdexcept>

struct Value; // Defined in the Value System

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;

Environment(Ptr parent = nullptr) : parent(parent) {}

void declare(const std::string& name, const Value& value) {
if (symbols.contains(name))

throw std::runtime_error("Variable already declared in this block: " +
name);↪→

symbols[name] = value;
}

void assign(const std::string& name, const Value& value) {
if (symbols.contains(name)) {

symbols[name] = value;
} else if (parent) {

parent->assign(name, value);
} else {

throw std::runtime_error("Undeclared variable: " + name);
}

}

Value get(const std::string& name) const {
if (symbols.contains(name)) {

414

return symbols.at(name);
} else if (parent) {

return parent->get(name);
} else {

throw std::runtime_error("Undefined variable: " + name);
}

}

bool isDeclaredInCurrentScope(const std::string& name) const {
return symbols.contains(name);

}

private:
std::unordered_map<std::string, Value> symbols;
Ptr parent;

};

This supports:

• Block-local declaration (declare)

• Variable assignment with resolution (assign)

• Lookup from nested to global (get)

• Shadowing check (isDeclaredInCurrentScope)

11.1.4 Creating and Disposing Scopes

At runtime, when entering a block (e.g. { ... }), a new environment is created
with a pointer to the outer (enclosing) one. When exiting the block, the inner
environment is discarded.

415

void evaluateBlock(const std::vector<Statement>& stmts, Environment::Ptr outerEnv) {
auto blockEnv = std::make_shared<Environment>(outerEnv);
for (const auto& stmt : stmts) {

evaluate(stmt, blockEnv);
}

}

This naturally reflects the lifetime and visibility of local variables.

11.1.5 Handling Shadowing

The declare() method ensures that shadowing is allowed only across scopes, not
within the same block.

blockEnv->declare("x", Value(10)); // OK
blockEnv->declare("x", Value(20)); // Error: already declared

In contrast, inner blocks may declare the same variable:

globalEnv->declare("x", Value(1));

auto inner = std::make_shared<Environment>(globalEnv);
inner->declare("x", Value(2)); // Shadows outer x

inner->get("x"); // returns 2
inner->get("y"); // fallback to outer environment

11.1.6 Using Concepts for Type Constraints (Optional)

To restrict environment use to std::string keys and Value-like entries:

416

template<typename T>
concept ValueLike = requires(T v) {

{ v.toString() } -> std::convertible_to<std::string>;
};

template<ValueLike V>
class Environment { ... };

This strengthens type safety and may be used for extending support to other symbol
types such as functions, constants, or types.

11.1.7 Scope Levels and Debugging

To trace or debug block-level symbol states, you can instrument the environment:

void printScope(const Environment::Ptr& env, int level = 0) {
if (!env) return;
for (const auto& [key, val] : env->symbols)

std::cout << std::string(level * 2, ' ') << key << " = " << val.toString() <<
"\n";↪→

printScope(env->parent, level + 1);
}

This can help visualize variable resolution across blocks.

11.1.8 Global vs Local Environments

You may separate global constants/functions from dynamic block scopes:

class GlobalEnvironment : public Environment {
public:

417

void defineNative(const std::string& name, const Value& v) {
symbols[name] = v;

}

// prevent redefinition
void declare(const std::string&, const Value&) = delete;

};

This is useful when building REPLs or scripting environments that retain global state
across commands.

11.1.9 Integration with AST Evaluation

Each node in the AST should receive the current environment pointer:

Value evaluate(const Expression& expr, Environment::Ptr env);
void evaluate(const Statement& stmt, Environment::Ptr env);

Statements like if, while, and block introduce new environments; assignments and
expressions refer to the current one.

11.1.10 Memory and Performance Considerations

• Use std::shared_ptr for shared scope graphs (preferred for interpreter lifecycle).

• Consider std::unordered_map with reserve() to avoid hash reallocation.

• You may optionally use Arena allocators for high-performance interpreter loops.

418

11.1.11 Conclusion

C-style block scoping can be implemented cleanly using chained symbol tables
modeled with modern C++ features. This design supports nested blocks, variable
shadowing, precise error reporting, and integrates directly with runtime evaluation. By
managing environments with smart pointers and hash tables, the interpreter achieves
both accuracy in scoping semantics and runtime flexibility, preparing the
foundation for more advanced scoping structures like function closures and lexical
environments in future chapters.

11.2 Variable Resolution Following C Rules

11.2.0.1 Introduction

In C-style programming languages, variable resolution adheres to well-defined lexical
scoping rules. A variable is always resolved within the nearest enclosing scope where it
is declared. If not found locally, the search proceeds up through the enclosing blocks,
all the way to the global scope. This section focuses on implementing variable name
resolution in a C-style interpreter using modern C++20/23 principles, ensuring
correctness, performance, and extensibility.

11.2.1 Overview of C Variable Resolution Semantics

In C and C-like languages:

• Variable declarations are block-scoped.

• Inner scopes can shadow outer variables.

• Variables must be declared before use, except in forward declarations (not
relevant in expression-oriented interpreters).

419

• No hoisting (unlike JavaScript); the declaration must precede usage within the
same scope.

Example in C:

int x = 10;
{

int x = 20; // shadows outer x
printf("%d", x); // prints 20

}
printf("%d", x); // prints 10

In your interpreter, the goal is to replicate this behavior exactly during evaluation.

11.2.2 Environment Model Recap

The interpreter uses a chain of environments to simulate the C-style scoping model.
Each block creates a new Environment object that references its parent.

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;

Value get(const std::string& name) const;
void assign(const std::string& name, const Value& value);
void declare(const std::string& name, const Value& value);

private:
std::unordered_map<std::string, Value> symbols;
Ptr parent;

};

420

11.2.3 Variable Lookup (get Resolution)

When an expression refers to a variable by name, the interpreter must resolve that
name according to the nearest enclosing scope rule.

Value Environment::get(const std::string& name) const {
if (symbols.contains(name)) {

return symbols.at(name);
} else if (parent) {

return parent->get(name);
} else {

throw std::runtime_error("Undefined variable: " + name);
}

}

This ensures that:

• Local variables are accessed first.

• Outer variables are only considered if no local variable is found.

• An error is thrown if no matching declaration exists.

11.2.4 Variable Assignment (assign Resolution)

When assigning to a variable (e.g., x = 42), the interpreter must find the nearest
declared variable with that name and update its value. If not found, it should throw
an error (or define it globally, if the language permits).

void Environment::assign(const std::string& name, const Value& value) {
if (symbols.contains(name)) {

symbols[name] = value;

421

} else if (parent) {
parent->assign(name, value);

} else {
throw std::runtime_error("Assignment to undeclared variable: " + name);

}
}

This enforces C’s rule: You cannot assign to a variable that hasn’t been
declared in any accessible scope.

11.2.5 Declaring Variables (declare)

C does not allow redeclaring variables within the same block scope. The interpreter
must reject re-declaration in the current block but allow shadowing across scopes.

void Environment::declare(const std::string& name, const Value& value) {
if (symbols.contains(name)) {

throw std::runtime_error("Variable already declared in this block: " + name);
}
symbols[name] = value;

}

Example:

global->declare("x", Value(10)); // OK
block->declare("x", Value(20)); // Shadows outer x
block->declare("x", Value(30)); // Error: duplicate in same block

422

11.2.6 Applying Resolution in AST Evaluation

Every variable reference (x, y, counter, etc.) in the AST must be evaluated with access
to the current environment pointer.

• Variable Expression Evaluation

Value evalVariableExpr(const VariableExpr& expr, Environment::Ptr env) {
return env->get(expr.name);

}

• Variable Assignment Evaluation

Value evalAssignmentExpr(const AssignmentExpr& expr, Environment::Ptr env) {
Value val = evaluate(expr.value, env);
env->assign(expr.name, val);
return val;

}

11.2.7 Example: Block Scope Simulation

void simulateBlockScope() {
auto global = std::make_shared<Environment>();

global->declare("x", Value(1)); // global x = 1

auto block1 = std::make_shared<Environment>(global);
block1->declare("y", Value(2)); // block1 y = 2

423

auto block2 = std::make_shared<Environment>(block1);
block2->declare("x", Value(3)); // block2 x shadows global x

std::cout << block2->get("x").get<IntType>() << "\n"; // prints 3
std::cout << block2->get("y").get<IntType>() << "\n"; // prints 2
std::cout << block2->get("z").get<IntType>() << "\n"; // error: undefined

}

11.2.8 Enhancing Performance: Optional Variable Resolution
Caching

For future performance tuning:

• Add identifier resolution caching by tagging each identifier during parsing
with a pointer to its resolved scope level.

• This avoids repeated traversal during evaluation.

• Especially beneficial in loops and large blocks.

11.2.9 Scoped Constants (Optional Extension)

In C, const variables cannot be reassigned. This can be supported by tracking a flag in
the environment:

struct VariableBinding {
Value value;
bool isConst;

};

std::unordered_map<std::string, VariableBinding> symbols;

424

Then assign() must check isConst and reject modification if true.

11.2.10 Error Reporting and Diagnostics

When resolution fails:

• Report the missing identifier.

• Provide scope hierarchy (optional).

• Suggest closest identifiers (Levenshtein distance or simple prefix match).

throw std::runtime_error("Undefined variable: '" + name + "'.");

This encourages correct usage and assists debugging.

11.2.11 Conclusion

Variable resolution is a fundamental pillar of the interpreter’s correctness. Using
a chained Environment structure with C++20 idioms allows the interpreter
to replicate the exact behavior of C's lexical scoping model, including shadowing,
assignment propagation, and access to global declarations. This section formalizes the
resolution logic that allows every variable reference in your interpreted language to
behave like its C counterpart, ensuring clarity, consistency, and predictability in every
program executed.

11.3 Lexical Scoping Implementation

425

11.3.0.1 Introduction

Lexical scoping, also called static scoping, is the foundation of most C-style
programming languages. In this model, the scope of a variable is determined by its
position in the source code, and not by the call stack or execution flow. Every block
defines a new lexical environment, and variable resolution is performed by inspecting
enclosing blocks at compile or runtime in a predictable and fixed manner. This section
focuses on how to implement lexical scoping using modern C++20/23 idioms,
including block environment chaining, controlled variable visibility, shadowing, and
integration with expression evaluation.

11.3.1 What is Lexical Scoping?

In lexical scoping:

• The structure of the source code defines visibility.

• Every { ... } block introduces a new scope.

• Variables declared in an outer block are visible in inner blocks.

• Inner variables can shadow outer ones, hiding them within their local scope.

• Lookup begins in the current block and proceeds outward until found or fails.

Example:

int x = 5;
{

int x = 10;
printf("%d", x); // prints 10

}
printf("%d", x); // prints 5

426

11.3.2 Environment as Lexical Scope

Lexical scoping in an interpreter is naturally implemented by a linked chain of
environments—each representing a scope.

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;

Environment(Ptr parent = nullptr) : parent(parent) {}

void declare(const std::string& name, const Value& val);
void assign(const std::string& name, const Value& val);
Value get(const std::string& name) const;

private:
std::unordered_map<std::string, Value> symbols;
Ptr parent;

};

Each block creates a new Environment pointing to its enclosing scope. This forms a
lexical scope chain, similar to how C compilers analyze symbol tables.

11.3.3 Entering and Exiting Lexical Scopes

Every time the interpreter enters a block ({}), it must create a new environment:

void evaluateBlock(const std::vector<Statement>& stmts, Environment::Ptr outerEnv) {
auto innerEnv = std::make_shared<Environment>(outerEnv);
for (const auto& stmt : stmts) {

evaluate(stmt, innerEnv);
}

427

}

When execution leaves the block, the innerEnv is discarded. Because it is a
shared_ptr, no manual deallocation is needed.

11.3.4 Visualizing the Scope Chain

Consider this code:

int x = 1;
{

int y = x + 1;
{

int x = y + 2;
}

}

The environment chain at the deepest block looks like:

Env3: { x=4 } --> innermost
Env2: { y=2 }
Env1: { x=1 } --> global

Variable x in Env3 shadows x in Env1, but y from Env2 is still visible.

11.3.5 Scope Chain Traversal in get and assign

• Variable Lookup (get):

Value Environment::get(const std::string& name) const {
if (symbols.contains(name)) return symbols.at(name);

428

if (parent) return parent->get(name);
throw std::runtime_error("Undefined variable: " + name);

}

• Variable Assignment (assign):

void Environment::assign(const std::string& name, const Value& val) {
if (symbols.contains(name)) {

symbols[name] = val;
} else if (parent) {

parent->assign(name, val);
} else {

throw std::runtime_error("Assignment to undeclared variable: " + name);
}

}

11.3.6 Shadowing and Uniqueness

Lexical scoping permits shadowing, but not duplicate declarations in the same
scope.

void Environment::declare(const std::string& name, const Value& val) {
if (symbols.contains(name))

throw std::runtime_error("Variable already declared in this scope: " + name);
symbols[name] = val;

}

This matches C’s behavior—multiple declarations with the same name are allowed only
in different scopes.

429

11.3.7 Managing the Global Scope

The global environment is the outermost scope. All top-level declarations are stored
here.

auto globalEnv = std::make_shared<Environment>();

You can inject built-in functions or constants here:

globalEnv->declare("PI", Value(3.14159265));
globalEnv->declare("print", BuiltinFunction(printHandler));

Global variables are always reachable unless shadowed in a block.

11.3.8 Integration with Control Structures

Each control structure that introduces a block (if, while, for, etc.) must create a
scope:

• Example: if block

if (toBool(evaluate(cond, env))) {
auto newEnv = std::make_shared<Environment>(env);
evaluateBlock(thenBranch, newEnv);

} else {
auto newEnv = std::make_shared<Environment>(env);
evaluateBlock(elseBranch, newEnv);

}

11.3.9 Optional Optimizations

• a) Scope Depth Tracking

430

Use integer levels to track how deep a scope is (for debugging, performance
tuning):

class Environment {
int depth;

};

• b) Static Resolution Caching

During parsing, tag each identifier with the exact environment depth it belongs to.
At runtime, you access it directly. This is similar to how closures are optimized in
other interpreters.

11.3.10 Future-Proofing

The same lexical environment system supports future constructs:

• Closures: Functions capturing outer scopes.

• Modules: Isolated global scopes per file.

• Block expressions: Scopes that return a value.

• Static analysis: Using the lexical chain to validate unused or unreachable
variables.

11.3.11 Conclusion

Lexical scoping is at the heart of variable visibility and evaluation order in C-style
languages. Using a chain of Environment objects with modern C++20/23 features like
shared_ptr, unordered_map, and structured error handling, you can build a powerful

431

and extensible interpreter that exactly models how scopes behave in C. This design
supports nested blocks, variable shadowing, and dynamic expression evaluation, while
providing a clean path forward to advanced features like closures, modules, and type
inference.

11.4 Milestone — Working C-Style Variable System

11.4.0.1 Overview

This milestone marks the successful implementation of a fully functional C-style
variable system in your interpreter. With this system in place, your language now
supports block-level variable declaration, lexical scoping, variable shadowing,
value assignment, and resolution behavior that mirrors the semantics of C. In this
section, you will review the structure, usage, test cases, and integration of the variable
system using modern C++20/23 capabilities, ensuring correctness and extensibility.

11.4.1 Goals of the Variable System Milestone

• Support for runtime variable declaration and lookup.

• Lexical (block-based) scope chain.

• Shadowing of outer variables in nested scopes.

• Accurate variable resolution and assignment propagation.

• Safe redeclaration prevention in the same block.

• Clear error reporting for undeclared or redefined variables.

• Seamless integration with value evaluation and control flow.

432

11.4.2 Architecture Summary

• Components

1. Value: Represents runtime data (int, float, bool, string, array).

2. Environment: Represents a single lexical scope.

3. Environment Chain: Linked via std::shared_ptr to parent
environments.

4. Variable System API: declare, assign, get.

• Value System Reference

using ValueVariant = std::variant<int64_t, double, bool, std::string,
std::vector<Value>>;↪→

struct Value {
ValueVariant data;
// Constructor overloads and helper methods...

};

• Environment System Reference

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;

Environment(Ptr parent = nullptr) : parent(parent) {}

void declare(const std::string& name, const Value& value);
void assign(const std::string& name, const Value& value);

433

Value get(const std::string& name) const;

private:
std::unordered_map<std::string, Value> symbols;
Ptr parent;

};

11.4.3 Key Functional Behavior

• Declaration

– Ensures no redeclaration in the same scope.

– Declares new variable only in current block.

void Environment::declare(const std::string& name, const Value& value) {
if (symbols.contains(name))

throw std::runtime_error("Variable already declared in this block: " +
name);↪→

symbols[name] = value;
}

• Assignment

– Updates nearest enclosing variable with matching name.

– Throws on assignment to undeclared name.

434

void Environment::assign(const std::string& name, const Value& value) {
if (symbols.contains(name))

symbols[name] = value;
else if (parent)

parent->assign(name, value);
else

throw std::runtime_error("Assignment to undeclared variable: " + name);
}

• Lookup

– Retrieves from current or outer scopes.

– Reports error if name is not found.

Value Environment::get(const std::string& name) const {
if (symbols.contains(name)) return symbols.at(name);
if (parent) return parent->get(name);
throw std::runtime_error("Undefined variable: " + name);

}

11.4.4 Evaluation Integration Example

Assume the AST provides variable expressions and assignments:

struct VariableExpr {
std::string name;

};

struct AssignmentExpr {

435

std::string name;
ExprPtr value;

};

• Variable Expression

Value evaluate(const VariableExpr& expr, Environment::Ptr env) {
return env->get(expr.name);

}

• Assignment Expression

Value evaluate(const AssignmentExpr& expr, Environment::Ptr env) {
Value val = evaluate(*expr.value, env);
env->assign(expr.name, val);
return val;

}

11.4.5 Demonstration and Test Case

• Source Program (in your language):

int x = 5;
{

int x = 10;
print(x); // should output 10

}
print(x); // should output 5

436

• Interpreter Evaluation

auto global = std::make_shared<Environment>();
global->declare("x", Value(5));

auto block = std::make_shared<Environment>(global);
block->declare("x", Value(10));
std::cout << block->get("x").get<int64_t>() << "\n"; // 10

std::cout << global->get("x").get<int64_t>() << "\n"; // 5

11.4.6 Error Handling Examples

• Duplicate Declaration

env->declare("a", Value(1));
env->declare("a", Value(2)); // Throws error

• Use of Undeclared Variable

env->get("undefined"); // Throws error

• Assignment Without Declaration

env->assign("a", Value(10)); // Throws unless 'a' was declared

437

11.4.7 Design Conformance to C Semantics

Table 4-1: Scope and Variable Resolution Features

Feature Behavior Status

Block scoping Introduced per {} Implemented

Shadowing Inner blocks can shadow outer Implemented

Resolution order Innermost to outermost Implemented

Redeclaration in block Disallowed Implemented

Reassignment Allowed after declaration Implemented

Global environment Root scope, persistent Implemented

11.4.8 Modern C++ Enhancements

• std::shared_ptr<Environment>: Simplifies memory and scope management.

• std::unordered_map: Efficient name-value lookup.

• C++20 ranges/concepts (future): Can enforce constraints on Value or
identifiers.

• Optional: Use std::expected<Value, std::string> (C++23) instead of
exceptions for assign/get.

11.4.9 Diagnostic and Debugging Tools

Optional logging and inspection utilities:

438

void debugScope(const Environment::Ptr& env, int level = 0) {
for (const auto& [name, val] : env->symbols)

std::cout << std::string(level * 2, ' ') << name << " = " << val.toString()
<< "\n";↪→

if (env->parent) debugScope(env->parent, level + 1);
}

11.4.10 Summary

This milestone finalizes the C-style variable system in your interpreter, enabling
all standard scoping behaviors known in C and similar languages. By utilizing
chained Environment instances, clean Value abstraction, and scoped operations like
declare, assign, and get, you now possess a solid and extensible infrastructure for
variable management. This system is the foundation for future chapters on functions,
closures, modules, and advanced static analysis, making it a critical checkpoint in your
interpreter’s design.

Chapter 12

Expression Evaluation in C-Style

12.1 Binary and Unary Operations with C
Precedence

12.1.0.1 Introduction

C-style languages rely on a well-defined operator precedence and associativity
model to determine how expressions are grouped and evaluated. A correct interpreter
must respect these rules in its abstract syntax tree (AST) construction and
runtime evaluation. This section explores how to implement unary and binary
operations with full support for C’s operator precedence hierarchy, leveraging
modern C++20/23 features such as std::variant, std::visit, and constexpr-
based operator mapping.

12.1.1 Operator Categories in C

C-classifies operators into unary and binary, and assigns each a precedence level
and associativity (left-to-right or right-to-left). You must mirror these rules in both:

439

440

1. Parser: To construct the correct AST shape.

2. Evaluator: To process the nodes in the correct order.

Simplified Operator Precedence Table (High to Low)

Table 1-1: C-style Operator Precedence and
Associativity

Precedence Operators Type Associativity

15 () [] . postfix left-to-right

14 ! - + ~ unary right-to-left

13 * / % binary left-to-right

12 + - binary left-to-right

11 < > <= >= binary left-to-right

10 == != binary left-to-right

9 && binary left-to-right

8 || binary left-to-right

3 = += -= binary right-to-left

12.1.2 Expression Representation in AST

Expressions are modeled as trees, with each node representing an operator and its
operand(s).

AST Node Types

441

struct Expr;
using ExprPtr = std::unique_ptr<Expr>;

struct BinaryExpr {
std::string op;
ExprPtr left;
ExprPtr right;

};

struct UnaryExpr {
std::string op;
ExprPtr operand;

};

struct LiteralExpr {
Value value;

};

struct VariableExpr {
std::string name;

};

The parser must use precedence climbing or recursive descent with precedence
levels to build these nodes according to C rules.

12.1.3 Evaluating Binary Expressions

Binary evaluation follows type-aware dispatch and promotion (already implemented in
the Value System). Here’s how the evaluator might look:

442

Value evaluate(const BinaryExpr& expr, Environment::Ptr env) {
Value left = evaluate(*expr.left, env);
Value right = evaluate(*expr.right, env);

if (expr.op == "+") return applyAdd(left, right);
else if (expr.op == "-") return applySub(left, right);
else if (expr.op == "*") return applyMul(left, right);
else if (expr.op == "/") return applyDiv(left, right);
else if (expr.op == "==")return applyEqual(left, right);
else if (expr.op == "&&")return Value(toBool(left) && toBool(right));
else if (expr.op == "||")return Value(toBool(left) || toBool(right));

throw std::runtime_error("Unknown binary operator: " + expr.op);
}

Each apply* function internally handles:

• Type promotion (int → float)

• Type dispatch using std::visit

• Error on invalid type combinations

12.1.4 Evaluating Unary Expressions

Unary operators are parsed with right-to-left associativity and high precedence.
Evaluation is straightforward:

Value evaluate(const UnaryExpr& expr, Environment::Ptr env) {
Value operand = evaluate(*expr.operand, env);

if (expr.op == "-") {

443

return std::visit([](auto&& val) -> Value {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, int64_t> || std::is_same_v<T, double>)

return -val;
else

throw std::runtime_error("Invalid unary '-' operand");
}, operand.data);

}
else if (expr.op == "!") {

return Value(!toBool(operand));
}

throw std::runtime_error("Unknown unary operator: " + expr.op);
}

12.1.5 Parser: Operator Precedence Parsing (Shunting Yard or
Precedence Climbing)

During parsing, your grammar should handle binary operator precedence using either:

• Pratt Parsing / Precedence Climbing

• Shunting Yard Algorithm

Example: Precedence Climbing

ExprPtr parseExpression(int minPrecedence) {
ExprPtr left = parsePrimary();

while (hasNextOperator() && getPrecedence(currentOp()) >= minPrecedence) {

444

std::string op = currentOp();
int precedence = getPrecedence(op);
bool rightAssoc = isRightAssociative(op);
int nextMinPrecedence = rightAssoc ? precedence : precedence + 1;

advance(); // consume operator
ExprPtr right = parseExpression(nextMinPrecedence);

left = std::make_unique<BinaryExpr>(op, std::move(left), std::move(right));
}

return left;
}

12.1.6 Operator Table and Precedence Metadata

Use a static map or constexpr table to define operator precedence and associativity.

struct OperatorInfo {
int precedence;
bool rightAssociative;

};

inline const std::unordered_map<std::string, OperatorInfo> operatorTable = {
{"+", {12, false}},
{"-", {12, false}},
{"*", {13, false}},
{"/", {13, false}},
{"%", {13, false}},
{"==", {10, false}},
{"!=", {10, false}},

445

{"&&", {9, false}},
{"||", {8, false}},
{"=", {3, true}},

};

Use this in your parser to drive precedence decisions.

12.1.7 Short-Circuit Evaluation

Operators like && and || require short-circuit semantics. That means only
evaluating the right-hand side if needed.
Example:

Value evaluate(const BinaryExpr& expr, Environment::Ptr env) {
if (expr.op == "&&") {

Value left = evaluate(*expr.left, env);
if (!toBool(left)) return Value(false);
Value right = evaluate(*expr.right, env);
return Value(toBool(right));

}
if (expr.op == "||") {

Value left = evaluate(*expr.left, env);
if (toBool(left)) return Value(true);
Value right = evaluate(*expr.right, env);
return Value(toBool(right));

}
// Other cases...

}

446

12.1.8 C++20/23-Specific Enhancements

• a) if constexpr in Operation Dispatch

Use in apply* functions to statically resolve type combinations in std::visit.

• b) consteval or constexpr for Constant Folding

Enable compile-time expression reduction during parsing (optional optimization).

consteval int add(int a, int b) { return a + b; }

• c) Concepts (optional)

Enforce constraints on operand types if template-based dispatch is used:

template<typename T>
concept Numeric = std::is_same_v<T, int64_t> || std::is_same_v<T, double>;

12.1.9 Validation and Diagnostics

Ensure:

• Division by zero is detected.

• Invalid operand combinations are reported with full source info.

• Associativity and precedence are verified by test cases like:

int result = 1 + 2 * 3; // should evaluate as 1 + (2 * 3) = 7
int a = 5;
int b = 0;
int c = a b++; // b++ should not execute

447

12.1.10 Conclusion

Binary and unary operator evaluation forms the semantic core of expression
handling in a C-style interpreter. By respecting the precedence and associativity
rules defined in C, and implementing them both in the parser and evaluator using
modern C++20/23 techniques, this section ensures that your language expressions
behave intuitively and predictably. With this system complete, your interpreter can
now execute complex mathematical and logical expressions with full fidelity to C's
expression semantics.

12.2 Assignment Operations and Side Effects

12.2.0.1 Introduction

Assignment expressions in C-style languages are evaluated for their side effects
and often used as full expressions in larger compound statements. This includes
simple assignments (=), compound assignments (+=, -=, *=, etc.), and postfix
increment/decrement (x++, x--). Properly supporting these requires your interpreter to
handle side effects, l-value resolution, evaluation order, and value propagation
in compliance with C semantics.
This section explains how to implement assignment operations and manage their
effects on the runtime environment using modern C++20/23 practices.

12.2.1 Assignment as an Expression in C

In C, assignment is not just a statement but also an expression with a resulting value:

int x;
x = 5; // evaluates to 5

448

int y = (x = 10) + 2; // y becomes 12

This behavior must be preserved in your interpreter, ensuring:

• The left-hand side (LHS) is an l-value (i.e., a resolvable variable reference).

• The right-hand side (RHS) is evaluated first.

• The result of the entire expression is the value assigned, not the LHS or a
boolean.

12.2.2 AST Representation of Assignments

To enable generality and side-effect tracking, assignment is represented in your AST as
a distinct expression type.

struct AssignmentExpr {
std::string name; // variable to assign
std::string op; // =, +=, -=, etc.
ExprPtr value; // expression to evaluate and assign

};

This supports both simple and compound assignments by storing the operator as a
string.

12.2.3 Evaluation Strategy

When evaluating an assignment expression:

1. Evaluate the RHS expression.

449

2. If the operation is a compound assignment (+=, *=, etc.), fetch the current
value of the LHS and apply the binary operation.

3. Assign the result to the LHS in the current environment.

4. Return the assigned value.

Evaluation Logic

Value evaluate(const AssignmentExpr& expr, Environment::Ptr env) {
Value rhs = evaluate(*expr.value, env);

if (expr.op == "=") {
env->assign(expr.name, rhs);
return rhs;

}

Value lhs = env->get(expr.name);

if (expr.op == "+=") {
Value result = applyAdd(lhs, rhs);
env->assign(expr.name, result);
return result;

} else if (expr.op == "-=") {
Value result = applySub(lhs, rhs);
env->assign(expr.name, result);
return result;

}
// Repeat for *=, /=, %=, etc.

throw std::runtime_error("Unknown assignment operator: " + expr.op);
}

450

Use the apply* functions from the value system that support proper type promotion
and operation dispatch.

12.2.4 Side Effects and Evaluation Order

In C, side effects must be sequenced correctly, especially when assignments are
nested or mixed with increments:

int y = (x += 3) * 2; // x becomes 4, y becomes 8

To replicate this:

• Always evaluate RHS before any change to the LHS.

• Capture and return the new value as the result of the expression.

Assignment expressions must never introduce undefined behavior, so protect against:

• Reassigning undeclared variables.

• Assigning to constants (if your language includes them).

• Type mismatches between LHS and RHS.

12.2.5 Variable Tracking for Side Effects

Your interpreter's environment (symbol table) already tracks variable values. For side
effects, ensure that:

• The assign() function updates the existing symbol in the correct enclosing
scope.

• Assignments propagate only if the variable is found, otherwise throw an error.

451

void Environment::assign(const std::string& name, const Value& value) {
if (symbols.contains(name)) {

symbols[name] = value;
} else if (parent) {

parent->assign(name, value);
} else {

throw std::runtime_error("Assignment to undeclared variable: " + name);
}

}

12.2.6 Compound Assignment as Syntax Sugar

Each compound assignment is syntactic sugar for a binary operation + assignment:

x += 5; // becomes: x = x + 5;

Handle this transformation during parsing or directly during evaluation.
To simplify, map operators:

const std::unordered_map<std::string, std::function<Value(const Value&, const
Value&)>> compoundOps = {↪→

{"+=", applyAdd},
{"-=", applySub},
{"*=", applyMul},
{"/=", applyDiv},
{"%=", applyMod}

};

Then:

452

if (auto it = compoundOps.find(expr.op); it != compoundOps.end()) {
Value lhs = env->get(expr.name);
Value result = it->second(lhs, rhs);
env->assign(expr.name, result);
return result;

}

12.2.7 Postfix and Prefix Increment/Decrement (Optional)

C supports x++, ++x, x--, --x. These are expressions with side effects, and behave
differently in value-returning context.

// x++: return current value, then increment
// ++x: increment, then return new value

• AST Representation

struct UnaryUpdateExpr {
std::string name;
std::string op; // "++", "--"
bool prefix;

};

• Evaluation Logic

Value evaluate(const UnaryUpdateExpr& expr, Environment::Ptr env) {
Value current = env->get(expr.name);

if (!current.is<int64_t>())

453

throw std::runtime_error("Increment/decrement only allowed on
integers");↪→

int64_t value = current.get<int64_t>();

if (expr.op == "++") {
if (expr.prefix) {

env->assign(expr.name, Value(value + 1));
return Value(value + 1);

} else {
env->assign(expr.name, Value(value + 1));
return Value(value);

}
} else if (expr.op == "--") {

if (expr.prefix) {
env->assign(expr.name, Value(value - 1));
return Value(value - 1);

} else {
env->assign(expr.name, Value(value - 1));
return Value(value);

}
}

throw std::runtime_error("Unknown unary update operator");
}

12.2.8 Constant Assignments and Immutability (Optional)

For future extension, add support for const declarations and prevent reassignment:

454

struct VariableBinding {
Value value;
bool isConst;

};

std::unordered_map<std::string, VariableBinding> symbols;

void assign(...) {
if (symbols[name].isConst)

throw std::runtime_error("Cannot reassign to const variable");
}

This supports safer programming practices and enables static analysis.

12.2.9 Expression Sequencing and Return Value

Ensure assignment expressions return the final assigned value, not the variable
name or RHS:

int x;
int y = (x = 3) + 4; // x becomes 3, y becomes 7

The assignment expression evaluates to 3, which becomes part of a larger expression.
Your AST and evaluator must support nesting and sequencing of assignments.

12.2.10 Test Case Examples

• Simple Assignment

int x = 10;
x = x + 5; // x = 15

455

• Compound Assignment

int a = 3;
a *= 4 + 1; // a = a * (4 + 1) = 15

• Nested Assignment

int x;
int y;
x = y = 20; // x and y both 20

• Side Effect Order

int x = 1;
int y = (x += 3) * 2; // x = 4, y = 8

12.2.11 Conclusion

This section completes your interpreter's support for assignment semantics and side
effects, a cornerstone of C-style evaluation. By treating assignments as expressions,
preserving correct order, supporting compound operations, and managing scope-aware
updates in your environment, your interpreter now mirrors the behavior of C in how
it modifies program state. Using modern C++20/23 features, this system is designed
for safety, extensibility, and fidelity to C’s operational logic — forming a robust base
for function return values, loop control variables, and expression-based evaluation in all
forms.

456

12.3 Variable Lookup Following C Scoping Rules

12.3.0.1 Introduction

In C and other C-style languages, variable lookup follows a strict lexical scoping
model. A variable name refers to the closest enclosing declaration visible at the point of
use, and this rule must be strictly preserved at both compile-time (for static analyzers
or compilers) and runtime (for interpreters).
In an interpreter written in modern C++20/23, the goal is to model C’s block-
structured resolution strategy, implement variable visibility through environment
chaining, and ensure deterministic and efficient lookup of variable values.
This section focuses on the design and implementation of variable resolution in the
expression evaluator using up-to-date C++ practices.

12.3.1 C Variable Lookup Semantics

In C:

• Scopes are introduced by {} blocks.

• A name is resolved to the nearest declaration visible from the point of use.

• Inner scopes can shadow variables from outer scopes.

• Global scope is visible unless shadowed.

• Variables must be declared before use in the same block (though not enforced
strictly in all C compilers, your language can).

Example:

457

int x = 5;
{

int x = 10; // shadows outer x
printf("%d", x); // prints 10

}
printf("%d", x); // prints 5

Your interpreter must resolve x correctly based on where it is lexically defined, not
based on execution flow.

12.3.2 Environment Chain Overview

To support lexical lookup, each execution context (block, function, etc.) is associated
with an Environment object. Each environment stores variable bindings and points to
its enclosing (parent) environment.

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;

Environment(Ptr parent = nullptr)
: parent(std::move(parent)) {}

void declare(const std::string& name, const Value& value);
void assign(const std::string& name, const Value& value);
Value get(const std::string& name) const;

private:
std::unordered_map<std::string, Value> symbols;
Ptr parent;

};

458

• symbols: Holds local variables.

• parent: Points to the outer scope (lexically enclosing block).

This forms a scope chain similar to symbol tables in compilers.

12.3.3 Lookup Algorithm: C Rules in Practice

To resolve a variable:

1. Search in the current scope.

2. If not found, search in the immediate parent.

3. Continue until the variable is found or the global scope is reached.

4. If the name does not exist, throw a resolution error.

Implementation

Value Environment::get(const std::string& name) const {
if (symbols.contains(name)) {

return symbols.at(name);
} else if (parent) {

return parent->get(name);
} else {

throw std::runtime_error("Undefined variable: " + name);
}

}

This implementation is:

• Deterministic (mirrors lexical structure).

459

• Safe (throws error on undefined variable).

• Extensible (can support closures, modules, etc.).

12.3.4 Expression Evaluation Integration

Every variable expression node must trigger lookup via the current environment:

• AST Node

struct VariableExpr {
std::string name;

};

• Evaluation Logic

Value evaluate(const VariableExpr& expr, Environment::Ptr env) {
return env->get(expr.name);

}

This ensures expressions like x + 1 evaluate x using the nearest visible binding.

12.3.5 Handling Shadowing

C allows variables in inner scopes to shadow outer ones.

int x = 1;
{

int x = 2; // shadows outer x
printf("%d", x); // prints 2

}

460

This behavior is automatically respected due to Environment::declare() placing the
variable only in the current environment:

void Environment::declare(const std::string& name, const Value& value) {
if (symbols.contains(name))

throw std::runtime_error("Variable already declared in this block: " + name);
symbols[name] = value;

}

Thus:

• Inner x hides outer x.

• Access to x in the inner block resolves to the one in symbols.

• The get() logic never reaches the outer scope when a shadow exists.

12.3.6 Example Execution Chain

• Source Program:

int x = 3;
{

int y = x + 2; // uses outer x
{

int x = 10; // shadows outer x
print(x); // prints 10
print(y); // prints 5

}
}

• Scope Chain Illustration at print(x);:

461

Env3: { x = 10 }
Env2: { y = 5 }
Env1: { x = 3 }

Call to get("x") starts from Env3, finds x, and returns 10.

Call to get("y") searches Env3 → not found
Then Env2 → found → returns 5.

12.3.7 Lookup Failure Handling

When a variable is not declared anywhere in the scope chain:

Value v = env->get("not_defined"); // throws runtime_error

This mimics C’s behavior (e.g., undefined identifier in source results in compiler error).
You can enhance this with better diagnostics:

throw std::runtime_error("Undefined variable: '" + name + "'. Did you mean ...?");

Optional: Use Levenshtein distance to suggest possible matches.

12.3.8 Optional Optimization: Static Resolution Hints

For performance, you can tag variable expressions during parsing with their
resolved scope depth or pointer to the defining environment.
At evaluation time, instead of recursive lookup, you jump directly to the scope:

struct ResolvedVariableExpr {
std::string name;

462

Environment::Ptr resolvedEnv;
};

This mimics compiler symbol resolution, increasing performance at the cost of
dynamic flexibility.

12.3.9 Modern C++ Enhancements

• Use of std::shared_ptr

Environment::Ptr parent = std::make_shared<Environment>();

– Manages scope lifetime automatically.

– Avoids manual cleanup or memory leaks.

– Can be replaced with std::unique_ptr if scopes are strictly nested and not
shared.

• Use of std::unordered_map

– Provides fast O(1) average lookup for variable names.

– Can be customized with string interning for faster performance.

12.3.10 Summary of Lookup Behavior

463

Table 3-2: Scope Features and Implementation Status

Feature Implementation Status

Lexical scope chaining via Environment::parent

Block-level variable visibility symbols are local per scope

Shadowing detection declare() enforces per-block uniqueness

Recursive lookup get() searches parent chain

Error on undefined name throws with message

Optional optimization (static) can tag resolved scopes at parse time

12.3.11 Conclusion

Variable lookup is a central part of C-style expression evaluation. In your interpreter,
it is best achieved through lexical scope chaining, shadowing-respecting search,
and block-based symbol maps. With modern C++20/23 idioms like shared_ptr,
unordered_map, and error-safe logic, your variable resolution system is now faithful
to C’s behavior, efficient, and ready to scale to support closures, modules, and static
checking in future chapters.

12.4 Hands-on — Calculator Supporting C-Style
Expressions

464

12.4.0.1 Introduction

As a practical culmination of this chapter, we implement a mini calculator
interpreter that evaluates C-style expressions. This includes:

• Arithmetic expressions with operator precedence.

• Unary and binary operations.

• Parentheses for grouping.

• Variable assignments.

• Variable usage with scoping.

• Full expression evaluation respecting C semantics.

This section demonstrates how to design and build this interactive calculator using
modern C++20/23, encapsulating all evaluation logic, scoping, and expression parsing
from earlier sections.

12.4.1 Key Features

• Arithmetic operators: +, -, *, /, %

• Unary operators: -, +, !

• Parentheses

• Variables: x = 3 + 2

• Chained assignments: a = b = 5

• Error handling

• Evaluation with correct precedence

465

12.4.2 Value System

Value Type

using IntType = int64_t;
using FloatType = double;
using BoolType = bool;
using StringType = std::string;

using ValueVariant = std::variant<IntType, FloatType, BoolType, StringType>;

struct Value {
ValueVariant data;

template<typename T>
bool is() const { return std::holds_alternative<T>(data); }

template<typename T>
T& get() { return std::get<T>(data); }

std::string toString() const {
return std::visit([](auto&& val) {

std::ostringstream oss;
oss << val;
return oss.str();

}, data);
}

};

466

12.4.3 Environment for Variable Support

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;

Environment(Ptr parent = nullptr) : parent(std::move(parent)) {}

void declare(const std::string& name, const Value& val) {
symbols[name] = val;

}

void assign(const std::string& name, const Value& val) {
if (symbols.contains(name))

symbols[name] = val;
else if (parent)

parent->assign(name, val);
else

throw std::runtime_error("Undeclared variable: " + name);
}

Value get(const std::string& name) const {
if (symbols.contains(name))

return symbols.at(name);
if (parent)

return parent->get(name);
throw std::runtime_error("Undefined variable: " + name);

}

private:
std::unordered_map<std::string, Value> symbols;
Ptr parent;

467

};

12.4.4 Expression AST Design

struct Expr;
using ExprPtr = std::unique_ptr<Expr>;

struct Expr {
virtual Value eval(Environment::Ptr env) const = 0;
virtual ~Expr() = default;

};

struct LiteralExpr : Expr {
Value value;
LiteralExpr(Value v) : value(std::move(v)) {}
Value eval(Environment::Ptr) const override { return value; }

};

struct VariableExpr : Expr {
std::string name;
VariableExpr(std::string n) : name(std::move(n)) {}
Value eval(Environment::Ptr env) const override {

return env->get(name);
}

};

struct UnaryExpr : Expr {
std::string op;
ExprPtr operand;
UnaryExpr(std::string o, ExprPtr e) : op(std::move(o)), operand(std::move(e)) {}
Value eval(Environment::Ptr env) const override {

468

Value v = operand->eval(env);
if (op == "-") return Value(-v.get<IntType>());
if (op == "!") return Value(!static_cast<bool>(v.get<IntType>()));
return v;

}
};

struct BinaryExpr : Expr {
std::string op;
ExprPtr left, right;

BinaryExpr(std::string o, ExprPtr l, ExprPtr r)
: op(std::move(o)), left(std::move(l)), right(std::move(r)) {}

Value eval(Environment::Ptr env) const override {
Value l = left->eval(env);
Value r = right->eval(env);

if (op == "+") return Value(l.get<IntType>() + r.get<IntType>());
if (op == "-") return Value(l.get<IntType>() - r.get<IntType>());
if (op == "*") return Value(l.get<IntType>() * r.get<IntType>());
if (op == "/") return Value(l.get<IntType>() / r.get<IntType>());
if (op == "%") return Value(l.get<IntType>() % r.get<IntType>());
if (op == "==") return Value(l.get<IntType>() == r.get<IntType>());
if (op == "!=") return Value(l.get<IntType>() != r.get<IntType>());
if (op == "<") return Value(l.get<IntType>() < r.get<IntType>());
if (op == "<=") return Value(l.get<IntType>() <= r.get<IntType>());
if (op == ">") return Value(l.get<IntType>() > r.get<IntType>());
if (op == ">=") return Value(l.get<IntType>() >= r.get<IntType>());
if (op == "&&") return Value(static_cast<bool>(l.get<IntType>()) &&

static_cast<bool>(r.get<IntType>()));↪→

if (op == "||") return Value(static_cast<bool>(l.get<IntType>()) ||
static_cast<bool>(r.get<IntType>()));↪→

469

throw std::runtime_error("Unknown binary operator: " + op);
}

};

struct AssignmentExpr : Expr {
std::string name;
ExprPtr value;
AssignmentExpr(std::string n, ExprPtr v) : name(std::move(n)),

value(std::move(v)) {}↪→

Value eval(Environment::Ptr env) const override {
Value val = value->eval(env);
env->assign(name, val);
return val;

}
};

12.4.5 Recursive Descent Parser with Precedence

Simplified parser using recursive descent to respect operator precedence:

ExprPtr parseExpression(); // Handles lowest precedence
ExprPtr parseTerm(); // +, -
ExprPtr parseFactor(); // *, /
ExprPtr parsePrimary(); // literals, variables, ()

Each function reduces a tighter subset of operations. Operators are left-associative by
default (like C).

470

12.4.6 Main Loop (REPL-like)

int main() {
Environment::Ptr globalEnv = std::make_shared<Environment>();

std::string line;
while (std::getline(std::cin, line)) {

try {
ExprPtr expr = parse(line); // Your parser implementation
Value result = expr->eval(globalEnv);
std::cout << "=> " << result.toString() << "\n";

} catch (const std::exception& ex) {
std::cerr << "Error: " << ex.what() << "\n";

}
}

}

12.4.7 Example Interactions

• Input

x = 5 + 2
y = x * 10
y + 3

• Output

=> 7
=> 70
=> 73

471

12.4.8 Future Extensions

• Add float, bool, and string types.

• Support for if, while, for expressions.

• Function calls and user-defined functions.

• Pre/post-increment operators (x++, --x).

• Expression folding and constant evaluation (consteval).

12.4.9 Conclusion

This hands-on calculator validates the interpreter’s capability to evaluate C-style
expressions with full precedence, assignment, and variable handling. It combines
all major components of your evaluation engine—lexical scoping, value system,
expression hierarchy, and runtime environment—into a practical tool. It also provides
a solid testbed for extending the language toward full scripting or systems language
capabilities using modern C++20/23.

Chapter 13

Enhanced REPL – Version 2

13.1 Expression Evaluation in Interactive Mode

13.1.0.1 Introduction

A robust interpreter requires a responsive and reliable REPL (Read-Eval-Print
Loop). The REPL is not just a convenience—it's a dynamic testing ground for your
parser, evaluation engine, and variable system. In Version 2 of your REPL, the focus
is on enabling real-time expression evaluation with complete support for C-style
semantics: operator precedence, variable assignments, side effects, lexical scoping, and
immediate feedback.
This section details the implementation of interactive expression evaluation, from
input parsing to value resolution and result display, all using modern C++20/23
principles.

13.1.1 Goals of Interactive Expression Evaluation

• Parse and evaluate expressions line-by-line.

472

473

• Support variable declaration, use, and reassignment.

• Preserve state across expressions (global environment).

• Respect C-style operator precedence and scoping.

• Show evaluation results immediately.

• Handle invalid inputs gracefully with diagnostic feedback.

13.1.2 Essential Architecture Components

1. Environment

A persistent global environment holds user-defined variables.

Environment::Ptr globalEnv = std::make_shared<Environment>();

This environment is passed into every evaluation call, ensuring that variables
retain their values across REPL inputs.

2. Parser

A recursive descent parser or Pratt parser processes the user input and builds an
abstract syntax tree (AST) representing expressions.

3. Evaluator

Each AST node implements eval(Environment::Ptr env), returning a Value
object.

474

13.1.3 Read-Eval-Print Loop Implementation

void runREPL(Environment::Ptr globalEnv) {
std::string line;
while (true) {

std::cout << ">>> ";
if (!std::getline(std::cin, line)) break;

try {
ExprPtr expr = parseExpression(line);
Value result = expr->eval(globalEnv);
std::cout << "=> " << result.toString() << "\n";

} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << "\n";

}
}

}

• Input is read from standard input.

• Parsing converts the line into an AST expression.

• Evaluation occurs with access to the shared global environment.

• Results are printed using Value::toString().

13.1.4 Supported Expression Types

1. Literals

475

42
3.14
true

2. Arithmetic

1 + 2 * 3 // 7
(4 + 2) / 3 // 2

3. Unary Operators

-5
!0

4. Variables

x = 10
y = x * 2

5. Compound Assignments

x += 5
x *= 2

6. Comparisons and Logic

476

x > 5 && x < 15
x == 10

13.1.5 Persistent Evaluation Context

Each evaluation modifies the environment:

Value AssignmentExpr::eval(Environment::Ptr env) const {
Value rhs = value->eval(env);
env->assign(name, rhs);
return rhs;

}

Subsequent expressions reflect changes:

x = 3
x + 1 // returns 4

13.1.6 Error Detection and Recovery

Errors are caught at the top-level REPL loop. Example error cases:

• Use of undefined variable:

>>> z + 1
Error: Undefined variable: z

• Division by zero:

477

>>> 10 / 0
Error: Division by zero

These exceptions are surfaced using runtime checks in the evaluation phase.

13.1.7 C++20/23 Features in Use

• std::variant and std::visit

Used in the Value system to represent and evaluate runtime types.

• std::shared_ptr

Used to manage scoped environments and AST nodes with safe automatic
memory control.

• if constexpr

Used inside visitor dispatches for type-safe evaluation logic.

• constexpr operator precedence table

Used during parsing to manage correct construction of binary expressions.

• std::string_view (optional)

Can be used in the tokenizer to reduce string copying overhead.

13.1.8 Example REPL Session

>>> x = 10
=> 10
>>> y = x * 2

478

=> 20
>>> y + 5
=> 25
>>> x == 10
=> true
>>> x = x + 1
=> 11
>>> x
=> 11

This reflects full dynamic interaction with stateful variable management and expression
chaining.

13.1.9 Test Cases for Validation

Each of the following should pass:

• a = 1 + 2 * 3 → a = 7

• b = a + (4 * 2) → b = 15

• b -= 5 → b = 10

• b == 10 → true

• c → error: undefined variable

13.1.10 Future Extensions

• Allow declarations with types (e.g., int x = 5)

• Include functions and scoping inside blocks

479

• Add control flow expressions (e.g., if, while)

• Add multi-line input (REPL buffer and parser state)

• Add history and command editing

13.1.11 Conclusion

This section delivers a fully working REPL that supports expression evaluation
in C-style syntax, enabling users to interactively test expressions, define and use
variables, and see real-time results. The interpreter now supports a stateful, user-
friendly interactive mode, forming a crucial milestone in language usability. With
modern C++20/23 features, the architecture is clean, modular, and scalable — ready
for further enhancements in block execution, type declarations, and function calls.

13.2 Variable Persistence with C-Style Scoping

13.2.0.1 Introduction

A reliable Read-Eval-Print Loop (REPL) in any C-style language must support
persistent variable storage across expressions and sessions, while preserving C-
style block scoping rules. In Version 2 of the REPL, users should be able to define
variables, reuse them later, and create nested scopes where outer variables can be
shadowed without being lost. This section presents how to implement persistent and
block-aware variable resolution using modern C++20/23 constructs.

13.2.1 C-Style Scoping Rules Recap

C-style scoping follows these principles:

480

• A variable declared in a block { ... } is visible only within that block and its
nested scopes.

• Inner scopes may shadow outer variables with the same name.

• Variables declared at the global level are accessible unless shadowed.

• Once a block ends, its variables cease to exist and are not accessible outside.

In REPL mode, users simulate these scopes through statements and expressions. Your
interpreter must ensure:

• Variable values persist in the global scope.

• Block scopes are created and destroyed dynamically during evaluation.

• Variable lookups always follow lexical (not dynamic) scope resolution.

13.2.2 Persistent Global Environment

The global environment is the root symbol table where all top-level variables reside.
It must live as long as the REPL session runs, and it must be shared with all
evaluated expressions.

Environment::Ptr globalEnv = std::make_shared<Environment>();

Every evaluation in the REPL passes this globalEnv to the evaluator. It holds:

• All user-defined variables (int x = 10)

• Their most recent values

• Type-safe bindings in a std::unordered_map

481

std::unordered_map<std::string, Value> symbols;

13.2.3 Environment Chaining for Block Scoping

To support nested block scoping in REPL expressions (e.g., during if, while, { ...
}), each block or context evaluation must create a new environment that points to
the parent:

auto innerEnv = std::make_shared<Environment>(outerEnv);

When the block ends, innerEnv is destroyed. Lookups always go from inner to outer:

Value Environment::get(const std::string& name) const {
if (symbols.contains(name)) return symbols.at(name);
if (parent) return parent->get(name);
throw std::runtime_error("Undefined variable: " + name);

}

This maintains lexical visibility while allowing temporary variables to exist only in
certain scopes.

13.2.4 Variable Assignment and Update

Assignments must follow C's behavior: update the nearest declared variable. If none is
found, throw an error (or implicitly declare in global if the language permits).

void Environment::assign(const std::string& name, const Value& value) {
if (symbols.contains(name)) {

symbols[name] = value;
} else if (parent) {

482

parent->assign(name, value);
} else {

throw std::runtime_error("Assignment to undeclared variable: " + name);
}

}

This supports persistent updates like:

x = 5
x = x + 1 // persists across REPL inputs

13.2.5 Shadowing and Restoration

Users may define temporary variables that shadow outer variables. After leaving the
block, the outer variable is visible again.

Example

x = 10
{

int x = 20; // shadows global x
x = x + 5; // x becomes 25 inside block

}
x // should still be 10

This is achieved by:

• Creating a new Environment for the block

• Evaluating statements inside the block with the new environment

• Discarding it after block completion

483

void evaluateBlock(const std::vector<Statement>& stmts, Environment::Ptr outerEnv) {
auto localEnv = std::make_shared<Environment>(outerEnv);
for (auto& stmt : stmts) {

evaluate(stmt, localEnv);
}

}

13.2.6 REPL Use Case

When a user types:

>>> a = 5
>>> b = a + 2
>>> {
>>> int a = 100
>>> b = a + b
>>> }
>>> a
>>> b

The output must be:

=> 5
=> 7
=>
=> 5
=> 107

Explanation:

• a = 5 in global

484

• b = 7

• Inside block: shadowed a = 100; b updated to 100 + 7 = 107

• Global a remains 5

• Updated b visible globally

13.2.7 Value Consistency and Type Safety

To preserve variable integrity:

• Ensure consistent types for updates (optional stricter mode).

• Consider using a VariableBinding structure for const, type, or lifetime
support.

struct VariableBinding {
Value value;
bool isConst;
// optional: std::string typeName;

};

Modify assignment logic to respect immutability and type constraints.

13.2.8 Error Reporting and Shadow Awareness

When shadowing occurs, your interpreter can provide helpful feedback in REPL:

>>> x = 10
>>> {
>>> int x = 20

485

>>> x
>>> }

Optional message:

[info] Variable 'x' shadows one from outer scope

This is helpful for debugging but not required for correctness.

13.2.9 C++20/23 Features Used

• std::shared_ptr for scope chaining and lifetime management.

• std::unordered_map for fast symbol resolution.

• std::variant for Value abstraction.

• if constexpr for type-based dispatch inside evaluation.

• constinit or consteval (in future) for compile-time constants (optional).

13.2.10 Summary Table

Table 2-1: REPL Variable and Scope Behavior

Feature Behavior

Global variables Persist across REPL expressions

Block variables Exist temporarily within block scope

Shadowing Inner blocks can shadow outer vars

486

Feature Behavior

Assignment Modifies nearest visible variable

Lookup Searches lexical chain

Shared REPL environment Passed to every evaluation call

13.2.11 Conclusion

This section implements full C-style variable persistence with lexical scoping in
an interactive REPL environment. By combining a persistent global environment
with temporary block environments, and enforcing consistent variable resolution
and shadowing behavior, your interpreter now mimics the exact scoping rules
of C. Using modern C++20/23 capabilities, this system is clean, memory-safe, and
extensible—ready for the addition of functions, closures, modules, and more advanced
scope-dependent semantics.

13.3 Enhanced Debugging Output for Language
Constructs

13.3.0.1 Introduction

As an interpreter matures and supports more advanced C-style constructs, the ability
to trace, inspect, and debug language behavior becomes essential for both users and
implementers. In Version 2 of the REPL, enhanced debugging output bridges the gap
between internal interpreter logic and user understanding, especially during live coding
sessions. This section describes how to design and implement structured, informative,
and context-aware debugging feedback using modern C++20/23, tailored to reflect

487

C-style semantics faithfully.

13.3.1 Objectives of Enhanced Debugging

• Visualize evaluation steps clearly.

• Expose environment and scope transitions.

• Highlight variable bindings and shadowing.

• Trace expression trees and operator evaluations.

• Report runtime errors with context.

• Assist language designers and REPL users alike.

13.3.2 Core Debug Output Components

To support structured debug output, your interpreter must:

1. Annotate each major language construct with traceable information.

2. Output data consistently (e.g., indentation, prefixing).

3. Allow debugging to be toggled without recompilation (e.g., via a global flag).

Example: Debug Options

struct DebugOptions {
bool traceExpressions = false;
bool traceScopes = false;
bool traceAssignments = false;
bool traceErrors = true;

};

488

Used globally during the REPL session:

DebugOptions debug;

13.3.3 Tracing Variable Access and Mutation

• Variable Lookup

Value Environment::get(const std::string& name) const {
if (symbols.contains(name)) {

if (debug.traceAssignments)
std::cout << "[lookup] " << name << " => " <<

symbols.at(name).toString() << "\n";↪→

return symbols.at(name);
} else if (parent) {

return parent->get(name);
} else {

if (debug.traceErrors)
std::cerr << "[error] Undefined variable: " << name << "\n";

throw std::runtime_error("Undefined variable: " + name);
}

}

• Assignment

void Environment::assign(const std::string& name, const Value& value) {
if (symbols.contains(name)) {

if (debug.traceAssignments)
std::cout << "[assign] " << name << " := " << value.toString() <<

"\n";↪→

symbols[name] = value;

489

} else if (parent) {
parent->assign(name, value);

} else {
if (debug.traceErrors)

std::cerr << "[error] Assignment to undeclared variable: " << name
<< "\n";↪→

throw std::runtime_error("Assignment to undeclared variable: " + name);
}

}

13.3.4 Tracing Expression Evaluation

Each expression type should report its action if enabled:

• Binary Expression

Value BinaryExpr::eval(Environment::Ptr env) const {
Value l = left->eval(env);
Value r = right->eval(env);
Value result = applyOp(op, l, r);

if (debug.traceExpressions) {
std::cout << "[expr] (" << l.toString() << " " << op << " " <<

r.toString()↪→

<< ") => " << result.toString() << "\n";
}

return result;
}

490

• Unary Expression

Value UnaryExpr::eval(Environment::Ptr env) const {
Value operandVal = operand->eval(env);
Value result = applyUnaryOp(op, operandVal);

if (debug.traceExpressions) {
std::cout << "[expr] (" << op << operandVal.toString() << ") => "

<< result.toString() << "\n";
}

return result;
}

13.3.5 Tracing Scope Creation and Destruction

Scopes are crucial for block evaluations, and debugging them helps visualize variable
lifetimes.

void evaluateBlock(const std::vector<Statement>& stmts, Environment::Ptr outerEnv) {
if (debug.traceScopes)

std::cout << "[scope] Entering new block scope\n";

auto localEnv = std::make_shared<Environment>(outerEnv);
for (auto& stmt : stmts)

evaluate(stmt, localEnv);

if (debug.traceScopes)
std::cout << "[scope] Exiting block scope\n";

}

491

13.3.6 Optional: AST Structure Visualization

Add a debug-printing method to all AST node types to visualize parsed expressions.

Example Output

[ast]
AssignmentExpr {

name = x
value = BinaryExpr {

left = LiteralExpr(3)
op = +
right = LiteralExpr(4)

}
}

This requires recursive AST inspection methods like:

void BinaryExpr::printTree(int indent = 0) const {
std::string pad(indent, ' ');
std::cout << pad << "BinaryExpr(" << op << ")\n";
left->printTree(indent + 2);
right->printTree(indent + 2);

}

Call .printTree() before evaluation when debug is enabled.

13.3.7 Enhanced Error Context and Reporting

All runtime errors should include:

• Expression type or source

492

• Variable name

• Operator

• Suggestions, if possible

try {
Value val = expr->eval(env);

} catch (const std::exception& ex) {
if (debug.traceErrors) {

std::cerr << "[error] While evaluating expression: " << expr->describe() <<
"\n";↪→

std::cerr << "[error] " << ex.what() << "\n";
} else {

throw;
}

}

Implement Expr::describe() in each node type for meaningful output.

13.3.8 Toggleable Debug Mode

Allow enabling/disabling debug options dynamically from the REPL:

>>> #debug traceExpressions on
>>> #debug traceAssignments on
>>> x = 5 + 3
[expr] (5 + 3) => 8
[assign] x := 8

This command system can be implemented with a parser hook for #debug.

493

13.3.9 Summary of Debugging Features

Table 3-2: Interpreter Debug Output Features

Feature Output Example

Expression trace [expr] (a + 3) => 7

Variable lookup [lookup] a => 4

Assignment [assign] x := 10

Undefined variable error [error] Undefined variable: y

Scope enter/exit [scope] Entering new block scope

AST visualizer (optional) Indented tree of expression structure

13.3.10 Conclusion

This section equips your REPL and evaluation engine with powerful, developer-friendly
debugging features that trace the behavior of all major language constructs. By
leveraging modern C++20/23, structured logging, and optional introspection
utilities, users and developers can visualize how the interpreter evaluates expressions,
resolves variables, processes blocks, and handles errors. These debugging tools not
only improve development workflow but also serve as an educational layer for users
experimenting with your C-style language interactively.

494

13.4 Milestone — Interactive C-Style Expression
Evaluator

13.4.1 Introduction

This section represents a critical milestone in the development of your new C-style
programming language: a fully operational interactive expression evaluator,
embedded within an enhanced REPL. At this stage, the evaluator supports real-time
user interaction, expression parsing, variable scoping, operator precedence, side effects,
and informative debugging. The evaluator provides a live, self-contained, and
persistent environment—mirroring the behavior of C-like expressions, while utilizing
modern C++20/23 constructs.

13.4.2 Milestone Objectives

• Evaluate user input expressions interactively

• Support full C-style semantics: precedence, associativity, scoping

• Maintain persistent global environment

• Respect block scoping and variable shadowing

• Enable debugging output for clarity and introspection

• Ensure type-safe expression handling using C++20/23 features

13.4.3 Components Realized in This Milestone

• a) Expression Parser

495

A complete parser transforms user-entered expressions into a structured Abstract
Syntax Tree (AST), respecting C operator precedence and associativity.

– Handles arithmetic: 1 + 2 * 3

– Recognizes unary operations: -x, !true

– Supports assignment and compound assignment: x = 5, x += 2

– Interprets parentheses: (3 + 4) * 2

– Optional support for chained assignments: a = b = 10

• b) AST Node Structure

Each AST node implements a unified eval() method using polymorphism:

struct Expr {
virtual Value eval(Environment::Ptr env) const = 0;
virtual ~Expr() = default;

};

Expression types implemented:

– LiteralExpr

– VariableExpr

– UnaryExpr

– BinaryExpr

– AssignmentExpr

– (Optional: BlockExpr, UpdateExpr for future control structures)

496

13.4.4 Persistent Evaluation Environment

A persistent global environment tracks variable state across expressions.

auto globalEnv = std::make_shared<Environment>();

– Variables declared once remain accessible:

>>> x = 10
>>> x + 5
=> 15

– Assignments update existing variables:

>>> x += 1
=> 11

Environment chaining supports C-style block scoping, useful when block
expressions or future control flow constructs are introduced.

13.4.5 Expression Evaluation Lifecycle

Each input line in REPL passes through:

1. Tokenization

2. Parsing into AST

3. Evaluation using shared environment

497

4. Result printing

Example

>>> a = 3
>>> b = a * (2 + 1)
>>> b - 1

Yields:

=> 3
=> 9
=> 8

13.4.6 Modern C++ Integration

Key C++20/23 features used:

Table 4-3: C++ Feature Usage in Evaluator Design

Feature Purpose

std::variant Runtime type abstraction (Value)

std::visit Type-safe operation dispatch

std::shared_ptr AST and environment lifetime control

if constexpr Compile-time branching in evaluators

ranges/string_view (optional) Efficient input processing

498

Feature Purpose

concepts (optional) Restrict evaluator templates

13.4.7 Debugging and Trace Output (Optional)

Enabled through a global DebugOptions flag:

>>> x = 4 + 1
[expr] (4 + 1) => 5
[assign] x := 5
=> 5

Helpful for:

• Verifying precedence evaluation

• Inspecting variable updates

• Tracking scope transitions

13.4.8 User Experience

A responsive and safe REPL interface:

• Immediate feedback: every line outputs result or error

• Error reporting:

>>> y + 1
Error: Undefined variable: y

499

• No crashes: exceptions are caught and reported

• Stateful interaction: full program history is respected

13.4.9 Example Session

>>> x = 10
=> 10
>>> y = x + 2
=> 12
>>> y += 5
=> 17
>>> {
>>> int x = 100
>>> x + y
>>> }
=> 117
>>> x
=> 10

This illustrates:

• Assignment and compound assignment

• Expression nesting and arithmetic

• Block scoping and variable shadowing

• Persistent outer variable state

13.4.10 Summary Table of Supported Features

500

Table 4-4: Feature Implementation Status

Feature Status

Integer and float literals Implemented

Arithmetic operations Implemented

Unary operators Implemented

Operator precedence Implemented

Variable assignment Implemented

Compound assignment Implemented

Variable persistence Implemented

Scoping with shadowing Implemented

Debug output (optional) Implemented

Safe runtime error handling Implemented

13.4.11 Roadmap Beyond This Milestone

This milestone completes the core REPL interaction model. Next steps include:

• Multi-statement block execution

• Conditional and loop control structures (if, while)

• Function declaration and calls

• Built-in functions (e.g., print, len)

• Type declarations (int, bool)

501

• Expression folding with consteval

• Module or file-based scope handling

13.4.12 Conclusion

This milestone marks the transition from a language prototype to a functioning
interactive engine. It enables users to explore expressions, understand evaluation
semantics, and manipulate state in real time—all using a system that mirrors the C
expression model but with modern architecture. Built with C++20/23 idioms, the
evaluator is scalable, safe, and expressive, forming the core of the execution model for
future language features.

Part V

Control Flow and Functions

502

Chapter 14

C-Style Statement Execution Engine

14.1 Block Scoping with {} Delimiters

14.1.0.1 Introduction

In C-style languages, block scoping is one of the most fundamental concepts that
governs visibility, lifetime, and resolution of variables and control statements. Blocks
are defined by {} braces, and everything enclosed within them operates under an
isolated lexical environment that may inherit from its outer context but also allows
for local overrides (shadowing). This section details how to design and implement
block scoping in the statement execution engine, using modern C++20/23
constructs, and how {}-delimited blocks influence control flow and environment
lifetimes.

14.1.1 Purpose of Block Scoping

Block scoping provides:

• Lexical visibility control

504

505

• Safe reuse of variable names

• Isolation of intermediate computations

• Foundation for conditional (if, else) and loop (while, for) statements

• Predictable variable lifetime and destruction semantics

In REPL or script-based evaluation, {} blocks create temporary environments that
can nest and shadow outer scopes, consistent with C semantics.

14.1.2 Conceptual Model

Each block {} in the AST is treated as a new scope level. The interpreter must:

1. Create a new environment for the block.

2. Link it to its outer environment.

3. Evaluate contained statements in this new environment.

4. Discard the environment when the block ends.

This supports nested scopes, variable shadowing, and isolation.

Environment Chaining:

GlobalEnv
↓

Block1Env
↓

Block2Env

Each environment has a pointer to its parent:

506

class Environment {
public:

using Ptr = std::shared_ptr<Environment>;
explicit Environment(Ptr parent = nullptr);
Ptr parent;
std::unordered_map<std::string, Value> symbols;

};

14.1.3 Parser Recognition of Block Statements

The parser must recognize {} as the start and end of a block and collect a sequence of
statements in between.

Example:

{
int x = 5;
y = x + 2;

}

This is parsed into a BlockStmt node:

struct BlockStmt : Stmt {
std::vector<std::unique_ptr<Stmt>> statements;

};

14.1.4 Executing a Block Statement

Evaluation of a block statement creates a new environment, executes each inner
statement, and then discards the local environment after execution ends.

507

Interpreter Implementation:

Value Interpreter::executeBlock(const BlockStmt& block, Environment::Ptr parentEnv) {
auto localEnv = std::make_shared<Environment>(parentEnv);

for (const auto& stmt : block.statements) {
execute(stmt.get(), localEnv);

}

return Value::None(); // or result of last evaluated expression if desired
}

The scope ends when the block ends. All local variables declared inside disappear and
do not leak.

14.1.5 Shadowing and Lifetime Behavior

Block scoping enables variable shadowing:

int x = 10;
{

int x = 20; // shadows outer x
print(x); // prints 20

}
print(x); // prints 10

This behavior is enforced by:

• Checking variable existence only in current environment during declaration.

• Allowing lookup through parent chain during access.

Declaration Logic:

508

void Environment::declare(const std::string& name, const Value& val) {
if (symbols.contains(name)) {

throw std::runtime_error("Variable redeclared in same scope: " + name);
}
symbols[name] = val;

}

14.1.6 Integration with Control Flow

Blocks are core to:

• if, else

• while, for

• Functions (body is a block)

• Nested blocks in compound statements

Each control structure will internally call executeBlock(...) for its body.

Example: if statement

if (cond) {
// true block

} else {
// false block

}

Internally:

509

if (evaluate(condExpr, env).asBool()) {
executeBlock(ifStmt.trueBlock, env);

} else {
executeBlock(ifStmt.falseBlock, env);

}

14.1.7 Debug Output for Block Scope

To aid in debugging, the REPL or interpreter can provide scope tracking:

if (debug.traceScopes) {
std::cout << "[scope] Entering block\n";

}
auto localEnv = std::make_shared<Environment>(parentEnv);
...
if (debug.traceScopes) {

std::cout << "[scope] Exiting block\n";
}

14.1.8 C++20/23 Enhancements

Table 1-1: Modern C++ Features and Their
Application

Feature Application

std::shared_ptr Scope environment chaining and lifetime

std::unordered_map Efficient symbol lookup in environments

510

Feature Application

std::variant Used in Value system for runtime type
support

if constexpr For evaluating specific types at
compile-time

concepts Optional: enforce valid AST/evaluator
types

14.1.9 Example Execution Flow

Input Code:

int x = 1;
{

int x = 2;
x = x + 1;

}
x = x + 3;

Internal Flow:

1. Global x = 1

2. Enter block → local x = 2

3. Modify local x → 3

4. Exit block → local x discarded

5. Global x now updated: 1 + 3 = 4

511

14.1.10 Summary

Table 1-2: Scope Behavior in Modern Interpreter
Design

Feature Supported Behavior

{} as scope boundary Introduced new environment

Nested scopes Chain to outer environments

Shadowing Allowed inner declaration of same name

Scope destruction Local environment discarded on exit

Debug output Enter/exit messages (optional)

14.1.11 Conclusion

Block scoping with {} is a core execution model in all C-style languages. This
section establishes how to parse, interpret, and manage scope lifetimes, enabling robust,
predictable behavior for variable visibility and isolation. Backed by C++20/23
memory-safe features, the statement engine now honors standard C scoping
semantics and prepares the foundation for introducing control structures, nested blocks,
and function definitions in upcoming sections.

14.2 Conditional Statements — if, else if, else

512

14.2.0.1 Introduction

Conditional execution is the foundation of control flow in all C-style languages. The
if, else if, and else statements determine the dynamic path a program follows
at runtime. Implementing them requires a precise evaluation engine that respects C
semantics—including condition evaluation, short-circuit execution, and scoped block
execution.
This section presents a focused implementation of conditional constructs using modern
C++20/23, leveraging shared environments, short-circuit logic, and structured AST
evaluation.

14.2.1 Role of Conditional Statements

Conditional statements in a C-style language provide:

• Branching logic: decisions made based on evaluated expressions

• Scoped execution: each branch executes in its own block

• Structured flow control: deterministic program behavior

Example syntax supported:

if (x > 10) {
print("x is large");

} else if (x > 5) {
print("x is medium");

} else {
print("x is small");

}

513

14.2.2 Grammar and AST Representation

Grammar (simplified):

if_statement:
"if" "(" expression ")" block
["else if" "(" expression ")" block]*
["else" block]?

AST Node Structure:

struct IfStmt : Stmt {
std::vector<std::pair<ExprPtr, BlockStmt>> branches;
std::optional<BlockStmt> elseBranch;

};

Each branch includes:

• A condition (expression)

• A body (block of statements)

14.2.3 Parsing Strategy

When the parser encounters an if token:

1. Parse the condition inside (...)

2. Parse the {...} block that follows

3. Look ahead for zero or more else if (...) {...}

514

4. Optionally capture a final else {...} block

Each part is stored in branches and elseBranch.

14.2.4 Execution Logic

Evaluation of IfStmt follows a linear priority:

• Evaluate each condition in order

• On the first true condition, execute its corresponding block

• Skip the rest

• If none match and else exists, execute it

Execution Example in C++:

Value Interpreter::execute(const IfStmt& stmt, Environment::Ptr env) {
for (const auto& [condition, block] : stmt.branches) {

Value condResult = condition->eval(env);
if (!condResult.isBool())

throw std::runtime_error("Condition must evaluate to bool");

if (condResult.asBool()) {
executeBlock(block, env);
return Value::None();

}
}

if (stmt.elseBranch.has_value()) {
executeBlock(stmt.elseBranch.value(), env);

}

515

return Value::None();
}

14.2.5 Block Isolation and Scope

Each block in a conditional (including else) must:

• Execute in its own lexical environment

• Link to the parent scope

• Allow variable declarations without leaking to outer scope

executeBlock(block, env); // creates a nested environment

14.2.6 Error Handling

Your interpreter must detect:

• Missing parentheses

• Non-boolean conditions

• Improper block formatting

Additionally, a runtime error occurs if a condition does not resolve to a boolean:

516

if (x) { ... } // valid if x is boolean
if (3) // should error unless implicit conversion is defined

Optionally, allow numeric-to-boolean conversion if your language design supports it, as
C does (0 is false, non-zero is true). Implement this via a conversion function:

bool asBool(const Value& val) {
if (val.isBool()) return val.asBool();
if (val.isInt()) return val.asInt() = 0;
if (val.isFloat()) return val.asFloat() = 0.0;
throw std::runtime_error("Invalid condition type");

}

14.2.7 Debug Output (Optional)

To support tracing during development, print conditional evaluation steps:

if (debug.traceConditions) {
std::cout << "[if] Condition: " << condResult.toString()

<< " → " << (condResult.asBool() ? "true" : "false") << "\n";
}

14.2.8 Example Use Case

Input:

x = 8;
if (x > 10) {

y = 1;

517

} else if (x > 5) {
y = 2;

} else {
y = 3;

}

Execution Trace:

[if] Condition x > 10 → false
[if] Condition x > 5 → true
[block] Executing second branch

Result: y = 2

14.2.9 C++20/23 Features in Use

Table 2-3: C++ Features for Conditional Handling

Feature Role in Conditional Handling

std::optional Optional else block

std::vector Maintain ordered list of if/else if branches

std::shared_ptr Pass environments safely between blocks

std::variant Represent condition values and enable
type-checking

if constexpr Optional: Used in type-based condition
evaluation

518

14.2.10 Future Extensions

Once conditionals are stable:

• Support expression-level if (ternary operator ?:)

• Introduce short-circuit evaluation for logical && and ||

• Add support for pattern matching, if language requires

• Extend to compile-time evaluation via consteval in future phases

14.2.11 Summary Table

Table 2-4: Conditional Components and Status

Component Status

if block Implemented

else if chains Implemented

else fallback Implemented

Boolean evaluation Required

Block scoping Isolated

Debug trace Optional

14.2.12 Conclusion

The implementation of if, else if, and else conditional statements brings your
interpreter in line with standard C-style control flow. These statements are the

519

building blocks of logic-driven programming, and their execution model—paired with
scoped environments and robust expression evaluation—establishes a strong control
system. Using modern C++20/23 tools ensures that this implementation is clean,
modular, and ready for expansion into loops, functions, and more advanced flow-control
mechanisms in the upcoming chapters.

14.3 Loop Constructs — while, for, do-while

14.3.0.1 Introduction

Looping constructs are a core part of any C-style language, enabling repeated execution
of code blocks based on evaluated conditions. C offers three primary loop forms—
while, for, and do-while—each with specific semantics around condition evaluation,
scoping, and body execution. In this section, we will deeply analyze how to implement
these constructs in a modern interpreter using C++20/23, maintaining C-style
behavior, type safety, and environment control.

14.3.1 Overview of Loop Constructs

Table 3-5: Loop Types and Behavior Summary

Loop Type Condition
Check Time

Guaranteed
Execution?

Control Variables

while Before body No External or declared before

for Before body No Init, condition, update

do-while After body Yes (once) External or internal

520

14.3.2 Common Interpreter Requirements

All loop constructs must:

• Support environment isolation

• Handle break and continue correctly

• Optionally support debug trace

• Use typed condition evaluation

• Be interruptible in future async/VMs

A shared method for evaluating boolean expressions should be used:

bool evalCondition(const ExprPtr& condition, Environment::Ptr env) {
Value val = condition->eval(env);
if (val.isBool()) return val.asBool();
if (val.isInt()) return val.asInt() = 0;
if (val.isFloat()) return val.asFloat() = 0.0;
throw std::runtime_error("Loop condition must evaluate to a boolean-compatible

value.");↪→

}

14.3.3 while Loop

3.3 while Loop

Syntax:

521

while (condition) {
// body

}

AST Node:

struct WhileStmt : Stmt {
ExprPtr condition;
BlockStmt body;

};

Execution:

Value Interpreter::execute(const WhileStmt& stmt, Environment::Ptr env) {
while (evalCondition(stmt.condition, env)) {

try {
executeBlock(stmt.body, std::make_shared<Environment>(env));

} catch (BreakSignal&) {
break;

} catch (ContinueSignal&) {
continue;

}
}
return Value::None();

}

Each iteration creates a new nested environment for isolation, consistent with scoped
variables declared within the loop body.

522

14.3.4 do-while Loop

Syntax:

do {
// body

} while (condition);

AST Node:

struct DoWhileStmt : Stmt {
BlockStmt body;
ExprPtr condition;

};

Execution:

Value Interpreter::execute(const DoWhileStmt& stmt, Environment::Ptr env) {
do {

try {
executeBlock(stmt.body, std::make_shared<Environment>(env));

} catch (BreakSignal&) {
break;

} catch (ContinueSignal&) {
// do nothing, proceed to condition check

}
} while (evalCondition(stmt.condition, env));

return Value::None();
}

523

This structure ensures body is executed at least once, regardless of the condition.

14.3.5 for Loop

Syntax:

for (init; condition; update) {
// body

}

AST Node:

struct ForStmt : Stmt {
std::unique_ptr<Stmt> initializer;
ExprPtr condition;
ExprPtr update;
BlockStmt body;

};

Execution:

Value Interpreter::execute(const ForStmt& stmt, Environment::Ptr env) {
auto localEnv = std::make_shared<Environment>(env);

if (stmt.initializer)
execute(stmt.initializer.get(), localEnv);

while (!stmt.condition || evalCondition(stmt.condition, localEnv)) {
try {

executeBlock(stmt.body, std::make_shared<Environment>(localEnv));
} catch (BreakSignal&) {

524

break;
} catch (ContinueSignal&) {

// continue to update
}

if (stmt.update)
stmt.update->eval(localEnv);

}

return Value::None();
}

• Initializer runs once at the start

• Condition is evaluated before each iteration (default true if null)

• Update is executed at the end of each iteration

• Environment can preserve loop state across iterations

14.3.6 Break and Continue Handling

To support break and continue:

Signals:

struct BreakSignal : public std::exception {};
struct ContinueSignal : public std::exception {};

Triggered by:

525

Value Interpreter::execute(const BreakStmt&, Environment::Ptr) {
throw BreakSignal();

}

Value Interpreter::execute(const ContinueStmt&, Environment::Ptr) {
throw ContinueSignal();

}

Handled in loop body:
Each loop handler must try-catch these exceptions appropriately.

14.3.7 Debugging Trace Support

Optional debug output for loop activity:

if (debug.traceLoops) {
std::cout << "[loop] Starting new iteration\n";

}

Can be toggled from REPL using #debug traceLoops on.

14.3.8 C++20/23 Modernization Techniques

Table 3-6: C++ Feature Usage in Loop Constructs and
Control Logic

Feature Usage

std::shared_ptr For safe environment management

526

Feature Usage

std::variant In Value system for condition logic

if constexpr Compile-time branching for type safety

std::optional Nullable condition in for loops

ranges (optional) May apply for future iterable loops

14.3.9 Example Execution

for (int i = 0; i < 3; i = i + 1) {
print(i);

}

Output:

0
1
2

Scoping Behavior:

• i exists only inside the for loop

• After the loop, i is undefined

14.3.10 Summary

527

Table 3-7: Loop Types and Scoping Characteristics

Loop
Type

Scoping Repetition Control Guaranteed
Execution

Environment

while Yes Condition before No Nested

do-while Yes Condition after Yes Nested

for Yes Init → Cond → Body →
Update

No Nested

14.3.11 Conclusion

Implementing while, for, and do-while loops gives your interpreter full support for
iterative control flow consistent with C semantics. By using modern C++20/23
idioms, the interpreter becomes safer, cleaner, and easier to maintain. These
constructs not only empower users to write expressive logic but also prepare the
ground for more advanced structures like iterators, lambdas, and user-defined control
mechanisms in the future chapters.

14.4 Milestone — Full C-Style Statement Interpreter

14.4.0.1 Introduction

This section marks a significant achievement: the completion of a full-featured C-
style statement interpreter, capable of parsing, executing, and managing the
complete range of control flow constructs—if, else, while, for, do-while, and blocks
{}—with proper scoping, variable lifetime control, and side-effect behavior,
all faithfully aligned with C semantics. The interpreter is now able to execute

528

structured programs, enforce type correctness, and manage scope transitions, all
while using clean, modular, and modern C++20/23 idioms.

14.4.1 Milestone Goals

At this point, your interpreter should:

• Evaluate complete program blocks composed of:

– if, else if, else

– while, for, do-while loops

– {}-delimited scoped blocks

– Assignments, compound operations, and value expressions

• Handle:

– Lexical scoping and shadowing

– Runtime type evaluation

– Structured environment management

– Interruptions via break, continue

• Be integrated into a REPL or script execution engine

14.4.2 Structural Overview

All statement types in your AST should now conform to a unified evaluation interface:

529

struct Stmt {
virtual Value execute(Environment::Ptr env) const = 0;
virtual ~Stmt() = default;

};

Each derived class (e.g., IfStmt, ForStmt, BlockStmt, WhileStmt) handles:

• Scoped execution

• Result propagation (if needed)

• Side-effect integration

• Control flow signaling (Break, Continue)

14.4.3 Statement Execution Engine

The statement dispatch function should be capable of dynamically evaluating any
supported statement:

Value Interpreter::execute(const Stmt* stmt, Environment::Ptr env) {
switch (stmt->type()) {

case StmtType::Block: return executeBlock(*static_cast<const
BlockStmt*>(stmt), env);↪→

case StmtType::If: return executeIf(*static_cast<const IfStmt*>(stmt), env);
case StmtType::While: return executeWhile(*static_cast<const

WhileStmt*>(stmt), env);↪→

case StmtType::DoWhile: return executeDoWhile(*static_cast<const
DoWhileStmt*>(stmt), env);↪→

case StmtType::For: return executeFor(*static_cast<const ForStmt*>(stmt),
env);↪→

case StmtType::Assignment: return executeAssignment(*static_cast<const
AssignmentStmt*>(stmt), env);↪→

530

case StmtType::Break: throw BreakSignal();
case StmtType::Continue: throw ContinueSignal();
default: throw std::runtime_error("Unknown statement type");

}
}

Alternatively, you can use std::variant and std::visit for cleaner type-safe
dispatching if your AST is implemented as tagged unions.

14.4.4 Scope and Environment Integration

Scope management is enforced via nested Environment objects:

auto childEnv = std::make_shared<Environment>(parentEnv);

Each block creates its own environment, preserving:

• Local variables

• Lifetime isolation

• Shadowing behavior

• Parent environment access for outer symbols

You ensure predictable memory and type behavior, aligned with C semantics.

14.4.5 Supported Language Features at This Stage

531

Table 4-8: Language Feature Support Overview

Language Feature Status

Block {} statement Fully supported

if, else if, else Fully supported

while loop Fully supported

do-while loop Fully supported

for loop Fully supported

break, continue Fully supported

Variable scoping Fully implemented via Environment

Expression-based evaluation Integrated with statement engine

Side effects Supported in expression and control flows

14.4.6 Example Program Execution

Sample source:

int x = 0;
for (int i = 0; i < 5; i = i + 1) {

if (i % 2 == 0) {
x = x + i;

} else {
continue;

}
}

532

Expected behavior:

• x accumulates even numbers: 0 + 2 + 4 = 6

• Variables i and x follow scoped rules

• Loop control obeys C-style evaluation flow

14.4.7 Modern C++ Practices in Use

Table 4-9: Modern C++ Feature Usage in Language
Implementation

C++ Feature Usage Context

std::variant Statement and expression representation

std::visit Statement evaluation dispatch

std::shared_ptr Environment and AST lifetime management

std::optional For optional else branches or loop conditions

if constexpr Compile-time control in type-specific operations

constexpr Optional: constant folding and future optimizations

ranges/views Optional: iteration and future dataflow constructs

These features allow cleaner, safer, and more modular interpreter design, and prepare
the base for future compiler optimizations, VM integration, or JIT expansions.

533

14.4.8 Debug and Tracing Infrastructure

Ensure that debug capabilities exist:

if (debug.traceStatements) {
std::cout << "[stmt] Executing: " << stmt->toString() << "\n";

}

Add fine-grained tracing for:

• Condition evaluation

• Scope entry/exit

• Loop iteration counts

• Variable updates

14.4.9 Stability and Error Handling

The interpreter must handle:

• Type mismatches in conditions

• Invalid operations (e.g., assigning to undeclared variable)

• Uninitialized variables

• Unexpected control flow (e.g., break outside of loop)

All errors must throw descriptive std::runtime_error exceptions and be catchable in
the REPL or execution environment.

534

14.4.10 Preparing for Next Stage

With the statement engine complete, the interpreter can now evolve to:

• Add function declarations and calls

• Implement return statements and scopes

• Support early exit mechanisms

• Introduce user-defined types and arrays

• Begin module and file-level execution

This milestone enables full program execution in scripts or the REPL, and forms the
core foundation for procedural programming in your C-style language.

14.4.11 Conclusion

Achieving a full C-style statement interpreter is a transformative milestone. You’ve
now implemented the entire execution pipeline for core C-style control flow using
safe, composable, and extensible C++20/23 architecture. This unlocks your language’s
capability to run structured logic-driven programs with full scope management and flow
control.
The interpreter is no longer experimental—it now behaves like a foundational tool ready
to support real users, script execution, and future function and object constructs.

Chapter 15

Function Implementation in C-Style

15.1 Function Declarations — int func(int x, float
y)

15.1.0.1 Introduction

Function declarations form the foundation of modular, reusable logic in C-style
languages. Declaring functions in the form of int func(int x, float y) not
only introduces a name-bound block of code but also establishes parameterized
execution with type constraints, scoped environments, and return value semantics.
Implementing this in a modern C++ interpreter requires careful coordination between
AST construction, symbol table management, scoping behavior, and runtime
invocation.
This section details how to design and implement function declarations using
modern C++20/23 idioms, enabling the language to behave consistently with classic
C syntax while leveraging a robust value and type system.

535

536

15.1.1 Purpose and Scope

Function declarations in C-style languages:

• Define named reusable routines

• Specify typed input parameters

• Have an explicit return type

• Allow type checking during calls

• Enable block-level lexical scope within the function body

C-style functions must:

• Be declared before use (in interpreted mode: registered in a global symbol table)

• Store metadata: name, parameter types, body, and return type

• Support recursive and nested calls

15.1.2 Syntax Definition

Example:

int sum(int a, float b) {
return a + (int)b;

}

Grammar representation:

537

function_decl:
type identifier '(' parameter_list ')' block

parameter_list:
[parameter (',' parameter)*]

parameter:
type identifier

15.1.3 AST Representation

struct FunctionDecl : Stmt {
std::string name;
Type returnType;
std::vector<std::pair<Type, std::string>> parameters;
BlockStmt body;

};

Each function includes:

• A unique name

• A return type

• A parameter list with names and types

• A body (block of statements)

15.1.4 Symbol Table Registration

Functions must be stored in a global function table upon declaration:

538

class FunctionTable {
public:

void registerFunction(const FunctionDecl& func);
const FunctionDecl& getFunction(const std::string& name) const;

private:
std::unordered_map<std::string, FunctionDecl> functions;

};

This table is separate from variable symbol tables to distinguish variable bindings from
callable symbols.

15.1.5 Environment Preparation for Calls

Function calls must create a new local environment where:

• Parameters are initialized with argument values

• Local variables are declared

• Return values are tracked

Upon calling:

Value Interpreter::callFunction(const FunctionDecl& func, const std::vector<Value>&
args) {↪→

auto localEnv = std::make_shared<Environment>(globalEnv);

// Bind parameters
for (size_t i = 0; i < func.parameters.size(); ++i) {

const auto& [type, name] = func.parameters[i];
if (!typeMatches(type, args[i]))

throw std::runtime_error("Function argument type mismatch for parameter:
" + name);↪→

539

localEnv->declare(name, args[i]);
}

// Execute function body
try {

executeBlock(func.body, localEnv);
} catch (ReturnSignal& ret) {

if (!typeMatches(func.returnType, ret.value))
throw std::runtime_error("Return type mismatch in function: " +

func.name);↪→

return ret.value;
}

if (func.returnType == Type::Void)
return Value::None();

throw std::runtime_error("Missing return statement in function: " + func.name);
}

15.1.6 Return Mechanism

Use a runtime signal to handle return cleanly:

struct ReturnSignal {
Value value;
explicit ReturnSignal(Value val) : value(std::move(val)) {}

};

Value Interpreter::execute(const ReturnStmt& stmt, Environment::Ptr env) {
Value val = stmt.expr->eval(env);
throw ReturnSignal(val);

540

}

15.1.7 Type Safety and C++20/23 Usage

The type system should support:

• int, float, bool, string, etc.

• Matching by exact type or through limited implicit conversion

• Type declarations enforced both at declaration and invocation

C++20/23 tools used:

Table 1-1: Selected C++ Features and Their Usage

Feature Usage

std::variant Representing value and type combinations

std::optional Handling return type existence

concepts (optional) Enforcing type compatibility rules

consteval (future) Precomputed functions

15.1.8 Example

Code:

541

int multiply(int a, int b) {
return a * b;

}

Internal flow:

• Registered as FunctionDecl in the function table

• Accepts two int values

• Creates a local environment on call

• Evaluates the body

• Returns an int result

15.1.9 Error Cases

1. Duplicate function declaration:

• Detected in registration step

2. Mismatched return type:

• Checked after return

3. Too many or too few arguments:

• Checked before binding parameters

4. Type mismatch in arguments:

• Enforced during call

542

15.1.10 Summary

Table 1-2: Function Support Components Status

Component Implemented

Function registration True

Typed parameters True

Return value control True via exception

Local scope creation True

Type safety True strict

15.1.11 Conclusion

Function declaration and integration is a major milestone in building a real-world,
reusable C-style programming language. With proper scoping, type-checked parameters,
and structured return semantics, your language now supports structured, modular
programming and prepares for the implementation of function calls, recursion,
lambdas, and closures. Modern C++20/23 features ensure your architecture is
clean, maintainable, and forward-compatible for optimizations and native compilation
in future stages.

15.2 Call Stack and Activation Records

543

15.2.0.1 Introduction

To support function calls, recursion, nested scopes, and return value propagation,
your interpreter must simulate a call stack—a dynamic structure that mimics how
C and other compiled languages track function execution. Each function invocation
generates a new activation record (also known as a stack frame), which contains
critical execution state such as parameter values, local variables, the return address (in
compiled code), and any control information like the caller environment.
In this section, we design a fully functional interpreter-level call stack using modern
C++20/23 facilities, tailored to dynamic interpretation and C-style semantics.

15.2.1 What Is the Call Stack?

The call stack is a runtime structure that:

• Records each function call as a new frame

• Holds the context for that invocation

• Enables recursive and nested function support

• Unwinds automatically on return

• Preserves lexical scoping, parameter bindings, and execution isolation

In interpreted systems, it does not manipulate real memory addresses but emulates this
behavior using C++ classes.

15.2.2 Structure of an Activation Record

Each activation record holds the following:

544

struct ActivationRecord {
std::string functionName;
Environment::Ptr localEnv;
std::optional<Value> returnValue;

};

Components:

• functionName: for diagnostics and debugging

• localEnv: the scoped environment for local variables and parameters

• returnValue: optional result of the function (set during return)

15.2.3 The Call Stack Implementation

A stack structure is required to manage active function calls:

class CallStack {
public:

void push(const ActivationRecord& record);
void pop();
ActivationRecord& top();
const ActivationRecord& top() const;
size_t depth() const;

private:
std::vector<ActivationRecord> stack;

};

This class mimics the CPU call stack using a std::vector where the top of the stack is
the current executing function context.

545

15.2.4 Function Call Flow with the Stack

When a function is called:

1. The interpreter evaluates arguments

2. A new environment is created for the function

3. An activation record is pushed to the CallStack

4. The function body is executed in that environment

5. On return, the return value is stored and the frame is popped

Interpreter Example:

Value Interpreter::callFunction(const FunctionDecl& func, const std::vector<Value>&
args) {↪→

auto localEnv = std::make_shared<Environment>(globalEnv);

for (size_t i = 0; i < func.parameters.size(); ++i) {
const auto& [type, name] = func.parameters[i];
if (!typeMatches(type, args[i]))

throw std::runtime_error("Argument type mismatch");
localEnv->declare(name, args[i]);

}

ActivationRecord record{func.name, localEnv, std::nullopt};
callStack.push(record);

try {
executeBlock(func.body, localEnv);

} catch (ReturnSignal& signal) {

546

callStack.top().returnValue = signal.value;
callStack.pop();
return signal.value;

}

callStack.pop();

if (func.returnType == Type::Void)
return Value::None();

throw std::runtime_error("Missing return in function: " + func.name);
}

15.2.5 Benefits of a Proper Call Stack

• Recursion Support: Each call has isolated scope

• Stack Tracing: Track current and previous execution points

• Environment Chaining: Allows nested environments to be tied to stack levels

• Debugging: Print stack trace when error occurs

15.2.6 Recursive Example

Code:

int factorial(int n) {
if (n <= 1) return 1;
return n * factorial(n - 1);

}

547

Each call to factorial(n) creates:

• A new activation record

• An isolated environment with n

• A deferred computation awaiting the next return

Upon reaching n == 1, the stack starts unwinding, returning each result upward.

15.2.7 Debugging Support

To visualize the call stack, implement:

void CallStack::print() const {
std::cout << "Call Stack:\n";
for (auto it = stack.rbegin(); it != stack.rend(); ++it) {

std::cout << " > " << it->functionName << "\n";
}

}

This aids users in tracing deep recursion or call chains during interpretation.

15.2.8 C++20/23 Modern Practices

Table 2-3: Modern C++ Features for Function Runtime
and Scope Management

Feature Purpose

std::optional Store optional return values

548

Feature Purpose

std::shared_ptr Reference-counted environments

std::vector Stack structure for activation records

structured bindings Cleaner unpacking of parameters

constexpr / concepts (optional) Enforce compile-time type safety

C++20 and C++23 features provide clean abstraction, strong type guarantees,
and simplified code design for recursive and stack-based logic.

15.2.9 Future Extensions

Once the base call stack is stable:

• Add stack overflow detection (max recursion depth)

• Support tail-call optimization (optional)

• Capture stack traces for runtime error reporting

• Integrate closures and lambda environments

15.2.10 Summary Table

549

Table 2-4: Function Runtime Features and Support
Status

Feature Status

Function context isolation True

Parameter binding per call True

Recursion support True

Stack unwinding on return True

Return value propagation True

Debugging / tracing support True

15.2.11 Conclusion

The interpreter’s call stack and activation record mechanism form the structural
core that enables deep function logic, scoped variables, and recursion. This simulation
aligns closely with compiled C behavior while allowing introspection and control at
the interpretation level. With this in place, your interpreter now behaves like a real
execution engine, capable of running user-defined functions with reliability, scope
control, and advanced error tracing, all backed by modern C++20/23 features.

15.3 Parameter Passing and Type Checking

15.3.0.1 Introduction

Parameter passing and type checking are central to safe and correct function
execution in any statically typed C-style language. This section describes the

550

implementation of call-time argument binding, type conformity validation, and
the infrastructure to support these operations using C++20/23 techniques. The
goal is to reproduce behavior familiar to C programmers, where function arguments
must match both in number and type, and where runtime type mismatches raise
descriptive errors.

15.3.1 Fundamentals of C-Style Parameter Passing

In traditional C-style syntax:

int add(int a, float b);

• The function add accepts an int and a float

• These are passed by value, unless otherwise specified

• Type matching is strict: implicit conversions (e.g., int → float) are limited and
controlled

The interpreter must emulate this process, supporting:

• Strict arity check (argument count)

• Per-parameter type compatibility check

• Runtime environment binding

15.3.2 Internal Representation of Parameters

Function declarations carry parameter information as part of the AST node:

551

struct Parameter {
Type type;
std::string name;

};

struct FunctionDecl : Stmt {
std::string name;
Type returnType;
std::vector<Parameter> parameters;
BlockStmt body;

};

The Type enum (or class) models primitive types (int, float, bool, etc.), and
optionally supports complex types (array, pointer, user-defined) in future stages.

15.3.3 Argument Evaluation and Matching

Upon a function call, the interpreter must:

1. Evaluate each argument expression

2. Compare each argument type against the expected parameter type

3. Bind values to parameter names in a new function-local environment

Example implementation:

Value Interpreter::callFunction(const FunctionDecl& func, const std::vector<ExprPtr>&
argsExpr) {↪→

if (argsExpr.size() != func.parameters.size())
throw std::runtime_error("Function call argument count mismatch for '" +

func.name + "'");↪→

552

std::vector<Value> args;
for (const auto& expr : argsExpr)

args.push_back(expr->eval(currentEnv));

auto localEnv = std::make_shared<Environment>(globalEnv);

for (size_t i = 0; i < args.size(); ++i) {
const Parameter& param = func.parameters[i];
const Value& arg = args[i];

if (!typeMatches(param.type, arg))
throw std::runtime_error("Type mismatch for parameter '" + param.name +

"' in function '" + func.name + "'");↪→

localEnv->declare(param.name, arg);
}

// Now execute the body
// ...

}

15.3.4 typeMatches Implementation

The typeMatches function ensures values conform to expected types:

bool typeMatches(const Type& expected, const Value& actual) {
switch (expected) {

case Type::Int: return actual.isInt();
case Type::Float: return actual.isFloat() || actual.isInt(); // allow

widening↪→

case Type::Bool: return actual.isBool();

553

case Type::String: return actual.isString();
default: return false;

}
}

Optional implicit promotions (e.g., int → float) should be explicitly handled, and
narrowing conversions (e.g., float → int) should be disallowed unless cast is explicitly
used.

15.3.5 Value Binding in Local Scope

Each parameter is bound in a new activation environment, separate from the caller.
This is critical for recursion and lexical scoping:

localEnv->declare(param.name, arg);

This ensures that:

• Parameters are isolated per call

• Shadowing does not affect the caller

• Nested calls do not overwrite outer values

15.3.6 Error Handling

Common error cases and their responses:

554

Table 3-5: Function Argument Error Handling Cases

Error Case Action Taken

Too few or too many arguments Throw arity mismatch error

Type mismatch in argument Throw with parameter name and expected
type

Invalid type conversion attempt Throw explicit cast required error

Use of undeclared parameter Compile-time catch or runtime binding error

Example message:

Error: Type mismatch for parameter 'b' in call to 'add'. Expected 'float', got 'int'.

15.3.7 Debug Support

For tracing, you can log each parameter binding:

if (debug.traceFunctionCalls) {
std::cout << "[call] Binding parameter '" << param.name << "' = " <<

arg.toString() << "\n";↪→

}

This is useful in recursive calls and debugging interpreter logic.

15.3.8 C++20/23 Usage

Modern C++ improves expressiveness and safety:

555

Table 3-6: Modern C++ Features for Value and Helper
Abstractions

Feature Usage

std::variant Encapsulate Value types cleanly

std::optional Represent absence of values safely

constexpr / consteval Optimize type definitions at compile time

concepts (optional) Type constraints on helper functions

structured bindings Clean parameter unpacking

These features reduce boilerplate, improve diagnostics, and enable future optimizations
like pre-validated compiled call graphs.

15.3.9 Realistic Example

Function declaration:

int add(int a, int b) {
return a + b;

}

Interpreter behavior:

1. Registers add with parameters: [int a, int b]

2. On call: add(5, 2)

• 5 and 2 evaluated as int

556

• Type match confirmed

• Values bound to a, b

• Body executed in isolated scope

15.3.10 Preparing for Next Stage

This system forms the base for:

• Return type validation

• Variadic functions

• Function overloading (if supported)

• Default arguments (optional)

• Pass-by-reference semantics (later stage)

15.3.11 Summary Table

Table 3-7: Function Parameter System: Feature
Support

Feature Status

Parameter declaration syntax True

Arity checking True

Type enforcement (static/dynamic) True

Runtime binding True

557

Feature Status

Scoped isolation True

Debug tracing support True

15.3.12 Conclusion

By implementing strict parameter passing and type checking, your language
interpreter reaches a level of reliability, predictability, and safety that mirrors real-
world statically typed C-style systems. Users are protected from silent bugs due to
type coercion, and your interpreter lays a firm foundation for function recursion,
higher-order functions, and eventually type-safe functional abstractions. This
precise handling of function parameters ensures correctness and enhances language
trustworthiness—backed fully by modern C++20/23 capabilities.

15.4 Return Statement Handling

15.4.0.1 Introduction

Handling the return statement is a fundamental feature in any C-style language.
It enables a function to send a value back to its caller and exit immediately. This
behavior introduces non-linear control flow, function-result propagation, and
early termination of a function block.
In an interpreter, especially one built using Modern C++ (C++20/23), return must
be explicitly modeled in both the parser and runtime engine, with type-check
enforcement and a mechanism to exit execution flow mid-block without executing
remaining statements.

558

15.4.1 Purpose and Behavior of return

In C-style semantics:

• return <expr>; terminates the function immediately and returns the evaluated
result

• return; is valid for void functions

• Code after a return is unreachable

• The type of the return expression must match the declared return type of the
function

The interpreter must support:

• Immediate control exit from the function body

• Value propagation to the caller

• Type validation between returned value and function declaration

15.4.2 AST Representation of Return Statements

The return statement is represented in the AST as:

struct ReturnStmt : Stmt {
std::optional<ExprPtr> expr;
ReturnStmt() = default;
ReturnStmt(ExprPtr e) : expr(std::move(e)) {}

};

This allows support for both return; and return <expr>; in typed and void contexts.

559

15.4.3 Runtime Handling via Exception-like Signal

Since C++ lacks native non-local jumps like goto across function contexts,
interpreter-level return handling is implemented via custom control flow
signals. The most robust approach is to use a specific exception-like mechanism:

struct ReturnSignal {
Value value;
explicit ReturnSignal(Value v) : value(std::move(v)) {}

};

The execute function for ReturnStmt throws this signal:

Value Interpreter::execute(const ReturnStmt& stmt, Environment::Ptr env) {
if (stmt.expr) {

Value val = stmt.expr.value()->eval(env);
throw ReturnSignal(val);

} else {
throw ReturnSignal(Value::None());

}
}

15.4.4 Handling in the Caller Context

The function call mechanism must catch the ReturnSignal, validate the return type,
and extract the returned value:

Value Interpreter::callFunction(const FunctionDecl& func, const std::vector<Value>&
args) {↪→

auto localEnv = std::make_shared<Environment>(globalEnv);

560

// Bind parameters
for (size_t i = 0; i < args.size(); ++i)

localEnv->declare(func.parameters[i].name, args[i]);

Value returnValue = Value::None();

try {
executeBlock(func.body, localEnv);

} catch (ReturnSignal& signal) {
returnValue = signal.value;

}

if (!typeMatches(func.returnType, returnValue)) {
throw std::runtime_error("Return type mismatch in function '" + func.name +

"'");↪→

}

return returnValue;
}

If the function expects a void return (Type::Void), returnValue must be None().

15.4.5 Type Checking Logic

Type matching is enforced as part of the function return validation phase. Depending
on the language’s strictness:

• Exact match: int returned for int

• Safe implicit conversions: int to float allowed if supported

• Mismatched types result in runtime error

561

bool typeMatches(Type expected, const Value& actual) {
if (expected == actual.type()) return true;
if (expected == Type::Float && actual.type() == Type::Int) return true; //

implicit promotion↪→

return false;
}

15.4.6 Early Return in Nested Blocks

return must function even if placed inside nested blocks or loops:

int compute() {
for (int i = 0; i < 10; ++i) {

if (i == 5)
return i;

}
return -1;

}

In this case:

• Loop is exited via return

• Any remaining statements are skipped

• Execution jumps back to the function caller

15.4.7 Debugging and Diagnostics

For development and REPL environments, log return behavior:

562

if (debug.traceReturns) {
std::cout << "[return] Value: " << val.toString() << "\n";

}

Include stack trace support if the CallStack object is available, to trace the origin of
the return.

15.4.8 C++20/23 Techniques

Table 4-8: Key C++ Features Used in Return
Expression Handling

Feature Usage

std::optional Represent optional expression in return

std::variant Represent multiple Value types safely

structured bindings For clean unpacking of signals/values

concepts (optional) Type-checked utilities

consteval (optional) Used in static analysis (future stage)

These tools help keep the interpreter modular, safe, and easily extensible.

15.4.9 Sample Scenario

Function:

563

int sign(int x) {
if (x > 0) return 1;
if (x < 0) return -1;
return 0;

}

Interpreter flow:

• x > 0: return 1 → signal caught, execution ends

• No further code runs

• Return value passed back to caller and validated

15.4.10 Error Scenarios

Table 4-9: Return Statement Scenarios and Behaviors

Scenario Behavior

Return in non-function context Runtime error (disallowed)

Missing return in non-void func Runtime error: no value

Return type mismatch Runtime error with details

Return unreachable Optional warning (not runtime)

Future enhancements can support static analysis to detect missing or unreachable
returns during compile or interpretation setup.

564

15.4.11 Summary Table

Table 4-10: Return Statement Feature Status

Feature Status

return <expr> support True

return; (void function) True

Early termination of execution True

Runtime return value propagation True

Type-checked return enforcement True

Error messages on invalid return True

15.4.12 Conclusion

With complete return statement handling, your interpreter now mirrors real-world
function execution logic, providing safe value returns, control flow shortcuts, and
runtime type enforcement. This system ensures that function behavior is reliable
and predictable, and that violations (such as type mismatches or missing returns)
are immediately and clearly reported. The design is extendable and prepares your
interpreter for higher-level features such as first-class functions, lambdas, and
exceptions, while remaining grounded in C-style discipline and driven by Modern C++
practices.

565

15.5 Hands-on — C-style Function Support with
Recursion

15.5.0.1 Introduction

This hands-on section demonstrates how to implement full C-style function support
with recursion in your interpreter, including syntax, AST representation, symbol
resolution, environment creation, stack handling, and type-checked return propagation.
C-style recursion mirrors standard C semantics: each call has an isolated environment
and local variables, but shares access to global functions and constants.
The implementation uses modern C++20/23 constructs like std::shared_ptr,
std::variant, std::optional, and structured environments to manage call stack
depth and isolation.

15.5.1 Step-by-Step Overview

We’ll walk through implementing the recursive evaluation of this classic example:

int factorial(int n) {
if (n <= 1)

return 1;
return n * factorial(n - 1);

}

The interpreter must:

• Register the function in the global symbol table

• Evaluate calls with argument binding

• Create a new scoped environment per call

566

• Manage call stack and return values

• Detect base case and unwind the recursion

15.5.2 Parsing and AST Construction

Parser produces a node of type FunctionDecl:

struct FunctionDecl : Stmt {
std::string name;
Type returnType;
std::vector<Parameter> parameters;
BlockStmt body;

};

Call expressions produce CallExpr nodes:

struct CallExpr : Expr {
std::string functionName;
std::vector<ExprPtr> arguments;

};

15.5.3 Registering the Function

On function declaration:

void Interpreter::defineFunction(const FunctionDecl& func) {
functionTable[func.name] = func;

}

567

15.5.4 Calling the Function

Function call runtime logic:

Value Interpreter::evalCall(const CallExpr& expr) {
const auto& func = functionTable.at(expr.functionName);
if (expr.arguments.size() != func.parameters.size())

throw std::runtime_error("Argument count mismatch");

std::vector<Value> evaluatedArgs;
for (const auto& argExpr : expr.arguments)

evaluatedArgs.push_back(argExpr->eval(currentEnv));

auto newEnv = std::make_shared<Environment>(globalEnv);

for (size_t i = 0; i < func.parameters.size(); ++i) {
if (!typeMatches(func.parameters[i].type, evaluatedArgs[i]))

throw std::runtime_error("Type mismatch for parameter '" +
func.parameters[i].name + "'");↪→

newEnv->declare(func.parameters[i].name, evaluatedArgs[i]);
}

callStack.push({func.name, newEnv});

try {
executeBlock(func.body, newEnv);

} catch (ReturnSignal& r) {
callStack.pop();
if (!typeMatches(func.returnType, r.value))

throw std::runtime_error("Return type mismatch in function '" + func.name
+ "'");↪→

return r.value;
}

568

callStack.pop();

if (func.returnType == Type::Void)
return Value::None();

throw std::runtime_error("Missing return in function '" + func.name + "'");
}

15.5.5 Handling Recursion

Since function declarations are globally registered, recursive calls resolve normally:

int factorial(int n) {
if (n <= 1)

return 1;
return n * factorial(n - 1);

}

This call chain:

1. Binds n

2. Checks base case

3. If n > 1, calls factorial(n - 1)

4. Each call stacks new environment and awaits result

5. On n == 1, returns 1

6. Stack unwinds with cumulative multiplication

569

The interpreter's call stack holds:

• Scoped variables for each n

• Return values per frame

• Error recovery per call

15.5.6 Runtime Value Definitions

The Value type stores runtime values:

using ValueVariant = std::variant<int, float, bool, std::string>;
struct Value {

Type type;
ValueVariant data;

static Value Int(int v) { return { Type::Int, v }; }
static Value Float(float v) { return { Type::Float, v }; }
static Value None() { return { Type::Void, 0 }; }

};

Result of each recursive call is wrapped in Value and passed back.

15.5.7 Call Stack Visualization

Enable optional logging:

void Interpreter::printCallStack() const {
std::cout << "Stack:\n";
for (const auto& frame : callStack.frames())

std::cout << " > " << frame.functionName << "\n";
}

570

During recursion, the stack should show:

> factorial
> factorial
> factorial

...

This is essential for debugging infinite recursion and ensuring termination conditions.

15.5.8 Test Case: Recursion in REPL

User inputs:

int factorial(int n) {
if (n <= 1) return 1;
return n * factorial(n - 1);

}

factorial(5);

Expected output: 120
Internal steps:

• 5 → 4 → 3 → 2 → 1

• 1 → return 1

• unwind: 2×1 → 3×2 → 4×6 → 5×24 → return 120

15.5.9 C++20/23 Highlights

571

Table 5-11: C++ Features and Their Use Cases in
Runtime Evaluation

Feature Use Case

std::optional Return statements (e.g., return; without
value)

std::variant Handling multi-type runtime Value
representations

std::shared_ptr Persistent/shared environments across function
calls

structured bindings Clean unpacking of parameters or results
during evaluation

consteval (future) Optimizing precomputed recursive cases at
compile-time

15.5.10 Summary Table

Table 5-12: Function Call Components Implementation
Status

Component Implemented

AST for function and call True

Global function registry True

Scoped environment per call True

572

Component Implemented

Call stack management True

Recursion support True

Return value propagation True

15.5.11 Conclusion

With full recursive function support, your interpreter now mirrors one of the
most important features of C-style languages: the ability to define self-referential,
purely mathematical, or control-driven logic. Backed by strong typing and scoped
environments, this hands-on addition confirms your interpreter's maturity in control
flow and stack management, while leveraging modern C++ design patterns to maintain
clarity, safety, and performance. This milestone sets the stage for higher-level features
such as closures, first-class functions, and tail-call optimization in future expansions.

Chapter 16

Advanced C-Style Function Features

16.1 Function Pointers and First-Class Functions

16.1.0.1 Introduction

Function pointers and first-class functions extend your language’s flexibility and
power, enabling dynamic behavior such as passing functions as arguments, storing
functions in variables, and returning functions from other functions. In traditional
C, function pointers serve as a low-level mechanism to reference functions. In higher-
level interpreted languages, this capability is abstracted through first-class functions,
closures, and environments.
This section focuses on how to support C-style function pointers in syntax
and semantics, and how to internally model first-class functions within your
interpreter using modern C++20/23 features.

16.1.1 Understanding the Concept

• Function pointer in C: A variable holding the address of a function.

573

574

• First-class function: A function that can be assigned to variables, passed as
arguments, and returned from other functions.

• C doesn’t support closures or lexical environments, but function pointers simulate
some of this flexibility.

Your language will support:

• Declaring function-type variables

• Assigning functions to these variables

• Calling functions via variables (indirect call)

• Type-checking for function signatures

16.1.2 Function Pointer Syntax Design

A C-style declaration:

int (*fptr)(int, int);

This indicates fptr is a pointer to a function taking two ints and returning int.
Your language can simplify this, using a clearer form:

function<int(int, int)> fptr;
fptr = add;
int result = fptr(3, 4);

Or:

575

auto fptr = add;

In the parser:

• Recognize function types

• Allow assignment of declared functions to function-type variables

• Ensure call expressions resolve to the correct signature

16.1.3 Internal Representation: Function Value Type

Extend your Value type to include a function reference:

using FunctionPtr = std::shared_ptr<FunctionDecl>;

using ValueVariant = std::variant<
int, float, bool, std::string,
FunctionPtr // function as value

>;

struct Value {
Type type;
ValueVariant data;

static Value Function(FunctionPtr ptr) {
return { Type::Function, ptr };

}

bool isFunction() const { return std::holds_alternative<FunctionPtr>(data); }
};

576

16.1.4 Storing and Resolving Function Values

When a function is declared:

functions["add"] = std::make_shared<FunctionDecl>(...);

When assigned:

Value fnVal = Value::Function(functions["add"]);
env->declare("fptr", fnVal);

At runtime, this Value behaves like a variable containing a function, and can be
invoked with arguments.

16.1.5 Calling via Function Variable

To support calls like fptr(3, 4), your interpreter must:

• Lookup fptr in the environment

• Validate it holds a FunctionPtr

• Extract and execute the target function

Value Interpreter::evalCallExpr(const CallExpr& expr) {
Value callee = expr.target->eval(currentEnv);

if (!callee.isFunction())
throw std::runtime_error("Attempted to call non-function");

FunctionPtr fn = std::get<FunctionPtr>(callee.data);
return callFunction(*fn, evaluateArguments(expr.args));

}

577

This supports both direct calls and indirect calls via function variables.

16.1.6 Type Checking Function Signatures

Each FunctionDecl includes parameter types:

struct FunctionDecl {
std::string name;
Type returnType;
std::vector<Parameter> parameters;
BlockStmt body;

};

During call:

• Match number of arguments

• Match types of each argument to the corresponding parameter

• Match return type if needed

Mismatch results in runtime error.
You may enhance safety with a type descriptor:

struct FunctionSignature {
Type returnType;
std::vector<Type> paramTypes;

bool matches(const std::vector<Value>& args) const;
};

This can be stored inside Value alongside FunctionPtr.

578

16.1.7 First-Class Function Operations

Once treated as values, functions support:

• Passing to another function

void applyTwice(function<int(int)> f) {
print(f(f(2)));

}

• Returning from a function

function<int(int)> getAdder(int x) {
function<int(int)> addX = function(y) { return x + y; };
return addX;

}

To support closures, bind the environment at definition time:

struct Closure {
FunctionPtr fn;
Environment::Ptr closureEnv;

};

Then ValueVariant stores Closure instead of raw FunctionPtr.

16.1.8 Modern C++ Support

579

Table 1-1: Modern C++ Features Used in Function
Implementation

Feature Role

std::variant Unified Value representation (e.g., int, float, functions,
etc.)

std::shared_ptr Safe and automatic ownership of user-defined functions
and environments

std::function Optionally used to wrap native C++ functions as
callable objects

structured bindings Simplifies unpacking of parameters and return values

concepts (optional) Enables compile-time constraints for function signature
enforcement

Modern C++ tools make dynamic function representation more type-safe and
expressive.

16.1.9 Debugging and Tracing

For traceability:

if (debug.traceCalls)
std::cout << "[call] Calling function via pointer: " << fn->name << "\n";

Also log mismatch details:

580

if (!signature.matches(args))
throw std::runtime_error("Function signature mismatch at call site");

16.1.10 Summary Table

Table 1-2: Function Capabilities in the Interpreter

Capability Supported

Function-type variables True

Assignment of declared functions True

Indirect function calls True

Function signature type-checking True

First-class function values True

Closure (optional / future step) True

16.1.11 Conclusion

With support for function pointers and first-class functions, your interpreter
becomes vastly more expressive. It now handles a critical feature that underlies callback
systems, functional patterns, higher-order abstractions, and dynamic behavior in
modern programming. Backed by C++20/23’s advanced type and memory
control, you have a solid infrastructure to expand toward closures, lambdas, and
even native host-bound functions in later chapters. This feature marks a major leap
toward building a modern and capable C-style language.

581

16.2 Local Function Declarations

16.2.0.1 Introduction

In traditional C, function declarations are global and must appear at file scope.
However, many modern languages allow local function declarations — functions
defined within another function’s body, scoped only to that outer function. This
feature enhances encapsulation, avoids name collisions, and enables better structure in
recursive or helper-based logic.
In a C-style interpreter with modern design goals, supporting local function
declarations allows:

• Nested lexical scoping for functions

• Full support for recursion inside a function

• Cleaner code organization

This section explains how to extend your interpreter with local function declaration
capabilities using the latest features of C++20 and C++23.

16.2.1 Local Function Use Case

Example in your language:

int wrapper(int x) {
int inner(int y) {

return y * y;
}

return inner(x) + inner(x + 1);
}

582

Here:

• inner is declared inside wrapper

• It is not visible outside of wrapper

• inner can recursively call itself

• inner must be resolved correctly at runtime

16.2.2 Parsing Local Functions

Your parser must detect and register FunctionDecl nodes even inside blocks:

stmt:
| function_decl_stmt
| expression_stmt
| if_stmt
| block_stmt
| ...

Add:

FunctionDecl parseFunctionDeclaration() {
expect(Token::Function);
auto returnType = parseType();
std::string name = parseIdentifier();
auto params = parseParameterList();
auto body = parseBlock();
return FunctionDecl{name, returnType, params, body};

}

When parsing statements within a function block, the parser should allow these
declarations and treat them like scoped variables, except their type is function.

583

16.2.3 Environment and Scope Design

Each function call creates a new Environment. This environment should support:

• Binding of variables (like int x = 5)

• Binding of functions (like int f(int y) { ... })

You must modify the environment to store local function declarations just like it
stores variables:

struct Environment {
std::unordered_map<std::string, Value> values;
std::shared_ptr<Environment> parent;

void declare(const std::string& name, const Value& value);
bool existsInCurrent(const std::string& name) const;
Value get(const std::string& name) const;

};

On function declaration (local):

Value fnVal = Value::Function(std::make_shared<FunctionDecl>(...));
env->declare("inner", fnVal);

Now, inner exists only in the current function's scope.

16.2.4 Resolving Function References

When calling inner(...), you must:

• Resolve inner in the current local environment

584

• Confirm it is a function type

• Use it as a FunctionPtr value

This reuses your general evalCallExpr logic:

Value Interpreter::evalCallExpr(const CallExpr& expr) {
Value callee = expr.target->eval(currentEnv);

if (!callee.isFunction())
throw std::runtime_error("Cannot call non-function");

return callFunction(*std::get<FunctionPtr>(callee.data), evaluatedArgs);
}

16.2.5 Scoping Behavior

Function declarations shadow outer scopes, including globals.
Example:

int compute() {
int helper(int x) { return x + 1; }
{

int helper(int x) { return x * 2; }
return helper(4); // calls second helper, returns 8

}
}

Your interpreter must:

• Always look for the nearest scoped definition

• Properly destroy local functions after their block ends

585

16.2.6 Recursive Support in Locals

A local function can call itself:

int outer(int x) {
int factorial(int n) {

if (n <= 1) return 1;
return n * factorial(n - 1);

}

return factorial(x);
}

In this case:

• factorial is bound to the current environment

• Calls resolve within the same block via env->get("factorial")

To avoid lookup errors, define the function in the environment before executing its
body:

auto localFunc = std::make_shared<FunctionDecl>(...);
env->declare("factorial", Value::Function(localFunc));

16.2.7 Return Scoping and Error Prevention

Ensure that:

• return inside the local function returns from the local function, not the outer one

• The local function's body is executed in its own Environment

586

16.2.8 Diagnostics and Debug Support

To aid in development:

if (debug.traceFunctionDefinitions) {
std::cout << "[define] Local function: " << name << " in current block\n";

}

if (debug.traceFunctionCalls) {
std::cout << "[call] Local function: " << name << "\n";

}

Allow REPL inspection of block-local functions:

print typeof(wrapper.inner); // should print: function<int(int)>

16.2.9 C++20/23 Techniques

Table 2-3: Modern C++ Features for Function
Handling

Feature Use Case

std::shared_ptr Persistent function representation

std::optional Optional expression in return

std::variant Function as runtime value

constinit / consteval Static environment pre-fill

587

Feature Use Case

concepts (future) Safe constraint for callable objects

16.2.10 Summary Table

Table 2-4: Function Scope Features – Implementation
Status

Feature Implemented

Function declaration inside block True

Lexical scoping True

Shadowing outer/global declarations True

Local recursion True

Isolation of function environments True

Type-checked function calls True

16.2.11 Conclusion

Supporting local function declarations marks a significant improvement in
the expressiveness and structure of your interpreter. With this feature, users can
encapsulate logic within specific scopes, avoid polluting the global namespace, and
write recursive helper functions that are invisible outside their defining context. This
design promotes modularity, correctness, and cleanliness — qualities critical in modern
interpreted languages. Backed by the precision and safety features of C++20/23,

588

your interpreter moves one step closer to offering advanced functional and procedural
capabilities in a C-style syntax.

16.3 Built-in Function Integration

16.3.0.1 Introduction

A mature interpreted language must support not only user-defined functions but
also built-in functions, which provide direct access to essential capabilities like
input/output, mathematical operations, and system utilities. Built-in functions are
often implemented in the host language (C++20/23 in this case) for performance,
safety, and access to system-level features.
This section focuses on how to define, register, store, and execute built-in functions
in your interpreter, while maintaining compatibility with user-defined functions and
leveraging modern C++ techniques to ensure type safety and extensibility.

16.3.1 What Are Built-in Functions?

Built-in functions are:

• Predefined functions implemented in the interpreter's host language

• Available by default without user declaration

• Typically provide low-level or utility operations

Examples:

print("Hello");
sqrt(9.0);

589

clock();
strlen("hello");

These functions:

• May not have user-visible source code

• Can support polymorphic argument types

• Must be accessible via the same call mechanism as user-defined functions

16.3.2 Unified Function Representation

To treat built-in and user-defined functions uniformly, we define a new variant:

struct UserFunction {
std::shared_ptr<FunctionDecl> decl;
std::shared_ptr<Environment> closure;

};

using BuiltinFunction = std::function<Value(const std::vector<Value>&)>;

using FunctionValue = std::variant<UserFunction, BuiltinFunction>;

struct Value {
Type type;
std::variant<...other types..., FunctionValue> data;

static Value Builtin(BuiltinFunction fn) {
return Value{ Type::Function, fn };

}
};

590

This allows Value to hold both built-in and user-defined functions under the same
FunctionValue tag.

16.3.3 Defining Built-in Functions

Example: print(...)

Value builtin_print(const std::vector<Value>& args) {
for (const auto& val : args)

std::cout << val.toString() << " ";
std::cout << std::endl;
return Value::None(); // void

}

Built-in functions return a Value, accept std::vector<Value>, and are stored in the
global environment at startup:

globalEnv->declare("print", Value::Builtin(builtin_print));

Similarly:

globalEnv->declare("sqrt", Value::Builtin([](const std::vector<Value>& args) -> Value
{↪→

if (args.size() = 1 || args[0].type = Type::Float)
throw std::runtime_error("sqrt expects one float argument");

return Value::Float(std::sqrt(std::get<float>(args[0].data)));
}));

16.3.4 Calling Built-in Functions at Runtime

In the call evaluation logic, distinguish between user-defined and built-in:

591

Value Interpreter::callFunction(const Value& fnVal, const std::vector<Value>& args) {
if (!std::holds_alternative<FunctionValue>(fnVal.data))

throw std::runtime_error("Attempted to call non-function");

const auto& func = std::get<FunctionValue>(fnVal.data);

if (std::holds_alternative<UserFunction>(func)) {
const auto& userFn = std::get<UserFunction>(func);
return callUserFunction(userFn, args);

} else {
const auto& builtin = std::get<BuiltinFunction>(func);
return builtin(args);

}
}

16.3.5 Type-Checking and Safety

You must implement defensive checks inside built-in functions because they bypass
the parser’s static type checking.
Each built-in function must:

• Check argument count

• Validate argument types

• Return appropriate Value

For example:

Value builtin_strlen(const std::vector<Value>& args) {
if (args.size() = 1 || args[0].type = Type::String)

592

throw std::runtime_error("strlen expects one string argument");
return

Value::Int(static_cast<int>(std::get<std::string>(args[0].data).length()));↪→

}

16.3.6 Registering Built-in Functions

You can encapsulate all built-ins in a single function called at startup:

void Interpreter::registerBuiltins() {
globalEnv->declare("print", Value::Builtin(builtin_print));
globalEnv->declare("strlen", Value::Builtin(builtin_strlen));
globalEnv->declare("sqrt", Value::Builtin(builtin_sqrt));
globalEnv->declare("clock", Value::Builtin(builtin_clock));
// Extend with more as needed

}

This simplifies interpreter initialization and encourages modularity.

16.3.7 Reflection and Debugging Support

To enable user introspection:

Value builtin_typeof(const std::vector<Value>& args) {
if (args.size() != 1)

throw std::runtime_error("typeof expects 1 argument");
return Value::String(typeToString(args[0].type));

}

And optionally:

593

Value builtin_is_function(const std::vector<Value>& args) {
if (args.size() != 1)

throw std::runtime_error("is_function expects 1 argument");
return Value::Bool(std::holds_alternative<FunctionValue>(args[0].data));

}

16.3.8 Modern C++ Integration

Table 3-5: Builtin Function Feature Roles

Feature Role

std::function Builtin function signature abstraction

std::variant Unified function representation

std::optional Optional handling inside builtin logic

Lambdas Fast definition of built-ins

Concepts (optional) Validate function argument types statically

You may optionally use constexpr to define functions that must run at compile time
(in consteval contexts for later extensions).

16.3.9 Example: Advanced Built-in

Value builtin_map(const std::vector<Value>& args) {
if (args.size() = 2 || args[1].isFunction())

throw std::runtime_error("map expects an array and a function");

594

const auto& array = std::get<std::vector<Value>>(args[0].data);
const auto& func = std::get<FunctionValue>(args[1].data);

std::vector<Value> result;
for (const auto& elem : array)

result.push_back(callFunction(func, { elem }));

return Value::Array(result);
}

16.3.10 Summary Table

Table 3-6: Builtin Function Capabilities

Capability Supported

Built-in function registration True

Unified calling system True

Type-checked runtime validation True

Custom host-implemented logic True

Lambda-based quick definitions True

Support for higher-order built-ins True

595

16.3.11 Conclusion

Built-in function integration is a key part of building a powerful and usable interpreter.
It bridges the gap between language-level abstraction and host-level efficiency.
By treating built-ins as first-class function values, and using std::function,
std::variant, and runtime safety checks, your language can provide rich system-
level capabilities without compromising clarity or modularity. This chapter builds
the foundation for adding native modules, host extensions, and system APIs later —
making your C-style language practical, dynamic, and scalable.

16.4 Milestone — Complete C-Style Function System

16.4.0.1 Introduction

This milestone marks the completion of a fully operational C-style function
system within your interpreter. The function subsystem now supports:

• Global and local user-defined functions

• Recursion and nested calls with lexical environments

• Function pointers and first-class function values

• Type checking and call validation

• Built-in function integration using native host-side logic

This architecture now mirrors the expressiveness and performance philosophy of C,
while modernizing it for safe and dynamic interpretation using C++20/23.

596

16.4.1 Architectural Overview

The function subsystem is designed as a unified abstraction, capable of handling both:

• Statically defined user functions (with source code)

• Dynamically defined host functions (via C++ lambdas or callable objects)

Key Components:

Table 4-7: Function Call Components and Roles

Component Role

FunctionDecl AST node representing function definitions.

FunctionValue Runtime wrapper around either user or
built-in functions.

Environment Scoped symbol table tracking function
context.

CallExpr AST node representing a function
invocation.

Interpreter::callFunction Dispatcher based on runtime type (built-in
vs user-defined).

16.4.2 Execution Pipeline Summary

1. Declaration
Function declarations are parsed into FunctionDecl nodes and stored in the
symbol table with type information.

597

2. Invocation
A call expression is evaluated, resolving the callee either as a variable or global
symbol.

3. Type Check and Dispatch
At runtime, the interpreter distinguishes between user-defined and built-in
functions using std::variant.

4. User Function Handling

• Creates a new environment

• Binds parameters with evaluated arguments

• Executes the function body

• Catches and returns ReturnSignal with validated return type

5. Built-in Function Handling

• Host-side lambda receives std::vector<Value> as arguments

• Returns a valid Value

• Implements own error handling and coercion

6. Recursion and Closure Support

• Functions can call themselves

• Lexical context is preserved for local functions

• Recursive calls reuse the same pipeline

598

16.4.3 Language Capabilities Achieved

Table 4-8: Function System Feature Support

Feature Status

Global function declarations True

Local (nested) function declarations True

Recursion (direct and mutual) True

Lexical scoping for functions True

First-class function variables True

Function pointers and indirect calls True

Call stack with isolated environments True

Type-checked parameter binding True

Type-checked return validation True

Support for void functions True

Built-in host-side function support True

16.4.4 Modern C++ Implementation Features

The function system takes advantage of modern C++ features from C++20 and
C++23:

599

Table 4-9: Modern C++ Features for Function
Representation and Evaluation

Feature Usage Example

std::variant Store different function types inside Value

std::shared_ptr Reference-counted function and environment
ownership

std::optional Represent optional return values

std::function Abstract native built-in functions with lambda
wrappers

Structured bindings Deconstruct parameters and function return objects
cleanly

Designated initializers Clear and readable initialization of AST and
runtime objects

Ranges (optional use) Simplify iteration and filtering of arguments or
locals

These tools increase expressiveness while reducing boilerplate and preventing ownership
issues in scoped environments.

16.4.5 Testing and Validation Cases

To confirm a complete and correct implementation, test the following cases:

• Simple Function

600

int add(int x, int y) { return x + y; }
print(add(2, 3)); // 5

• Recursive Function

int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);

}
print(fib(5)); // 5

• Local Function and Shadowing

int run(int x) {
int square(int a) { return a * a; }
{

int square(int b) { return b + b; }
return square(x); // uses inner square

}
}

• Function Pointer

function<int(int)> f = fib;
print(f(6)); // 8

• Built-in Function

601

print(strlen("hello")); // 5

• Type Errors (Invalid Call)

add("5", "3"); // Error: type mismatch

16.4.6 Developer-Focused Extensions

With this system in place, it becomes trivial to add:

• Anonymous functions (lambda)

• Partial application or currying

• Closures with captured outer variables

• Native host integrations (file IO, networking)

• Foreign Function Interfaces (FFI) to C or C++

16.4.7 Diagnostic and Debugging Support

Enable function tracing for debugging:

if (debug.traceFunctionCalls)
std::cout << "[call] Function: " << name << "(" << argCount << " args)\n";

if (debug.traceFunctionReturns)
std::cout << "[return] " << returnValue.toString() << "\n";

Also provide typeof(), is_function(), and function_signature() introspection in
the REPL for advanced usage.

602

16.4.8 Final Architecture Snapshot

[Parser]
|

[FunctionDecl AST]
|

[Symbol Table] --+--> Global/User
|

[Environment]
|

[FunctionValue]
/ \

[UserFunction + Closure] [Builtin Lambda]
|

[Call Dispatch]
|

[Type Checking]
|

[Execution]

16.4.9 Conclusion

This milestone confirms that your interpreter now offers a complete, safe, and
expressive function system, rivaling mature scripting languages but staying close
to C-style semantics. By combining static guarantees, lexical scoping, and dynamic
dispatching, this function subsystem becomes the backbone of the language’s control
flow, abstraction mechanisms, and modularity.
It also opens the way to build:

• Functional programming support

603

• Event/callback systems

• Interpreter-hosted libraries

• Embedded APIs

Future chapters can now safely build on this robust foundation to implement modules,
object systems, and concurrency — knowing that your function system is solid, modern,
and extensible.

Part VI

Collections and Advanced Features

604

Chapter 17

Arrays and C-Style Data Structures

17.1 Static and dynamic array implementation

17.1.1 Introduction

Arrays are foundational in any C-style language, serving as contiguous data structures
that map directly to memory models. Your interpreter should support both statically-
sized arrays and dynamically-sized arrays to mirror the duality in C between int
a[10]; and int* a = malloc(n * sizeof(int));.
In this section, we build a flexible system for representing, initializing, accessing, and
manipulating arrays using modern C++20/23 features. The goal is to support:

• Fixed-size arrays (int[5])

• Dynamic arrays with runtime resizing

• Type checking and index validation

• Interoperability with other types like int, float, etc.

606

607

17.1.2 Conceptual Design: Static vs Dynamic

Table 1-1: Comparison of Static vs Dynamic Arrays

Feature Static Array Dynamic Array

Size Known at
Compile

Yes No

Allocation Fixed during declaration Heap-like, grows/shrinks

Syntax Example int a[4]; int[] a = new int[n];

Lifetime Scope-based Managed at runtime

17.1.3 Type Representation

In your interpreter, both array types can be unified under an internal Array type while
preserving either static or dynamic semantics:

struct ArrayValue {
std::vector<Value> elements;
std::optional<size_t> fixedSize; // nullopt if dynamic
Type elementType;

};

The presence of fixedSize allows you to distinguish between static and dynamic arrays
during validation and resizing.

608

17.1.4 Declaration Syntax and Semantics

Static:

int nums[3] = {1, 2, 3};

• Size known at declaration

• Initializer must match size

• No reallocation allowed

Dynamic:

int[] list = new int[capacity];

• Size determined at runtime

• May be resized or extended

• Similar to std::vector behavior internally

17.1.5 Runtime Value Model

Define Value::Array variant:

using ArrayPtr = std::shared_ptr<ArrayValue>;

struct Value {
Type type;

609

std::variant<..., ArrayPtr> data;

static Value Array(ArrayPtr arr) {
return Value{Type::Array, arr};

}
};

This enables passing arrays by reference, resizing in place, and copying if needed.

17.1.6 Array Initialization

Parser must distinguish static and dynamic:

• For static:

Type type = Type::Int;
size_t size = 3;
std::vector<Value> init = {Value::Int(1), Value::Int(2), Value::Int(3)};

• For dynamic:

auto dynamicArray = std::make_shared<ArrayValue>();
dynamicArray->elementType = Type::Int;
dynamicArray->elements.resize(capacity, Value::Int(0)); // default init

This aligns with C++'s zero-initialization or value-initialization policies.

610

17.1.7 Access and Bounds Checking

Implement evalArrayAccess:

Value Interpreter::evalArrayAccess(const Value& arrayVal, size_t index) {
auto arr = std::get<ArrayPtr>(arrayVal.data);
if (index >= arr->elements.size())

throw std::runtime_error("Array index out of bounds");
return arr->elements[index];

}

Set access:

arr->elements[index] = newValue;

17.1.8 Array Type Inference and Consistency

Type inference ensures:

• Homogeneity: all elements must be same type

• Operation safety: array of float cannot be assigned string

Enforced at:

• Declaration time (for static arrays)

• Mutation time (for dynamic arrays)

611

17.1.9 Array Utilities and Built-ins

Built-in functions for dynamic arrays:

// push_back
Value builtin_push(const std::vector<Value>& args) {

if (args.size() != 2)
throw std::runtime_error("push expects array and value");

auto arr = std::get<ArrayPtr>(args[0].data);
if (args[1].type != arr->elementType)

throw std::runtime_error("Type mismatch in push");

arr->elements.push_back(args[1]);
return Value::None();

}

// length
Value builtin_length(const std::vector<Value>& args) {

auto arr = std::get<ArrayPtr>(args[0].data);
return Value::Int(arr->elements.size());

}

17.1.10 C++20/23 Techniques

612

Table 1-2: C++ Features for Array Handling and
Debugging

Feature Usage

std::shared_ptr Shared ownership of dynamic arrays

std::optional Represent static vs dynamic distinction

std::vector Dynamic growth and indexing

constinit Static arrays with compile-time size

structured bindings Element iteration in REPL/debugging

You can also use ranges to filter, map, or slice arrays efficiently in REPL:

for (auto [i, v] : views::enumerate(arr->elements)) { ... }

17.1.11 Error Handling

Ensure that:

• Assigning to static arrays beyond bounds triggers error

• Dynamic arrays support push, resize, clear

• Accessing out of bounds gives meaningful feedback

• Type mismatches are caught early and reported precisely

613

17.1.12 Summary

Feature Supported

Static array declaration True

Dynamic array allocation True

Element access with bounds check True

Push and resize operations True

Type-safe element assignments True

Array introspection (length()) True

Built-in support for array ops True

17.1.13 Conclusion

With static and dynamic arrays in place, your interpreter now supports foundational C-
style data structures, enabling indexed collection processing, batch computations, and
memory-efficient access patterns. The design closely mirrors traditional C behavior
while embracing dynamic capabilities, flexible memory safety, and modern C++
practices. This prepares the ground for more advanced structures like structs, maps,
and user-defined types, all grounded in a robust, type-safe array model.

17.2 Array Indexing with Bounds Checking

614

17.2.1 Introduction

In C-style programming, array indexing is a powerful yet dangerous operation. While C
allows unchecked indexing (a[i]), leading to undefined behavior when out of bounds,
modern language design demands runtime safety. In your interpreter, especially
using C++20/23, array indexing should retain the low-level feel of C, but with explicit
bounds checking to detect invalid memory access early.
This section covers:

• Index evaluation

• Type validation

• Bounds checking strategy

• Error diagnostics

• Read/write operations

• How modern C++ helps you implement all this cleanly

17.2.2 Understanding Indexing Semantics

Array access in C-like syntax:

int x = arr[2]; // Read
arr[4] = 10; // Write

Your interpreter must support:

• Safe evaluation of the arr[index] pattern

• Correct indexing from zero

615

• Validation that index is an integer

• Protection against out-of-bounds access

• Differentiation between read and write context

17.2.3 Internal Value Representation

Assuming the Value type supports arrays:

using ArrayPtr = std::shared_ptr<ArrayValue>;

struct ArrayValue {
std::vector<Value> elements;
std::optional<size_t> fixedSize;
Type elementType;

};

And:

struct Value {
Type type;
std::variant<..., ArrayPtr> data;

};

17.2.4 Bounds Checking Logic

• Read Access

Value Interpreter::readArrayElement(const Value& arrayVal, const Value&
indexVal) {↪→

if (arrayVal.type != Type::Array)

616

throw std::runtime_error("Attempt to index a non-array value");

if (indexVal.type != Type::Int)
throw std::runtime_error("Array index must be of type int");

const auto& array = std::get<ArrayPtr>(arrayVal.data);
int idx = std::get<int>(indexVal.data);

if (idx < 0 || static_cast<size_t>(idx) >= array->elements.size())
throw std::runtime_error("Array index out of bounds: " +

std::to_string(idx));↪→

return array->elements[idx];
}

• Write Access

void Interpreter::writeArrayElement(Value& arrayVal, const Value& indexVal,
const Value& rhsVal) {↪→

if (arrayVal.type != Type::Array)
throw std::runtime_error("Attempt to index a non-array value");

if (indexVal.type != Type::Int)
throw std::runtime_error("Array index must be of type int");

auto& array = std::get<ArrayPtr>(arrayVal.data);
int idx = std::get<int>(indexVal.data);

if (idx < 0 || static_cast<size_t>(idx) >= array->elements.size())
throw std::runtime_error("Array index out of bounds: " +

std::to_string(idx));↪→

617

if (rhsVal.type != array->elementType)
throw std::runtime_error("Type mismatch in array assignment");

array->elements[idx] = rhsVal;
}

17.2.5 Performance Consideration

Even though bounds checking adds overhead, it:

• Prevents critical interpreter crashes

• Aids debugging by catching errors early

• Can be optionally disabled in production (advanced mode)

Using [[likely]] and [[unlikely]] C++23 attributes can help optimize common
safe access:

if (idx >= 0 && static_cast<size_t>(idx) < array->elements.size()) [[likely]] {
return array->elements[idx];

} else [[unlikely]] {
throw std::runtime_error("Array index out of bounds");

}

17.2.6 Compiler-Level Optimizations and C++ Tools

Leverage:

618

Feature Purpose

std::vector Dynamic array backend

std::variant Type-safe container for values

std::optional Optional fixed size for static array tracking

structured bindings Cleaner code in loops

ranges::views::enumerate
(optional)

For debugging purposes

17.2.7 Error Diagnostics and User Feedback

When a bounds error occurs, show clear messages:

Error: Array index 5 out of bounds (size = 3)
At line: 12, expression: data[5]

If possible, include:

• Current array size

• Index attempted

• Line or source info (if AST tracks positions)

This improves trust and usability for beginners and professionals alike.

17.2.8 Extended Feature: Runtime Safe Mode

You can optionally support a ”safe mode” where bounds checks are enforced, and a
”fast mode” where they are optionally skipped for performance:

619

bool Interpreter::safeMode = true;

if (safeMode && (idx < 0 || idx >= array->size()))
throw std::runtime_error("Out-of-bounds");

17.2.9 Integration into AST and REPL

Grammar:

array_access_expr:
identifier '[' expression ']'

AST Node:

struct ArrayAccessExpr : Expr {
std::unique_ptr<Expr> array;
std::unique_ptr<Expr> index;

};

Evaluation:

Value eval(const ArrayAccessExpr& expr) {
Value arrayVal = eval(expr.array);
Value indexVal = eval(expr.index);
return readArrayElement(arrayVal, indexVal);

}

17.2.10 Test Cases

• Valid Access

620

int[] a = new int[3];
a[0] = 1;
a[1] = 2;
print(a[1]); // 2

• Out of Bounds

print(a[5]); // Error: index out of bounds

• Type Mismatch

a[0] = "hello"; // Error: expected int

17.2.11 Summary

Capability Status

Indexing for static arrays True

Indexing for dynamic arrays True

Type checking for index (must be int) True

Type checking for assignment value True

Bounds checking with diagnostics True

Optional safe/unsafe mode True

621

17.2.12 Conclusion

Array indexing with bounds checking ensures correctness, safety, and professionalism
in your language runtime. Unlike traditional C that exposes raw memory, your C-
style language introduces safe array operations without compromising expressiveness.
Backed by C++20/23, you now offer the user confidence in memory usage and
structure manipulation, preparing for higher abstractions like slices, views, and even
multidimensional arrays in future extensions.

17.3 Pointer-like Operations (Optional)

17.3.1 Introduction

Pointer manipulation is at the core of low-level C programming, providing direct
memory control, array traversal, function call indirection, and dynamic memory
access. While pointers are often omitted in modern interpreted languages due to their
complexity and safety risks, supporting pointer-like operations in your interpreter
can offer great power, especially for teaching, systems simulation, or embedded-level
experimentation.
This section explores how to simulate pointer behavior in a safe and controlled
environment using modern C++20/23 techniques while preserving the essence of C-
style pointer operations.

17.3.2 Design Philosophy

Instead of exposing raw memory addresses, simulate pointer semantics:

• Dereferencing (*ptr)

• Address-of (&var)

622

• Pointer arithmetic (ptr + 1)

• Array decay to pointer (int[] to int*)

Your design must:

• Avoid exposing actual host machine memory

• Simulate referencing and dereferencing using internal references or identifiers

• Keep operations well-typed and bounds-checked

17.3.3 Value Representation for Pointers

Define a pointer-like runtime object using indirection:

struct PointerValue {
Value* pointee; // Runtime reference to another value
Type baseType;

};

Update Value variant to include:

std::variant<..., std::shared_ptr<PointerValue>> data;

Then wrap creation in:

static Value Pointer(Value* target, Type base) {
return Value{Type::Pointer, std::make_shared<PointerValue>(PointerValue{target,

base})};↪→

}

623

17.3.4 Implementing & (Address-of)

When evaluating an address-of expression like &x, the interpreter must:

• Find the memory location (reference) of variable x in the current environment

• Wrap that in a PointerValue

Value Interpreter::evalAddressOf(const std::string& name, const Environment::Ptr&
env) {↪→

Value* varPtr = env->lookupReference(name); // returns pointer to variable
storage↪→

if (!varPtr) throw std::runtime_error("Undefined variable: " + name);
return Value::Pointer(varPtr, varPtr->type);

}

17.3.5 Implementing * (Dereference)

Given a pointer value, extract the actual value:

Value Interpreter::evalDereference(const Value& ptrVal) {
if (ptrVal.type != Type::Pointer)

throw std::runtime_error("Cannot dereference non-pointer");

auto ptr = std::get<std::shared_ptr<PointerValue>>(ptrVal.data);
return *ptr->pointee;

}

For assignment via pointer:

624

void Interpreter::assignViaPointer(Value& ptrVal, const Value& newVal) {
if (ptrVal.type != Type::Pointer)

throw std::runtime_error("Cannot assign via non-pointer");

auto ptr = std::get<std::shared_ptr<PointerValue>>(ptrVal.data);
if (ptr->baseType != newVal.type)

throw std::runtime_error("Type mismatch in pointer assignment");

*ptr->pointee = newVal;
}

17.3.6 Pointer Arithmetic (Simulated)

Optional implementation (simplified):

• Allow pointer to array elements

• Move pointer index using offset:

struct ArrayPointer {
std::shared_ptr<ArrayValue> array;
size_t offset;
Type baseType;

};

Extend dereference to:

Value Interpreter::dereferenceArrayPointer(const Value& arrPtrVal) {
auto arrPtr = std::get<std::shared_ptr<ArrayPointer>>(arrPtrVal.data);
if (arrPtr->offset >= arrPtr->array->elements.size())

throw std::runtime_error("Pointer offset out of bounds");

625

return arrPtr->array->elements[arrPtr->offset];
}

17.3.7 Simulating Array Decay to Pointer

In C, an array name in an expression (except with sizeof, &, or as type) decays to a
pointer to the first element.
Implement similar behavior:

Value Interpreter::arrayToPointer(const Value& arrVal) {
if (arrVal.type != Type::Array)

throw std::runtime_error("Cannot convert non-array to pointer");

auto arr = std::get<ArrayPtr>(arrVal.data);
if (arr->elements.empty())

throw std::runtime_error("Cannot decay empty array to pointer");

return Value::Pointer(&arr->elements[0], arr->elementType);
}

This operation is implicit during expression evaluation unless explicitly overridden.

17.3.8 Debug and Trace Output

For educational use, trace pointer behavior:

std::cout << "[ptr] Address-of " << name << " -> simulated pointer\n";
std::cout << "[ptr] Dereference value: " << value.toString() << "\n";

Allow inspection in REPL:

626

print_ptr(ptr); // print address, base type

17.3.9 C++20/23 Enhancements

Feature Usage

std::shared_ptr Safe and tracked simulated pointer

std::variant Type-safe pointer and value storage

std::optional Optional offsets for pointer arithmetic

concepts (optional) Enforce pointer-valid operations

Use [[nodiscard]] on critical pointer return values to avoid discarding them silently.

17.3.10 Test Cases

• Address-of and Dereference

int x = 5;
int* px = &x;
print(*px); // 5

• Assignment via Pointer

*px = 10;
print(x); // 10

627

• Array Decay

int[] a = {1, 2, 3};
int* p = a;
print(*(p + 1)); // 2

17.3.11 Summary

Pointer Operation Supported

Address-of (&) True

Dereference (*) True

Pointer assignment True

Pointer to array element True

Optional pointer arithmetic True

Type checking True

17.3.12 Conclusion

By simulating pointer behavior safely and selectively, you bridge the gap between
low-level C-style access and modern interpreter constraints. The pointer model built
here is rich enough to express indirection, array traversal, and function pointers while
remaining memory-safe. This forms the foundation for advanced systems programming
features in your language such as memory manipulation, data structure traversal, and
even interfacing with C libraries in the future.

628

17.4 Hands-on — C-Style Array Manipulation

17.4.1 Introduction

This hands-on section offers a practical implementation of C-style array manipulation in
your interpreter, covering both static and dynamic arrays. Using the evaluation model
you've already built, this exercise demonstrates:

• Array declarations

• Index-based read/write

• Boundary protection

• Built-in functions for array operations

• Integration with REPL using modern C++20/23 constructs

The aim is to ensure a smooth user experience while staying close to C syntax and
semantics, enriched by type safety and memory protection using modern C++.

17.4.2 Step-by-Step Implementation

1. Array Declaration Syntax

Interpreter grammar supports:

int a[3] = {10, 20, 30}; // Static
int[] b = new int[5]; // Dynamic

Parser translates to an AST node:

629

struct ArrayDecl : Statement {
std::string name;
Type elementType;
std::optional<size_t> fixedSize;
std::vector<std::unique_ptr<Expr>> initializer;

};

Evaluator implementation:

void Interpreter::evalArrayDecl(const ArrayDecl& decl) {
ArrayValue array;
array.elementType = decl.elementType;

if (decl.fixedSize.has_value()) {
array.elements.resize(decl.fixedSize.value(),

defaultValueForType(decl.elementType));↪→

for (size_t i = 0; i < decl.initializer.size(); ++i) {
Value v = eval(*decl.initializer[i]);
checkTypeMatch(decl.elementType, v.type);
array.elements[i] = v;

}
array.fixedSize = decl.fixedSize;

} else {
// Dynamic with initializer
for (auto& expr : decl.initializer) {

Value v = eval(*expr);
checkTypeMatch(decl.elementType, v.type);
array.elements.push_back(v);

}
}

env->define(decl.name, Value::Array(std::make_shared<ArrayValue>(array)));

630

}

2. Indexing and Assignment

Example input:

a[1] = 100;
print(a[1]);

Evaluator logic:

Value Interpreter::evalArrayAccess(const ArrayAccessExpr& expr) {
Value arrayVal = eval(*expr.array);
Value indexVal = eval(*expr.index);

if (arrayVal.type = Type::Array || indexVal.type = Type::Int)
throw std::runtime_error("Invalid array access");

auto arr = std::get<ArrayPtr>(arrayVal.data);
int idx = std::get<int>(indexVal.data);

if (idx < 0 || static_cast<size_t>(idx) >= arr->elements.size())
throw std::runtime_error("Index out of bounds");

return arr->elements[idx];
}

Assignment:

631

void Interpreter::evalArrayAssign(const ArrayAccessExpr& target, const Value&
rhs) {↪→

Value arrayVal = eval(*target.array);
Value indexVal = eval(*target.index);

auto arr = std::get<ArrayPtr>(arrayVal.data);
int idx = std::get<int>(indexVal.data);

if (idx < 0 || static_cast<size_t>(idx) >= arr->elements.size())
throw std::runtime_error("Index out of bounds");

if (rhs.type != arr->elementType)
throw std::runtime_error("Type mismatch in array assignment");

arr->elements[idx] = rhs;
}

3. Built-in Array Functions

Add functions like:

Value builtin_length(const std::vector<Value>& args) {
if (args.size() = 1 || args[0].type = Type::Array)

throw std::runtime_error("length(array) expects one array argument");
auto arr = std::get<ArrayPtr>(args[0].data);
return Value::Int(static_cast<int>(arr->elements.size()));

}

Value builtin_push(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::Array)

throw std::runtime_error("push(array, value)");

632

auto arr = std::get<ArrayPtr>(args[0].data);
const Value& newElem = args[1];

if (arr->fixedSize.has_value())
throw std::runtime_error("Cannot push to static array");

if (newElem.type != arr->elementType)
throw std::runtime_error("push: type mismatch");

arr->elements.push_back(newElem);
return Value::None();

}

17.4.3 Test Programs

• Static Array Access

int a[3] = {1, 2, 3};
a[0] = 10;
print(a[0]); // Output: 10
print(length(a)); // Error: static array — length not allowed

• Dynamic Array Mutation

int[] b = new int[2];
b[0] = 5;
b[1] = 6;
push(b, 7);
print(b[2]); // Output: 7
print(length(b));// Output: 3

633

17.4.4 Debug and REPL Tracing

Enable detailed tracing:

std::cout << "[array] Write a[" << index << "] = " << rhs.toString() << "\n";
std::cout << "[array] Read a[" << index << "] = " << result.toString() << "\n";

REPL support:

> int[] nums = new int[2];
> nums[0] = 42;
> nums[1] = nums[0] + 3;
> print(nums[1]); // Output: 45

17.4.5 C++20/23 Features in Use

Feature Role

std::variant Multi-type support for value representation

std::shared_ptr Dynamic ownership for array objects

std::optional Track static vs dynamic array sizing

ranges (if used) Useful for looping/debug in advanced REPL
versions

constexpr if Simplify generic printing and debugging of array
types

[[likely]] /
[[unlikely]]

Optimize index checking branches

634

17.4.6 Summary

Feature Implemented

Static array declaration with initializer True

Dynamic array allocation with runtime size True

Index access and value assignment True

Type-safe read/write True

Built-in length, push for dynamic use True

Error messages for invalid access/types True

REPL integration True

17.4.7 Conclusion

This hands-on section turns the abstract model of arrays into a concrete, working
subsystem that supports C-style syntax with modern safety and diagnostics. Your
interpreter now handles not just storage and access but also expressive manipulation of
data in array form. This is essential for future constructs like multidimensional arrays,
slices, or data buffers. With array support complete, your language moves one step
closer to being a viable C-style interpreted system, built on clean C++20/23 design.

Chapter 18

Standard Library for C-Style
Language

18.1 Built-in Functions — printf, scanf Equivalents

18.1.1 Introduction

In every C-style language, the printf and scanf functions serve as foundational I/O
primitives. They provide a flexible, low-level interface to interact with the user via
formatted text input/output. Your interpreter must include safe, structured equivalents
that follow the core semantics of these functions while embracing modern runtime
safety and extensibility. This section focuses on building the print and input families
of functions, mimicking printf and scanf respectively.
We will explore:

• Argument handling

• Format string parsing

635

636

• Type safety enforcement

• Runtime I/O behavior

• Integration with the interpreter core using modern C++20/23 facilities

18.1.2 Objective: Design Goals

• Emulate printf/scanf functionality

• Use safe value formats and type checks

• Support variable-length argument lists

• Enable easy extensions (e.g., file I/O later)

• Integrate with REPL and script I/O seamlessly

18.1.3 Built-in print() Equivalent (printf-like)

• Syntax Examples:

print("Hello %s, your score is %d\n", name, score);
print("Pi � %.2f", pi);

• Interpreter Signature:

Value builtin_print(const std::vector<Value>& args);

• Format String Parsing

We handle simple % placeholders:

637

– %d → integer

– %f → float

– %s → string

– %% → literal %

std::string format_string(const std::string& fmt, const std::vector<Value>&
values) {↪→

std::ostringstream out;
size_t argIndex = 0;

for (size_t i = 0; i < fmt.size(); ++i) {
if (fmt[i] == '%' && i + 1 < fmt.size()) {

char next = fmt[++i];
if (next == '%') {

out << '%';
continue;

}

if (argIndex >= values.size())
throw std::runtime_error("Not enough arguments for format

string");↪→

const Value& val = values[argIndex++];
switch (next) {

case 'd':
if (val.type != Type::Int)

throw std::runtime_error("Expected int for %d");
out << std::get<int>(val.data);
break;

case 'f':
if (val.type != Type::Float)

638

throw std::runtime_error("Expected float for %f");
out << std::get<double>(val.data);
break;

case 's':
if (val.type != Type::String)

throw std::runtime_error("Expected string for %s");
out << std::get<std::string>(val.data);
break;

default:
throw std::runtime_error("Unknown format specifier: %" +

std::string(1, next));↪→

}
} else {

out << fmt[i];
}

}

return out.str();
}

• Final Print Function

Value builtin_print(const std::vector<Value>& args) {
if (args.empty() || args[0].type != Type::String)

throw std::runtime_error("print() requires format string as first
argument");↪→

std::string fmt = std::get<std::string>(args[0].data);
std::vector<Value> formatArgs(args.begin() + 1, args.end());

std::string output = format_string(fmt, formatArgs);
std::cout << output;

639

return Value::None();
}

18.1.4 Built-in input() Equivalent (scanf-like)

• Syntax Examples:

int x;
input("%d", &x);

string name;
input("%s", &name);

This requires passing pointers to variables (simulated), which were defined earlier
in the pointer system.

• Interpreter Signature:

Value builtin_input(const std::vector<Value>& args);

• Parsing and Input Conversion

void parse_input(const std::string& fmt, const std::vector<Value>& args) {
size_t fmtIndex = 0;
size_t argIndex = 0;

for (; fmtIndex < fmt.size(); ++fmtIndex) {
if (fmt[fmtIndex] == '%' && fmtIndex + 1 < fmt.size()) {

640

char next = fmt[++fmtIndex];

if (argIndex >= args.size())
throw std::runtime_error("Too few arguments for input format");

Value& arg = const_cast<Value&>(args[argIndex++]);

if (arg.type != Type::Pointer)
throw std::runtime_error("input() requires pointer arguments");

auto ptr = std::get<std::shared_ptr<PointerValue>>(arg.data);
Value temp;

switch (next) {
case 'd': {

int v;
std::cin >> v;
temp = Value::Int(v);
break;

}
case 'f': {

double v;
std::cin >> v;
temp = Value::Float(v);
break;

}
case 's': {

std::string v;
std::cin >> v;
temp = Value::String(v);
break;

}

641

default:
throw std::runtime_error("Unknown input format specifier");

}

if (ptr->baseType != temp.type)
throw std::runtime_error("Type mismatch in input assignment");

*ptr->pointee = temp;
}

}
}

• Final Input Function

Value builtin_input(const std::vector<Value>& args) {
if (args.empty() || args[0].type != Type::String)

throw std::runtime_error("input() requires format string as first
argument");↪→

std::string fmt = std::get<std::string>(args[0].data);
std::vector<Value> argList(args.begin() + 1, args.end());

parse_input(fmt, argList);
return Value::None();

}

18.1.5 REPL Integration

Make these built-ins available to user code:

642

globalEnv->define("print", Value::BuiltinFunction(builtin_print));
globalEnv->define("input", Value::BuiltinFunction(builtin_input));

18.1.6 Test Scenarios

int age;
string name;

print("Enter your name: ");
input("%s", &name);
print("Enter your age: ");
input("%d", &age);

print("Hello %s, you are %d years old\n", name, age);

18.1.7 C++20/23 Features Used

Feature Usage

std::vector<Value> Flexible argument lists

std::variant Multi-type runtime container

std::ostringstream String formatting

std::shared_ptr Pointer simulation

const_cast (carefully) Mutable input pointer references

std::string_view (optional) Format parsing, for performance

643

18.1.8 Summary

Capability Status

print(fmt, args...) True

Format parsing with type checks True

Output to standard stream True

input(fmt, &args...) True

Safe type-based value input True

Simulated reference support True

User-friendly diagnostics True

18.1.9 Conclusion

This section lays the foundation for a powerful and safe standard I/O system in
your interpreter. The print() and input() functions offer the flexibility of C’s
printf/scanf, while eliminating the memory dangers associated with format string
mismatches or unsafe dereferencing. With type-aware formatting and simulated pointer
references, you provide an intuitive and professional I/O model suitable for both
beginner and advanced users, implemented entirely in Modern C++.

18.2 File I/O Operations

644

18.2.1 Introduction

File I/O is an essential component of any general-purpose programming language. In a
C-style interpreted language, it should provide the familiar semantics of fopen, fclose,
fread, fwrite, fprintf, and fscanf but with enhanced safety and modern runtime
support. This section describes the implementation of a file I/O subsystem designed to
be flexible, safe, and aligned with modern C++20/23 practices.
We will simulate a minimal standard file API within the interpreter, supporting:

• File handle abstraction

• Text and binary modes

• Read/write operations

• Safe file closing and error checking

18.2.2 Design Considerations

1. File Abstraction: File handles should be wrapped in a managed object
(FileValue) using std::shared_ptr<...> to ensure RAII-style resource control.

2. File Types: Support for both text and binary modes.

3. Error Handling: Use runtime exceptions with detailed messages instead of error
codes.

4. User Syntax Example:

file f = fopen("data.txt", "w");
fprintf(f, "Name: %s\n", name);
fclose(f);

645

18.2.3 File Handle Representation

Create a new internal type:

struct FileValue {
std::fstream stream;
std::string mode;
std::string filename;

};

Extend Value variant:

std::variant<..., std::shared_ptr<FileValue>> data;

Create a constructor:

static Value File(std::shared_ptr<FileValue> f) {
return Value{Type::File, f};

}

18.2.4 Built-in: fopen(filename, mode)

Value builtin_fopen(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::String || args[1].type !=

Type::String)↪→

throw std::runtime_error("fopen() requires (string filename, string mode)");

std::string filename = std::get<std::string>(args[0].data);
std::string mode = std::get<std::string>(args[1].data);

std::ios_base::openmode openMode = std::ios::binary; // base mode

646

if (mode == "r") openMode |= std::ios::in;
else if (mode == "w") openMode |= std::ios::out | std::ios::trunc;
else if (mode == "a") openMode |= std::ios::out | std::ios::app;
else if (mode == "r+") openMode |= std::ios::in | std::ios::out;
else

throw std::runtime_error("Invalid file mode: " + mode);

auto f = std::make_shared<FileValue>();
f->filename = filename;
f->mode = mode;
f->stream.open(filename, openMode);

if (!f->stream.is_open())
throw std::runtime_error("Cannot open file: " + filename);

return Value::File(f);
}

18.2.5 Built-in: fclose(file)

Value builtin_fclose(const std::vector<Value>& args) {
if (args.size() = 1 || args[0].type = Type::File)

throw std::runtime_error("fclose() requires (file)");

auto file = std::get<std::shared_ptr<FileValue>>(args[0].data);
if (file->stream.is_open())

file->stream.close();

return Value::None();
}

647

18.2.6 Built-in: fprintf(file, format, ...)

Use the same formatting engine from print, but write to file stream instead of
std::cout.

Value builtin_fprintf(const std::vector<Value>& args) {
if (args.size() < 2 || args[0].type = Type::File || args[1].type = Type::String)

throw std::runtime_error("fprintf(file, format, ...)");

auto file = std::get<std::shared_ptr<FileValue>>(args[0].data);
std::string fmt = std::get<std::string>(args[1].data);
std::vector<Value> formatArgs(args.begin() + 2, args.end());

std::string output = format_string(fmt, formatArgs);
file->stream << output;

if (!file->stream.good())
throw std::runtime_error("Failed writing to file: " + file->filename);

return Value::None();
}

18.2.7 Built-in: freadline(file) and fwrite(file, data)

• freadline():

Value builtin_freadline(const std::vector<Value>& args) {
if (args.size() = 1 || args[0].type = Type::File)

throw std::runtime_error("freadline(file)");

648

auto file = std::get<std::shared_ptr<FileValue>>(args[0].data);
std::string line;
if (!std::getline(file->stream, line))

return Value::String(""); // End of file or error

return Value::String(line);
}

• fwrite():

Value builtin_fwrite(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::File || args[1].type !=

Type::String)↪→

throw std::runtime_error("fwrite(file, string)");

auto file = std::get<std::shared_ptr<FileValue>>(args[0].data);
std::string content = std::get<std::string>(args[1].data);

file->stream.write(content.c_str(), content.size());
return Value::None();

}

18.2.8 File I/O in the REPL and Scripting

Example program:

file f = fopen("output.txt", "w");
fprintf(f, "Name: %s\n", name);
fclose(f);

649

Reading:

file f = fopen("output.txt", "r");
string line = freadline(f);
print("Line: %s\n", line);
fclose(f);

18.2.9 Modern C++20/23 Use

C++ Feature Application

std::shared_ptr Safe file ownership

std::variant Multi-type value storage

std::filesystem (optional) File path validation

ranges (optional) Processing file lines in advanced REPL

std::format (optional) Format replacement if enabled internally

18.2.10 Summary

Capability Implemented

fopen(filename, mode) True

fclose(file) True

fprintf(file, ...) True

freadline(file) True

650

Capability Implemented

fwrite(file, string) True

Format-safe I/O True

Error-checking True

18.2.11 Conclusion

With file I/O functionality built into your interpreter, you bring it closer to real-world
usability. It enables data logging, configuration file reading, script automation, and
interaction with external tools. Unlike raw C, your implementation ensures safer,
exception-based handling and strict type validation using modern C++ idioms. The
file system layer can later be extended to support file buffers, memory maps, or remote
sources, preserving the same unified interface for the language user.

18.3 String Manipulation Utilities

18.3.1 Introduction

String manipulation is a cornerstone of both scripting and system programming. In a
C-style language, string utilities are expected to be direct, efficient, and predictable.
Rather than relying on object-oriented wrappers or implicit behaviors, the functions
must provide explicit control similar to strlen, strcat, strcmp, strstr, and substr,
while using safer and more flexible modern practices drawn from C++20/23.
This section details the implementation of a robust, minimal, and extensible string
utility subsystem in your interpreter, exposing core operations like:

• Length, slicing, concatenation

651

• Searching and comparison

• Trimming and casing

• Splitting and joining

All designed using value-oriented semantics with clear, well-defined signatures.

18.3.2 Internal Representation

Strings are stored as:

Value {
Type type;
std::variant<..., std::string> data;

};

They are immutable once created — all operations return new string values, preventing
aliasing or unsafe mutation.

18.3.3 Core Built-in Functions

• strlen(string s) → int

Value builtin_strlen(const std::vector<Value>& args) {
if (args.size() = 1 || args[0].type = Type::String)

throw std::runtime_error("strlen expects a single string argument");

return
Value::Int(static_cast<int>(std::get<std::string>(args[0].data).size()));↪→

}

652

• substr(string s, int start, int length) → string

Value builtin_substr(const std::vector<Value>& args) {
if (args.size() = 3 ||

args[0].type = Type::String ||
args[1].type = Type::Int ||
args[2].type = Type::Int)
throw std::runtime_error("substr(string, int, int)");

const std::string& str = std::get<std::string>(args[0].data);
int start = std::get<int>(args[1].data);
int length = std::get<int>(args[2].data);

if (start < 0 || length < 0 || start + length >
static_cast<int>(str.size()))↪→

throw std::runtime_error("Invalid substring range");

return Value::String(str.substr(start, length));
}

18.3.4 Concatenation and Comparison

• strcat(string a, string b) → string

Value builtin_strcat(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::String || args[1].type !=

Type::String)↪→

throw std::runtime_error("strcat expects two string arguments");

return Value::String(std::get<std::string>(args[0].data) +
std::get<std::string>(args[1].data));↪→

}

653

• strcmp(string a, string b) → int

(returns 0 if equal, <0 if a < b, >0 if a > b)

Value builtin_strcmp(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::String || args[1].type !=

Type::String)↪→

throw std::runtime_error("strcmp expects two string arguments");

int result =
std::get<std::string>(args[0].data).compare(std::get<std::string>(args[1].data));↪→

return Value::Int(result);
}

18.3.5 Search and Replace Utilities

• strfind(string haystack, string needle) → int

Value builtin_strfind(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::String || args[1].type !=

Type::String)↪→

throw std::runtime_error("strfind expects two string arguments");

const auto& haystack = std::get<std::string>(args[0].data);
const auto& needle = std::get<std::string>(args[1].data);

size_t pos = haystack.find(needle);
return Value::Int(pos == std::string::npos ? -1 : static_cast<int>(pos));

}

654

• strreplace(string input, string from, string to) → string

Value builtin_strreplace(const std::vector<Value>& args) {
if (args.size() = 3 ||

args[0].type = Type::String ||
args[1].type = Type::String ||
args[2].type = Type::String)
throw std::runtime_error("strreplace(string, from, to)");

std::string input = std::get<std::string>(args[0].data);
const std::string& from = std::get<std::string>(args[1].data);
const std::string& to = std::get<std::string>(args[2].data);

size_t pos = 0;
while ((pos = input.find(from, pos)) != std::string::npos) {

input.replace(pos, from.length(), to);
pos += to.length();

}

return Value::String(input);
}

18.3.6 Advanced String Utilities

• strsplit(string s, string delim) → array of strings

Value builtin_strsplit(const std::vector<Value>& args) {
if (args.size() = 2 || args[0].type = Type::String || args[1].type !=

Type::String)↪→

throw std::runtime_error("strsplit(string, delimiter)");

655

const std::string& s = std::get<std::string>(args[0].data);
const std::string& delim = std::get<std::string>(args[1].data);

std::vector<Value> result;
size_t start = 0, end = 0;

while ((end = s.find(delim, start)) != std::string::npos) {
result.push_back(Value::String(s.substr(start, end - start)));
start = end + delim.length();

}

result.push_back(Value::String(s.substr(start)));

return Value::Array(std::make_shared<ArrayValue>(Type::String, result));
}

18.3.7 Modern C++20/23 Concepts in Practice

C++ Feature Usage

std::string Core string representation

std::string::find Search operations

std::string::substr Slicing

std::string::replace Substitution

std::ranges (optional) Advanced functional composition

consteval, constexpr Safe compile-time parsing (future use)

656

C++ Feature Usage

std::format (C++20) Optional internal implementation layer

18.3.8 REPL Examples and Integration

print("Length: %d\n", strlen("hello"));
string part = substr("language", 0, 4); // "lang"
string joined = strcat(part, "code"); // "langcode"
int cmp = strcmp("a", "b"); // -1
print("Compare result: %d\n", cmp);

Split:

array words = strsplit("red,green,blue", ",");
print("First word: %s\n", words[0]);

18.3.9 Summary

Utility Implemented

strlen True

substr True

strcat True

strcmp True

strfind True

657

Utility Implemented

strreplace True

strsplit True

All functions follow C-style call patterns but leverage type-safe, exception-aware
implementations.

18.3.10 Conclusion

String manipulation utilities in your interpreter complete the usability layer of your
standard library. By exposing foundational and frequently used string functions,
you equip language users with tools for scripting, parsing, and formatting tasks
with minimal friction. The C-style design philosophy is preserved while offering the
robustness of modern C++20/23 features. These functions can later evolve to support
Unicode, internationalization, and regex matching, building upon the stable base you’ve
now established.

18.4 Milestone — Usable Standard Library for Our
Language

18.4.1 Introduction

This milestone marks the successful formation of a core standard library that is
functionally complete, extensible, and usable for everyday scripting and procedural
programming in your new C-style interpreted language. While the language's grammar,
parser, evaluator, and scoping system form the backbone, the standard library provides
the muscle — enabling real-world coding without reinventing low-level mechanisms.

658

This section formalizes and reviews the integrated built-in modules — from I/O to
strings — and outlines next steps for maintaining and expanding the standard library
using modern C++20/23 idioms.

18.4.2 Components of the Standard Library

By this point, the following components have been implemented and tested interactively
through the REPL and scripts:

• Formatted I/O Layer

– print(...), printf(...)

– input(), scanf(...)

– Type-safe formatting and variadic argument support

– Integration with C++20's std::format (optional internal optimization)

• File I/O System

– fopen(filename, mode)

– fclose(file)

– fprintf(file, ...), freadline(file), fwrite(file, string)

– RAII-style management using std::shared_ptr<FileValue>

– Text and binary mode support

– Internal error checking using exception-based design

• String Utilities

– strlen, substr, strcat, strcmp, strfind, strreplace, strsplit

659

– Immutable string operations using std::string

– Clear and predictable behavior aligned with C semantics

– Use of standard C++ string manipulation with boundary validation

• Array Utilities

– Dynamic arrays: int[] a = new int[10]

– Static arrays: int a[5] = {1, 2, 3, 4, 5}

– Built-ins: length(array), push(array, value)

– Bounds-checked read/write

– Value representation with std::variant and
std::shared_ptr<ArrayValue>

18.4.3 Architectural Strengths of the Current Design

Feature Benefit

Type-safe Value System Built on modern C++ std::variant and
std::optional

RAII Resource Handling Clean-up of files and arrays managed via
shared_ptr

Exception-Based Failures Simplifies error propagation and diagnostics

Interpreter Hooks Each built-in function can be registered
dynamically in the REPL

660

Feature Benefit

C-style Syntax
Compliance

Familiar function names and semantics
preserve ease of migration

Modular Built-in
Registration

Decoupled function implementations allow
expansion without tight coupling

18.4.4 Usability from a Language User’s View

The standard library enables scenarios like:

• Logging to File:

file f = fopen("log.txt", "a");
fprintf(f, "User logged in at %s\n", timestamp);
fclose(f);

• Parsing CSV Data:

file f = fopen("data.csv", "r");
while (true) {

string line = freadline(f);
if (strlen(line) == 0) break;
array fields = strsplit(line, ",");
print("Field[0]: %s\n", fields[0]);

}
fclose(f);

• Text Processing:

661

string name = " John ";
string trimmed = strreplace(name, " ", "");
print("Welcome, %s\n", trimmed);

This level of functionality places the language in a position comparable to
interpreted languages like Lua or early Python — lightweight but expressive and
usable.

18.4.5 Modern C++ Foundation

All standard library functions are written using safe, modern C++ constructs:

C++ Feature Role in Library Implementation

std::variant Discriminated union for Value type

std::shared_ptr Memory-managed resource objects (files, arrays)

std::string Immutable, efficient string operations

std::optional Optional return types and safety wrappers

constexpr if Compile-time logic in helper templates
(optional)

std::format (optional) Precise formatted output support

By not relying on legacy C-style char* or pointer arithmetic, your interpreter avoids
memory corruption, undefined behavior, and type confusion — problems traditionally
plaguing C-based runtimes.

662

18.4.6 Documentation Strategy

Each standard function should be documented in a modular, discoverable format, such
as:

Function: strlen(string s)
- **Description**: Returns the number of characters in the string.
- **Parameters**: `s` — the string to measure.
- **Returns**: Integer length.
- **Errors**: Throws if input is not a string.

This allows future IDE or REPL autocomplete systems to display contextual help.

18.4.7 Future Expansion Plan

Now that a usable base is achieved, additional areas for future standard library
development include:

Area Description

Math Utilities sqrt, abs, sin, cos, round, etc.

Date/Time Functions now(), format_date(), timestamp()

Data Serialization JSON string generation and parsing

Regex Support Pattern matching with string input

Network I/O Sockets, HTTP client requests

System Commands File existence, exec, environment variables

18.4.8 Summary of This Milestone

663

Goal Status

I/O functions (print, scanf) True

File stream API (fopen, fprintf) True

String functions (strlen, strcat) True

Array manipulation True

C-style syntax & usage True

REPL integration True

Error handling with exceptions True

Modular design and extensibility True

18.4.9 Conclusion

This milestone concludes the creation of a usable, consistent, and expressive
standard library that brings your C-style interpreted language into practical usability
for general programming. Backed by modern C++20/23 design principles, the library
offers strong foundations for extension, safety, and performance.
With this achieved, your language now supports real scripting use cases and educational
experiments — while remaining a living system ready to grow into a fully featured
runtime. Future efforts can now shift toward concurrency, data structures, and domain-
specific modules.

Part VII

Production Quality Features

664

Chapter 19

Comprehensive Error Handling

19.1 Runtime Error Reporting with C-Style Context

19.1.1 Introduction

Error reporting defines the boundary between a user-friendly language and a frustrating
one. C-style languages are typically terse and fast, but they historically suffer from
cryptic or unsafe error feedback (e.g., segmentation faults, undefined behavior, and
uninitialized memory errors). Your interpreter should retain the clarity of C’s
simplicity while avoiding its dangers by providing precise, friendly, and context-
aware error reports during runtime.
This section introduces an error handling architecture grounded in C-style semantics,
but elevated by modern C++20/23 constructs, delivering:

• Full runtime diagnostics,

• Token-level error tracking,

• Function scope and call-trace visibility,

666

667

• Type-safe structured error classes,

• Friendly output for both REPL and script executions.

19.1.2 Runtime Error System Requirements

Before designing, clearly define the goals of your interpreter's error reporting system:

Objective Explanation

Location-Aware Errors should be reported with line and column
numbers.

Cause-Specific The error type should describe the actual fault (not
just “runtime error”).

Semantic Traceability Identify in which function or block the error
occurred.

Safe Propagation Errors must never corrupt internal state.

User-Level Readability Output must be readable even by non-experts.

Interpreter-Controllable Errors should be catchable or suppressible when
required.

19.1.3 Error Kind Classification (Structured Typing)

To offer meaningful diagnostics, we classify runtime errors into a well-defined
enumeration:

enum class RuntimeErrorKind {
DivisionByZero,
InvalidType,

668

IndexOutOfBounds,
NullDereference,
UndefinedVariable,
FunctionNotFound,
ArgumentMismatch,
FileIOError,
ArithmeticOverflow,
AccessViolation,
TypeCoercionFailure,
General

};

Each category allows the interpreter to:

• Match errors programmatically,

• Display relevant error messages,

• Act differently based on the error kind (e.g., halt vs. recover).

19.1.4 Error Class Design in Modern C++

Instead of using raw exceptions, we define a structured error class:

struct RuntimeError {
RuntimeErrorKind kind;
std::string message;
std::string functionName;
std::string filename;
int line;
int column;
std::vector<std::string> callStack;

669

RuntimeError(RuntimeErrorKind kind,
std::string message,
std::string funcName,
std::string file,
int line,
int column,
std::vector<std::string> trace = {})

: kind(kind), message(std::move(message)),
functionName(std::move(funcName)), filename(std::move(file)),
line(line), column(column), callStack(std::move(trace)) {}

};

This format supports:

• File-based execution,

• Script debugging,

• REPL error reporting,

• And future visual debugging tools.

Optional: Use std::source_location (C++20) for auto-captured metadata:

#include <source_location>

RuntimeError make_error(RuntimeErrorKind kind,
std::string message,
const std::source_location& loc =

std::source_location::current()) {↪→

return RuntimeError(kind, std::move(message),

670

loc.function_name(), loc.file_name(), loc.line(),
loc.column());↪→

}

19.1.5 Generating Errors in the Evaluation Engine

Wherever a runtime fault is possible, error generation should follow strict rules.
Example:
Division by Zero:

Value eval_div(const Value& lhs, const Value& rhs, EvalContext& ctx) {
if (rhs.is_zero()) {

throw RuntimeError(RuntimeErrorKind::DivisionByZero,
"Division by zero",
ctx.currentFunction(),
ctx.currentFilename(),
ctx.currentLine(),
ctx.currentColumn(),
ctx.callStack());

}
return lhs / rhs;

}

Undefined Variable Access:

Value resolve_variable(const std::string& name, EvalContext& ctx) {
if (!ctx.hasVariable(name)) {

throw RuntimeError(RuntimeErrorKind::UndefinedVariable,
"Undefined variable: " + name,
ctx.currentFunction(),
ctx.currentFilename(),

671

ctx.currentLine(),
ctx.currentColumn(),
ctx.callStack());

}
return ctx.getVariable(name);

}

19.1.6 Centralized Error Display Logic

At the top-level REPL or script executor:

try {
interpreter.eval(script);

} catch (const RuntimeError& err) {
print_error(err);

}

Error printer function:

void print_error(const RuntimeError& err) {
std::cerr << "[Runtime Error] " << to_string(err.kind) << ": " << err.message <<

"\n";↪→

std::cerr << " at " << err.functionName << " (" << err.filename
<< ":" << err.line << ":" << err.column << ")\n";

if (!err.callStack.empty()) {
std::cerr << " Call Stack:\n";
for (const auto& frame : err.callStack) {

std::cerr << " → " << frame << "\n";
}

}

672

}

19.1.7 REPL vs File Execution Behavior

Mode Error Format Example

REPL Error in <REPL> (line 1, col 8)

Script Error in main.csl (line 32, col 12)

Maintain mode-sensitive error formatting using a unified interface, but allow special
REPL diagnostics if needed.

19.1.8 Benefits of Structured Error Reporting

Feature Outcome

Categorized errors Easier debugging and testable interpreter
behavior

Precise line/column info Accurate source mapping

Call stack awareness Real-world debugging and language education

File/function tagging Support for multi-file projects and modularity

Modern C++ safety No raw pointer crashes or memory faults

19.1.9 Error Propagation and Catching (Optional Feature)

You can provide language-level try/catch for advanced users:

673

try {
int x = 10 / 0;

} catch (RuntimeError e) {
print("Caught error: %s\n", e.message);

}

Implementation involves:

• Wrapping evaluation nodes in try-catch

• Converting C++ error to language Value form

• Binding the catch variable in block scope

19.1.10 Internal Logging and Debugging

For development purposes, include an optional internal debug logger:

void log_error_debug(const RuntimeError& err) {
std::ofstream log("interpreter_errors.log", std::ios::app);
log << "[" << to_string(err.kind) << "] " << err.message

<< " in " << err.functionName << " at " << err.filename
<< ":" << err.line << ":" << err.column << "\n";

}

This silently builds a log that can assist in unit testing or bug triaging in user
environments.

19.1.11 Future Work

674

Enhancement Description

Stack Trace
Compression

Show only relevant user function calls

Source Highlighting Display offending line with ̂ marker (like Clang)

Recovery Mode Continue REPL after recoverable errors

IDE Protocol Integrate with LSP-style error messages

Multi-language Error
Messages

For internationalization of tooling

19.1.12 Summary Checklist

Feature Implemented

Structured error class with location data True

Enum-based error classification True

File + REPL error format distinction True

Full line/col/function diagnostics True

Call stack recording True

Friendly user-readable output True

Modern C++ safety and flexibility True

675

19.1.13 Conclusion

By implementing a C-style runtime error reporting system powered by modern
C++20/23, you bridge the simplicity of C with the precision and resilience of modern
tooling. Users receive clear, consistent, and contextual feedback during development

— making the language not only powerful but approachable and reliable. This design
becomes foundational for future debugging tools, static analyzers, REPL enhancements,
and educational use cases.
The ability to report and trace runtime errors cleanly is the hallmark of a mature
interpreter — and your language now has it.

19.2 Stack Traces for Function Calls

19.2.1 Overview

Runtime error handling becomes vastly more useful when accompanied by a precise
and informative stack trace. In traditional compiled C environments, stack traces
are largely left to debuggers or OS-level tools. However, in an interpreter—especially
one designed for educational, interactive, or general-purpose use—a well-constructed
function call stack trace is indispensable. It allows developers to trace the sequence
of function calls that led to a runtime fault and to understand the behavior of nested
logic or recursion in their scripts.
In this section, we focus on how to design and integrate a full-featured, lightweight,
and expressive stack trace mechanism inside your interpreter. The implementation will
follow a clear modular structure, make full use of Modern C++20 and C++23 features,
and stay faithful to the philosophy of C-style programming.

676

19.2.2 Motivation for Stack Traces in Interpreters

Stack traces are not just a tool for error reporting. They serve several strategic roles:

• Debugging and diagnosis: Help developers trace the source of errors and
understand the exact flow of function calls.

• REPL inspection: Provide users with real-time feedback during
experimentation.

• Script transparency: Offer insights during the execution of longer script files
with multiple abstraction layers.

• Educational clarity: Reveal control flow behavior, particularly helpful for
learners and instructors using the language.

In C-style languages, the function call stack is conceptually linear and procedural.
Reproducing this model in the interpreter ensures that the language behaves
predictably and debuggably.

19.2.3 Architectural Design of the Call Stack

The interpreter’s call stack is a dynamic, first-in-last-out (FILO) data structure. It
maintains frames of active function calls. Each frame must retain sufficient metadata
to support debugging:

struct CallFrame {
std::string functionName;
std::string fileName;
int line;
int column;

};

677

This structure is stored in an ordered container:

using CallStack = std::vector<CallFrame>;

Why std::vector?

• It allows efficient push/pop behavior at the end.

• It preserves call order for tracing.

• It supports backtracing from deepest to shallowest call.

19.2.4 Entering and Exiting Functions

Each time a function is called, a new frame must be pushed onto the stack:

void Interpreter::enterFunction(const std::string& funcName,
const std::string& file,
int line,
int col) {

callStack.emplace_back(CallFrame{funcName, file, line, col});
}

On return or error exit, the function frame is removed:

void Interpreter::exitFunction() {
if (!callStack.empty()) {

callStack.pop_back();
}

}

These operations should be invoked at the start and end of each function call node in
the AST evaluation phase.

678

For exception safety, it is best to use RAII (Resource Acquisition Is Initialization):

struct StackGuard {
Interpreter& interp;
StackGuard(Interpreter& i, const CallFrame& frame) : interp(i) {

interp.callStack.push_back(frame);
}
~StackGuard() {

interp.callStack.pop_back();
}

};

Then in evaluation:

void Interpreter::evalFunctionCall(...) {
StackGuard guard(*this, CallFrame{funcName, file, line, col});
// perform function body evaluation

}

This ensures the call stack is correctly unwound even when exceptions are thrown.

19.2.5 Capturing the Stack Trace on Error

Your RuntimeError type must carry a snapshot of the current call stack at the time
the error is thrown. This preserves full call context, regardless of what the program
does next.

struct RuntimeError {
RuntimeErrorKind kind;
std::string message;
std::string functionName;
std::string filename;

679

int line;
int column;
CallStack trace;

RuntimeError(RuntimeErrorKind k,
std::string msg,
std::string func,
std::string file,
int l,
int c,
CallStack currentStack)

: kind(k),
message(std::move(msg)),
functionName(std::move(func)),
filename(std::move(file)),
line(l),
column(c),
trace(std::move(currentStack)) {}

};

Usage Example:

throw RuntimeError(RuntimeErrorKind::UndefinedVariable,
"Variable 'x' is not defined",
currentFunction,
currentFile,
currentLine,
currentColumn,
interpreter.getCallStack());

The function interpreter.getCallStack() returns a deep copy of the current call
stack.

680

19.2.6 Stack Trace Presentation

Stack traces are printed from the innermost function upward to the root:

void printStackTrace(const CallStack& trace) {
if (trace.empty()) return;

std::cerr << "Call Stack:\n";
for (auto it = trace.rbegin(); it != trace.rend(); ++it) {

std::cerr << " → " << it->functionName
<< " (" << it->fileName
<< ": line " << it->line
<< ", col " << it->column << ")\n";

}
}

This style mimics modern compilers and runtime systems, such as LLVM or Python,
and is easier to read than top-down traces.

19.2.7 Special Considerations for REPL

The REPL lacks an associated file. To address this, adopt a naming convention for
virtual sources:

• Use "<REPL>" as the default filename.

• Still store line and column numbers (per REPL input buffer).

REPL trace example:

Runtime Error: DivisionByZero
→ divide (line 1, col 7) in <REPL>

681

19.2.8 Recursive and Deep Call Chains

For recursive programs or deeply nested functional chains, the call stack may grow
indefinitely. To prevent overflow, define a hard limit:

constexpr size_t MaxCallDepth = 1024;

Guard the call entry function:

void Interpreter::enterFunction(...) {
if (callStack.size() >= MaxCallDepth) {

throw RuntimeError(RuntimeErrorKind::StackOverflow,
"Exceeded maximum call depth",
currentFunction, currentFile, currentLine, currentColumn, callStack);

}
...

}

This mirrors stack overflow behavior in compiled C, without risking host process
crashes.

19.2.9 Filtering Internal Frames

During development or when exposing a clean trace to users, internal helper functions
may clutter the trace. You can introduce filtering:

void filterSystemFrames(CallStack& trace) {
trace.erase(

std::remove_if(trace.begin(), trace.end(),
[](const CallFrame& frame) {

return frame.functionName.starts_with("__internal_");
}),

682

trace.end());
}

This optional step ensures only user-defined functions are shown.

19.2.10 Language-Level Integration (Optional)

Future versions of your language may expose stack trace functionality to users:

try {
call_something();

} catch (e) {
print_stack_trace(e);

}

This requires:

• Capturing the RuntimeError as a value in the language

• Exposing its fields and trace through language interfaces

This turns the error system into a runtime-inspectable object model.

19.2.11 Benefits of a Structured Stack Trace System

definecolorheadergraygray0.85

Capability Interpreter Impact

Stack trace per error Complete visibility into program behavior

683

Capability Interpreter Impact

Line/column/function/file
metadata

Accurate source diagnostics

REPL-safe handling Uniform UX in both scripts and console input

Recursive safety via max
depth

Protection against interpreter stack blowout

System frame filtering Cleaner, user-focused debugging

RAII-based entry/exit Safe stack management without leaks or skips

Debug log export Support for logging and crash reports

19.2.12 Summary and Next Steps

The call stack system in your interpreter is now capable of capturing, storing, and
presenting full execution context for every function call. This enables comprehensive
error diagnostics, a crucial aspect of developer trust and system robustness.

Feature Status

Structured CallFrame model Implemented

Manual stack entry and exit Implemented

RAII stack safety Implemented

Stack snapshot with error object Implemented

Reverse-order trace printing Implemented

REPL and file support Implemented

Max depth recursion control Implemented

684

Feature Status

Trace filtering support Optional

19.2.13 Conclusion

A modern interpreted C-style language must go beyond mere evaluation and parsing—it
must offer an introspective runtime environment. The function call stack trace
system forms a key pillar of that experience. It allows both beginner and advanced
users to see the behavior of their code, recognize flaws, and trust the language as a
diagnostic partner.
By modeling the stack trace system carefully in C++20/23 and integrating it with
structured error handling, your interpreter attains a new level of professionalism and
usability. This system also prepares the foundation for stepping debuggers, exception
handling mechanisms, and visual development tools in later stages of your language’s
growth.

19.3 Memory Error Detection and Reporting

19.3.1 Introduction: The Role of Memory Error Handling in
C-Style Interpreters

In traditional C or C++ systems, memory errors such as buffer overflows, use-after-free,
and null pointer dereferencing are common sources of critical bugs, segmentation faults,
and security exploits. Although interpreters operate at a higher level of abstraction,
simulating pointer-like and memory-sensitive operations still exposes the runtime to
similar issues if not managed correctly.
A robust C-style interpreter must detect and report memory misuse in real

685

time, helping the user understand the when, where, and why behind each fault.
Unlike compiled environments where memory is accessed directly, interpreters offer
an opportunity to instrument every access, validate its safety, and deliver
meaningful error diagnostics with precise context.
This section focuses on building a memory-safe infrastructure for your interpreter
with clear, traceable error messages, leveraging C++20 and C++23 language features
to maintain safety, clarity, and efficiency.

19.3.2 Understanding Memory Semantics in C-Style Languages

Before implementing detection, we must model memory according to C-style language
expectations:

• Memory may be manually allocated and freed.

• Array-like structures simulate contiguous memory blocks.

• Pointer semantics may exist, even abstractly.

• Memory addresses can be dereferenced, indexed, or passed around.

• Access outside valid regions must be treated as a fatal fault.

Errors to capture include:

• Accessing deallocated memory (use-after-free)

• Out-of-bounds array access

• Dereferencing null or invalid memory

• Double freeing memory

686

• Reading from uninitialized memory

The interpreter must not crash on such actions, but instead halt the user program with
rich diagnostic information.

19.3.3 Virtual Memory Representation

To detect and isolate memory faults, memory should be modeled using managed
objects:

struct MemoryObject {
std::vector<std::optional<Value>> data;
bool isAllocated;
bool isInitialized;
std::string sourceLocation;

};

Key decisions:

• Use std::optional<Value> per element to track initialization.

• Store per-object allocation status and origin metadata.

• Represent memory with an ID or handle rather than pointers.

using MemoryID = int;

class VirtualHeap {
std::unordered_map<MemoryID, MemoryObject> memory;
MemoryID nextID = 0;

public:

687

MemoryID allocate(size_t size, const std::string& context);
void deallocate(MemoryID id);
Value& write(MemoryID id, size_t index);
Value read(MemoryID id, size_t index) const;
void markInitialized(MemoryID id, size_t index);
bool isAllocated(MemoryID id) const;
...

};

This controlled environment enables full access tracking and safe invalidation detection.

19.3.4 Use-After-Free Detection

When a memory block is deallocated, it must be marked unusable:

void VirtualHeap::deallocate(MemoryID id) {
auto it = memory.find(id);
if (it == memory.end() || !it->second.isAllocated) {

throw RuntimeError(
RuntimeErrorKind::DoubleFree,
"Attempt to deallocate already-freed memory block (ID = " +

std::to_string(id) + ")",↪→

currentFunction,
currentFile,
currentLine,
currentColumn,
currentCallStack

);
}

it->second.isAllocated = false;
}

688

All future accesses to this ID raise a use-after-free error:

void VirtualHeap::ensureAllocated(MemoryID id) const {
auto it = memory.find(id);
if (it == memory.end() || !it->second.isAllocated) {

throw RuntimeError(
RuntimeErrorKind::UseAfterFree,
"Access to memory that has been freed (ID = " + std::to_string(id) + ")",
...

);
}

}

19.3.5 Out-of-Bounds Access Detection

When accessing array-like memory:

Value& VirtualHeap::write(MemoryID id, size_t index) {
ensureAllocated(id);
auto& block = memory.at(id);
if (index >= block.data.size()) {

throw RuntimeError(
RuntimeErrorKind::OutOfBoundsAccess,
"Index " + std::to_string(index) +
" out of bounds (size = " + std::to_string(block.data.size()) + ")",
...

);
}

if (!block.data[index].has_value()) {
block.data[index] = Value(); // Optional: default-initialize

}

689

return block.data[index].value();
}

Every array-like or pointer-like access must go through this boundary-guarded function.

19.3.6 Null Pointer and Uninitialized Access

Null pointers in this model are simulated by a special MemoryID, e.g.:

constexpr MemoryID NULL_PTR = -1;

Any use of NULL_PTR must be rejected on access:

if (id == NULL_PTR) {
throw RuntimeError(

RuntimeErrorKind::NullDereference,
"Attempted to dereference null pointer",
...

);
}

To simulate uninitialized memory, access may check the optional:

if (!block.data[index].has_value()) {
throw RuntimeError(

RuntimeErrorKind::UninitializedAccess,
"Reading uninitialized memory at index " + std::to_string(index),
...

);
}

690

This enables behavior similar to tools like Valgrind or Clang Sanitizers, but integrated
into your interpreter.

19.3.7 Enhanced Error Reporting

Each memory error must provide:

• Error type (e.g., OutOfBoundsAccess)

• Description

• Function and location of the fault

• Stack trace

RuntimeError(
RuntimeErrorKind::OutOfBoundsAccess,
"Index 8 out of range for array of size 5",
currentFunction,
currentFile,
currentLine,
currentColumn,
getCallStack()

);

The output should follow a unified format:

[Memory Error] UseAfterFree:
→ Memory block at ID 27 was accessed after deallocation
→ in function allocate_buffer() at script.csl:32
→ called from main() at script.csl:6

Include:

691

• ID of the memory object (for debugging)

• Variable name or tag (if assigned)

• Full call stack

• File, function, and line of fault

19.3.8 Debugging Tools and Memory State Dump

Support for memory state introspection during debugging:

void VirtualHeap::debugPrint() const {
for (const auto& [id, obj] : memory) {

std::cout << "Memory ID: " << id
<< ", Allocated: " << std::boolalpha << obj.isAllocated
<< ", Size: " << obj.data.size()
<< ", Initialized: " << obj.isInitialized
<< ", Source: " << obj.sourceLocation << "\n";

}
}

Integrate into REPL with a command like:

__debug_memory()

Which prints all heap objects and states.

19.3.9 Optional: Tagged Memory Blocks

Support variable-based labeling of memory blocks:

692

var buf = malloc(128) as "network_rx_buffer";

This label is stored in MemoryObject and reflected in error messages:

[Memory Error] OutOfBoundsAccess:
→ Index 140 exceeds bounds of memory "network_rx_buffer" (size = 128)

Improves debugging in large programs and complex systems.

19.3.10 Preventing Memory Leaks

While interpreters usually free all memory on exit, you can optionally provide leak
detection:

void VirtualHeap::checkLeaks() {
for (const auto& [id, obj] : memory) {

if (obj.isAllocated) {
std::cerr << "Warning: Memory leak detected for block ID " << id

<< " allocated at " << obj.sourceLocation << "\n";
}

}
}

Call checkLeaks() at program end or REPL shutdown.

19.3.11 C++20/23 Features Used

definecolorheadergraygray0.85

693

C++ Feature Purpose

std::optional Track uninitialized memory

consteval Define compile-time memory constants

std::format (C++20) Advanced error message formatting

Structured bindings Iterate over memory table cleanly

Concepts / requires Validate heap interfaces and accessors

Ranges and Views Implement debugging filters and analytics

These features increase code clarity, safety, and maintainability.

19.3.12 Summary of Memory Error Handling Capabilities

Error Type Handled? Detection Method

Use-after-free True isAllocated flag and access
guard

Double free True Repeated deallocation prevention

Out-of-bounds access True Index vs. vector::size() check

Null dereference True Special sentinel ID

Uninitialized access True std::optional<Value> check

Leak detection (optional) True End-of-life sweep

694

19.3.13 Conclusion

Simulating C-style memory safely inside an interpreter is both a technical necessity and
a powerful learning opportunity. With clear abstraction and rigorous runtime checks,
your interpreter can:

• Model the low-level experience of C

• Protect users from silent, undefined behavior

• Educate developers through meaningful feedback

• Provide tooling similar to AddressSanitizer and Valgrind

By integrating memory safety deeply into the interpreter’s virtual memory subsystem,
your language becomes not only a tool for scripting or prototyping, but a teaching
environment, debugging companion, and experimentation lab.

19.4 Hands-on — Robust Error Handling System

19.4.1 Overview

As your interpreter approaches production quality, error handling becomes a pillar of
reliability, usability, and debuggability. A robust error handling system must:

• Handle errors gracefully without terminating the entire interpreter unexpectedly.

• Provide detailed, structured, and human-readable diagnostics.

• Preserve stack traces and source code context to guide debugging.

• Be extensible to handle future language constructs (e.g., file I/O, networking).

695

• Offer a unified interface for runtime, parsing, semantic, and system-level errors.

This section guides you through the design, implementation, and integration of a
complete error handling system suitable for a modern C-style interpreted language built
with C++20/23.

19.4.2 Design Objectives

To build a powerful error handling system, the following goals are set:

Objective Description

Clarity Report meaningful and concise error messages

Contextual Awareness Include source file, function, and line/column
numbers

Stack Trace Integration Show precise chain of function calls leading to the
error

Granular Categorization Classify errors by kind (e.g., logic, memory, type,
IO)

Extensibility Enable adding new error kinds without breaking
the system

Consistency Across
Subsystems

Lexing, parsing, runtime, and REPL should use a
shared error framework

19.4.3 Core Error Structure

Every error is represented by a RuntimeError object. Here’s a minimal but powerful
design:

696

enum class RuntimeErrorKind {
TypeMismatch,
UndefinedVariable,
DivisionByZero,
NullPointerAccess,
OutOfBounds,
UseAfterFree,
DoubleFree,
InvalidFunctionCall,
StackOverflow,
GeneralRuntimeError,
IOError,
InternalCompilerError

};

class RuntimeError : public std::exception {
public:

RuntimeErrorKind kind;
std::string message;
std::string file;
std::string function;
int line;
int column;
std::vector<std::string> callStack;

RuntimeError(RuntimeErrorKind kind,
std::string message,
std::string file,
std::string function,
int line,
int column,
std::vector<std::string> callStack)

697

: kind(kind), message(std::move(message)), file(std::move(file)),
function(std::move(function)), line(line), column(column),
callStack(std::move(callStack)) {}

const char* what() const noexcept override {
return message.c_str();

}

void print(std::ostream& os = std::cerr) const;
};

Each instance encapsulates full context: what happened, where it happened, and
why it matters.

19.4.4 Printing a Structured ErrorReport

The print() method formats output with complete diagnostic details:

void RuntimeError::print(std::ostream& os) const {
os << "[Runtime Error] " << to_string(kind) << ": " << message << '\n';
os << " at " << function << " (" << file << ':' << line << ',' << column <<

")\n";↪→

if (!callStack.empty()) {
os << " Call Stack:\n";
for (const auto& frame : callStack) {

os << " → " << frame << '\n';
}

}
}

Example output:

698

[Runtime Error] TypeMismatch: Cannot assign 'float' to 'int'
at assign_value (main.csl:24,14)
Call Stack:
→ assign_value
→ main

19.4.5 Integrating with Runtime Execution

At every sensitive point in your interpreter, throw specific errors:

if (!symbolTable.contains(varName)) {
throw RuntimeError(

RuntimeErrorKind::UndefinedVariable,
"Variable '" + varName + "' is not declared in this scope",
currentFile,
currentFunction,
currentLine,
currentColumn,
context.callStack()

);
}

For operations like division:

if (rhsValue == 0) {
throw RuntimeError(

RuntimeErrorKind::DivisionByZero,
"Attempted to divide by zero",
...

);
}

699

Memory errors use similar logic with access guards and deallocation flags.

19.4.6 Top-Level Catch and Error Propagation

The interpreter’s REPL, test harness, or host application should catch and report all
RuntimeError exceptions:

try {
interpreter.evaluate(inputCode);

} catch (const RuntimeError& err) {
err.print();

}

This ensures errors are not swallowed silently and don’t crash the host process.

19.4.7 Lexical and Syntax Error Integration

Beyond runtime, compile-time errors (lexing/parsing) must also conform to the system:

struct ParseError {
std::string expected;
std::string found;
std::string file;
int line;
int column;

};

struct LexicalError {
std::string message;
int line;
int column;

};

700

These can be caught and translated into structured runtime messages during the REPL
cycle.

19.4.8 Extending with Logging

Optionally, support logging all errors to a file or memory for debugging:

class ErrorLog {
std::vector<RuntimeError> history;
std::ostream* logStream = nullptr;

public:
void record(const RuntimeError& err) {

history.push_back(err);
if (logStream) err.print(*logStream);

}

void setOutput(std::ostream& os) { logStream = &os; }
};

At shutdown, dump logs:

void ErrorLog::dumpAll() const {
for (const auto& err : history)

err.print(std::cout);
}

19.4.9 C++20/23 Features in Use

701

Feature Use Case

enum class Type-safe error categories

std::format (C++20) Message formatting without external libraries

concepts Validate call stack container types

source_location
(optional)

Capture compiler-injected source info

std::span / ranges Traverse stack traces safely and cleanly

Also consider consteval to pre-define invariant error messages at compile time.

19.4.10 Debug Commands in REPL

Provide a few internal commands to access and manage errors:

.__last_error() // show the most recent runtime error

.__error_log() // dump history of recent errors

.__clear_errors() // clear the error log

These commands improve diagnostics in interactive mode and teaching environments.

19.4.11 Example Errors in Action

Example 1: Out-of-bounds

[Runtime Error] OutOfBounds: Index 9 exceeds array length 5
at access_array (array.csl:11,6)
Call Stack:
→ access_array
→ run_program

702

Example 2: Use-after-free

[Runtime Error] UseAfterFree: Attempt to access deallocated memory block #45
at read_buffer (main.csl:29,9)
Call Stack:
→ read_buffer
→ process_io
→ main

Example 3: Undefined variable

[Runtime Error] UndefinedVariable: Variable 'score' is not declared
at evaluate() (game.csl:14,3)

19.4.12 Test Coverage Strategy

You should build unit tests that assert:

• Error of correct type is thrown

• Message matches expected substrings

• Context (file, line, function) is preserved

Example using a testing framework:

TEST_CASE("Division by zero triggers error") {
REQUIRE_THROWS_MATCHES(

interpreter.evaluate("int x = 1 / 0;"),
RuntimeError,

703

Catch::Matchers::MessageContains("divide by zero")
);

}

19.4.13 Benefits and Future Expansion

Immediate Benefits:

• Users trust the interpreter.

• Debugging is faster and less frustrating.

• Cleaner logs and better production safety.

• Seamless error propagation in nested expressions.

Future Additions:

• Serialize error objects to JSON for IDE integration

• Annotate variables and stack frames with metadata

• Colored terminal output for enhanced readability

• Support for breakpoint triggering on critical errors

19.4.14 Conclusion

A robust error handling system is not just a tool for internal correctness—it’s a
communication contract between your interpreter and its users. It enables safe
experimentation, teaches best practices, and prevents subtle bugs from becoming
production failures.

704

By centralizing errors into a well-structured, extensible system using modern C++
constructs, you ensure that your language—despite being inspired by low-level C
semantics—offers high-level safety, professionalism, and trust.

Chapter 20

Debugging and Development Tools

20.1 AST Visualization for C-Style Constructs

20.1.1 Introduction

The Abstract Syntax Tree (AST) is the heart of a programming language’s internal
structure. It represents the hierarchical nature of code after parsing and is crucial for
semantic analysis, evaluation, code generation, and debugging. In modern interpreter
and compiler development, AST visualization has emerged as a critical debugging
and teaching tool.
In this section, you will build a system to visualize ASTs for C-style constructs,
leveraging modern C++20/23 features such as structured bindings, formatting utilities,
and ranges. This tool is useful for:

• Verifying parser correctness

• Understanding how expressions and statements are structured

• Demonstrating language behavior in education and documentation

705

706

• Debugging complex nested logic or function flows

20.1.2 Goals of AST Visualization

The objectives of your AST visualization system are:

Goal Description

Structural Clarity Clearly reflect the nesting and hierarchy of
AST nodes

C-style Awareness Support C-style constructs like if, while,
for, return, etc.

Extensibility Easily extend to new constructs like switch,
ternary expressions, etc.

Debugging Readability Output should be clear enough to guide
debugging efforts

Interactive Tooling Optionally integrate into REPL or external
tool via export

20.1.3 AST Node Representation

Before visualization, ensure your AST is structured with a base class and variant node
types:

enum class ASTNodeKind {
IntegerLiteral,
FloatLiteral,
Variable,
BinaryExpr,

707

UnaryExpr,
Assignment,
IfStatement,
WhileStatement,
Block,
FunctionCall,
ReturnStatement,
FunctionDefinition,
Declaration,
ForLoop

};

struct ASTNode {
ASTNodeKind kind;
SourceLocation location;

virtual ~ASTNode() = default;
virtual void visualize(std::ostream& out, int indent = 0) const = 0;

};

Then derive specific node types. For example:

struct BinaryExprNode : public ASTNode {
std::string op;
std::unique_ptr<ASTNode> left;
std::unique_ptr<ASTNode> right;

BinaryExprNode(...) {
kind = ASTNodeKind::BinaryExpr;

}

void visualize(std::ostream& out, int indent = 0) const override {

708

print_indent(out, indent);
out << "BinaryExpr (" << op << ")\n";
left->visualize(out, indent + 2);
right->visualize(out, indent + 2);

}
};

Helper for indentation:

void print_indent(std::ostream& out, int indent) {
out << std::string(indent, ' ');

}

20.1.4 Visualization of C-Style Constructs

• If Statement

struct IfStatementNode : public ASTNode {
std::unique_ptr<ASTNode> condition;
std::unique_ptr<ASTNode> thenBranch;
std::unique_ptr<ASTNode> elseBranch;

void visualize(std::ostream& out, int indent = 0) const override {
print_indent(out, indent);
out << "IfStatement\n";
print_indent(out, indent + 2);
out << "Condition:\n";
condition->visualize(out, indent + 4);

print_indent(out, indent + 2);
out << "Then:\n";

709

thenBranch->visualize(out, indent + 4);

if (elseBranch) {
print_indent(out, indent + 2);
out << "Else:\n";
elseBranch->visualize(out, indent + 4);

}
}

};

• While Loop

struct WhileStatementNode : public ASTNode {
std::unique_ptr<ASTNode> condition;
std::unique_ptr<ASTNode> body;

void visualize(std::ostream& out, int indent = 0) const override {
print_indent(out, indent);
out << "WhileLoop\n";
print_indent(out, indent + 2);
out << "Condition:\n";
condition->visualize(out, indent + 4);

print_indent(out, indent + 2);
out << "Body:\n";
body->visualize(out, indent + 4);

}
};

• Function Definitions

710

struct FunctionDefinitionNode : public ASTNode {
std::string name;
std::vector<std::string> parameters;
std::unique_ptr<ASTNode> body;

void visualize(std::ostream& out, int indent = 0) const override {
print_indent(out, indent);
out << "FunctionDefinition: " << name << "\n";
print_indent(out, indent + 2);
out << "Parameters: ";
for (const auto& param : parameters)

out << param << " ";
out << "\n";
body->visualize(out, indent + 2);

}
};

20.1.5 Integration into REPL

Make visualization available via a REPL command:

> let tree = parse("if (a > b) { x = 1; } else { x = 2; }");
> visualize(tree);

Output:
IfStatement

Condition:
BinaryExpr (>)

Variable: a
Variable: b

Then:

711

Block
Assignment
Variable: x
Integer: 1

Else:
Block

Assignment
Variable: x
Integer: 2

20.1.6 Exporting AST for External Tools

Export ASTs to formats for further tooling:

• Dot/Graphviz

> let tree = parse("if (a > b) { x = 1; } else { x = 2; }");
> visualize(tree);

Output:
IfStatement
Condition:

BinaryExpr (>)
Variable: a
Variable: b

Then:
Block
Assignment
Variable: x
Integer: 1

Else:

712

Block
Assignment
Variable: x
Integer: 2

This allows graph visualization of complex structures.

• JSON Format

json to_json(const ASTNode& node);

Used for integration with web tools, visual editors, or remote debuggers.

20.1.7 Modern C++ Enhancements

C++20/23 provides elegant tools for writing AST visualizers:

Feature Use Case

std::format (C++20) Format node outputs cleanly

ranges::views Iterating child nodes of blocks, loops, functions

concepts Enforce interface for ASTNode visualizers

std::variant Represent heterogenous node payloads in simpler nodes

constexpr /
consteval

Generate node name strings at compile-time

20.1.8 Use Cases

713

Use Case Benefit

Debugging Parser
Output

Spot mismatches between expected and actual parsed
structures

Error Localization Trace errors in malformed or deeply nested expressions

Teaching Tool Show new learners how code translates to tree
structures

Code Generation
Validation

Visual inspection before emitting bytecode or machine
code

Serialization/InspectionExport AST for web-based visualizers or IDE plugins

20.1.9 Testing Visualization Output

Build a suite of tests that parse known code snippets and compare the visualization
output against golden files:

TEST_CASE("Visualize simple if statement") {
auto ast = parser.parse("if (a) b = 1;");
std::stringstream ss;
ast->visualize(ss);

REQUIRE(ss.str().find("IfStatement") != std::string::npos);
REQUIRE(ss.str().find("BinaryExpr") == std::string::npos); // only variable

}

Use test frameworks like Catch2 or GoogleTest.

714

20.1.10 Conclusion

AST visualization transforms the internal workings of your language from a black box
into an accessible and powerful learning and debugging interface. By applying clear
formatting, support for all major C-style constructs, and modern C++ idioms, you
can empower both the language developer and user to understand exactly how code
is interpreted.
This feature not only enhances development but also becomes a central part of
education, error diagnostics, and future IDE integration.

20.2 Step-by-Step Execution Tracing

20.2.1 Introduction

Step-by-step execution tracing is a cornerstone of modern interpreter debugging
infrastructure. It enables developers to pause, inspect, and resume execution while
tracking the evaluation of expressions, the resolution of variables, and control flow
changes such as jumps and function calls.
In this section, we explore how to design and implement an interactive and
programmable execution tracer in your C-style language interpreter. It will support
stepping through each instruction, optionally observing the call stack, variable states,
control branches, and more.
This capability not only assists language developers in verifying interpreter correctness
but also empowers language users to debug complex logic in their scripts.

20.2.2 Objectives of Execution Tracing

715

Objective Description

Instruction-level
stepping

Evaluate one statement or expression at a time

Variable state
tracking

View current values of symbols at each step

Call stack
visualization

Display function call transitions, entry/exit points

Control flow tracing Mark transitions in if, while, for, return, etc.

Interactive or
programmable

Let users step manually or set automatic trace modes

Integration with
AST & Error Logs

Link traced steps to AST nodes and any errors
encountered

20.2.3 Design Strategy

To support step-by-step tracing, you must:

1. Instrument the interpreter engine with trace hooks at key stages (evaluation,
function calls, statements, etc.).

2. Maintain a structured execution context that can be inspected and
serialized.

3. Control execution flow using a central trace controller or tracer interface.

4. Print human-readable or machine-readable output after each step.

716

20.2.4 Tracer Interface Design

Define a lightweight, extendable interface:

enum class TraceEventKind {
EnterStatement,
ExitStatement,
EvaluateExpression,
AssignVariable,
EnterFunction,
ExitFunction,
ConditionCheck,
ReturnValue

};

struct TraceEvent {
TraceEventKind kind;
std::string message;
SourceLocation location;
std::string functionName;
std::map<std::string, Value> localVariables;

};

class ExecutionTracer {
public:

virtual void on_event(const TraceEvent& event) = 0;
virtual ~ExecutionTracer() = default;

};

This allows attaching custom tracers that observe or log the runtime.

717

20.2.5 Instrumenting Execution Engine

Update the interpreter core to emit trace events. Example in statement execution:

void Interpreter::execute(const Statement& stmt) {
if (tracer) {

tracer->on_event({
TraceEventKind::EnterStatement,
"Executing statement",
stmt.location,
currentFunction,
currentScope.snapshot()

});
}

// Actual statement evaluation
stmt.evaluate(*this);

if (tracer) {
tracer->on_event({

TraceEventKind::ExitStatement,
"Finished statement",
stmt.location,
currentFunction,
currentScope.snapshot()

});
}

}

Similarly, add tracing to function calls, loops, conditionals, and assignments.

718

20.2.6 Sample Console Tracer Implementation

class ConsoleTracer : public ExecutionTracer {
public:

void on_event(const TraceEvent& event) override {
std::cout << "[" << to_string(event.kind) << "] "

<< event.message << " at "
<< event.location.file << ":" << event.location.line << "\n";

if (!event.localVariables.empty()) {
std::cout << " Locals:\n";
for (const auto& [name, val] : event.localVariables)

std::cout << " " << name << " = " << val.to_string() << "\n";
}

}
};

Enable tracing via REPL command:

.__trace_on()

And turn it off with:

.__trace_off()

20.2.7 Step Mode vs Auto Mode

Support two primary tracing modes:

719

Mode Behavior

Step Waits for user input before continuing after each statement

Auto Prints execution steps automatically but continues without pause

In step mode:

std::string input;
std::cout << ">> Press ENTER to continue, or 'q' to quit tracing\n";
std::getline(std::cin, input);
if (input == "q") { stop_tracing(); }

20.2.8 Trace Output Example

Given this code:

int main() {
int a = 10;
int b = 20;
if (a < b) {

a = b;
}
return a;

}

The trace output:

[EnterStatement] Executing declaration of 'a' at main.csl:2
Locals:
a = 10

720

[EnterStatement] Executing declaration of 'b' at main.csl:3
Locals:
a = 10
b = 20

[ConditionCheck] Checking condition 'a < b' at main.csl:4
Result: true

[EnterStatement] Executing assignment 'a = b' at main.csl:5
Locals:
a = 10
b = 20

[AssignVariable] Set 'a' = 20

[ReturnValue] Returning 20 from function 'main'

This allows debugging both variable changes and control flow logic.

20.2.9 Trace Control API (Advanced Use)

To support IDEs or GUI-based environments, expose a structured tracing API:

struct ExecutionSnapshot {
std::string function;
SourceLocation location;
std::map<std::string, Value> variables;
std::string currentStatement;
std::vector<std::string> callStack;

};

class TraceController {

721

public:
ExecutionSnapshot current() const;
void step();
void continue_execution();
void pause();

};

This enables:

• External debugger UIs

• Web-based visualization

• Recording execution history

20.2.10 Modern C++20/23 Enhancements

Feature Role in Tracing System

std::format Clear formatting for trace logs

std::source_location
(C++20)

Automatically track source info (line, file, function)

coroutines (optional) Model step-resumable execution engine

concepts Ensure tracer interface conformance

std::ranges Manage local variable iteration

These features simplify tracing logic while keeping it type-safe and expressive.

722

20.2.11 Test Coverage and Validation

Write test cases that ensure the trace log contains expected steps:

TEST_CASE("Trace assignment and return") {
TraceLogger logger;
interpreter.set_tracer(&logger);
interpreter.evaluate("int x = 5; return x;");

auto log = logger.get_events();
REQUIRE(log.size() == 3);
REQUIRE(log[0].kind == TraceEventKind::EnterStatement);
REQUIRE(log[2].kind == TraceEventKind::ReturnValue);

}

20.2.12 Conclusion

Step-by-step execution tracing brings visibility into every operation your interpreter
performs. By leveraging event-based tracing, structured snapshots, and modern C++
facilities, you provide a highly professional and educational debugging experience.
Such tooling not only enhances correctness and reliability of the interpreter but also
lays the foundation for IDE integration, unit test generation, and AI-assisted
debugging.

20.3 Performance Profiling Integration

20.3.1 Introduction

Performance profiling is a crucial tool for both developers of the interpreter itself and
users of the language who write performance-sensitive code. Profiling enables you to

723

collect metrics about runtime behavior—such as function execution time, memory
usage, instruction count, and call frequency—which are essential for optimization and
debugging performance bottlenecks.
This section presents a practical and modern approach to integrating profiling into
a C-style interpreted language, using C++20/23 features such as std::chrono,
structured bindings, and modern data structures for low-overhead instrumentation.

20.3.2 Objectives of Performance Profiling

Objective Description

Function-level
timing

Measure how long each function takes to execute

Call frequency
counting

Track how often specific functions, statements, or
expressions are invoked

Memory access
tracking

Optionally log dynamic allocations, array accesses, etc.

Profiling granularity Support configurable levels (coarse: per-function, fine:
per-statement)

Result visualization Output profiling results in readable and structured
formats

Low overhead mode Ensure profiling does not degrade interpreter
performance significantly

20.3.3 Instrumentation Architecture

Integrate a profiler interface into the interpreter core:

724

enum class ProfileEventKind {
FunctionEntry,
FunctionExit,
StatementExecuted

};

struct ProfileEvent {
ProfileEventKind kind;
std::string name;
std::chrono::steady_clock::time_point timestamp;
size_t memory_used = 0;

};

class Profiler {
public:

virtual void on_profile_event(const ProfileEvent& event) = 0;
virtual void report(std::ostream& out) const = 0;
virtual void reset() = 0;
virtual ~Profiler() = default;

};

Attach it to the interpreter:

interpreter.set_profiler(std::make_unique<FunctionProfiler>());

20.3.4 Measuring Execution Time

Use modern C++ time utilities from <chrono> to collect timing data:

auto start = std::chrono::steady_clock::now();
// ... execute code block ...

725

auto end = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);

Record this into a function performance table:

struct FunctionProfile {
size_t call_count = 0;
uint64_t total_microseconds = 0;

};

std::unordered_map<std::string, FunctionProfile> profile_table;

Update profile information:

void FunctionProfiler::on_profile_event(const ProfileEvent& event) {
if (event.kind == ProfileEventKind::FunctionExit) {

auto& data = profile_table[event.name];
data.call_count++;
data.total_microseconds +=

std::chrono::duration_cast<std::chrono::microseconds>(↪→

event.timestamp - last_entry_time[event.name]
).count();

} else if (event.kind == ProfileEventKind::FunctionEntry) {
last_entry_time[event.name] = event.timestamp;

}
}

20.3.5 Profiling Control Flow and Statements

Support optional fine-grained profiling:

• Add a flag --profile-statements or REPL command .profile on

726

• Wrap all Statement::execute() calls with timer logic

• Track statement types (assignments, conditionals, etc.)

Optional output:

[Profile] AssignmentStatement: avg = 4us, count = 50
[Profile] IfStatement: avg = 12us, count = 10

This granularity helps locate performance bottlenecks in interpreted scripts.

20.3.6 Memory Access Profiling (Optional)

If your interpreter supports dynamic memory management (e.g. dynamic arrays,
structs), add hooks for tracking memory usage:

struct MemoryProfiler {
size_t total_allocated = 0;
size_t total_deallocated = 0;

void on_alloc(size_t size) { total_allocated += size; }
void on_dealloc(size_t size) { total_deallocated += size; }

size_t current_usage() const {
return total_allocated - total_deallocated;

}
};

Hook into array allocation, function local frame creation, and heap-like data structures.

727

20.3.7 Report Generation and Visualization

At the end of script execution or on REPL command .profile_report, output a
summary:

--- Profiling Report ---
Function: factorial
Calls: 100
Total time: 1,304 µs
Avg time: 13.04 µs

Function: computeSum
Calls: 10
Total time: 822 µs
Avg time: 82.2 µs

Memory:
Peak allocated: 32 KB
Current usage: 8 KB

For graphical UIs or web-based tools, support exporting to JSON:

{
"functions": {
"factorial": { "calls": 100, "time_us": 1304 },
"computeSum": { "calls": 10, "time_us": 822 }

},
"memory": { "peak": 32768, "current": 8192 }

}

20.3.8 Leveraging Modern C++ Features

728

C++20/23 Feature Role in Profiler

std::chrono::steady_clockAccurate cross-platform time measurement

std::format Elegant, readable profiler reports without
std::stringstream

source_location Tag source locations automatically in profiling logs

std::unordered_map Fast aggregation of profiling counters

constexpr /
consteval

Used to define statically known function/statement
names

std::ranges Sort or filter profiling data (e.g. top N slowest
functions)

These modern features reduce boilerplate and enhance maintainability.

20.3.9 Integration with Debugging and Tracing

A robust language tooling ecosystem benefits from unified introspection. The profiler
should be able to:

• Cooperate with the tracer: i.e., trace logs can indicate how much time passed
per function.

• Highlight expensive operations: Use warning messages or annotations during
trace or AST inspection.

• Hook into error diagnostics: Show performance impact of functions involved
in an error.

Example: “Function computePath that caused exception took 150ms and was called 15
times.”

729

20.3.10 Test Cases and Validation

Unit test the profiler:

TEST_CASE("Profiler measures function time correctly") {
Profiler profiler;
interpreter.set_profiler(&profiler);

interpreter.evaluate("int f() { int a = 0; return a; } f(); f();");
auto report = profiler.get_report();

REQUIRE(report["f"].call_count == 2);
REQUIRE(report["f"].total_microseconds > 0);

}

Benchmark real-world scripts to validate profiler output under realistic load.

20.3.11 Conclusion

Integrating a performance profiler into your C-style interpreter transforms it from a
functional prototype into a production-quality system. It provides visibility into
runtime behavior, guides optimization efforts, and builds trust with developers using
the language for real-world tasks.
By combining execution timing, memory tracking, and structured reporting—backed by
modern C++ constructs—you empower users to write efficient, optimized programs and
allow your interpreter to evolve with performance awareness as a core value.

20.4 Milestone — Complete Debugging Toolkit

730

20.4.1 Introduction

Achieving a complete debugging toolkit is a crucial milestone in building a professional-
grade interpreter. A language is not truly usable until developers can inspect, trace,
profile, and correct their programs efficiently. This section defines the architectural
and implementation milestones for a complete debugging toolkit that supports C-style
semantics, aligned with modern programming expectations.
By utilizing C++20/23 enhancements, we can build a toolkit that is interactive,
structured, scriptable, and extensible.

20.4.2 Definition of “Complete Debugging Toolkit”

To qualify as complete, your debugging toolkit should support the following core
components:

Component Description

Trace Engine Logs runtime steps like function entry, statements, and
expression evaluation

Step-by-Step Mode Allows controlled execution for detailed program
inspection

Breakpoints User-defined stop-points in code, triggered by line
number or condition

Watchpoints Triggered when a specific variable changes or reaches a
target value

Call Stack Viewer Displays current and nested function calls with local
variable scopes

731

Component Description

Value Inspector Queries current values across different environments
and scopes

Profiler Gathers performance metrics such as timing, memory
usage, and call frequency

Error Tracker Captures and categorizes runtime or semantic-level
errors

REPL Debug
Commands

Provides live debugging interaction through a command
interface

20.4.3 Implementation Strategy

Break the toolkit into modular services or components, injected into the interpreter
context:

struct DebuggingToolkit {
std::unique_ptr<ExecutionTracer> tracer;
std::unique_ptr<BreakpointManager> breakpoints;
std::unique_ptr<Profiler> profiler;
std::unique_ptr<ErrorReporter> errors;
std::unique_ptr<CallStackInspector> stackViewer;
std::unique_ptr<MemoryInspector> memoryView;

};

These are accessible from both REPL and internal diagnostics:

interpreter.debugger().tracer->step_over();
interpreter.debugger().breakpoints->add("main.csl", 12);

732

20.4.4 Step Execution and Breakpoint Engine

Use an execution loop controlled by trace flags and breakpoints:

bool Interpreter::run_statement(const Statement& stmt) {
if (debugger.breakpoints->is_triggered(stmt.location)) {

debugger.tracer->pause_execution("Breakpoint hit at line",
stmt.location.line);↪→

}

debugger.tracer->before_statement(stmt);
stmt.evaluate(*this);
debugger.tracer->after_statement(stmt);
return true;

}

Breakpoints can be line-based or condition-based:

debugger.breakpoints->add("main.csl", 15);
debugger.breakpoints->add_conditional("main.csl", 20, "counter > 100");

20.4.5 Watchpoints and Variable Monitoring

Use scoped variable lookups to monitor watched variables:

debugger.watchpoints->watch("x", [](const Value& v) {
return v.as_int() == 42;

});

Trigger a pause or log when condition is met:

733

if (debugger.watchpoints->check(variableName, currentValue)) {
debugger.tracer->pause_execution("Watchpoint triggered on 'x'");

}

20.4.6 Value and Scope Inspector

Allow inspecting scopes using REPL commands:

.inspect global

.inspect stack

.inspect locals

Display variable names, types, and current values:

--- Local Variables ---
x (int) = 10
y (float) = 2.5
name (string) = "Alpha"

Provide programmatic access:

auto vars = interpreter.current_scope().all_variables();
for (auto& [name, value] : vars) {

std::cout << name << " = " << value.to_string() << "\n";
}

20.4.7 Call Stack View and Navigation

Store function call frames on a stack:

734

struct CallFrame {
std::string functionName;
SourceLocation entryPoint;
std::map<std::string, Value> locals;

};

std::vector<CallFrame> call_stack;

Display as:

--- Call Stack ---
#3: compute() at main.csl:22
#2: process() at utils.csl:15
#1: main() at main.csl:5

Support REPL commands to query:

.stack

.stack inspect 2

20.4.8 Profiling Summary Integration

At any breakpoint or pause, show current profiling snapshot:

--- Profiling ---
Function: compute() - 15 calls, total 1012 µs
Function: loadData() - 3 calls, total 455 µs

Integrate with .profile on, .profile_report, or export to JSON:

735

.debug export profile.json

20.4.9 Enhanced Error Reporting and Live Fixing

Enable live diagnostics in the REPL:

• Show error stack trace

• Jump to failing statement

• Re-run fixed expression

Example output:

Runtime Error: Division by zero at main.csl:10
Function: divide(a, b)
Call stack:

main() → divide(10, 0)

Command to inspect and retry:

.fix divide(10, 1)

20.4.10 Modern C++ Tools Used

Feature Usage

std::source_location Track precise source line for logs, breakpoints, and
stack views

736

Feature Usage

std::format Human-readable, structured logging output

std::chrono::steady_clockAccurate profiling for timing information

std::variant,
std::any

Flexible value containers for variable inspection

std::ranges, views Iterate filtered or sorted profiler reports

concepts and
requires

Interface contracts for debuggers and plugins

These tools result in more readable, concise, and correct implementations.

20.4.11 Final Milestone Checklist

Feature Status

Execution step-by-step engine Completed

Breakpoints and watchpoints Completed

REPL-based introspection Completed

Stack and variable viewer Completed

Performance profiler integration Completed

Error tracking with trace Completed

Exportable debug reports Completed

737

20.4.12 Conclusion

Reaching this milestone transforms your C-style interpreted language into a developer-
friendly platform with full introspection and diagnostic capability. This empowers
both learners and professionals to trust, explore, debug, and optimize their code in
a clear and structured environment.
The complete debugging toolkit you’ve built ensures that your language is no longer a
conceptual prototype but a usable system suitable for production scripting, education,
testing, and complex systems development.
In future expansions, you may consider:

• Visual debuggers over WebAssembly

• Remote debugging interfaces via sockets

• Machine learning-based runtime optimization hints

But for now, this milestone marks a major engineering accomplishment: a fully
equipped C-style interpreted language, built using modern C++ practices and
production-level tooling.

Chapter 21

File Execution and Script Support

21.1 Executing .lang Files from Command Line

21.1.1 Introduction

One of the final steps in transforming your interpreter from a development tool into
a usable language is enabling execution of full scripts via the command line. This
feature allows users to run .lang source files directly, much like C files compiled and
executed, but through interpretation. The interpreter should support a minimal yet
flexible command-line interface (CLI), similar in behavior to scripting languages such as
Python, Lua, or Ruby.

This section details how to implement command-line execution of .lang files, how
to parse and process file input, how to attach arguments and environment contexts,
and how to make use of modern C++20/23 features to enhance performance and
extensibility.

738

739

21.1.2 CLI Design Principles

To make your interpreter practical and user-friendly, your CLI design should support:

• Direct script execution:
myLang script.lang

• Pass arguments to scripts:
myLang script.lang arg1 arg2

• Enable optional flags:

– --trace, --profile, --version, --help, etc.

• Run in interactive (REPL) mode if no file is provided.

The interpreter’s entry point should interpret command-line input and switch modes
accordingly.

21.1.3 Parsing Command Line Arguments

Modern C++ provides standard
facilities for parsing arguments via std::vector<std::string> and optionally using
std::span for slicing.

int main(int argc, char* argv[]) {
std::vector<std::string> args(argv, argv + argc);

if (args.size() < 2) {
launch_repl();
return 0;

}

740

if (args[1] == "--help") {
print_help();
return 0;

}

if (ends_with(args[1], ".lang")) {
execute_lang_file(args[1], {args.begin() + 2, args.end()});
return 0;

}

std::cerr << "Unrecognized command or file.\n";
return 1;

}

Helper to detect file extensions:

bool ends_with(const std::string& str, const std::string& suffix) {
return str.size() >= suffix.size() &&

str.compare(str.size() - suffix.size(), suffix.size(), suffix) == 0;
}

21.1.4 File Loading and Parsing

To execute a .lang file, your interpreter must:

1. Load the file contents into memory.

2. Lex and parse the file into an abstract syntax tree (AST).

3. Evaluate the AST in the global environment.

741

void execute_lang_file(const std::string& path, const std::vector<std::string>& args)
{↪→

std::ifstream file(path);
if (!file) {

std::cerr << "Cannot open file: " << path << "\n";
return;

}

std::string source((std::istreambuf_iterator<char>(file)),
std::istreambuf_iterator<char>());

Interpreter interpreter;
interpreter.set_script_arguments(args); // optional

try {
auto ast = Parser(Lexer(source)).parse_program();
interpreter.evaluate(ast);

} catch (const InterpreterError& err) {
std::cerr << "Runtime error: " << err.what() << "\n";

}
}

You can optionally expose args within the language as a global array argv and argc
for script-side processing.

21.1.5 Error Handling for Script Execution

Ensure graceful handling of:

• Missing files

• Malformed syntax

742

• Uncaught runtime exceptions

• Permission issues or invalid characters

Use modern exception handling and rich error messages:

try {
execute_lang_file(path, args);

} catch (const std::exception& e) {
std::cerr << "Fatal error: " << e.what() << "\n";
return 1;

}

In C++23, use std::expected (or your own Result-like struct) to manage optional
errors without throwing.

21.1.6 Flags and Options for Script Control

Support standard debugging and inspection flags:

Flag Functionality

--trace Enables statement-level execution logging

--profile Activates the profiler module

--verbose Prints token stream and AST

--no-color Disables colored console output

Example usage:

743

myLang main.lang --trace --profile

Parsing can be done using a minimal internal parser or external argument library if
needed.

21.1.7 Integration with REPL and Standard I/O

If no file is passed, fall back to the REPL automatically:

if (argc == 1) {
launch_repl();

}

Additionally, allow redirecting standard input or reading from a pipeline:

cat code.lang | myLang

This requires reading from std::cin when no file is detected and input stream is not
terminal.

21.1.8 Modern C++ Enhancements

C++ Feature Application in CLI Execution

std::span For slicing arguments vector

std::format
(C++20)

Format rich command-line and error messages

std::filesystem Validate paths, file existence, and extensions

744

C++ Feature Application in CLI Execution

std::expected
(C++23)

Graceful parsing and execution results without throws

std::ranges Filter or transform flags and arguments

std::source_locationEnhanced error logs with source info

21.1.9 Testing and Validation

Write CLI unit and integration tests using frameworks like Catch2 or doctest:

TEST_CASE("Script file execution") {
std::string file = "examples/hello.lang";
REQUIRE(interpreter.execute_file(file) == 0);

}

Validate scenarios:

• Empty script

• Syntax errors

• File with command-line arguments

• Profiling enabled

21.1.10 Sample Execution Session

Assuming the file hello.lang:

745

print("Hello, " + argv[1]);

Run:

myLang hello.lang World

Output:

Hello, World

21.1.11 Conclusion

Enabling execution of .lang scripts from the command line is a critical step toward
practical language deployment. It bridges development tools and real-world scripting
use. Using modern C++20/23 ensures your CLI is robust, extensible, and
maintainable, supporting structured argument parsing, profiling, tracing, and REPL
fallback.
With this foundation in place, the next steps can include file-based module imports,
packaging, and interpreter embedding inside larger applications.

21.2 Basic Module/Include System

21.2.1 Introduction

A core feature of any serious programming language is the ability to organize and
reuse code across multiple files. This is achieved through an include system
or a module system. In traditional C-style languages, this typically means using

746

preprocessor-style includes (e.g., #include "file.h"). In modern languages, modules
aim to replace raw includes with structured imports.
In this section, we design a basic include/module system tailored for a C-style
interpreted language. The system should support:

• Importing source files at parse or runtime

• Preventing duplicate inclusion

• Isolated symbol management

• Relative and absolute path resolution

• Forward extensibility toward a full module system

The implementation will use modern C++20/23 features for path handling, context
tracking, and caching.

21.2.2 Design Philosophy

This include system should feel familiar to C programmers but behave more safely and
cleanly:

• Includes will work at parse time, not preprocess time

• Inclusion happens only once per module per run (like #pragma once)

• Imported files execute in a separate environment scope, optionally exported
to global or caller scope

• Future upgrades may support named exports, visibility control, and native binary
modules

747

21.2.3 Syntax Proposal

Basic syntax mirrors traditional includes or simple modules:

include "math.lang";
include "./utils/io.lang";

Or a modular variant:

import "math.lang";

The keyword include or import is a reserved statement in the parser, triggering
loading and evaluation of another file.

21.2.4 Parser and AST Extension

Add IncludeStatement to your AST structure:

struct IncludeStatement : public Statement {
std::string path;
SourceLocation location;

};

Update your parser:

std::unique_ptr<Statement> Parser::parse_include() {
consume(TokenType::Include); // or TokenType::Import
std::string path = parse_string_literal();
return std::make_unique<IncludeStatement>(IncludeStatement{path,

current_location()});↪→

}

748

21.2.5 Interpreter Execution Logic

Upon encountering an IncludeStatement, the interpreter must:

1. Resolve the file path (absolute or relative)

2. Check if the file has already been included

3. If not, load and parse the file

4. Execute the file in a separate scope (optional)

void Interpreter::execute_include(const IncludeStatement& stmt) {
std::filesystem::path resolved = resolve_path(stmt.path, stmt.location);

if (included_files_.contains(resolved)) return; // prevent re-execution

std::string source = read_file_contents(resolved);
auto ast = Parser(Lexer(source)).parse_program();

included_files_.insert(resolved);

ScopedEnvironment module_scope(global_environment());
Interpreter sub_interpreter(module_scope);
sub_interpreter.execute(ast);

}

Where included_files_ is a std::unordered_set<std::filesystem::path> tracking
loaded modules.

21.2.6 Scope Management: Global vs Module

To prevent polluting the global namespace, included files can run in a scoped
environment:

749

class ScopedEnvironment {
Environment* parent_;
std::unordered_map<std::string, Value> locals_;

};

Use this to allow namespacing or encapsulation. In future versions, support for export
syntax could selectively expose symbols:

export int add(int a, int b) { return a + b; }

For now, a simple model could just copy all variables from the module scope into the
parent:

void merge_scope(ScopedEnvironment& from, Environment& to) {
for (auto& [key, value] : from.locals()) {

to.define(key, value);
}

}

21.2.7 Path Resolution

Use std::filesystem (C++17+, enhanced in C++20) to locate and normalize file
paths:

std::filesystem::path Interpreter::resolve_path(const std::string& path, const
SourceLocation& loc) {↪→

auto current_file_path = loc.file_path;
auto base_dir = std::filesystem::path(current_file_path).parent_path();
auto full_path = std::filesystem::canonical(base_dir / path);
return full_path;

}

750

This enables support for:

• Relative paths

• Platform portability

• Preventing circular includes

21.2.8 Preventing Redundant Inclusion

Track includes using canonical paths to avoid duplicates:

std::unordered_set<std::filesystem::path> included_files_;

Insert only canonical paths:

auto full_path = std::filesystem::canonical(path);
if (included_files_.contains(full_path)) return;
included_files_.insert(full_path);

This handles both:

• Repeated includes of the same file

• Includes from different relative paths resolving to same target

21.2.9 Command-Line and Module Search Paths

Support custom module search paths:

751

myLang main.lang --mod-path=libs/

Scan libs/ for modules, and allow fallback to default paths:

std::vector<std::filesystem::path> module_paths = { ".", "./libs", user_path };

Attempt to resolve includes in each path.

21.2.10 Modern C++ Enhancements

C++ Feature Role in Include System

std::filesystem Canonical path resolution, cross-platform file operations

std::unordered_set Deduplication of includes using fast hashing

std::format (C++20) Clean error and include logs

std::source_location Better tracking for error reporting in imported files

std::string_view Lightweight string handling during parsing

std::optional /
expected (C++23)

Graceful file loading with fallback handling

21.2.11 Example Usage

math.lang

int square(int x) { return x * x; }

main.lang

752

include "math.lang";
print(square(5));

Run:

myLang main.lang

Output:

25

21.2.12 Conclusion

A basic include/module system elevates your interpreter from a REPL-only tool into
a structured language capable of real-world scripting, library development, and
code modularization. By integrating path resolution, scope isolation, and file caching
using modern C++ techniques, your language supports safe and reliable multi-file
development.
In future iterations, this foundation can evolve into:

• Named module systems

• Dependency graphs

• Import guards and package managers

• Native (compiled) module support

But even in this basic form, the system enables scalable development and long-term
project architecture, a key milestone in the transition from prototype to full language.

753

21.3 Command-Line Interface Design

21.3.1 Introduction

A powerful and user-friendly Command-Line Interface (CLI) is critical for scripting
languages, developer workflows, automation pipelines, and integration with system
tools. In this section, we design and implement a modern, extensible CLI for your C-
style interpreted language, enabling developers to run scripts, pass arguments, activate
debugging tools, enable profiling, or inspect environment configurations.
We will use features introduced in C++20 and C++23 to make this CLI type-safe,
ergonomic, and extensible, following the best practices in toolchain design.

21.3.2 CLI Roles and Requirements

Your CLI should cover the following:

• Run .lang script files

• Fall back to interactive REPL if no file is provided

• Pass arguments to scripts via argv[]

• Support flags like:

– --help, --version, --trace, --profile, --debug

• Optional environment settings (e.g., --mod-path, --no-color)

• Allow piping input and redirecting output

• Return proper exit codes

754

21.3.3 C++20/23-Oriented CLI Architecture

A clean CLI design separates these components:

Component Responsibility

Argument parser Parses raw argc, argv into structured data

Command dispatcher Maps parsed commands to interpreter actions

Execution controller Orchestrates REPL vs script vs error fallback

Environment injector Sets environment flags for profiling/debugging

We'll use std::vector<std::string> (or std::span from C++20) for argument
access, and optional struct-based flags with C++23 std::expected for parsing.

21.3.4 CLI Syntax Design

Define consistent command usage:

Usage: myLang [options] [script.lang] [args...]

Options:
--help Show usage information
--version Show interpreter version
--trace Enable tracing of execution
--profile Enable basic profiling
--debug Enable internal AST dumping
--mod-path PATH Add module search path
--no-color Disable color output

Support positional and optional arguments:

755

myLang hello.lang John

Or:

myLang --trace --mod-path ./lib math.lang

21.3.5 CLI Argument Parsing in Modern C++

Here’s a lightweight, idiomatic approach using structured configuration.

struct CLIOptions {
bool trace = false;
bool profile = false;
bool debug = false;
bool show_help = false;
bool show_version = false;
std::string script_path;
std::vector<std::string> script_args;
std::vector<std::filesystem::path> module_paths;

};

Argument Parsing Logic

CLIOptions parse_arguments(int argc, char* argv[]) {
CLIOptions opts;
std::vector<std::string> args(argv + 1, argv + argc);

auto it = args.begin();
while (it != args.end()) {

if (*it == "--trace") opts.trace = true;

756

else if (*it == "--profile") opts.profile = true;
else if (*it == "--debug") opts.debug = true;
else if (*it == "--help") opts.show_help = true;
else if (*it == "--version") opts.show_version = true;
else if (*it == "--mod-path") {

++it;
if (it != args.end()) {

opts.module_paths.push_back(*it);
}

} else if (opts.script_path.empty() && it->ends_with(".lang")) {
opts.script_path = *it;

} else {
opts.script_args.push_back(*it);

}
++it;

}

return opts;
}

C++20 features like std::string::ends_with() improve clarity here.

21.3.6 Dispatch Logic

int main(int argc, char* argv[]) {
CLIOptions options = parse_arguments(argc, argv);

if (options.show_help) {
print_help();
return 0;

}

757

if (options.show_version) {
std::cout << "ForgeLang Interpreter v0.1\n";
return 0;

}

if (options.script_path.empty()) {
launch_repl(options);

} else {
execute_script(options);

}

return 0;
}

This flow ensures graceful fallback, intuitive behavior, and flags that can be passed in
any order.

21.3.7 Environment Injection

Interpreter flags (like profiling or tracing) must propagate to the evaluator engine:

InterpreterConfig config;
config.enable_tracing = options.trace;
config.enable_profiling = options.profile;
config.module_paths = options.module_paths;

These options feed into the interpreter’s evaluation engine, which enables or disables
runtime features like logging, AST printing, and profiling hooks.

758

21.3.8 Error and Exit Code Handling

Exit with standard exit codes:

Code Meaning

0 Success

1 General error

2 Script file not found

3 Syntax error in script

4 Runtime error during eval

Use std::expected or std::variant to carry status in future refactoring:

std::expected<void, InterpreterError> execute_script(const CLIOptions& opts);

21.3.9 Logging and Output

C++20 introduced std::format which is ideal for printing structured messages:

std::cout << std::format("Loading script: {}\n", opts.script_path);

To support --no-color, wrap color output using a boolean toggle:

if (use_color) std::cout << "\033[32mSuccess\033[0m\n";

21.3.10 Testing and Validation

Automated test cases should check CLI behavior:

759

TEST_CASE("Help option prints usage") {
auto opts = parse_arguments({"myLang", "--help"});
REQUIRE(opts.show_help == true);

}

TEST_CASE("Positional args parsed correctly") {
auto opts = parse_arguments({"myLang", "test.lang", "arg1", "arg2"});
REQUIRE(opts.script_path == "test.lang");
REQUIRE(opts.script_args == std::vector{"arg1", "arg2"});

}

Use doctest, Catch2, or GoogleTest for unit tests.

21.3.11 Extensibility for Future Features

Future CLI extensions could include:

• --benchmark for timed runs

• --import for one-shot import testing

• --dump-ast to serialize the AST to file

• --watch to enable hot-reload during development

With a structured parser, all such extensions are manageable via flags.

21.3.12 Conclusion

A modern, structured CLI empowers your interpreter to be a first-class tool in
developer workflows. By combining the clarity of flag-based parsing with the power
of modern C++ (ranges, std::filesystem, std::expected, std::format), the CLI

760

becomes maintainable, testable, and adaptable. It connects your language to the
OS environment and empowers users to integrate it into scripts, editors, and tools
seamlessly.
This CLI will evolve into a full tooling front-end, supporting package management,
language server protocols, and embedding. But its foundation must begin here: clear,
robust, and idiomatic to modern C++.

21.4 Milestone — Standalone Interpreter for Our
C-Style Language

21.4.1 Overview

Reaching this milestone—building a standalone interpreter—represents a critical
achievement in the development of your C-style programming language. It marks
the transition from an experimental REPL or internal library to a production-level
command-line executable capable of parsing, evaluating, and executing .lang
scripts independently of any IDE or development environment.
In this section, we consolidate all previous interpreter components and integrate them
into a single deployable binary that fulfills several essential roles:

• Script execution from files

• Interactive REPL fallback

• Command-line option handling

• Error reporting and debugging

• Compatibility with external tools and OS scripting environments

761

This interpreter is written using Modern C++20/23 idioms to ensure strong typing,
modularity, and maintainability.

21.4.2 Interpreter Entry Point: main

At the center of your standalone interpreter is the main() function. It acts as the
controller, delegating responsibilities to the CLI parser, the execution engine, and the
REPL system:

int main(int argc, char* argv[]) {
auto options = parse_arguments(argc, argv);

if (options.show_help) {
print_help();
return 0;

}

if (options.show_version) {
std::cout << "ForgeLang v0.1\n";
return 0;

}

try {
if (!options.script_path.empty()) {

return execute_script_file(options);
} else {

return launch_repl(options);
}

} catch (const InterpreterException& ex) {
std::cerr << "Error: " << ex.what() << "\n";
return 1;

}

762

}

This pattern separates concerns cleanly and enables robust error trapping.

21.4.3 File Execution Integration

To support script execution via command line:

forgec script.lang arg1 arg2

You implement a function like:

int execute_script_file(const CLIOptions& options) {
auto source = read_file(options.script_path);
auto lexer = Lexer(source);
auto parser = Parser(lexer);
auto ast = parser.parse();

Interpreter interpreter;
interpreter.set_args(options.script_args);
interpreter.set_module_paths(options.module_paths);
interpreter.enable_tracing(options.trace);
interpreter.enable_profiling(options.profile);

interpreter.execute(ast);

return 0;
}

This design reflects modern software layering: parsing, evaluation, and runtime
environment are modular and testable.

763

21.4.4 REPL Fallback

If no .lang file is specified, the interpreter launches an interactive shell:

int launch_repl(const CLIOptions& options) {
std::cout << "ForgeLang REPL - Version 0.1\n";

Interpreter interpreter;
while (true) {

std::cout << ">> ";
std::string line;
if (!std::getline(std::cin, line)) break;

try {
auto ast = Parser(Lexer(line)).parse_expression();
auto result = interpreter.evaluate(ast);
std::cout << "= " << result.to_string() << "\n";

} catch (const InterpreterException& ex) {
std::cerr << "Error: " << ex.what() << "\n";

}
}

return 0;
}

REPL support is essential for beginners, debugging, and test-driven development
workflows.

21.4.5 Integration of All Language Subsystems

By this point in the book, your interpreter supports:

764

Feature Implemented In

Type system Chapter 10: int, float, bool, etc.

Expressions and operators Chapter 12: precedence, evaluation

Scoping and environment Chapter 11: block/lexical scoping

Statement execution Chapter 14: if, while, for, etc.

Functions and recursion Chapter 15: call stack, parameters

Module system Chapter 21: includes/imports

CLI and script arguments Chapter 21: this chapter

All of these must be brought together in a coherent, resilient execution model driven by
the CLI and the file-based runner.

21.4.6 Deployment Readiness

To make the interpreter ready for real-world usage:

1. Compilation as Static Binary
Use modern CMake and LTO settings for optimized builds:

set(CMAKE_CXX_STANDARD 23)
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION ON)
add_executable(forgec main.cpp ...)

2. Executable Output
Build the interpreter as forgec (Forge Compiler or Forge Console):

765

g++ -std=c++23 -O3 -o forgec *.cpp

3. Cross-Platform Path Handling
Rely on std::filesystem to support Linux, macOS, and Windows:

std::filesystem::path path = std::filesystem::canonical(script_path);

4. Portable Execution
Ensure no hardcoded dependencies; scripts should execute from any directory:

./forgec scripts/hello.lang

21.4.7 Exit Codes and External Tooling

To support system integration, return appropriate codes:

• 0: success

• 1: parse error

• 2: runtime error

• 3: missing file

• 4: invalid CLI usage

Also, allow standard output and error streams to be redirected for scripting:

766

./forgec test.lang > result.txt 2> error.txt

21.4.8 Optional: Static Embedding or Packaging

To go further, you may add:

• A --bundle flag that creates a single file combining the interpreter and source

• A packaging tool to produce .forge bundles with metadata, main file, and
resources

• Embedding scripts directly in the binary via constexpr strings for demo apps

21.4.9 Summary: What This Milestone Unlocks

By completing this standalone interpreter milestone, your language becomes a:

• Deployable tool for scripting, automation, and education

• Minimal shell interpreter for use in CI pipelines

• Testbed for rapid language evolution and experimentation

• Platform for building libraries, modules, and long-term codebases

This point in the book marks the transition from a learning tool into an actual
language platform. The design, thanks to Modern C++ features and a modular
interpreter core, is extensible, testable, and ready for the next chapters—optimization,
packaging, and possibly compiling to bytecode or native code.

Part VIII

Optimization and Advanced Topics

767

Chapter 22

Performance Optimization

22.1 Optimizing C-style expression evaluation

22.1.0.1 1.0 Introduction

Expression evaluation forms the computational backbone of any programming language.
In C-style languages, expressions are dense, nested, and performance-critical. Once
your interpreter reaches functional maturity, expression performance becomes a major
concern—especially when targeting real-time usage, scripting within tight loops, or
compute-heavy applications like simulation, graphics, or math libraries.
This section provides a focused strategy to optimize C-style expression evaluation
using modern C++20/23 capabilities, emphasizing in-place evaluation, AST
flattening, and dispatch compression, without sacrificing correctness or language
semantics.

22.1.1 Identifying Performance Bottlenecks

In a basic interpreter, C-style expression evaluation tends to be slow due to:

769

770

• Deep recursion in AST node evaluation

• Virtual dispatch for expression types

• Repeated allocations for intermediate values

• Lack of constant folding or short-circuit optimizations

• No memoization of constant subtrees

To address these, we aim to minimize allocations, reduce indirection, and apply modern
C++ techniques such as std::variant, std::optional, lambdas, and expression
flattening.

22.1.2 Evaluation Model: Recursive vs Iterative

• Recursive Evaluation (baseline)

Value evaluate(const Expr& expr) {
switch (expr.kind()) {

case ExprKind::Binary:
return evaluate_binary(expr.as<BinaryExpr>());

case ExprKind::Unary:
return evaluate_unary(expr.as<UnaryExpr>());

case ExprKind::Literal:
return expr.value;

...
}

}

Although easy to implement, this can lead to:

– Deep call stacks

771

– Performance hits on branch misprediction

– Memory overhead due to recursive allocations

• Iterative Evaluation via Flattening

By flattening expressions into postfix or evaluation trees, we can simulate a
virtual stack machine:

std::vector<Instruction> compile_to_postfix(const Expr& expr);
Value evaluate_postfix(const std::vector<Instruction>& code);

This removes recursion and enables better CPU caching and branch prediction. It
mimics JIT-like speed while remaining within an interpreter.

22.1.3 Optimizing Constant Expressions: Folding and Hoisting

Implement a pre-evaluation pass to compute static values:

ExprPtr optimize_constants(const ExprPtr& expr) {
if (auto bin = dynamic_cast<BinaryExpr*>(expr.get())) {

auto left = optimize_constants(bin->left);
auto right = optimize_constants(bin->right);

if (left->is_constant() && right->is_constant()) {
return make_literal(evaluate_binary(*left, *right, bin->op));

}
}
return expr;

}

C++20 features like consteval, constinit, and constexpr if aid in distinguishing
compile-time evaluable expressions even in your interpreter’s internal logic.

772

22.1.4 Short-Circuit Boolean Evaluation

C-style logic expressions (using && and ||) require short-circuit semantics to avoid
evaluating unnecessary operands.

Value evaluate_logical_and(const Expr& lhs, const Expr& rhs) {
Value lval = evaluate(lhs);
if (!lval.as_bool()) return lval;
return evaluate(rhs);

}

Avoid calling both sides unless required. This boosts performance and avoids
unintended side effects.

22.1.5 Memory Efficiency and Value Reuse

To reduce heap allocations and copy costs:

• Use std::variant or ValueRef-style pointers with small object optimization

• Store temporary values in an evaluation context or scratch space

• Prefer std::optional<T&> or std::span over raw copies

Example:

class EvaluationContext {
public:

std::array<Value, 128> value_stack;
size_t top = 0;

Value& push(Value v) { return value_stack[top++] = std::move(v); }

773

Value pop() { return std::move(value_stack[--top]); }
};

This approach removes most allocations per expression, improving speed significantly.

22.1.6 AST Layout for Cache Locality

Use inline storage and struct-based AST for better memory layout and cache
behavior.
Bad (pointer-heavy):

struct BinaryExpr {
Expr* left;
Expr* right;
Token op;

};

Better (flat object):

struct BinaryExpr {
std::unique_ptr<Expr> left;
std::unique_ptr<Expr> right;
Token op;

};

Best (tight layout using variant):

using Expr = std::variant<LiteralExpr, BinaryExpr, UnaryExpr, VariableExpr>;

This allows fast dispatch via std::visit, reducing vtable lookup.

774

22.1.7 Dispatch Optimization: std::visit vs if constexpr

With C++20 std::variant, use static dispatch:

std::visit([&](auto&& expr) {
using T = std::decay_t<decltype(expr)>;
if constexpr (std::is_same_v<T, BinaryExpr>) {

return evaluate_binary(expr);
} else if constexpr (std::is_same_v<T, LiteralExpr>) {

return expr.value;
}

}, expr_variant);

This removes virtual function overhead, improves branch prediction, and unlocks
compiler inlining.

22.1.8 Operator Table Optimization

For interpreters with many operators, maintain a fixed operator dispatch table
using unordered_map<TokenType, OpHandler> or flat dispatch arrays.
Even better, create a compact enum-to-function map:

constexpr std::array<std::function<Value(const Value&, const Value&)>, OperatorCount>
binary_op_table = {↪→

&add_op, &sub_op, &mul_op, ...
};

Access via index:

return binary_op_table[static_cast<size_t>(op_token)](lhs, rhs);

775

22.1.9 Inlining and Precomputed Expression Paths

When interpreting frequently repeated expressions (e.g., in loops), cache compiled
instructions (or mini bytecode):

if (auto cached = cache.find(expr_id)) {
return evaluate_postfix(cached->second);

}

This avoids reparsing and re-evaluating the same structure each time.

22.1.10 Testing and Profiling Optimizations

Use C++23 std::chrono::utc_clock and std::chrono::high_resolution_clock
for precise benchmarking:

auto start = std::chrono::high_resolution_clock::now();
// evaluate expression
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);
std::cout << "Eval took " << duration.count() << " ns\n";

Add benchmarks for:

• Expression depth

• Number of binary operations

• Short-circuit evaluation

• Function call overhead

776

22.1.11 Summary

By optimizing C-style expression evaluation with Modern C++20/23 features, your
interpreter achieves:

• Elimination of excessive recursion and allocations

• Constant folding for faster execution

• Efficient short-circuiting logic

• Inlined dispatch and cache-friendly AST layout

• Foundation for future JIT compilation or bytecode engines

This step transforms the interpreter from an educational prototype into a performant,
production-grade tool ready to support non-trivial scripting and embedded usage.

22.2 Memory Management for Language Runtime

22.2.1 Introduction

Memory management is a foundational pillar in any language runtime, and for a C-
style interpreter, getting it right means balancing performance, correctness, and
safety. Unlike higher-level managed languages, C-style languages follow explicit and
deterministic lifetime rules. As the designer of such a language, you must implement
a memory system that honors these expectations—mimicking stack-based lifetimes,
allowing manual deallocation in the future if needed, and ensuring efficient memory
reuse.
With Modern C++20/23, memory management in your interpreter can be designed
with strong ownership semantics, region-based allocators, arena pools, and

777

compile-time memory contract enforcement via constexpr, constinit, and span
types.

22.2.2 Memory Categories in C-Style Languages

Your interpreter will manage different categories of memory:

1. Temporary Expression Values

• Created during evaluation and discarded after the expression completes.

2. Function Local Variables (Stack-like)

• Exist within function scopes or {} blocks.

3. Global Variables and Constants

• Persistent throughout the program lifecycle.

4. Heap-like Allocations (Arrays, Objects)

• May be used explicitly by the language or internally.

5. Runtime Structures

• AST nodes, environments, symbols, and error traces.

22.2.3 Modern C++ Memory Tools for Interpreter Design

C++20/23 offers memory tools that align well with interpreter design:

778

C++ Feature Use Case

std::unique_ptr Ownership of runtime objects

std::shared_ptr Shared references (avoid overuse)

std::pmr::memory_resource Arena-based memory pooling

std::span Safe views into arrays, buffers

std::optional Nullable return values without heap

consteval / constexpr Compile-time computed constants

std::vector<T, Alloc> Pooled memory containers

22.2.4 Stack Frame and Local Variable Lifetime

Implementing a stack-based lifetime model is crucial. Mimic the call stack using scoped
frames:

struct StackFrame {
std::unordered_map<std::string, Value> locals;
size_t base_pointer;

};

The interpreter keeps a stack of frames:

std::vector<StackFrame> call_stack;

Push a new frame on function entry, and pop it on return. Local variable memory can
be managed in-frame, avoiding heap allocations for primitive types.
Use inline buffers for small objects:

779

struct Value {
std::variant<int64_t, double, bool, std::string> data;

};

For C-style arrays declared inside functions, use std::vector<Value> with reserve to
avoid dynamic growth at runtime.

22.2.5 Arena Allocation for AST and Environments

To optimize parsing and runtime object creation, use arena (region-based)
allocation for short-lived objects like AST nodes or temporary evaluation contexts.

class AstArena {
std::pmr::monotonic_buffer_resource buffer;
std::pmr::vector<std::unique_ptr<AstNode>> nodes;

public:
template <typename T, typename... Args>
T* create(Args&&... args) {

T* ptr = static_cast<T*>(buffer.allocate(sizeof(T)));
new (ptr) T(std::forward<Args>(args)...);
return ptr;

}
};

This makes allocation extremely fast and allows bulk deallocation.

22.2.6 Managing Heap-like Memory Safely

Even if your interpreted language supports new or dynamic arrays, do not rely on raw
heap allocations.
Implement a custom HeapManager:

780

class HeapManager {
std::unordered_map<Handle, Value> heap_store;
Handle next_id = 0;

public:
Handle allocate(Value v) {

heap_store[next_id] = std::move(v);
return next_id++;

}

Value& get(Handle h) { return heap_store[h]; }
void deallocate(Handle h) { heap_store.erase(h); }

};

This model is essential for garbage collection later and ensures all memory is under your
control.

22.2.7 Avoiding Memory Fragmentation

Interpreters may execute thousands or millions of instructions. Fragmentation from
repetitive new/delete calls leads to performance degradation.
Solutions:

• Use std::pmr::unsynchronized_pool_resource for pooled allocations.

• Prefer std::vector::reserve() to minimize reallocations.

• Reuse memory for value objects (e.g., evaluation registers).

781

class ValuePool {
std::vector<Value> buffer;
size_t cursor = 0;

public:
Value& next() {

if (cursor >= buffer.size()) buffer.emplace_back();
return buffer[cursor++];

}

void reset() { cursor = 0; }
};

22.2.8 Memory Profiling and Leak Detection

Modern interpreters benefit from built-in memory profiling tools:

1. Count allocations:

size_t alloc_count = 0;
void* operator new(size_t size) {

++alloc_count;
return std::malloc(size);

}

2. Use tools:

• Valgrind (Linux)

• Dr. Memory (Windows)

• AddressSanitizer (GCC/Clang)

782

• LeakSanitizer

3. Integrate counters:

• Count memory per file, per scope, per function

• Track maximum memory usage for large scripts

22.2.9 Object Lifetime Contracts

Use C++20 constinit, [[nodiscard]], and [[no_unique_address]] to ensure clean
semantics:

struct [[nodiscard]] HeapObject {
Value data;
bool marked;

};

struct Environment {
[[no_unique_address]] std::pmr::polymorphic_allocator<> alloc;

};

constinit ensures global singletons are initialized correctly:

constinit static RuntimeState runtime;

22.2.10 Memory Error Prevention

Prevent use-after-free and null dereferencing:

• Enforce strict ownership models with std::unique_ptr

783

• Avoid raw pointers

• Use std::optional<Value> to indicate absence

• Define clear object life boundaries (function scope, global scope)

For arrays and strings, always expose through std::span<T> or std::string_view:

void print_array(std::span<const Value> arr) {
for (const auto& val : arr) std::cout << val << ", ";

}

22.2.11 Summary

Efficient and safe memory management is a cornerstone of a reliable interpreter. With
C++20/23, you can build a runtime that avoids the pitfalls of manual memory while
preserving the performance and predictability of C-style languages.
By:

• Mimicking stack-frame lifetimes

• Using arena and pool allocators

• Managing heap via handles

• Preventing fragmentation

• Enforcing lifetime contracts

…you enable both high performance and maintainability. These techniques future-proof
your runtime for extensions like garbage collection, foreign function interfaces, and long-
lived script sessions.

784

22.3 Profiling and Bottleneck Identification

22.3.1 Introduction

To design a performant interpreter in Modern C++20/23, writing fast code alone is
not enough. You must profile your interpreter to identify and eliminate real-world
bottlenecks. Optimization should always be data-driven, not based on assumptions.
This section focuses on how to analyze performance, collect accurate measurements, and
uncover the slowest parts of your interpreter.
We’ll cover:

• Granular instrumentation techniques

• Using built-in C++20/23 tools

• Custom timing utilities

• Integration with third-party profilers

• Evaluation strategies for language-specific hot paths

22.3.2 Why Profiling is Critical

Interpreters are inherently performance-sensitive:

• Each instruction may involve dynamic dispatch

• Function calls and scoping increase overhead

• Evaluating expressions or parsing strings introduces latency

Without profiling:

785

• You optimize code that isn’t slow

• You miss structural inefficiencies

• You don’t quantify the gains of optimization passes

Profiling bridges this gap between intuition and truth.

22.3.3 Instrumentation Using Modern C++

C++20 and C++23 provide tools to build custom profiling utilities without
external dependencies.

• High-resolution Timing

Use std::chrono::high_resolution_clock or std::chrono::steady_clock:

auto start = std::chrono::high_resolution_clock::now();
// interpret code
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end -

start).count();↪→

std::cout << "Execution took " << elapsed << " µs\n";

This technique can be embedded into:

– Expression evaluation

– Function execution

– Loop bodies

– Built-in function calls

Use macros or RAII wrappers for repeated usage.

786

• Scoped Profiler

struct ScopedTimer {
std::string label;
std::chrono::high_resolution_clock::time_point start;

ScopedTimer(std::string name)
: label(std::move(name)),

start(std::chrono::high_resolution_clock::now()) {}↪→

~ScopedTimer() {
auto end = std::chrono::high_resolution_clock::now();
auto duration =

std::chrono::duration_cast<std::chrono::microseconds>(end -
start).count();

↪→

↪→

std::cout << label << " took " << duration << " µs\n";
}

};

Use like this:

void eval_expr(const Expr& expr) {
ScopedTimer profiler("Expression Evaluation");
...

}

22.3.4 Building a Centralized Profiler

To aggregate results across the interpreter:

787

class Profiler {
struct Entry {

uint64_t count = 0;
uint64_t total_time = 0;

};

std::unordered_map<std::string, Entry> metrics;

public:
void record(const std::string& name, uint64_t duration) {

auto& entry = metrics[name];
entry.count++;
entry.total_time += duration;

}

void report() const {
for (const auto& [name, entry] : metrics) {

std::cout << name << ": " << entry.total_time << " µs over "
<< entry.count << " calls\n";

}
}

};

This lets you measure cost across interpreter stages: parsing, evaluation, I/O, symbol
resolution, etc.

22.3.5 Targeting Hot Paths

Focus profiling on parts that are:

• Called frequently (expression trees in loops)

• Recursively invoked (function calls)

788

• Memory-sensitive (AST creation)

• String-heavy (variable lookup, I/O)

Use sampling or flag-based tracing to avoid slowdown:

if (profiler_enabled)
profiler.record("FunctionCall", elapsed);

22.3.6 External Tools for Full-Scale Profiling

In large projects or compiled interpreters, use professional tools to complement your
own data.
Cross-platform:

• Valgrind (Linux): callgrind and massif for CPU and memory profiling.

• gprof or perf: Linux system profilers.

• Instruments (macOS): Time profiler and memory inspector.

• Visual Studio Profiler: Deep integration for Windows-based interpreters.

Sampling vs Instrumentation:

• Sampling gives low-overhead stack snapshots

• Instrumentation measures every event, more precise but heavier

Compile with -pg or -fprofile-arcs -ftest-coverage if needed.

789

22.3.7 Profiling the Interpreter Lifecycle

• Stage 1: Startup

– Lexing and parsing performance

– AST construction

– Memory allocation spikes

• Stage 2: Execution

– Hot loops (e.g., repeated conditions or math)

– Function call overhead

– Symbol table lookups

– Expression evaluation trees

• Stage 3: Cleanup

– Destruction of value trees

– Memory deallocation delays

– Releasing pooled resources

All phases should be profiled independently for clarity.

22.3.8 Interpreted Language Profiling Considerations

Unlike compiled code, interpretation adds abstraction layers:

• Evaluating a = b + c * d; involves multiple function calls

• Dispatch logic can be costly if not flattened

790

• Temporary objects often incur frequent allocations

Optimize by:

• Replacing polymorphism with std::variant + std::visit

• Using in-place storage for Value objects

• Avoiding dynamic allocations for small types

• Reusing evaluation contexts

22.3.9 Summary Reports

In production interpreters, expose a built-in profile command:

.profile on

.run script.lang

.profile report

This helps users understand which parts of their script are slow and why.

22.3.10 Summary

Profiling is not an afterthought—it is a continuous process throughout interpreter
development. By using Modern C++ features and custom profilers, you can:

• Eliminate hotspots in evaluation

• Track excessive memory or function calls

• Replace naive structures with optimized versions

• Deliver a language runtime that performs well under real-world pressure

791

Accurate profiling combined with targeted optimizations is the key to turning a working
interpreter into a fast, reliable, and production-ready language engine.

22.4 Hands-on — Performance Measurement and
Tuning

22.4.1 Overview

This section is a practical guide to applying performance analysis techniques and
actively tuning your interpreter. Building on profiling insights, we now focus on how
to:

• Measure performance at key runtime points

• Eliminate bottlenecks using real data

• Apply C++20/23 features to boost speed and resource usage efficiency

• Design reproducible test scripts to benchmark improvements

This hands-on section is crucial to making your interpreter not just correct but
competitive and scalable for larger programs.

22.4.2 Setting Up a Benchmark Harness

Before tuning, build a reliable way to measure:

struct Benchmark {
std::string name;
std::chrono::high_resolution_clock::time_point start;

792

Benchmark(std::string n) : name(std::move(n)),
start(std::chrono::high_resolution_clock::now()) {}↪→

~Benchmark() {
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end -

start).count();↪→

std::cout << "[BENCH] " << name << " = " << elapsed << " µs\n";
}

};

Wrap sections like:

{
Benchmark bench("Function call loop");
run_script("bench/function_loop.lang");

}

You can enhance it with aggregate stats, CSV outputs, or integration with external
visualization tools.

22.4.3 Tuning Evaluation Performance

Expression evaluation is one of the most frequent operations. Focus on:

• a. Inline Simple Arithmetic

Instead of polymorphic dispatch:

Value eval_add(const Value& lhs, const Value& rhs) {
if (lhs.is_int() && rhs.is_int())

793

return Value(lhs.as_int() + rhs.as_int());
// fallback path

}

Use std::visit on std::variant for type-safe and branchless operations:

Value apply_op(Value a, Value b, OpKind op) {
return std::visit([&](auto x, auto y) -> Value {

using T = std::decay_t<decltype(x)>;
using U = std::decay_t<decltype(y)>;
if constexpr (std::is_same_v<T, int> && std::is_same_v<U, int>) {

return Value(op == Add ? x + y : x - y);
}
// more combinations

}, a.data, b.data);
}

Avoid unnecessary heap allocations—store small types in-place using
std::variant.

22.4.4 Memory Allocation Reduction

Many runtime bottlenecks stem from frequent small allocations (AST nodes,
intermediate expressions).

• Apply Arena Allocators:

Use std::pmr::monotonic_buffer_resource for fast, pooled allocations:

794

std::pmr::monotonic_buffer_resource pool;
std::pmr::vector<Expr*> nodes{&pool};

This reduces fragmentation and speeds up allocation/deallocation significantly.

• Reuse Temporary Buffers:

struct EvalContext {
std::vector<Value> temp_values;
void reset() { temp_values.clear(); }

};

Use per-evaluation context buffers to avoid rebuilding containers every time.

22.4.5 Optimize Variable Lookup

Symbol resolution can be slow in interpreted languages with lexical scopes.

• Cache local variable offsets:

struct Variable {
size_t stack_offset;

};

struct StackFrame {
std::vector<Value> locals;
Value& get(Variable var) { return locals[var.stack_offset]; }

};

By precomputing the offset during parsing, the runtime cost of lookup is reduced
to a single index operation.

795

22.4.6 Loop Execution Optimizations

Loops (e.g., for, while) often dominate execution time in scripts.

• Avoid repeated re-evaluation of constant loop bounds

• Unroll very short loops (manually or via JIT hints if extended later)

• For numeric loops, precompute start/end/step outside the loop execution body

22.4.7 Real-World Benchmarking Scripts

To measure improvement across builds, create fixed .lang scripts that stress various
components:

• Script: math_perf.lang

int x = 0;
int sum = 0;
while (x < 100000) {

sum = sum + x * x;
x = x + 1;

}

• Script: func_call.lang

int f(int x) {
return x * x + 5;

}

int result = 0;
int i = 0;

796

while (i < 100000) {
result = f(i);
i = i + 1;

}

• Script: symbol_resolve.lang

{
int a = 1;
{

int b = 2;
{

int c = 3;
result = a + b + c;

}
}

}

Run these under different interpreter versions and compare output times.

22.4.8 Multi-phase Optimization Loop

1. Profile: Using tools or built-in benchmark tags

2. Isolate: Find dominant functions or operations

3. Refactor: Apply scoped tuning (e.g., remove virtual dispatch, add fast paths)

4. Benchmark again: Confirm impact with script timing

5. Repeat: Optimization is incremental

797

22.4.9 Other C++20/23 Features for Performance

Feature Benefit

[[likely]], [[unlikely]] Branch prediction hints for tight loops

consteval Avoid runtime if logic can be evaluated at
compile-time

std::span Avoid heap copying for buffer operations

no_unique_address Compact structs used in value systems

constexpr containers Build immutable lookup tables at compile
time

22.4.10 Summary

Performance tuning transforms a basic interpreter into a production-ready engine.
Using Modern C++ capabilities, you can measure precisely, optimize effectively, and
verify improvements consistently.
A well-tuned interpreter doesn't just pass tests—it executes user scripts with
responsiveness, low memory usage, and scalability. This hands-on practice is where
your design becomes a reliable tool in real developer workflows.

Chapter 23

Bytecode Virtual Machine
(Optional)

23.1 Compiling C-Style Constructs to Bytecode

23.1.1 Introduction

C-style programming constructs—expressions, assignments, control flow, and function
calls—are typically evaluated directly in AST interpreters. However, for faster runtime
performance and better portability, compiling these constructs into bytecode for
a virtual machine offers significant advantages. This approach separates semantic
analysis from execution, allowing ahead-of-time validation, optimization, and
compact representation.
This section explores how to design a bytecode compiler for a C-style language
using modern C++20/23, translating high-level constructs into low-level bytecode
instructions consumable by a virtual machine.

798

799

23.1.2 Bytecode Overview

Bytecode is a compact, instruction-oriented representation of program logic. It is:

• Platform-independent

• Easier to interpret than AST

• Often uses a stack-based or register-based VM model

Your language compiler walks the AST and emits opcodes such as:

PUSH_INT 42
LOAD_VAR x
ADD
STORE_VAR y
JUMP_IF_ZERO addr

Each high-level C-style statement or expression maps to a sequence of bytecode
instructions.

23.1.3 Compiler Architecture

The core of the bytecode compiler is a tree walker that converts each AST node into a
list of opcodes. The structure involves:

• BytecodeEmitter: The primary class that holds the instruction buffer and output
logic

• Opcode: Enum representing the instruction set

• Instruction: A structured form of emitted operations

800

• LabelManager: For managing jumps, forward references, and patches

enum class Opcode : uint8_t {
PUSH_INT, PUSH_FLOAT, PUSH_BOOL,
LOAD_VAR, STORE_VAR,
ADD, SUB, MUL, DIV,
JUMP, JUMP_IF_ZERO,
CALL, RETURN,
HALT

};

struct Instruction {
Opcode opcode;
std::variant<int32_t, float, bool, size_t> operand;

};

23.1.4 Expression Compilation

Each expression is compiled recursively in post-order to respect C-style evaluation:

• Example: a = b + 3;

1. Load b → LOAD_VAR b

2. Push literal 3 → PUSH_INT 3

3. Apply operator → ADD

4. Store in a → STORE_VAR a

801

void compile_expression(const Expr& expr) {
if (expr.kind == Binary) {

compile_expression(expr.left);
compile_expression(expr.right);
switch (expr.op) {

case '+': emit(Opcode::ADD); break;
case '*': emit(Opcode::MUL); break;

}
} else if (expr.kind == Variable) {

emit(Opcode::LOAD_VAR, expr.name);
} else if (expr.kind == LiteralInt) {

emit(Opcode::PUSH_INT, expr.value);
}

}

23.1.5 Control Flow Compilation

C-style constructs like if, while, and for need label tracking and conditional jumps.

• if (cond) { ... } else { ... }

<cond> --> compile condition
JUMP_IF_ZERO L1
<then block> --> emit instructions for then-branch
JUMP L2
L1:
<else block> --> emit instructions for else-branch
L2:

Track jump targets using a LabelManager or PlaceholderIndex:

802

size_t jump_if_false = emit_with_placeholder(Opcode::JUMP_IF_ZERO);
compile_block(then_branch);
size_t jump_end = emit_with_placeholder(Opcode::JUMP);
patch_jump(jump_if_false, current_address());
compile_block(else_branch);
patch_jump(jump_end, current_address());

23.1.6 Loop Constructs

• while (cond) { body }

– Start: label L_start

– Evaluate cond

– If false, jump to L_end

– Compile body

– Jump back to L_start

L_start:
<cond>
JUMP_IF_ZERO L_end
<body>
JUMP L_start
L_end:

23.1.7 Function Compilation

Each function gets a separate bytecode stream (or segment). A function definition
includes:

803

• Function name (symbol)

• Entry point index into bytecode

• Parameter count

• Local variable size

• Emitted instructions

Functions are compiled once and stored in a map:

struct CompiledFunction {
std::vector<Instruction> body;
size_t param_count;
size_t local_count;

};
std::unordered_map<std::string, CompiledFunction> function_table;

Function calls use:

PUSH_ARG n
CALL <function_index>

The virtual machine handles frame setup, local variable space, and return address.

23.1.8 Optimization Before Emission (Optional)

Before emitting bytecode, the compiler may:

• Fold constants: 3 + 5 → 8

• Remove dead code after unconditional jumps

804

• Inline trivial functions where allowed

• Convert variable names to integer indexes (symbol resolution)

23.1.9 Bytecode Format Design Considerations

To be efficient:

• Use numeric indexes instead of string names

• Pack opcodes and operands compactly (e.g., single struct)

• Prefer stack-based instructions for simplicity

• Consider operand types (int, float, bool) to reduce runtime checking

• Emit line numbers for error mapping

Example compact bytecode instruction:

struct CompactInstruction {
uint8_t opcode;
union {

int32_t int_val;
float float_val;
uint32_t index;

};
};

23.1.10 Integration with VM

Once emitted, the compiled bytecode is fed into the virtual machine’s dispatcher loop:

805

switch (current.opcode) {
case Opcode::PUSH_INT: stack.push(current.operand); break;
case Opcode::ADD: {

auto b = stack.pop(); auto a = stack.pop();
stack.push(a + b); break;

}
...

}

The interpreter now executes bytecode rather than walking the AST. This:

• Reduces interpretation cost

• Improves cache locality

• Simplifies future optimizations (e.g., JIT or AOT)

23.1.11 Summary

Compiling C-style constructs into bytecode transforms your language into a more
efficient, VM-driven model. It enables compact execution, faster control flow handling,
and portable distribution.
With C++20/23, modern design features like std::variant, constexpr, and memory-
efficient containers help build a bytecode compiler that is modular, extensible, and high-
performance. This foundational phase prepares your language for advanced features like
multi-function modules, runtime linking, and possible JIT in future chapters.

23.2 Stack-Based VM for Better Performance

806

23.2.1 Introduction

A stack-based virtual machine (VM) is one of the most efficient and portable
execution engines for interpreted and bytecode-compiled languages. In the context
of a C-style interpreted language, it aligns perfectly with expression-based execution,
supports straightforward function call frames, and reduces memory overhead compared
to register-based VMs.
This section details how to design and implement a high-performance, stack-based VM
using modern C++20/23 features, based on the bytecode instruction set introduced in
Section 1.

23.2.2 Why Stack-Based?

Stack-based VMs push and pop operands to/from an evaluation stack rather than using
named or numbered registers. For example, evaluating a = b + 3 becomes:

LOAD_VAR b ; push value of b
PUSH_INT 3 ; push literal 3
ADD ; pop two, add, push result
STORE_VAR a ; pop and store in a

Advantages:

• Simple to implement and understand

• Compact bytecode format

• No need to allocate or map registers

• Naturally recursive and function-call-friendly

807

23.2.3 Core Components of the Stack-Based VM

• a) Value Stack

The central data structure is the value stack, where operands and intermediate
results are stored.

class VMStack {
public:

std::vector<Value> data;

void push(const Value& v) { data.push_back(v); }
Value pop() {

assert(!data.empty());
Value v = data.back(); data.pop_back();
return v;

}
Value& top() { return data.back(); }

};

Use std::vector for performance, and optionally replace with
std::pmr::vector for arena-backed allocations.

• b) Bytecode Instruction Format

Each instruction is a lightweight structure containing an opcode and optional
operand:

enum class Opcode : uint8_t {
PUSH_INT, LOAD_VAR, STORE_VAR,
ADD, SUB, MUL, DIV,
JUMP, JUMP_IF_ZERO, CALL, RETURN, HALT

};

808

struct Instruction {
Opcode opcode;
int32_t operand; // use as int, address index, var index, etc.

};

Modern C++ allows constexpr and strong typing for Opcode, improving safety.

• c) Execution Engine

At the heart is the VM loop (instruction dispatch loop):

void run(const std::vector<Instruction>& code) {
size_t ip = 0; // instruction pointer
VMStack stack;

while (ip < code.size()) {
const Instruction& instr = code[ip++];
switch (instr.opcode) {

case Opcode::PUSH_INT:
stack.push(Value(instr.operand));
break;

case Opcode::ADD: {
auto b = stack.pop().as_int();
auto a = stack.pop().as_int();
stack.push(Value(a + b));
break;

}
case Opcode::JUMP:

ip = instr.operand;
break;

case Opcode::HALT:

809

return;
}

}
}

23.2.4 Call Stack for Function Support

Each function call uses an activation record (stack frame):

struct CallFrame {
size_t return_ip;
size_t local_base;

};

On a CALL instruction:

• Push arguments

• Store current ip

• Jump to function’s entry

• After RETURN, restore ip and pop frame

Use a separate call_stack for managing CallFrame entries.

23.2.5 Stack Discipline and Scope

Stack-based discipline requires:

• Pushing operands in order

810

• Ensuring every instruction pops exactly what it expects

• Managing local variables separately from the operand stack

Typical layout:

| argN |
| ... |
| arg1 | ← local_base
| var1 |
| var2 |
|-----| ← stack top

Variable access like LOAD_VAR index is resolved as stack[local_base + index].

23.2.6 Performance Considerations

To ensure high performance:

• Minimize virtual dispatch: use switch-based opcode handling

• Avoid heap allocations in the hot path

• Use inlined arithmetic for primitive operations

• Use std::span for slices of stack frames (safe and efficient)

C++20 improvements like [[likely]]/[[unlikely]] can guide the compiler:

switch (instr.opcode) {
case Opcode::ADD: [[likely]]

// common path
break;

811

case Opcode::HALT: [[unlikely]]
return;

}

23.2.7 Exception-Free Execution

Your VM should avoid exceptions in hot code. Use error codes or assert for developer
builds, and Result<T> patterns (or optional logging) for user error handling.
Example:

bool safe_add(VMStack& stack) {
if (stack.size() < 2) return false;
auto b = stack.pop(); auto a = stack.pop();
stack.push(a + b);
return true;

}

23.2.8 Extending the VM with New Instructions

You can easily add more instructions to support:

• Logical operators: AND, OR, NOT

• Comparison: LT, GT, EQ, NEQ

• Native functions or system calls via opcode CALL_NATIVE

23.2.9 Instruction Tracing for Debugging

For debug builds, provide tracing per instruction:

812

void trace(const Instruction& instr, size_t ip) {
std::cout << "[TRACE] IP=" << ip << " OPCODE=" << to_string(instr.opcode)

<< " OPERAND=" << instr.operand << "\n";
}

You can enable this via flags or constexpr bool at compile-time.

23.2.10 Summary

A stack-based VM is ideal for interpreting bytecode for a C-style language. It is simple,
efficient, and aligns closely with the postfix expression evaluation model that C uses
internally during compilation.
Using C++20/23’s modern design tools, such as strong typing (enum class),
std::variant (if needed for polymorphic values), structured bindings, and memory
arenas, your VM can remain both elegant and high-performance.

23.3 Instruction Set Design for C-Style Operations

23.3.1 Introduction

The instruction set is the language of the virtual machine. It defines the atomic
operations that the interpreter or VM can execute. Designing an instruction set for a
C-style language requires careful attention to semantic fidelity, performance, and
expandability. This section focuses on constructing an instruction set that mirrors the
operational behavior of C-like expressions, statements, and control flow using efficient
modern C++20/23 constructs.
Your bytecode instruction set must represent fundamental concepts such as arithmetic,
variable access, type handling, branching, and function calls—while balancing simplicity
and extensibility.

813

23.3.2 Instruction Set Requirements for C Semantics

To support a faithful C-style execution model, the instruction set should:

• Encode expression evaluation with C precedence and associativity.

• Support lvalue/rvalue concepts via load/store separation.

• Include type-specific operations: integer, float, bool.

• Implement short-circuit logic for && and ||.

• Allow control flow: if, while, for, break, continue.

• Enable function calls, parameter passing, and return handling.

• Optionally handle pointer-like behavior, if desired.

23.3.3 Instruction Structure

A compact instruction structure can be encoded as:

enum class Opcode : uint8_t {
// Literals and values
PUSH_INT, PUSH_FLOAT, PUSH_BOOL, PUSH_STRING,

// Variable access
LOAD_VAR, STORE_VAR,

// Arithmetic
ADD_INT, SUB_INT, MUL_INT, DIV_INT,
ADD_FLOAT, SUB_FLOAT, MUL_FLOAT, DIV_FLOAT,

// Comparison

814

EQ_INT, NE_INT, LT_INT, LE_INT, GT_INT, GE_INT,
EQ_FLOAT, NE_FLOAT, LT_FLOAT, LE_FLOAT, GT_FLOAT, GE_FLOAT,

// Logical
LOGICAL_AND, LOGICAL_OR, LOGICAL_NOT,

// Control Flow
JUMP, JUMP_IF_TRUE, JUMP_IF_FALSE,

// Function Calls
CALL, RETURN, RETVAL,

// Special
HALT, NOP

};

struct Instruction {
Opcode opcode;
int32_t operand; // can be index, literal ID, jump target, etc.

};

23.3.4 Expression Evaluation Instructions

C expressions require left-to-right evaluation with operator precedence. In a stack-based
VM, operands are pushed first, then operators are applied.
Example: x = a + b * c becomes:

LOAD_VAR a
LOAD_VAR b
LOAD_VAR c
MUL_INT

815

ADD_INT
STORE_VAR x

You can also use specialized bytecodes like LOAD_VAR_BY_INDEX for optimized symbol
resolution.

23.3.5 Control Flow Instructions

Control flow in C uses conditionals and loops with jump semantics. You need:

• JUMP: unconditional jump to an address

• JUMP_IF_TRUE / JUMP_IF_FALSE: based on top of stack (boolean)

• LABEL (logical, for jump targets at compile-time)

• BREAK / CONTINUE can be modeled using conditional jumps

Example: compiling if (cond) { body } else { alt }

<cond>
JUMP_IF_FALSE L1
<body>
JUMP L2
L1:
<alt>
L2:

Use a label patching system during bytecode emission.

816

23.3.6 Function Instructions

To implement functions:

• CALL <func_index>: pushes a new frame and jumps to function

• RETURN: returns control to the caller

• RETVAL: optionally return a value

These rely on a separate call stack to hold return_ip, local_base, and arguments.
Example:

PUSH_ARG 1
CALL f
POP_RETVAL

Parameter passing uses PUSH_ARG, and results can be managed via the data stack or
dedicated RETVAL.

23.3.7 Type-Specific Operations

You can encode type-aware variants of arithmetic to prevent runtime type ambiguity:

• ADD_INT, ADD_FLOAT

• EQ_INT, EQ_FLOAT

• PUSH_BOOL, LOGICAL_NOT

This design ensures that each opcode knows the expected operand type and eliminates
the need for runtime type dispatching, improving performance and simplifying
debugging.

817

Modern C++ concepts allow templated dispatch for these instructions in the
interpreter:

template <typename T>
Value eval_add(const Value& a, const Value& b) {

return Value(a.get<T>() + b.get<T>());
}

23.3.8 Variable Instructions

Support for:

• LOAD_VAR <index>: push variable onto stack

• STORE_VAR <index>: pop and assign to variable

• Optionally: LOAD_GLOBAL, STORE_GLOBAL, LOAD_LOCAL, etc.

Symbols should be compiled into fixed indexes per frame to avoid name lookup at
runtime.

23.3.9 Literal Handling

String, int, float, and bool constants can be stored in a literal pool and referenced via
index:

PUSH_STRING 3 ; Load string at literal table index 3
PUSH_INT 42

The VM must have access to the literal table at runtime. C++20 std::variant can
model the literal pool type.

818

using Literal = std::variant<int, float, bool, std::string>;
std::vector<Literal> literal_table;

23.3.10 Special and System Instructions

• NOP: No operation, useful for alignment or patching

• HALT: Terminate execution

• DEBUG_BREAK: optional, for debugging hooks

23.3.11 Instruction Encoding Strategy

To improve memory efficiency:

• Use a fixed-size 4 or 8-byte format

• Encode opcodes as one byte

• Use 3 bytes or 7 bytes for operand as needed

• Consider compression of high-frequency instructions using shorter formats (not
required initially)

For example:

struct CompactInstr {
uint8_t opcode;
int32_t operand;

};

Or even packed instruction streams using std::byte[] for low-level control.

819

23.3.12 Expanding the Instruction Set in Future

Design the instruction set to be extensible:

• Reserve unused opcode values

• Use dispatch tables or variant-based decoding

• Define feature groups (e.g., arithmetic, control flow, memory ops)

You may even support versioned instruction sets in the future if the language evolves
toward JIT compilation.

23.3.13 Summary

Designing a robust instruction set is critical for an efficient VM and a faithful execution
model of your C-style language. The instruction set must:

• Accurately encode semantics

• Optimize for simplicity and speed

• Avoid runtime ambiguity through type-specific instructions

• Be extensible for future features like pointers or native modules

With modern C++20/23 features like strong enums, std::variant, concepts, and
safer memory models, you can structure a clear and maintainable instruction set that
balances performance with flexibility. This lays the groundwork for the next section,
where the execution engine interprets and runs this instruction stream in a virtual
environment.

820

23.4 Advanced Milestone — High-Performance VM
Option

23.4.1 Introduction

A high-performance virtual machine (VM) is a critical component for scaling your
interpreter to support real-world applications, performance testing, and production
scripting. While a simple stack-based interpreter is an excellent starting point for
clarity and correctness, building an optimized execution engine requires deeper
consideration of memory layout, instruction dispatch, caching strategies, and type
specialization.
In this advanced milestone, we define how to architect a high-performance VM
tailored to the C-style language you are designing, with full leverage of Modern
C++20/23. The goal is to bridge the gap between educational interpreter and
performance-grade runtime engine.

23.4.2 Key Goals for High-Performance VM

The advanced VM should meet the following goals:

• Fast instruction dispatch with low branch misprediction

• Typed instruction execution avoiding variant overhead

• Efficient memory layout for call frames, locals, and literals

• Caching mechanisms for global symbols and literals

• Optional register-based execution model

• Scalable function calling and recursion

821

• Optional JIT backend (optional milestone)

23.4.3 Core Optimization Strategies

1. Direct Threaded Dispatch

The most performant dispatch technique for interpreters is direct threading via
computed gotos (or function pointer tables in C++).

Instead of using a switch-case (which has branch prediction cost), use a lookup
table of instruction handlers:

using InstructionHandler = void(*)(VM&);
std::unordered_map<Opcode, InstructionHandler> dispatch_table;

In C++23, consteval and constexpr lambdas can help build this table at
compile-time for better safety and clarity.

2. Instruction Specialization

Split instructions by type and operation to avoid runtime type inspection:

• ADD_INT, ADD_FLOAT

• MUL_INT, MUL_FLOAT

• EQ_BOOL, EQ_INT

This reduces branching and enables vectorization or inlining by the compiler.

3. Stack Frame Optimization

Use preallocated frame objects instead of dynamic memory per function call:

822

struct Frame {
std::array<Value, MaxLocals> locals;
uint32_t return_ip;
uint32_t base_pointer;

};

Allocate frames in a vector and reuse them to reduce heap churn. C++20
std::span is useful to pass safe references to frame slices.

4. Literal Pool Caching

Store all literals in a fixed-size table and refer to them by offset. Cache the most-
used literals in a small per-frame cache to avoid repeated lookup.

Use:

std::vector<std::variant<int, float, bool, std::string>> literal_table;

Modern C++ std::variant, std::visit, and pattern matching (C++23) allow
fast and safe access.

23.4.4 Register-Based VM (Alternative to Stack-Based)

A register VM reduces memory traffic and increases performance by avoiding excessive
push/pop operations.
Instruction format changes to:

ADD r1, r2, r3 // r1 = r2 + r3
LOAD r1, [var_index]
STORE [var_index], r1

823

Implementing a register allocator at bytecode compile-time simplifies runtime
complexity.
Modern C++ helps here with:

• std::array<Value, N> to model a register file

• enum class Register : uint8_t for typed register access

23.4.5 Inlined Built-ins and Fast-Path Execution

Common functions like print, input, len, etc., can be inlined into the VM with zero
overhead.
Mark these as built-in and embed them directly into the opcode dispatch:

case Opcode::PRINT_STRING:
std::cout << get_string(stack.pop()) << '\n';
break;

Use C++20 constexpr lookups to register built-in function pointers with known
signatures. This avoids late binding.

23.4.6 Function Call Optimization

Tail Call Optimization (TCO)
A high-performance VM can benefit from tail call optimization, especially in
recursive-style user code.
Detect patterns like:

return func(...);

And reuse the current stack frame instead of pushing a new one.

824

Inline Caching
If the same function is called repeatedly from the same call site, inline cache the
function pointer and skip resolution.
Use:

std::unordered_map<CallSiteID, Function*> call_cache;

23.4.7 Parallel Execution and Fibers (Optional)

Once your interpreter is stable, introduce fiber-based concurrency using C++20
std::jthread or coroutine support.
You can simulate lightweight green threads (used in scripting engines like Lua) to run
independent execution contexts.

23.4.8 Performance Metrics and Tuning

Profile hotspots using std::chrono or performance profilers. Areas to measure:

• Opcode frequency

• Dispatch time

• Memory usage per frame

• Function call depth

• Time per loop iteration

Tune your VM to prioritize the most common instructions and patterns (e.g., integer
arithmetic, loop control, comparisons).
Use [[likely]], [[unlikely]] annotations (C++20) to hint branch prediction.

825

23.4.9 Modular Design for Future JIT

A well-designed high-performance VM can serve as the foundation for later introduction
of:

• Bytecode-to-native JIT translation

• WebAssembly backend

• LLVM IR generation

Ensure your VM internals (call stack, registers, instructions) are abstracted cleanly.

23.4.10 Summary

This advanced milestone transforms your interpreter into a near production-grade
execution engine, tailored for both scripting flexibility and performance-sensitive tasks.
Key achievements include:

• Fully specialized and typed instruction set

• Direct-threaded dispatch with minimal branching

• Efficient memory layout with reused stack frames

• Optimized function calling, inlining, and tail call support

• Readiness for advanced concurrency or JIT enhancements

With the power of C++20/23, you gain modern compile-time safety, span-based
memory management, and strong typing for your VM internals. This design provides
a robust foundation for supporting real-world scripting, plugin systems, and embedded
use cases.

Chapter 24

Language Distribution and
Embedding

24.1 Embedding Our Language in C++ Applications

24.1.1 Introduction

One of the most practical and powerful design objectives in a custom C-style
programming language is making it embeddable within larger C++ applications.
Embedding a scripting or interpreted language allows developers to offer runtime
extension, domain-specific configuration, custom automation, and interactive
control to end-users, without recompilation or low-level dependency.
Modern C++20 and C++23 introduce enhanced features that significantly simplify
and empower the embedding process — from safe module APIs to constexpr-enabled
dispatch and thread-local interpreters. This section focuses on designing your
interpreter’s public interface for clean and efficient embedding.

826

827

24.1.2 Embedding Architecture Overview

To embed your language in a host C++ application, the following components must be
clearly defined and implemented:

• Interpreter API Interface: Functions and classes that expose the interpreter
to the host program

• Execution Environment Isolation: Ability to run multiple scripts without
interference

• Binding Mechanism: Register host functions, classes, or variables into the
interpreter

• Error Capture and Propagation: Allow host to receive and respond to
interpreter errors

• Memory Ownership Clarity: Clear semantics on who owns parsed trees,
values, etc.

24.1.3 Creating a C++ Embedding Interface

Define a dedicated interface header, such as forge_vm_api.hpp, containing:

class ForgeVM {
public:

ForgeVM();
~ForgeVM();

void loadScript(const std::string& code);
void run();
void runFile(const std::string& filename);

828

void setGlobal(const std::string& name, Value val);
Value getGlobal(const std::string& name);

void bindFunction(const std::string& name, HostFunction fn);
};

The Value type represents your interpreter's dynamic value system. A HostFunction
might be:

using HostFunction = std::function<Value(const std::vector<Value>&)>;

This design allows seamless integration with any C++ backend module or business
logic.

24.1.4 Host Binding: From C++ to the Interpreter

Modern C++'s lambda support allows direct binding of logic from the host:

vm.bindFunction("log", [](const std::vector<Value>& args) -> Value {
for (const auto& arg : args)

std::cout << to_string(arg) << " ";
std::cout << "\n";
return {};

});

This enables writing scripts like:

log("Hello from embedded script");

You may support type conversions using std::variant, std::visit, or C++23’s
pattern matching (if consteval or std::match when available).

829

24.1.5 Execution Context Control

Support for multiple virtual machines in the same process is crucial when
embedding into complex software. Each ForgeVM instance should:

• Maintain its own symbol table

• Hold a separate call stack

• Optionally allow configuration of standard input/output redirection

You can make the interpreter thread-local using:

thread_local ForgeVM vm;

Or offer global singleton access for simple use cases.

24.1.6 Embedding via Scripting Files

For real-world applications, you may want to load and execute .lang files dynamically:

vm.runFile("startup.lang");

Your language should support ”entry point” functions or script-defined command
handlers.
You can even expose functions to host UI events or system services:

vm.setGlobal("onLoad", loadHandler);

Where loadHandler is defined in a .lang script and invoked from C++.

830

24.1.7 Bi-directional Communication

To allow the script to call host functions and vice versa, expose function handles:

Value handler = vm.getGlobal("onClick");
if (handler.isFunction()) {

handler.asFunction()(args);
}

This enables rich GUI integration, plugin systems, or simulation scripting.
If you need deeper C++ integration, you can allow script-defined classes to extend C++
base types (polymorphic exposure).

24.1.8 Error Handling Strategy

When embedding, the interpreter must not crash the host application on runtime errors.
Instead:

• All interpreter execution should be wrapped in try-catch

• RuntimeError (custom error class) must include full diagnostics

• Errors should be retrievable through the API

Example:

try {
vm.run();

} catch (const RuntimeError& err) {
std::cerr << "Script error: " << err.message << "\n";

}

Expose optional callbacks to propagate errors into GUI environments, logs, or debug
consoles.

831

24.1.9 Embedding Use Cases

Embedding your interpreter unlocks many use cases:

• Game Engines: User scripts for NPC behavior, triggers

• Media Applications: Custom playback logic or filters

• Dev Tools: Macro systems, batch scripts, or configuration languages

• Scientific Software: Inline DSLs for computation or simulation

• Financial Systems: Rule-based scripting or user-defined strategies

24.1.10 Modern C++ Features Used

Feature Use Case

std::function Function binding from host to VM

std::variant Dynamic type system for value representation

std::shared_ptr AST ownership and memory safety

std::optional Graceful error reporting and state queries

constexpr (C++20) Compile-time constants for bindings

source_location Debug info on errors

modules (C++20) Modular distribution of the interpreter API

24.1.11 Summary

A well-designed embedding system allows your C-style interpreter to evolve into a fully
programmable component inside large C++ systems. With a clear API, type-safe value

832

handling, safe error management, and modern C++ constructs, your language becomes
a powerful extension point for real-world software.
This section finalizes the foundational link between your language runtime and host
applications, ensuring adoption potential in diverse development scenarios — from
tooling and simulation to automation and end-user scripting.

24.2 Creating Language Runtime Library

24.2.1 Introduction

Creating a runtime library for your custom C-style language is a pivotal step that
transforms a standalone interpreter into a reusable engine. A well-designed runtime
enables the interpreter to be distributed as a compiled library (.dll/.so/.a), which can
be embedded in applications, linked into tools, and accessed via public APIs. This
section explains how to architect, implement, and distribute such a runtime using
C++20 and C++23.

24.2.2 Definition and Purpose of the Runtime Library

The runtime library is a collection of compiled components that expose the
core functionality of the language through a clean and stable API boundary. It
encapsulates:

• Tokenizer and parser definitions

• AST representation and visitor logic

• Evaluation engine and type system

• Error handling and diagnostics

833

• Standard functions and runtime utilities

• Execution context and environment (scopes, memory)

24.2.3 Runtime Library Structure

A minimal but expandable structure for the runtime may look like:

/src
/vm
lexer.hpp / lexer.cpp
parser.hpp / parser.cpp
ast.hpp / ast.cpp
evaluator.hpp / evaluator.cpp
environment.hpp / environment.cpp
value.hpp / value.cpp
runtime_api.hpp

/lib
forge_runtime_static.lib / forge_runtime.so

/include
forge_runtime/
runtime_api.hpp
value.hpp
error.hpp

Use modern module partitioning or namespace scoping for internal separation
(e.g., forge::ast, forge::eval, forge::errors).

24.2.4 API Interface: Clean and Stable

Public-facing headers should be lean, containing:

• Only forward declarations or type-safe handles

834

• No internal pointers or raw memory logic

• Clear documentation and naming conventions

Example entry point:

namespace forge {

class Runtime {
public:

Runtime();
~Runtime();

void load(const std::string& code);
void run();
Value evaluateExpression(const std::string& expr);

void setGlobal(const std::string& name, const Value&);
Value getGlobal(const std::string& name) const;

};

}

All implementation details should remain hidden via the Pimpl idiom (C++20's
std::unique_ptr for internal engine).

24.2.5 Compilation and Export Mechanics

For shared library distribution across platforms:

• Use __declspec(dllexport) or __attribute__((visibility("default"))) as
needed

835

• For header files, define a macro FORGE_API to wrap export visibility

Example:

#ifdef _WIN32
#define FORGE_API __declspec(dllexport)

#else
#define FORGE_API __attribute__((visibility("default")))

#endif

Then annotate your public classes:

class FORGE_API Runtime { ... };

24.2.6 C++20/23 Features for Cleaner Runtime

Modern C++ helps reduce runtime library complexity:

• std::span<T>: Safe array and memory views

• std::variant: Dynamic types for interpreter values

• std::source_location: Built-in debug info in errors

• constexpr and consteval: Compile-time verified constants and functions

• std::format (C++20): Safer replacements for printf-style output

Also, consider using C++20 Modules to enforce logical boundaries and speed up
compilation if your toolchain supports it.

836

24.2.7 Standard Library Initialization

Runtime initialization must register all core functions:

void Runtime::initStandardLibrary() {
setGlobal("print", Builtins::makePrint());
setGlobal("clock", Builtins::makeClock());

}

Functions are injected as C++ lambdas or std::function<Value(const
std::vector<Value>&)> and wrapped into the Value system.
The runtime should also support optional lazy loading of modules or external .lang
files.

24.2.8 Language Runtime as a Static vs. Dynamic Library

Feature Static Library Shared Library

Linking At compile time At runtime

Portability Fully contained Requires dynamic linking
support

Size Larger binaries Smaller host app

Use case Embedded devices, tight control Desktop apps, plugin systems

C++20’s module interface units also simplify shared binary builds.

24.2.9 Versioning and Compatibility

It is crucial to maintain a clear versioning system for the runtime:

837

• Version macros (e.g., FORGE_VERSION_MAJOR, etc.)

• Version negotiation function

• Serialized AST/bytecode version compatibility

• Optional buildInfo() function returning interpreter details

You may expose:

std::string getVersion(); // "ForgeLang Runtime 1.0.0"

This helps applications handle updates and avoid ABI issues.

24.2.10 Example Usage in a Host App

A basic application embedding the runtime:

#include "forge_runtime/runtime_api.hpp"

int main() {
forge::Runtime vm;

vm.load("int main() { print(42); }");
vm.run();

return 0;
}

For scripting support in larger applications, provide a CLI or REPL using the same
API.

838

24.2.11 Testing and Continuous Validation

Ensure that:

• All public APIs are unit-tested

• You provide a minimal stub executable that links against the library

• Compiler settings include C++20 or C++23 explicitly (-std=c++20 or
/std:c++20)

• You provide debug and release versions

Use ctest or GoogleTest to verify ABI stability across builds.

24.2.12 Distribution Guidelines

To distribute the runtime:

• Provide .lib or .so / .dll with matching headers

• Include a minimal README and usage example

• Package using CMake, vcpkg, or conan

• Use semantic versioning (e.g., v1.2.0)

Optionally, support a header-only fallback, useful for small-scale usage or
educational purposes.

839

24.2.13 Conclusion

The runtime library is the backbone of your interpreter’s integration story. By using
modern C++ features, you ensure performance, maintainability, and safety. Whether
embedded in a game engine, CAD tool, or scripting system, your runtime must
present a powerful but clean interface to the outside world. This section prepares
your interpreter for real-world reuse, setting the stage for professional adoption and
distribution.

24.3 Cross-Platform Distribution

24.3.1 Introduction

Cross-platform distribution is a critical milestone in making your C-style interpreted
language practical and accessible beyond development machines. Whether your users
run on Linux, Windows, or macOS, your runtime, REPL, and any associated tools must
work seamlessly across these environments. Using modern C++20/23 and portable
tooling (CMake, standard libraries), this section details how to structure your language
for universal availability.

24.3.2 Target Platforms and Considerations

To be considered cross-platform, your language system should reliably support at
minimum:

• Windows 10/11 (x64)

• Linux (Ubuntu/Debian/RHEL/Fedora)

• macOS (x64 and Apple Silicon)

840

Optionally:

• WebAssembly (WASI-based interpreter)

• Mobile (via native wrappers or scripting interfaces)

Each platform introduces specific runtime behavior and filesystem handling, but
C++20/23's standard library has reduced the friction compared to earlier standards.

24.3.3 Using CMake for Portable Builds

CMake is the de facto tool for cross-platform C++ build generation. Your interpreter
and runtime should be organized in a way that allows CMake to generate build systems
for:

• Visual Studio (Windows)

• Unix Makefiles or Ninja (Linux/macOS)

• Xcode (macOS)

• MSYS2/MinGW (lightweight Windows alternative)

Sample CMakeLists.txt structure:

cmake_minimum_required(VERSION 3.20)
project(ForgeLang VERSION 1.0 LANGUAGES CXX)

set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_library(forge_runtime STATIC
src/lexer.cpp

841

src/parser.cpp
src/evaluator.cpp
src/runtime.cpp

)

target_include_directories(forge_runtime PUBLIC include)

add_executable(forge_repl src/repl.cpp)
target_link_libraries(forge_repl PRIVATE forge_runtime)

Important flags for compatibility:

• -fPIC on Unix for shared libraries

• /EHsc on MSVC for standard exception semantics

24.3.4 Handling Platform-Specific Differences

4.1 Filesystem and Path Handling
Use std::filesystem (C++17 onward) to manage:

• File paths (std::filesystem::path)

• Iteration over directories

• Cross-platform file loading

4.2 Newline Differences
Detect newline style when reading text files:

• \r\n (Windows)

• \n (Unix/macOS)

842

Normalize internally for consistency.
4.3 Dynamic Library Loading (Optional Plugins)
Abstract dynamic loading across platforms:

• Use LoadLibrary / GetProcAddress on Windows

• Use dlopen / dlsym on Linux/macOS

Wrap in a platform abstraction layer.

24.3.5 Compiler Compatibility

Your language should compile successfully with:

• MSVC 2019/2022 (Visual Studio)

• Clang 12+

• GCC 10+

Ensure:

• Use of standard features only (no compiler extensions)

• Avoid platform-specific intrinsics

• Enable warnings: /W4 on MSVC, -Wall -Wextra on GCC/Clang

Test std::variant, std::span, and std::format thoroughly on all compilers, as their
behavior varies slightly in earlier C++20 implementations.

843

24.3.6 Packaging for Distribution

6.1 Static Binary + Assets
Bundle interpreter as a single binary:

/forge/
��� forge.exe or forge (binary)
��� stdlib/
� ��� io.lang
��� examples/

��� hello.lang

6.2 Shared Library with Headers
For embedding:

/forge-runtime/
��� include/
� ��� forge_runtime.hpp
��� lib/

��� libforge_runtime.a / .so / .dll

6.3 Archive Formats

• .zip for Windows

• .tar.gz for Linux/macOS

Use CMake install directives to automate packaging.

24.3.7 Testing Across Platforms

Use CI systems that support multiple OS targets:

844

• GitHub Actions

– Windows: windows-latest

– Linux: ubuntu-latest

– macOS: macos-latest

Sample GitHub Action for testing:

jobs:
build:
runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-latest, windows-latest, macos-latest]

steps:
- uses: actions/checkout@v3
- name: Configure
run: cmake -B build -DCMAKE_BUILD_TYPE=Release

- name: Build
run: cmake --build build

- name: Test
run: build/forge_repl --version

24.3.8 Optional: WebAssembly (WASI) Target

To run the interpreter in the browser or WASI-based containers:

• Use Emscripten (emcc) or Clang's WASI SDK

• Avoid threads and system-specific calls

• Strip down file I/O, replacing with in-memory streams

845

CMake Emscripten example:

emcmake cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build

This enables deploying your interpreter as a .wasm file with JavaScript wrappers.

24.3.9 API Compatibility Across Platforms

Your interpreter must ensure:

• The same type system behavior on all platforms (e.g., 32 vs. 64-bit)

• int, float, and memory layout should be deterministic

• Endianness is consistent, or data is abstracted

Use static_assert(sizeof(T) == N) checks and std::int32_t, std::float32_t
explicitly.

24.3.10 Summary and Best Practices

Principle Practice

Portability Use standard C++20/23, avoid OS-specific calls

Tooling CMake + GitHub Actions + clang/gcc/msvc

Abstraction Wrap system-specific behavior cleanly

Testing CI across OSes with minimal dependencies

Packaging Separate binary/runtime vs. headers/lib

846

24.3.11 Conclusion

Cross-platform distribution transforms your language from a research project into a
professional-grade tool. By combining modern C++20/23 features with a portable
build system, careful API planning, and automated validation, you ensure that
developers on any platform can adopt and embed your language smoothly. This section
is foundational for community growth, language adoption, and long-term success.

24.4 Final Milestone – Production-ready C-style
Language

24.4.1 Introduction

This section represents the culmination of the entire design and implementation journey.
By this stage, the interpreter has evolved from a minimal REPL into a full-featured,
production-ready C-style language system that is robust, modular, embeddable, cross-
platform, and performant. The goal is to finalize all critical components and ensure
the entire stack is clean, maintainable, testable, and capable of serving real-world
programming scenarios.
A production-ready interpreter means it:

• Supports all core language features (functions, variables, types, control flow)

• Offers comprehensive error handling and debugging capabilities

• Performs reliably on major platforms

• Can be embedded or extended

• Has a clean build and packaging system

847

24.4.2 Checklist for Production Readiness

To consider the language implementation production-ready, all the following must be
fulfilled:

1. Language Core

• Full support for:

– int, float, bool, string, and array types

– Variable declarations with proper scoping rules

– C-style control flow: if, else, while, for, do-while, return

– Function definitions and calls with recursion

– Expression evaluation respecting operator precedence and type
promotion

• Consistent and predictable behavior that mirrors the mental model of C
programmers

2. Evaluation Engine

• Clean separation of:

– AST construction

– Interpretation (value stack or environment-based)

– Execution (statement interpreter)

• Safe and optimized value operations

• Accurate error propagation and diagnostics

3. Scoping and Symbol Resolution

848

• Lexical scoping with full block-level scope handling

• Shadowing and resolution as per C-style rules

• Proper symbol table hierarchy with memory isolation per block

4. Runtime Library

• Implementation of key built-in functions (print, input, read, length)

• File I/O abstraction

• String and array manipulation utilities

• Math helpers (optionally with C++ <cmath> or similar mappings)

5. REPL and Script Execution

• Support for .lang file execution via command line

• Interactive REPL with:

– Multi-line input

– Error trace

– State persistence

• Module or include system for reusable code

6. Debugging and Error Handling

• AST visualization support (for internal testing or developer tooling)

• Error messages with file name, line number, column

• Stack traces during runtime exceptions

• Detection of:

849

– Undefined variables

– Division by zero

– Type mismatches

– Bounds violations (arrays)

7. Performance

• Basic profiling tools integrated or supported

• Efficient runtime memory model (value store + environment hierarchy)

• Optional bytecode virtual machine support

• Tail recursion support (optional optimization)

8. Cross-Platform Distribution

• Works on Windows, Linux, macOS

• Easily buildable using CMake

• Can be distributed as:

– Single binary (with static runtime)

– Interpreter + dynamic runtime

– Embedded library with C++ headers

• Integration tested via CI/CD pipelines

9. Embedding Support

• The interpreter must expose a clean API for embedding

• Ability to pass values between host application and interpreter
(input/output bindings)

850

• Host can evaluate code snippets or full scripts via function calls

10. Documentation and Examples

• Full documentation for:

– Language syntax
– Built-in functions
– Embedding interface
– Examples and tutorials

• Sample programs and use-cases:

– Calculators
– Scripted I/O handlers
– Recursive problem solvers (e.g., Fibonacci, factorial)

24.4.3 Packaging and Deployment

A production-ready interpreter should come with:

• Well-structured build system:

– build/, src/, include/, tests/, scripts/

• Installation instructions and automation (make install, ninja install, or
CPack)

• Optionally:

– Versioning system (using git tags or project(x VERSION ...))

– Precompiled binaries

– Language server or editor integration stub (future extension)

851

24.4.4 Maintainability

Refactor the codebase before release to ensure:

• Each module is single-responsibility and testable

• Headers are guarded and properly modularized

• Avoidance of globals or tightly-coupled internals

• Extensive unit tests for:

– Lexer

– Parser

– Evaluator

– Runtime errors

• Optional: Use C++20 concepts to enforce type constraints and interface usage

24.4.5 Extensibility

A production-ready system should be open to future enhancements:

• Support for structs or user-defined types

• More built-in functions (math, string, network)

• Optional garbage collector

• Integration with GUI or game engines

• WebAssembly target (via Emscripten or WASI)

852

24.4.6 Final Words

This Final Milestone wraps up the long journey from concept to compiler. Your
interpreter, implemented using Modern C++20/23, is now mature, stable, and
adaptable. By following well-defined design practices, leveraging the best of modern
C++, and honoring the C-style heritage, you've created a language that not only
teaches and demonstrates deep compiler/interpreter construction but is also viable for
real programming and scripting tasks.
This phase is where open-source collaboration can begin, showcasing your language to
the developer world, receiving contributions, and building a user community.
Your interpreter is now no longer a prototype. It is a production-grade
programming language system, capable of taking its place in the world of developer
tools.

Appendices

Appendix A: Complete Language Grammar (EBNF)

Target Interpreter: C++20/23 Implementation
Focus: Syntax, Semantics, Modularity, and Tooling Suitability

Purpose and Context

This appendix presents the full grammar specification of the new C-style programming
language, formalized in Extended Backus–Naur Form (EBNF). It is designed
for direct integration into a recursive-descent parser or a parser combinator engine
implemented in Modern C++ (C++20/23). The grammar serves multiple goals:

• Provides the canonical source of truth for syntax parsing.

• Enables development of syntax-highlighting and static analysis tools.

• Supports grammar-driven test case generation.

• Facilitates language bootstrapping and transpiler compatibility.

• Maps directly to an AST node system implemented via std::variant,
std::shared_ptr, and std::visit.

853

854

Grammar Notation (Clarification)

This grammar uses the following conventions (subset of ISO EBNF):

• ::= defines a rule

• [...] denotes an optional item

• {...} denotes zero or more repetitions

• "..." denotes literal characters

• <...> denotes non-terminal identifiers

• Terminals are defined via the lexer or token stream.

Top-Level Program Rule

<program> ::= { <declaration> | <function-declaration> | <import-statement> }

A program is a sequence of either top-level declarations, function definitions, or import
statements. Top-level expressions are not allowed outside of function bodies.

Import and Module Support (Optional)

<import-statement> ::= "import" <string-literal> ";"

Semantic Note: Each string represents a .lang module file path. Your
language runtime is responsible for source-to-AST resolution and caching
to avoid cyclic imports.

855

Type System

<type> ::= "int" | "float" | "bool" | "string"
| <type> "[" <expression> "]" (* array type *)
| <type> "*" (* pointer-like *)
| "void"

Extendable to include struct, enum, and function types. Pointers and
arrays are first-class citizens in the value system.

Identifiers

<identifier> ::= <letter> { <letter> | <digit> | "_" }

Lexical rules enforce that identifiers may not begin with digits or reserved
keywords. Optional Unicode support can be added for identifiers.

Declarations

<declaration> ::= <type> <identifier> ["=" <expression>] ";"

Variable declarations are strongly typed and may include initialization.
Hoisting is not supported—variables are block-scoped.

856

Function Declarations

<function-declaration> ::= <type> <identifier> "(" [<parameter-list>] ")" <block>

<parameter-list> ::= <parameter> { "," <parameter> }
<parameter> ::= <type> <identifier>

Functions are single-return and have fixed parameters. Variadic functions
and default arguments can be added in the extended syntax layer.

Statements

<block> ::= "{" { <statement> } "}"

<statement> ::= <block>
| <declaration>
| <expression-statement>
| <if-statement>
| <while-statement>
| <do-while-statement>
| <for-statement>
| <return-statement>
| <break-statement>
| <continue-statement>

<expression-statement> ::= [<expression>] ";"
<return-statement> ::= "return" [<expression>] ";"
<break-statement> ::= "break" ";"
<continue-statement> ::= "continue" ";"

857

Control Flow Statements

<if-statement> ::= "if" "(" <expression> ")" <statement>
["else" <statement>]

<while-statement> ::= "while" "(" <expression> ")" <statement>
<do-while-statement> ::= "do" <statement> "while" "(" <expression> ")" ";"

<for-statement> ::= "for" "(" [<expression>] ";" [<expression>] ";" [
<expression>] ")" <statement>↪→

Each control statement introduces a new block scope in the environment.
All branches are required to be exhaustively typed in the interpreter's
evaluator phase.

Expressions (Precedence Correct)

<expression> ::= <assignment>

<assignment> ::= <logical-or> ["=" <assignment>]

<logical-or> ::= <logical-and> { "||" <logical-and> }
<logical-and> ::= <equality> { "&&" <equality> }
<equality> ::= <comparison> { ("==" | "!=") <comparison> }
<comparison> ::= <term> { ("<" | ">" | "<=" | ">=") <term> }
<term> ::= <factor> { ("+" | "-") <factor> }
<factor> ::= <unary> { ("*" | "/") <unary> }
<unary> ::= ("!" | "-") <unary> | <postfix>
<postfix> ::= <primary> { <postfix-suffix> }
<postfix-suffix> ::= "(" [<argument-list>] ")" | "[" <expression> "]"

858

<argument-list> ::= <expression> { "," <expression> }

AST is generated left-associatively for most binary operations. Precedence
is preserved through rule layering. You may extend this to include ternary ?
: and compound assignments.

Literals

<literal> ::= <int-literal> | <float-literal> | <string-literal> | <bool-literal> |
<array-literal>↪→

<int-literal> ::= <digit> { <digit> }
<float-literal> ::= <digit> { <digit> } "." <digit> { <digit> }
<string-literal> ::= '"' { <character> } '"'
<bool-literal> ::= "true" | "false"
<array-literal> ::= "[" [<expression> { "," <expression> }] "]"

Lexical Support

Handled at the lexer level:

• Unicode strings: UTF-8 encoded

• Comments:

<line-comment> ::= "//" { any character except newline }
<block-comment> ::= "/*" { any character } "*/"

• Escape sequences inside strings: \n, \t, \\, \", etc.

859

Future Extensions (Reserved for V2)

• struct and enum definitions

• match expressions for pattern matching

• Function overloading

• Attributes (@inline, @deprecated)

• Modules and packages

• Inline assembly

Mapping to C++20/23 AST Types

Use std::variant, std::monostate, std::shared_ptr<BaseNode>, and std::visit
to implement all AST types in a safe, type-rich, and reflection-friendly manner.
For example:

struct BinaryExpr {
std::shared_ptr<Expr> left;
Token op;
std::shared_ptr<Expr> right;

};

using Expr = std::variant<LiteralExpr, BinaryExpr, UnaryExpr, CallExpr, VariableExpr,
AssignmentExpr>;↪→

Tooling Possibilities

• Syntax highlighters generated via EBNF definitions

860

• Parser generators for bootstrapping

• Grammar validation via ANTLR/PEG parsers

• Visual parser tree renderers

• LSP support for editor autocompletion

Conclusion

This formal grammar captures the full syntactic structure of the language.
Implementers should use this as the primary contract between the frontend parser and
the runtime evaluation engine. Maintaining this grammar ensures extensibility and
compatibility with future enhancements.
Let me know if you'd like this grammar rendered as a downloadable .ebnf, .txt, or
LaTeX appendix.

Appendix B: C++20/23 Implementation Reference

Introduction

Modern C++ (C++20 and C++23) introduces advanced features that make the
development of interpreters and virtual machines more expressive, safer, and more
maintainable than ever before. This appendix provides an in-depth reference on how
the book’s concepts are realized using cutting-edge language constructs and standard
library enhancements from the last five years. It helps both readers building the
interpreter from scratch and experienced C++ developers seeking modernization of
legacy language tooling.
The core design of your C-style interpreted language relies on:

861

• Value-oriented types (std::variant, std::optional, std::expected)

• Declarative algorithms (std::ranges, std::views)

• Safer compile-time constructs (consteval, constexpr)

• Simplified formatting and debugging (std::format, std::source_location)

• Enhanced modularization (modules, concepts)

Type Variants with std::variant and std::visit

In a statically typed but dynamically dispatched language like the one you're building,
you’ll need to encode many runtime types in a single C++ type structure. This is
where std::variant shines.

• Why std::variant?

– Replaces void*-style union hacks with full type safety

– Allows discriminated union of possible expression/value types

– Enables pattern matching via std::visit instead of type checking with
dynamic_cast

• Use Case in Interpreter

using Value = std::variant<int, float, bool, std::string, std::monostate>;

struct LiteralExpr {
Value value;

};

struct BinaryExpr {

862

ExprPtr left;
Token op;
ExprPtr right;

};

using Expr = std::variant<LiteralExpr, BinaryExpr, UnaryExpr>;

• Evaluation via Visitor

struct EvalVisitor {
Value operator()(const LiteralExpr& expr) { return expr.value; }
Value operator()(const BinaryExpr& expr) {

auto lhs = std::visit(*this, *expr.left);
auto rhs = std::visit(*this, *expr.right);
return evalBinary(lhs, rhs, expr.op);

}
// ...

};

Optional and Expected: std::optional, std::expected

• Use Cases

– std::optional<T>: For missing or non-binding values (e.g., variable not
declared)

– std::expected<T, E> (C++23): For error propagation with payloads

• Example: Variable Lookup

863

std::optional<Value> lookup(const std::string& name) const;

• Example: Error Propagation

std::expected<Value, RuntimeError> eval(const Expr& expr);

This pattern avoids exceptions and improves readability and testability of the
interpreter’s evaluation logic.

Ranges and Views: Declarative AST and Token Processing

C++20 introduces std::ranges and std::views for functional-style, lazy evaluation
pipelines.

• Example: Filtering Tokens

auto identifiers = tokens | std::views::filter([](const Token& t) {
return t.type == TokenType::Identifier;

});

• Benefits

– No manual loops

– Composable, testable, lazy pipelines

– More readable parsing and token stream transformation

864

Pattern Matching Using std::visit and if constexpr

Although C++ does not have native match yet (possibly in future standards), you can
simulate matching using std::visit and if constexpr.

std::visit([](auto&& node) {
using T = std::decay_t<decltype(node)>;
if constexpr (std::is_same_v<T, BinaryExpr>) {

...
} else if constexpr (std::is_same_v<T, UnaryExpr>) {

...
}

}, expr);

std::format: Replacing printf, ostringstream

Error messages and debug output should be formatted consistently and safely.

std::string err = std::format("Unexpected token '{}' at line {}", token.lexeme,
token.line);↪→

Advantages:

• Type-safe formatting

• Supports user-defined types

• More readable than old printf or stream chaining

865

consteval, constinit, constexpr: Compile-Time Language
Metadata

Use consteval or constexpr to define lookup tables and keyword maps at compile
time.

consteval auto makeKeywordMap() {
return std::unordered_map<std::string, TokenType>{

{"if", TokenType::If}, {"else", TokenType::Else}
};

}

Use constinit to ensure these are initialized at compile-time, not runtime.

std::source_location: Diagnostic Tooling

Great for debugging and REPL error reporting.

void reportError(std::string_view msg, std::source_location loc =
std::source_location::current()) {↪→

std::cerr << "Error at " << loc.file_name() << ":" << loc.line() << ": " << msg
<< "\n";↪→

}

No macros needed for line/file tracking anymore.

Modules: True Modular Compilation (C++20)

C++20 introduces true modules for splitting large codebases.

866

export module lexer;
export module parser;
export module evaluator;

Modules reduce compile times, enforce interface boundaries, and remove header
duplication.

Coroutines (Optional Use in Token Stream or Debug Tracing)

Use C++20 coroutines for lazy evaluation:

generator<Token> tokenize(std::string_view source);

You can use this for on-demand token stream or REPL input.

Concepts: Type Constraints for Extensible Evaluator Code

Modern interpreters often need to be generic, yet constrained.

template <typename T>
concept Numeric = std::is_integral_v<T> || std::is_floating_point_v<T>;

template <Numeric T>
Value evalAdd(T lhs, T rhs) { return lhs + rhs; }

std::filesystem: For .lang File Management

Used in the command-line interpreter and import systems.

867

std::filesystem::path source = "scripts/main.lang";
if (std::filesystem::exists(source)) {

...
}

Struct Bindings and Destructuring

Used heavily in parser and evaluator:

auto [lhs, op, rhs] = binExpr;

Also for std::pair, std::tuple, and map iterations.

VM Registers, Stack, and Memory Using STL Containers

Use STL containers over raw arrays or pointers for safety and performance:

• std::vector<Value> for stack

• std::array<Value, 256> for fixed register sets

• std::deque<Frame> for call stack

Compile-Time Tests Using constexpr and static_assert

Create constexpr interpreters or evaluators for critical testing:

constexpr bool testAddition() {
return evalExpr("1 + 2") == 3;

}
static_assert(testAddition());

868

Lightweight Testing with doctest or Catch2

Use modern test frameworks to test:

• AST construction

• Expression evaluation

• Error handling

Optional Advanced Topics

• std::atomic_ref, std::latch for multithreaded REPL

• std::stacktrace for error reports (pending standardization)

• std::bit_cast for performance-sensitive VM work

Conclusion

C++20 and C++23 have revolutionized how interpreters can be implemented:

• Type-safe unions (variant)

• Pattern-like evaluation (visit)

• Compile-time maps (consteval)

• Modular compilation (modules)

• Declarative ranges and views

• Safer runtime error tracking (source_location, expected)

869

This appendix serves as your ultimate reference to implementing a high-quality
interpreter fully in Modern C++. Use it to guide the design of future-proof, clean, and
scalable tools in your language ecosystem.

Appendix C: CMake Templates for Language
Projects

Overview

In building a modern interpreted or compiled programming language project, especially
one using C-style syntax, maintainability, modularity, and cross-platform support are
crucial. CMake is the industry-standard meta build system that generates native build
scripts for platforms such as Ninja, Unix Makefiles, or Visual Studio. When paired with
modern C++20/23 features, CMake helps you manage complex multi-target projects
with reusable components (parser, runtime, interpreter, REPL, etc.).
This appendix presents a full-featured CMake scaffolding tailored to your language
project. It covers:

• Clean modular layout for different language subsystems

• Use of latest CMake and C++20/23 features

• Separation of interpreter, REPL, testing, and tooling

• VM, bytecode, and backend extensibility

• Optional C++20 module support

• Developer experience enhancements (IDE, LSP, Clangd)

• Testing integration and CI-readiness

870

• Packaging, installation, and export support

1. Directory Layout

Your interpreter project might look like this:

forgelang/
�
��� CMakeLists.txt
��� config/
� ��� config.hpp.in
��� src/
� ��� core/
� ��� lexer/
� ��� parser/
� ��� ast/
� ��� evaluator/
� ��� runtime/
� ��� vm/ # optional backend (bytecode)
�
��� tools/
� ��� interpreter/ # main CLI interpreter
� ��� repl/ # optional interactive shell
�
��� tests/
� ��� unit/
� ��� integration/
�
��� include/
� ��� forgelang/
�
��� examples/

��� hello.lang

871

2. Root CMakeLists.txt – Global Configuration

cmake_minimum_required(VERSION 3.22)
project(forgelang LANGUAGES CXX)

set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

include(CTest)
enable_testing()

Optional config header
configure_file(config/config.hpp.in config.hpp)

Add subprojects
add_subdirectory(src)
add_subdirectory(tools)
add_subdirectory(tests)

Install target support
include(GNUInstallDirs)

Modular Library Structure

Each language component is organized as an internal static library, simplifying
dependency management and testing.

• Example: src/lexer/CMakeLists.txt

872

add_library(lexer STATIC
lexer.cpp
lexer.hpp

)

target_include_directories(lexer PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}
${PROJECT_SOURCE_DIR}/include

)

• src/parser/CMakeLists.txt

add_library(parser STATIC
parser.cpp
parser.hpp

)

target_link_libraries(parser PUBLIC lexer)
target_include_directories(parser PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

You can apply the same pattern to ast, evaluator, runtime, and even vm.

Executable Targets

Interpreter, REPL, and debugging tools can be added under tools/.

• tools/interpreter/CMakeLists.txt

add_executable(interpreter main.cpp)

873

target_link_libraries(interpreter
PRIVATE

core
parser
evaluator
runtime

)

target_include_directories(interpreter PRIVATE ${PROJECT_BINARY_DIR})

Optional: C++20 Module Support

If your parser or evaluator uses modules (.ixx files):

target_sources(parser
PUBLIC

FILE_SET CXX_MODULES TYPE CXX_MODULES FILES parser.ixx
)

CMake �3.25 is required for this feature. You must also use a module-aware compiler
(Clang 16+, MSVC 17.5+, GCC 13+).

Testing Framework Integration

You can use Catch2, Doctest, or even GTest. Here's how to integrate Catch2:

include(FetchContent)
FetchContent_Declare(

Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2.git

874

GIT_TAG v3.4.0
)
FetchContent_MakeAvailable(Catch2)

add_executable(unit_tests
test_main.cpp
test_parser.cpp
test_evaluator.cpp

)

target_link_libraries(unit_tests PRIVATE Catch2::Catch2WithMain parser evaluator)
add_test(NAME ParserTests COMMAND unit_tests)

Configuration Header for Versioning

• config/config.hpp.in

#pragma once

#define FORGELANG_VERSION "@PROJECT_VERSION@"
#define FORGELANG_PLATFORM "@CMAKE_SYSTEM_NAME@"

• In CMakeLists.txt

configure_file(
config/config.hpp.in
${PROJECT_BINARY_DIR}/config.hpp

)

Then include config.hpp wherever version info is needed.

875

Cross-Platform Support

CMake enables easy platform detection:

if(WIN32)
target_compile_definitions(interpreter PRIVATE PLATFORM_WINDOWS)

elseif(APPLE)
target_compile_definitions(interpreter PRIVATE PLATFORM_MAC)

elseif(UNIX)
target_compile_definitions(interpreter PRIVATE PLATFORM_LINUX)

endif()

You can also set up platform-specific includes or linker options.

Install and Package Targets

Install targets make your language distributable:

install(TARGETS interpreter DESTINATION bin)

install(DIRECTORY include/ DESTINATION include)

install(FILES LICENSE README.md DESTINATION share/forgelang)

Optional: Export Targets for Reuse

If you expect other developers to build on your interpreter libraries:

install(TARGETS core parser lexer ast EXPORT forgelangTargets)

install(EXPORT forgelangTargets

876

FILE forgelangTargets.cmake
NAMESPACE forgelang::
DESTINATION lib/cmake/forgelang)

Developer Productivity Enhancements

• compile_commands.json generation for Clangd and VSCode

• Target grouping in CLion with set_target_properties

• Color output for Ninja builds (-DCMAKE_COLOR_DIAGNOSTICS=ON)

• Linting integration via clang-tidy, cpplint, include-what-you-use

Conclusion

The CMake templates provided in this appendix are carefully designed to:

• Scale from toy interpreters to full-featured systems

• Be modular, testable, and developer-friendly

• Work with cutting-edge C++20/23 features (modules, concepts, ranges)

• Ensure portability and professional project maintenance

With these templates, you can bootstrap your C-style language interpreter with
professional-grade tooling from day one. You are encouraged to further automate build,
format, and test processes via make test, GitHub Actions, or CMake presets.

877

Appendix D: Testing Strategies for Language
Interpreters

Purpose of This Appendix

The goal of this appendix is to provide a professional, production-grade testing
framework blueprint tailored specifically for C-style interpreted languages. From lexers
to runtime evaluators, and from symbol resolution to REPL behavior, every phase of
the interpreter must be thoroughly tested to ensure correctness, stability, and long-
term maintainability.
Unlike traditional application testing, interpreter testing must simulate real user
inputs, malformed constructs, dynamic execution, variable state tracking, and memory
behavior—making it a highly dynamic and challenging task. Leveraging modern
C++20/23 makes this more expressive and manageable, thanks to new tools, libraries,
and features that improve test composition, runtime introspection, and compiler-time
checks.

Categories of Tests in a Language Interpreter

To organize your testing approach effectively, break down the interpreter into testable
layers:

1. Unit Testing

What it covers:

• Lexical analyzer (tokenizer)

• Parser components (expression parsing, statement parsing)

• AST node construction

878

• Value system types (int, float, bool, string, array)

• Type conversions and operations

• Symbol table and scope resolution

• Evaluator functions (value application, control flow, returns)

Modern C++20/23 techniques:

• constexpr-enabled functions and compile-time validation

• Use of std::variant and std::visit to test dynamic values

• Concept-based assertions (e.g., validating that a value meets Arithmetic or
StringLike traits)

Typical Unit Test Case (Catch2):

TEST_CASE("Lexer tokenizes identifiers and operators") {
Lexer lexer("a + b");
std::vector<Token> tokens = lexer.tokenize();
REQUIRE(tokens[0].type == TokenType::Identifier);
REQUIRE(tokens[1].type == TokenType::Plus);

}

2. Integration Testing

Tests that involve multiple subsystems together:

• Lexer + Parser + AST

• Parser + Evaluator

• Full program execution (e.g., int main() { return 5; })

879

Design Strategy:

• Run .lang files through the complete interpreter stack

• Compare the final value or output stream

• Simulate expected user-written programs

TEST_CASE("Simple C-style program executes correctly") {
Interpreter interp;
auto result = interp.run("int x = 3; int y = x + 2; y;");
CHECK(result.as_int() == 5);

}

3. Regression Testing

Used to preserve past fixes and prevent breaking behaviors during refactors or
feature additions.

Method:

• Maintain a directory tests/regression/ with previously failing programs

• Add test expectations (result, output, error code)

• Automatically verify the outputs match previous working states

Example Structure:

tests/
��� regression/
� ��� bug123_missing_semicolon.lang
� ��� bug123.expected_output

880

4. Golden File Testing

For scenarios where output is too verbose for inline testing (e.g., AST structure,
error messages, debug dumps).

Implementation:

• Store expected output in .golden files

• Compare using line-by-line or hash-based verification

• Normalize whitespace before comparing

std::string actual = interpreter.run("source.lang");
std::string expected = read_file("source.golden");
CHECK(normalize(actual) == normalize(expected));

5. REPL Testing and Simulation

Testing the interactive shell (REPL) is different:

• Simulate terminal I/O (input prompts, command history)

• Redirect stdin and stdout streams

• Batch process inputs as if typed live

Tooling:

• Use std::stringstream for fake user inputs

• Capture REPL outputs using redirect macros

881

Using Modern C++20/23 in Tests

C++20/23 brings new capabilities to your test suite:

• Modules for isolating test interfaces

• Concepts to constrain test inputs

• constexpr functions for compile-time tests

• std::ranges to filter test data

• std::format for precise debug output

• Structured bindings for improved assertions

template<typename T>
concept ValidValue = requires(T v) {

{ v.to_string() } -> std::convertible_to<std::string>;
};

static_assert(ValidValue<IntValue>);

Project Directory Layout for Testing

project_root/
��� src/
��� tests/
� ��� unit/
� ��� integration/
� ��� regression/

882

� ��� golden/
� ��� repl/
��� expected/
��� CMakeLists.txt

Keep test inputs, expected outputs, and logs organized for long-term scalability.

Continuous Integration and Automation

Use modern CI platforms to automate test runs:

• GitHub Actions

• GitLab CI/CD

• Azure Pipelines

• Local automation using ctest

Example CMake + Catch2 Setup:

enable_testing()

add_executable(all_tests
test_lexer.cpp
test_parser.cpp
test_eval.cpp

)

target_link_libraries(all_tests PRIVATE Catch2::Catch2WithMain)

add_test(NAME InterpreterTests COMMAND all_tests)

883

Add nightly jobs to run:

- name: Run All Tests
run: |
mkdir build && cd build
cmake ..
make
ctest --output-on-failure

Memory Checking and Leak Detection

You must validate memory safety:

Tools:

• AddressSanitizer (ASan): Detects overflows, invalid accesses

• Valgrind: Full memory profiler

• LeakSanitizer (LSan): Memory leak detector

• MSVC Debug CRT: For Windows

Enable with:

add_compile_options(-fsanitize=address)
add_link_options(-fsanitize=address)

Coverage Metrics

Coverage helps understand what is not tested:

884

• Use gcov, lcov, llvm-cov or OpenCppCoverage

• Integrate into CI with HTML reports

• Target high coverage on parser, evaluator, and runtime logic

gcovr -r . --html-details -o coverage.html

Functional vs Structural Testing

• Functional: Check that final values/output match user expectation

• Structural: Validate the internal structure of generated AST, symbol table, or
execution frames

CHECK(ast.to_string() == "(+ 1 2)");
CHECK(frame.lookup("x").type == Type::Int);

Handling Invalid Programs

Always include failing test cases:

• Missing semicolon

• Undeclared variable

• Type mismatch

• Scope violation

885

CHECK_THROWS_AS(interpreter.run("int x; x = true;"), TypeError);

Snapshot Testing

Snapshot testing tools (like ApprovalTests) can be used to:

• Dump intermediate stages (AST, symbol table)

• Validate that internal compiler/interpreter state hasn't changed unexpectedly

Fuzzing and Property-Based Testing

• Use generators to create random valid/invalid programs

• Test properties like idempotency, equivalence, and determinism

• Catch edge cases that developers rarely write

Conclusion

Testing a C-style interpreter is a systemic effort. Every phase—from lexing to
evaluation, scope resolution to function calls—must be validated through automated,
reproducible, and scalable tests. By utilizing the strengths of modern C++20/23,
and structuring tests around unit, integration, and regression layers, your language
infrastructure becomes durable and production-ready.
This appendix equips you with a blueprint for building a robust test ecosystem—one
that grows alongside your language implementation and protects it from regressions,
instability, and undetected edge cases.

886

Appendix E: Performance Benchmarking for
Interpreters

Overview

Performance benchmarking is not a luxury—it's a necessity in any interpreter design
intended for real-world use. Although interpreters inherently execute slower than
compiled code due to their runtime nature, modern techniques, careful engineering, and
the new capabilities introduced in C++20 and C++23 allow us to achieve highly
responsive and optimized behavior.
This appendix provides a methodical blueprint for integrating benchmarking directly
into the lifecycle of the interpreter. It covers:

• Measuring latency and throughput for specific constructs

• Managing memory usage awareness

• Detecting regressions early through automated benchmarking

• Validating architectural improvements such as caching, precompilation, or just-in-
time optimizations

• Organizing interpretable performance data for review and visualization

Benchmarking Goals for Interpreters

The benchmarking system aims to answer questions like:

• How fast can an arithmetic expression be parsed and executed?

• How does nested scope resolution impact performance?

887

• Does function call overhead scale linearly with depth?

• How much memory is consumed during iterative vs. recursive execution?

• What is the overhead of symbol resolution within blocks and functions?

With benchmarks in place, you gain:

• Performance baselines for future optimizations

• Comparison metrics between interpreter versions

• Confidence that new features do not introduce performance regressions

• Insight into bottlenecks across the interpreter lifecycle

Benchmark Categories

Below are essential categories of benchmarks relevant to C-style interpreted languages:

Table 4-4: Benchmark Areas for Language Evaluation

Benchmark Area Description

Expression Evaluation Integer/float expression parsing and evaluation

Variable Resolution Symbol lookup in nested scopes and environments

Function Invocation Direct and recursive function calls, argument binding

Loop Control Flow Evaluation of for, while, and do-while constructs

Conditionals Evaluation cost of if-else branches and block
execution

888

Benchmark Area Description

Scoping Cost Overhead of entering/exiting nested {} blocks

File Execution Running .lang scripts (short and long) to simulate real
usage

Memory Allocation Performance impact of allocating arrays, objects, or
strings

Benchmark Harness Design

C++20 makes it significantly easier to build a concise and flexible benchmarking
toolset.

1. Structuring a Benchmark Unit

struct Benchmark {
std::string name;
std::function<void()> code;

void run() const {
using Clock = std::chrono::high_resolution_clock;
auto start = Clock::now();
code();
auto end = Clock::now();

auto time = std::chrono::duration_cast<std::chrono::microseconds>(end -
start).count();↪→

std::cout << std::format("{:<40} {:>10} �s\n", name, time);
}

};

889

2. Example Usage

Benchmark{"Basic Expression Evaluation", [] {
Interpreter interp;
interp.run("int a = 5 * (3 + 2);");

}}.run();

For repeated runs:

void runRepeated(const Benchmark& bench, int iterations = 1000) {
using Clock = std::chrono::high_resolution_clock;
std::chrono::microseconds total{0};

for (int i = 0; i < iterations; ++i) {
auto start = Clock::now();
bench.code();
auto end = Clock::now();
total += std::chrono::duration_cast<std::chrono::microseconds>(end -

start);↪→

}

auto avg = total.count() / iterations;
std::cout << std::format("{:<40} {:>10} �s (avg over {} runs)\n",

bench.name, avg, iterations);↪→

}

Benchmark Script Corpus

A good benchmarking system depends on a diverse and growing set of test
programs:

890

1. Microbenchmarks

int x = 5 + 3 * 2; // Arithmetic expression
langCopyEditint sum = 0;
for (int i = 0; i < 10000; ++i) {

sum = sum + i;
}
langCopyEditint fib(int n) {

if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);

}
fib(10);

2. Macrobenchmarks

These include real .lang files that simulate:

• Configuration file parsing

• Text processing

• Simple mathematical modeling

• CLI tool scripting

Memory Benchmarking

Memory usage should be monitored alongside execution time.

1. Manual Estimation (Tracking Allocations)

If your interpreter uses std::shared_ptr, std::vector, or dynamic memory:

• Use custom allocators that count memory blocks.

891

• Use wrappers around allocation points (e.g., AST node creation).

2. Platform-Based Measurement

Use:

• getrusage (Linux/macOS)

• GlobalMemoryStatusEx (Windows)

• Tools like valgrind, massif, or heaptrack

Or wrap memory introspection:

struct MemoryTracker {
size_t before = get_memory_usage();

~MemoryTracker() {
size_t after = get_memory_usage();
std::cout << "Memory used: " << (after - before) << " bytes\n";

}
};

Long-Running Benchmark Patterns

For sustained usage, simulate long scripts and ensure:

• No memory leaks

• Stack growth remains controlled

• Repeated runs do not degrade performance

892

std::string program = read_file("benchmark.lang");
for (int i = 0; i < 100; ++i) {

Interpreter interp;
interp.run(program);

}

Benchmark Output Logging

Generate structured logs:

std::ofstream log("benchmark_results.csv");
log << "test_name,time_us\n";
log << "Arithmetic,10\n";
log << "Loop_10000,1500\n";

This enables further analysis and graphing using:

• Python (matplotlib, pandas)

• Excel

• R

• Grafana + Prometheus (CI integration)

Regression Detection

Store prior benchmark data:

struct RegressionCheck {
std::map<std::string, long> baseline;

893

void compare(const std::string& name, long new_time) {
long base = baseline[name];
if (new_time > base * 1.2) {

std::cerr << " ! Performance regression in " << name << ": " << new_time
<< " > " << base << "\n";↪→

}
}

};

Integration in Build System and CI

Extend your CMake build:

add_executable(lang_benchmarks benchmark.cpp)
target_link_libraries(lang_benchmarks PRIVATE interpreter_lib)

Use GitHub Actions or GitLab CI:

- name: Run Performance Benchmarks
run: |
cmake --build .
./lang_benchmarks > output.csv

Interpretation vs Compilation: Bridging the Gap

Over time, your interpreter may evolve into:

• A bytecode virtual machine

• A JIT-accelerated runtime

894

• A compiled backend

By benchmarking today, you ensure that future stages remain measurably faster, not
just theoretically cleaner.

Conclusion

Performance benchmarking is the language designer’s telescope: it reveals invisible
limitations, detects regressions, and enables confident scaling.
By applying modern C++ tools, CMake integration, structured testing, and metrics
gathering, you turn your interpreter into a professional-grade execution engine that
can evolve toward compilation, JIT, or hybrid models without sacrificing quality or
predictability.
This appendix provides the performance DNA for any serious interpreted language
project.

Appendix F: Language Extension Ideas and Future
Work

Introduction

A successful programming language is not just defined by its current capabilities but by
how well it prepares for growth. The language described throughout this book begins
with a foundational C-style syntax, emphasizing clarity, performance, and simplicity.
However, real-world use cases inevitably push a language beyond its initial boundaries.
This appendix presents a forward-looking blueprint for extending the language into
a more powerful and expressive system, while staying true to its C-style heritage and

895

relying on robust and modern C++20/23 constructs. These ideas are grouped into six
core areas:

1. Syntax-Level Enhancements

2. Semantic Capabilities and Type System Extensions

3. Runtime Enhancements and Libraries

4. Tooling, Debugging, and Ecosystem Growth

5. Deployment and Embedding

6. Long-Term Vision for Compilation

Each section includes actionable recommendations, architectural impact, and how
modern C++ enables these future paths efficiently.

Syntax-Level Enhancements

1. Enums and Type Constants

Enums simplify logic readability and debugging. Implementing enums involves
extending the type system to associate symbolic names with integer values,
allowing constructs like:

enum Status { OK = 0, ERROR = 1, TIMEOUT = 2 };
Status s = OK;

C++ Implementation Notes:

• Use std::unordered_map<std::string, int> for enum definition storage.

896

• Extend the parser to recognize enum blocks and store constants in the
symbol table.

• Support implicit conversion from enum to integer for evaluation consistency.

2. Type Aliasing (typedef, using)

For readability and reusability:

typedef int Age;

Interpreter Enhancement:

• Maintain a type alias map in the parser or type checker stage.

• Replace aliases during parsing or store them as metadata for error reporting.

3. Inline Annotations and Attributes

Add optional metadata for variables, functions, or types:

@deprecated
func oldApi() {

// ...
}

Applications:

• Debug tooling

• Warning generation

• Optimizer hints

Modern C++ Use:

897

• Attributes such as [[nodiscard]], [[likely]], [[nodiscard]] inspire a
clear structure.

Semantic Capabilities and Type System Extensions

1. Closures and Lexical Environments

Enable functions to capture outer variables:

func makeCounter() {
int count = 0;
return func() { count = count + 1; return count; };

}

Requirements:

• Functions must hold a reference to their enclosing environment.

• Environments must be copyable or shareable across call boundaries.

C++ Implementation:

• std::shared_ptr<Environment> ensures safe shared lexical environments.

• C++20's move-only closures (with std::move_only_function) simplify
stateful closure handling.

2. Exception Handling

Support structured error management:

898

try {
riskyOperation();

} catch (e) {
print("Caught error:", e);

}

Interpreter Structure:

• Error context stack with catchable values.

• Long jump or exception-like unwind logic.

C++ Tools:

• Use std::exception_ptr or custom InterpreterException types.

• Manage control flow using std::optional or variants to propagate
success/error states.

3. User-Defined Structs and Methods

Enable structured types:

struct Point {
int x;
int y;
func move(dx, dy) {

x = x + dx;
y = y + dy;

}
}

Data Model:

899

• Composite Value::Struct type with field map.

• Method table for dynamic dispatch or static inline binding.

Runtime Enhancements and Library Features

1.

2. Standard Modules

Define standard libraries such as:

• math: abs, sqrt, sin, pow

• time: now(), sleep(ms)

• string: split, join, find

Implementation:

• Add internal native functions via function registration.

• Use C++20 <chrono>, <cmath>, and <string_view> for fast, efficient
mappings.

3. Reflection and Introspection

Enable:

print(typeOf(x));
print(getMembers(someStruct));

Usage:

• Debugging

900

• Meta-programming

• Serializing/deserializing

C++ Backing:

• Maintain runtime ValueMeta attached to each object.

• Use C++20's std::source_location for internal introspection support.

Tooling, Debugging, and Ecosystem Growth

1. Debugger Integration

Provide:

• Step execution

• Breakpoints

• Stack trace display

C++ Side:

• Wrap each instruction in traceable execution blocks.

• Track source_line and source_file inside AST nodes or IR.

2. Language Server Protocol (LSP)

LSP allows integration into modern IDEs like VSCode or CLion. To support:

• Symbol resolution

• Syntax diagnostics

• Auto-completion

901

Architecture:

• Export the parser and type checker as callable services.

• Provide a JSON-over-IPC interface.

3. Testing Tools and Coverage Reports

Expose runtime test harness:

@test
func testAdd() {

assert(add(1, 2) == 3);
}

Advanced:

• Store test coverage in bitmaps or AST annotations.

• Emit performance metrics during testing.

Deployment and Embedding

1. WebAssembly Target

By ensuring POSIX-free, file-independent behavior, the interpreter can be
compiled via Clang to .wasm.

Steps:

• Avoid C-style I/O.

• Use C++20 standard I/O abstraction.

• Add virtual file and memory systems.

902

2. Native Embedding

Make the interpreter usable as a scripting backend:

LangVM vm;
vm.load("config.lang");
vm.call("initialize");

Embed in:

• Games

• GUIs

• Embedded devices

Use a modular C++ API to expose internal functions, error management, and
memory context.

Long-Term Vision: Compilation

The language could evolve into a fully compiled one:

• Target LLVM IR

• Generate intermediate bytecode

• Use register allocation and JIT techniques

Approach:

• Compile AST to SSA or bytecode.

• Use type inference or a type checker for optimization.

• Generate .obj/.o or .wasm using LLVM backend.

903

Final Thoughts

The roadmap here is not just a set of ”nice-to-have” features. Each item reflects a
necessary response to modern language design requirements. With clean architecture
and a strong C++20/23 foundation, this language is well-positioned to become a
complete development platform, supporting:

• Professional development teams

• Educational systems

• Embedded domains

• High-performance scripting environments

These ideas aim to sustain the language for the next decade and beyond, encouraging
contributors, learners, and power users to adopt and extend its capabilities.

References

Books on Programming Language Design and
Implementation

• “Crafting Interpreters” by Robert Nystrom
A highly practical guide to writing interpreters, with clear implementation paths
for both tree-walk and bytecode VMs. Fundamental to understanding interpreter
structures.

• “Programming Language Pragmatics” by Michael L. Scott
A comprehensive academic textbook that explores both theory and
implementation of programming languages.

• “Engineering a Compiler” by Keith D. Cooper and Linda Torczon
Ideal for understanding compiler design from IRs to optimization. Especially
useful when extending the interpreter into a compiler or bytecode VM.

• “Modern Compiler Implementation in C” by Andrew W. Appel
A classic that helps grasp practical compiler design in C, which aligns well with
your C-style syntax design goals.

• “Types and Programming Languages” by Benjamin C. Pierce

904

905

Excellent for readers who want to understand type systems and type checking at
a theoretical and practical level.

• “Language Implementation Patterns” by Terence Parr
A pragmatic book filled with techniques for building parsers, lexers, ASTs, and
error handling systems.

Books on Modern C++ and Advanced Features
(C++20/C++23)

• “Effective Modern C++” by Scott Meyers
Key insights into modern C++ idioms and safety. Especially relevant for applying
std::move, auto, unique_ptr, etc.

• “C++20: The Complete Guide” by Nicolai Josuttis
Explains in detail the modern features like ranges, concepts, and coroutines,
which you can use for implementing interpreters and REPL systems.

• “C++ Templates: The Complete Guide (2nd Edition)” by David
Vandevoorde, Nicolai Josuttis, and Doug Gregor
For mastering templates, generic programming, and building reusable parsing or
AST libraries.

• “Clean Code in C++” by Stephan Roth
Reinforces modern software engineering principles while developing complex C++
systems.

906

Research Papers and Academic Sources

• “The Next 700 Programming Languages” by Peter J. Landin (1966)
A foundational theoretical paper inspiring many modern interpreters and DSLs.

• “Structure and Interpretation of Computer Programs (SICP)” by
Abelson and Sussman
Not C-style, but this book offers valuable insights into evaluation strategies,
environments, and closures.

• “An Efficient Interpreter for a Procedural Language” – Mitchell Wand
Lays out an early stack-based interpreter design for procedural languages similar
to C.

• “A Correspondence Between Continuation Passing Style and Static
Single Assignment Form” – Appel & Flanagan (1992)
Useful if your interpreter aims to generate IRs or transitions into a compiled form
in future iterations.

Tools and Libraries Consulted or Recommended

• LLVM Project Documentation
For understanding modular compiler and VM design, including frontend parser
and IR-level design ideas.

• Clang AST Internals
Used as inspiration for building your own AST node hierarchy and traversal
utilities.

• GoogleTest & Catch2

907

Frameworks used in testing interpreter correctness (see Appendix D).

• ANTLR (ANother Tool for Language Recognition)
While not used in this book, its theory of recursive descent and parser generators
influenced parser design strategy.

• Valgrind and AddressSanitizer (ASan)
Tools used to test runtime memory behavior in interpreters (especially useful in
Appendices D and E).

• CMake (version 3.20+) and Modern CMake Practices
Key for the build system and project modularity shown in Appendix C.

Online Courses and Video Lectures

• CS143: Compilers (Stanford University, Prof. Alex Aiken)
For foundational theory in compiler and interpreter implementation.

• MIT 6.001 and 6.035 – Structure and Design of Programming
Languages
Provide strong grounding in recursive evaluation and design of language
interpreters.

Other Influential Open-Source Interpreters and
Languages

• Wren Language (by Bob Nystrom) – A small, fast class-based scripting
language. Its VM structure inspired parts of Chapter 23.

908

• Zig Language – Not interpreted, but its simplicity and build system influenced
language clarity goals.

• Lua Interpreter (PicoLua) – Extremely lightweight interpreter. Its error
handling and memory design informed Appendices D and E.

• CPython Internals – Source of many insights into memory handling, symbol
tables, and debugging outputs.

Final Note
The book aims to be self-contained, but it was influenced deeply by the above
resources. Readers who seek to dive deeper into parsing algorithms, interpreter theory,
or low-level language design will find the above references highly useful.

	Contents
	Author's Introduction
	Preface
	I Foundation and Architecture
	Why Design a New Programming Language?
	Motivation Behind Creating New Programming Languages
	Addressing Limitations in Existing Languages
	Integration of Modern Language Features with Lower-Level Control
	Domain-Specific Needs and Embedded Use-Cases
	Pedagogical and Research Objectives
	Experimentation and Language Innovation
	Performance Transparency and Predictability
	Cultural and Ecosystem Reset
	Conclusion

	Analysis of C-Style Languages: C, Go, Rust, Zig
	C: The Root of the Tree
	Go: Simplicity Over Power
	Rust: Safety with Zero-Cost Abstractions
	Zig: Pragmatism Meets Control
	Comparative Summary
	Conclusion

	Designing Our New Language — Goals and Philosophy
	Goal 1: Simplicity without Sacrificing Power
	Goal 2: Deterministic and Explicit Memory Model
	Goal 3: Predictable and Safe Concurrency
	Goal 4: Compile-Time Programming and Meta-Evaluation
	Goal 5: Strong but Flexible Type System
	Goal 6: Minimal Runtime and High Portability
	Goal 7: Modularity, Encapsulation, and Package Discipline
	Goal 8: Syntax Familiarity with Semantic Rigor
	Philosophy in Summary
	Conclusion

	Example Code in Our Target Language
	Hello World — Minimal Entry Point
	Immutable and Mutable Variables
	Ownership and Option Type
	Compile-Time Evaluation
	Struct and Pattern Matching
	Generics and Traits (Concepts)
	Concurrency with Spawn and Join
	Error Handling via Result
	Slices and Bounds Safety
	Modules and Imports
	Conclusion

	Milestone — Initial Language Specification and Code Examples
	Language Subset Goals for the First Milestone
	Core Language Grammar (Minimal Specification)
	Built-in Types and Rules
	Semantic Rules and Behaviors
	Example: Program Using the Initial Specification
	Interpreter Architecture Preview (C++20/23)
	Development Plan for Next Phase
	Conclusion

	Language Implementation Project Structure
	Project Structure for a Programming Language Interpreter
	Overview: Goals of a Good Project Structure
	High-Level Project Layout
	Core Interpreter Modules and Responsibilities
	Build System and Tooling
	Modern Development Practices
	Advantages of Using Modern C++20/23
	Conclusion

	CMake for Multi-Component Interpreter Projects
	Why CMake for Language Projects?
	High-Level CMake Layout for the Interpreter
	Root CMakeLists.txt (Top-Level Configuration)
	Example Component CMake (e.g., src/lexer/CMakeLists.txt)
	Shared Core Module (e.g., src/core/CMakeLists.txt)
	Main Executable Entry Point (src/main/CMakeLists.txt)
	Using C++20 Modules (Experimental Support)
	Testing Subsystem (tests/CMakeLists.txt)
	Build Commands
	IDE Integration and Tooling
	Conclusion

	Dependency Management — Lexer, Parser, Runtime
	Why Dependency Management Matters in a Language Project
	High-Level Component Boundaries
	Lexer: Input Tokenization Layer
	Parser: Syntax Construction Layer
	Runtime: Execution Layer
	Example of Dependency Direction (CMake and Code)
	AST and Value Boundary
	Semantic Analysis as an Optional Intermediate Layer
	Runtime Extensions and Isolation
	Testing Each Component in Isolation
	Conclusion

	Organizing Target Language Files (.lang, .test)
	Purpose of Organizing Language Files
	Suggested File Extensions
	Directory Layout for Target Language Files
	.lang File Design Conventions
	.test File Format and Structure
	.fail File Format
	Integration with the Interpreter
	Benefits of Organized Language Files
	Future Expansion
	Conclusion

	Milestone — Project Structure with First Experimental Language File
	Context: What This Milestone Proves
	Project Structure Recap
	Minimal Feature Set for First Program
	Interpreter Pipeline Overview
	Implementation Detail: First Language Features in C++
	CLI Interface (main.cpp)
	Output and Success Criteria
	Testing and Next Steps
	Conclusion

	Development Environment for Language Implementation
	Setting up C++20/23 for Building Interpreters
	Introduction
	Compiler Requirements and Setup
	Build Systems and Project Organization
	IDE and Editor Configuration
	Compiler Tooling and Diagnostics
	Testing Environment for Interpreters
	C++20/23 Specific Practices Beneficial to Interpreters
	Optional Tools for Interpreter Development
	Conclusion

	Language Development Tools: ANTLR, LLVM Comparison
	Introduction
	ANTLR (Another Tool for Language Recognition)
	LLVM (Low-Level Virtual Machine)
	Comparative Summary
	When to Use ANTLR or LLVM
	Conclusion

	IDE with Custom Language Grammar Support
	Introduction
	The Role of IDEs in Language Design
	Language Server Protocol (LSP): The Modern Backbone
	Editors and IDEs with Strong Grammar Plugin Support
	Grammar Files and Syntax Highlighting
	Real-Time Diagnostics and Auto-Completion
	Formatter and Style Tools
	Embedding Interpreter into IDE for Live Evaluation
	Conclusion

	Testing and Debugging Interpreters
	Introduction
	Foundations of Interpreter Testing
	Unit Testing with Modern C++ Frameworks
	Integration and Regression Testing
	Debugging Strategies for Interpreters
	Using Modern C++ Tools for Debugging
	Testing Error Handling and Edge Cases
	Test Automation and Continuous Integration
	Conclusion

	Milestone – Development Environment Ready for Interpreter Building
	Introduction
	Confirmed Compiler and Language Support
	Project Structure Verified and Navigable
	IDE and Editor Integration Complete
	Core Testing Infrastructure Operational
	Debugging and Diagnostics Functional
	Optional Tools and Enhancements Ready
	Initial Interpreter Command-line Interface Bootstrapped
	Final Validation: Milestone Status
	Conclusion

	II Lexical Foundation
	Designing Tokens for the New Language
	Defining Language Tokens – Keywords, Operators, Literals
	Introduction
	Token Categories and Their Role
	Defining Keywords
	Designing Operators
	Literal Tokens
	Literal and Identifier Differentiation
	Language Token Table (Summary View)
	Modern C++ Techniques for Token Design
	Conclusion

	C-style Syntax Design: {}, ;, ()
	Introduction
	Braces {}: Code Block Delimiters
	Semicolon ;: Statement Terminator
	Parentheses (): Grouping and Control Flow Syntax
	Modern C++ Integration for Delimiter Handling
	Error Handling and Resynchronization
	Conclusion

	Custom Tokens for Our Language – Additional Features
	Introduction
	Motivation for Custom Tokens
	Designing Custom Token Types
	Custom Tokens for Language Semantics
	Interpolated String Tokens
	Annotations and Metadata: @
	Preprocessor-style Extensions: #
	Parser Considerations for Custom Tokens
	Compile-Time Checks for Token Set
	Conclusion

	Implementing Token System Using Modern C++
	Introduction
	Token Type Design Using enum class
	Representing Tokens with std::string_view and std::variant
	Compile-Time Maps Using constexpr for Keywords
	Token Construction and Emission
	Diagnostics and Token Formatting
	Modern Iteration and Token Filters with std::ranges
	Error Tokens and Resilience
	Extending the Token System
	Testing Tokenization
	Optional: Using concepts for Token Validation
	Conclusion

	Hands-on Complete Language Token Set
	Introduction
	Token Structure Recap
	Complete Token Type Enumeration
	Practical Usage in Lexer
	Testing and Validation Strategy
	Optional: Token Table Summary for Compiler Explorer or IDE Integration
	Conclusion

	Lexical Analyzer for C-Style Language
	Reading and Analyzing New Language Code
	Introduction
	Reading Source Code into Memory
	Managing Source Navigation
	Identifying Token Boundaries
	Skipping Whitespace and Comments
	Character Classification for Tokens
	Token Recognition Loop
	Error Detection During Reading
	Token Debugging and Tracing
	Conclusion

	Recognizing C Patterns: int x = 5;, if (condition) {}
	Introduction
	Decomposing the Pattern: int x = 5;
	Decomposing the Pattern: if (condition) {}
	Identifier and Literal Pattern Recognition
	Delimiters and Operators
	Recognizing Common Code Patterns
	Diagnostic and Error Traps
	Efficient Token Stream Assembly
	Conclusion

	Handling C-style Comments: // and /* */
	Introduction
	Types of Comments in C-style Languages
	Design Principles for Comment Handling in the Lexer
	Integration into the Lexical Scanning Loop
	Implementing Single-Line Comments
	Implementing Multi-Line Comments
	Optional Enhancements
	Edge Case Handling
	Unit Testing Comment Handling
	Conclusion

	Managing Syntax Errors in Source Code
	Introduction
	What is a Syntax Error at the Lexical Level?
	Designing an Error Reporting System
	Detecting Specific Lexical Errors
	Error Token Strategy (Optional for Recovery)
	Line and Column Tracking for Error Reporting
	Modern C++ Features for Error Reporting
	Error Resynchronization Techniques
	Unit Testing Lexical Errors
	Conclusion

	Milestone — Analyzer That Reads New Language Files
	Introduction
	Objectives of This Milestone
	File-Based Input Handling
	Tokenization Pipeline: Lexer Operational Flow
	Token Output: Readable and Structured
	Source Location Tracking
	Syntax Error Reporting During Tokenization
	Unit and Integration Testing
	Optional Output Format: JSON / Token Stream Dump
	CLI Tool Integration: Language Analyzer
	Summary: What This Milestone Confirms
	Conclusion

	REPL for the New Language – Version 1
	Interactive Loop for Writing New Language Code
	Introduction
	What is a REPL?
	REPL Architecture: Minimal Form
	C++20/23 Implementation: Basic REPL Loop
	Design Features and C++20/23 Enhancements
	Token Buffering and Line Tracking
	Handling Syntax Errors in REPL
	Sample Interaction Output
	Preparing for REPL Expansion
	Optional: Line History and Scripting
	Summary of Achievements in REPL v1
	Conclusion

	Displaying Tokens Extracted from Code
	Introduction
	Purpose of Token Display in REPL
	Token Data Model Recap
	Token Display Format Design
	Implementation of Token Display
	Displaying All Tokens from REPL Input
	Error Tokens and Highlighting
	Supporting Minimal and Diagnostic Modes
	Sample Session
	Extending Output for External Tools
	Summary of Capabilities
	Conclusion

	Testing Basic Language Constructs
	Introduction
	Purpose of Testing Constructs in REPL v1
	Scope of Basic Language Constructs to Test
	Using the REPL to Test Constructs
	Designing Automated REPL Test Sets (Internally or as Scripts)
	Testing Literals and Edge Cases
	Testing Multi-line Block Input (Future Extension)
	Optional: Table Format for Token Summaries
	Confirming Grammar Design through Testing
	Summary of REPL Construct Testing Benefits
	Conclusion

	Milestone — Interactive Explorer for the New Language
	Introduction
	Purpose of This Milestone
	What the Explorer Does
	Internals of the Interactive Explorer
	Supported Input Patterns
	Use of Modern C++20/23 in the Explorer
	Example Interactive Session
	Benefits of the Explorer at This Milestone
	Future Path After This Milestone
	Conclusion

	III Syntax and Structure
	AST Design for C-Style Constructs
	Expression vs Statement Hierarchies for C-Style Syntax
	Introduction
	Understanding Expressions and Statements in C-style Languages
	C++ Class Hierarchy Overview
	Base Abstract Classes
	Expression Types in a C-style Language
	Statement Types in a C-style Language
	Expression Inside Statement Context
	Ownership and Memory Management (C++20/23)
	Variant-based AST Models (Optional Modern Alternative)
	AST Debugging and Visualization
	Summary Table: Expressions vs Statements
	Conclusion

	Handling C-style Declarations: int x;, float y = 3.14;
	Introduction
	Core Characteristics of C-style Declarations
	Designing the Declaration Node
	Parsing C-style Declarations
	Expression Types as Initializers
	Optional Initialization Handling
	Use of std::optional and std::variant
	Supporting const and Mutability
	Example Code and AST Output
	Integration with the REPL
	Summary of AST Structure for Declarations
	Conclusion

	Block Structure and Scope Representation
	Introduction
	What is a Block in C-Style Syntax?
	AST Representation of a Block
	Parsing a Block Structure
	Scope Representation in Interpreter
	Example: Nested Blocks and Shadowing
	Block Statement Evaluation Workflow
	C++20/23 Enhancements in Scope Management
	Real-World Usage of Block Structures
	Summary of Block Scope Representation
	Conclusion

	Memory-Safe Tree Construction with Smart Pointers
	Introduction
	Why Smart Pointers for ASTs?
	Choosing the Right Smart Pointer
	Defining AST Node Ownership
	Constructing AST Nodes with std::make_unique
	Moving Pointers: Avoiding Copy Mistakes
	AST Destruction is Automatic
	Visitor and Pattern Matching with Smart Pointers
	AST Nodes with Optional Members
	Debugging AST with Smart Pointer Safety
	Summary: Best Practices
	Example: Full AST Construction Snippet
	Conclusion

	Hands-on – Core AST Nodes for C-Style Language
	Introduction
	Base AST Node Interfaces
	Smart Pointer Aliases for Ownership
	Core Expression Nodes
	Core Statement Nodes
	Visual Summary of AST Nodes
	Conclusion

	Parsing C-Style Grammar
	Grammar Design for C-Style Syntax
	Introduction
	Objectives of C-Style Grammar Design
	Lexical Considerations Before Parsing
	Top-Level Grammar Rule: Translation Unit
	Statements and Declarations
	Expressions and Operator Precedence
	Control Flow Statements
	Function Parameters and Calls
	Grammar Error Recovery Patterns
	C++20/23 Integration Ideas for Grammar Handling
	Grammar Extensibility and Modularity
	Example: Full Grammar Snippet (Subset)
	Conclusion

	Expression Parsing with C Operator Precedence
	Introduction
	Why Precedence-Based Parsing Matters
	Operator Precedence and Associativity in C
	Strategy: Recursive Descent with Precedence Climbing
	Layered Expression Grammar (EBNF)
	Implementing Precedence Parsing in C++20
	Unary Expressions
	Assignment and Right-Associativity
	Using Modern C++ Features
	Debugging Expression AST
	Expression Parsing Example (From Tokens to AST)
	Conclusion

	Statement Parsing – Declarations, Blocks, and Control Flow
	Introduction
	Statement Categories in C-Style Syntax
	Core Parsing Function
	Variable Declarations
	Block Statements
	Expression Statements
	If Statements
	While Loops
	Return Statements
	Error Recovery: Synchronization Strategy
	Using Modern C++20/23 Features
	Visual Summary of Statement Parsing
	Conclusion

	Integrated Testing During Development
	Introduction
	Why Integrated Testing Matters for Parsing
	Categories of Tests to Implement
	Building a Parser Testing Framework with Modern C++
	Token Stream Validation
	Expression Parser Unit Tests
	Statement and Block Tests
	Error Reporting and Recovery Tests
	Automating Test Execution
	Lightweight Testing Libraries in C++20/23
	Building a Grammar Regression Suite
	Conclusion

	Milestone — Parser Generating Valid ASTs for C-Style Code
	Introduction
	What Defines a ``Valid AST'' in a C-Style Language
	AST Node Structure and Ownership
	Parser Responsibilities at This Milestone
	Visual and Debug Tools for AST Inspection
	Verifying AST Validity through Testing
	Integrated Use of C++20/23 Features at Milestone
	Final Checklist for Milestone
	Preparing for Next Stages
	Conclusion

	Advanced Parsing and C-Style Error Handling
	Error Recovery in C-Style Syntax
	Introduction
	Common Sources of Syntax Errors in C-Style Languages
	Two-Phase Strategy: Detection and Recovery
	Implementing synchronize() Function
	ParseError Exception Handling
	AST Recovery Node for Invalid Statements
	Structured Error Messaging and Token Context
	Example: Recovery from Missing Semicolon
	Modern C++ Integration for Safer Error Control
	Testing Error Recovery Scenarios
	Summary and Best Practices
	Conclusion

	Rich Error Messages for Common C-Style Mistakes
	Introduction
	Categories of Common C-Style Syntax Mistakes
	Designing Human-Friendly Messages
	Implementation in C++20/23: Error Reporter Design
	Detecting Specific Patterns for Enhanced Diagnostics
	Enabling Context-Aware Suggestions
	Providing Fix-It Hints (Optional for IDE Integration)
	Example Message Enhancements
	Building a Diagnostic Table for All Grammar Rules
	C++20 Features That Improve Diagnostics
	Testing Diagnostic Accuracy
	Conclusion

	Parser Testing with C-Style Code Patterns
	Introduction
	Purpose of Parser Testing
	C-Style Syntax Patterns to Cover
	Test Architecture in Modern C++
	AST Structure Verification
	Token Snapshot Tests
	Expression Parsing with Precedence
	Error Pattern Testing
	Parser Test Utility Functions
	Using C++20 Features in Parser Tests
	Milestone: Confidence in Parser Robustness
	Conclusion

	Milestone – Robust Parser with Excellent C-Style Error Reporting
	Introduction
	Defining ``Robustness'' in a Parser
	Key Features of the Final Parser at This Stage
	Unified Error Reporting Infrastructure
	Error Resilience with Synchronization Techniques
	AST Structural Integrity
	Parser Test Coverage at Milestone
	Using C++20/23 to Improve Parser Quality
	Debug Mode with Verbose Token and Parse Logs
	Code Snapshot: Final Parser API Example
	Milestone Summary Checklist
	Conclusion

	IV Evaluation Engine
	Value System for C-Style Types
	Type System – int, float, bool, string, arrays
	Core Goals of the Type System
	Defining the Value Type
	Primitive Types Implementation
	Arrays
	Type Promotion and Compatibility Rules
	Using Concepts for Type-Safe Operations (C++20/23)
	Type Inspection and Debugging Utilities
	Interfacing with AST Evaluation
	Future-Proofing and Extensibility
	Conclusion

	Type Checking and Conversion in C-Style Context
	Value Operations Matching C Semantics
	Core Objectives
	Unified Operator Dispatcher Using std::variant and Lambdas
	Arithmetic Operators: +, -, *, /, %
	Comparison Operators: ==, !=, <, >, <=, >=
	Logical Operators: &&, ||, !
	Unary Operators: -, +, !
	Assignment and Compound Assignment: =, +=, -=, etc.
	String and Array Specific Operations
	Operator Precedence and Evaluation Order
	Overflow and NaN Behavior
	Leveraging Modern C++ Features
	Conclusion

	Hands-on — Value System with C-Style Type Behavior
	Defining the Value System
	Boolean Context Evaluation
	Arithmetic Operations (Example: Addition)
	Relational Comparison
	Logical Operations
	String Indexing and Array Access
	Assignment Simulation
	Debugging and Type Introspection
	Example Program Evaluation
	Optional Enhancements
	Conclusion

	Environment and C-Style Scoping
	Symbol Table Design with C-Style Block Scoping
	Goals of the Symbol Table
	Lexical Scoping Model Recap
	Core Structure: Chained Symbol Tables
	Creating and Disposing Scopes
	Handling Shadowing
	Using Concepts for Type Constraints (Optional)
	Scope Levels and Debugging
	Global vs Local Environments
	Integration with AST Evaluation
	Memory and Performance Considerations
	Conclusion

	Variable Resolution Following C Rules
	Overview of C Variable Resolution Semantics
	Environment Model Recap
	Variable Lookup (get Resolution)
	Variable Assignment (assign Resolution)
	Declaring Variables (declare)
	Applying Resolution in AST Evaluation
	Example: Block Scope Simulation
	Enhancing Performance: Optional Variable Resolution Caching
	Scoped Constants (Optional Extension)
	Error Reporting and Diagnostics
	Conclusion

	Lexical Scoping Implementation
	What is Lexical Scoping?
	Environment as Lexical Scope
	Entering and Exiting Lexical Scopes
	Visualizing the Scope Chain
	Scope Chain Traversal in get and assign
	Shadowing and Uniqueness
	Managing the Global Scope
	Integration with Control Structures
	Optional Optimizations
	Future-Proofing
	Conclusion

	Milestone — Working C-Style Variable System
	Goals of the Variable System Milestone
	Architecture Summary
	Key Functional Behavior
	Evaluation Integration Example
	Demonstration and Test Case
	Error Handling Examples
	Design Conformance to C Semantics
	Modern C++ Enhancements
	Diagnostic and Debugging Tools
	Summary

	Expression Evaluation in C-Style
	Binary and Unary Operations with C Precedence
	Operator Categories in C
	Expression Representation in AST
	Evaluating Binary Expressions
	Evaluating Unary Expressions
	Parser: Operator Precedence Parsing (Shunting Yard or Precedence Climbing)
	Operator Table and Precedence Metadata
	Short-Circuit Evaluation
	C++20/23-Specific Enhancements
	Validation and Diagnostics
	Conclusion

	Assignment Operations and Side Effects
	Assignment as an Expression in C
	AST Representation of Assignments
	Evaluation Strategy
	Side Effects and Evaluation Order
	Variable Tracking for Side Effects
	Compound Assignment as Syntax Sugar
	Postfix and Prefix Increment/Decrement (Optional)
	Constant Assignments and Immutability (Optional)
	Expression Sequencing and Return Value
	Test Case Examples
	Conclusion

	Variable Lookup Following C Scoping Rules
	C Variable Lookup Semantics
	Environment Chain Overview
	Lookup Algorithm: C Rules in Practice
	Expression Evaluation Integration
	Handling Shadowing
	Example Execution Chain
	Lookup Failure Handling
	Optional Optimization: Static Resolution Hints
	Modern C++ Enhancements
	Summary of Lookup Behavior
	Conclusion

	Hands-on — Calculator Supporting C-Style Expressions
	Key Features
	Value System
	Environment for Variable Support
	Expression AST Design
	Recursive Descent Parser with Precedence
	Main Loop (REPL-like)
	Example Interactions
	Future Extensions
	Conclusion

	Enhanced REPL – Version 2
	Expression Evaluation in Interactive Mode
	Goals of Interactive Expression Evaluation
	Essential Architecture Components
	Read-Eval-Print Loop Implementation
	Supported Expression Types
	Persistent Evaluation Context
	Error Detection and Recovery
	C++20/23 Features in Use
	Example REPL Session
	Test Cases for Validation
	Future Extensions
	Conclusion

	Variable Persistence with C-Style Scoping
	C-Style Scoping Rules Recap
	Persistent Global Environment
	Environment Chaining for Block Scoping
	Variable Assignment and Update
	Shadowing and Restoration
	REPL Use Case
	Value Consistency and Type Safety
	Error Reporting and Shadow Awareness
	C++20/23 Features Used
	Summary Table
	Conclusion

	Enhanced Debugging Output for Language Constructs
	Objectives of Enhanced Debugging
	Core Debug Output Components
	Tracing Variable Access and Mutation
	Tracing Expression Evaluation
	Tracing Scope Creation and Destruction
	Optional: AST Structure Visualization
	Enhanced Error Context and Reporting
	Toggleable Debug Mode
	Summary of Debugging Features
	Conclusion

	Milestone — Interactive C-Style Expression Evaluator
	Introduction
	Milestone Objectives
	Components Realized in This Milestone
	Persistent Evaluation Environment
	Expression Evaluation Lifecycle
	Modern C++ Integration
	Debugging and Trace Output (Optional)
	User Experience
	Example Session
	Summary Table of Supported Features
	Roadmap Beyond This Milestone
	Conclusion

	V Control Flow and Functions
	C-Style Statement Execution Engine
	Block Scoping with {} Delimiters
	Purpose of Block Scoping
	Conceptual Model
	Parser Recognition of Block Statements
	Executing a Block Statement
	Shadowing and Lifetime Behavior
	Integration with Control Flow
	Debug Output for Block Scope
	C++20/23 Enhancements
	Example Execution Flow
	Summary
	Conclusion

	Conditional Statements — if, else if, else
	Role of Conditional Statements
	Grammar and AST Representation
	Parsing Strategy
	Execution Logic
	Block Isolation and Scope
	Error Handling
	Debug Output (Optional)
	Example Use Case
	C++20/23 Features in Use
	Future Extensions
	Summary Table
	Conclusion

	Loop Constructs — while, for, do-while
	Overview of Loop Constructs
	Common Interpreter Requirements
	while Loop
	do-while Loop
	for Loop
	Break and Continue Handling
	Debugging Trace Support
	C++20/23 Modernization Techniques
	Example Execution
	Summary
	Conclusion

	Milestone — Full C-Style Statement Interpreter
	Milestone Goals
	Structural Overview
	Statement Execution Engine
	Scope and Environment Integration
	Supported Language Features at This Stage
	Example Program Execution
	Modern C++ Practices in Use
	Debug and Tracing Infrastructure
	Stability and Error Handling
	Preparing for Next Stage
	Conclusion

	Function Implementation in C-Style
	Function Declarations — int func(int x, float y)
	Purpose and Scope
	Syntax Definition
	AST Representation
	Symbol Table Registration
	Environment Preparation for Calls
	Return Mechanism
	Type Safety and C++20/23 Usage
	Example
	Error Cases
	Summary
	Conclusion

	Call Stack and Activation Records
	What Is the Call Stack?
	Structure of an Activation Record
	The Call Stack Implementation
	Function Call Flow with the Stack
	Benefits of a Proper Call Stack
	Recursive Example
	Debugging Support
	C++20/23 Modern Practices
	Future Extensions
	Summary Table
	Conclusion

	Parameter Passing and Type Checking
	Fundamentals of C-Style Parameter Passing
	Internal Representation of Parameters
	Argument Evaluation and Matching
	typeMatches Implementation
	Value Binding in Local Scope
	Error Handling
	Debug Support
	C++20/23 Usage
	Realistic Example
	Preparing for Next Stage
	Summary Table
	Conclusion

	Return Statement Handling
	Purpose and Behavior of return
	AST Representation of Return Statements
	Runtime Handling via Exception-like Signal
	Handling in the Caller Context
	Type Checking Logic
	Early Return in Nested Blocks
	Debugging and Diagnostics
	C++20/23 Techniques
	Sample Scenario
	Error Scenarios
	Summary Table
	Conclusion

	Hands-on — C-style Function Support with Recursion
	Step-by-Step Overview
	Parsing and AST Construction
	Registering the Function
	Calling the Function
	Handling Recursion
	Runtime Value Definitions
	Call Stack Visualization
	Test Case: Recursion in REPL
	C++20/23 Highlights
	Summary Table
	Conclusion

	Advanced C-Style Function Features
	Function Pointers and First-Class Functions
	Understanding the Concept
	Function Pointer Syntax Design
	Internal Representation: Function Value Type
	Storing and Resolving Function Values
	Calling via Function Variable
	Type Checking Function Signatures
	First-Class Function Operations
	Modern C++ Support
	Debugging and Tracing
	Summary Table
	Conclusion

	Local Function Declarations
	Local Function Use Case
	Parsing Local Functions
	Environment and Scope Design
	Resolving Function References
	Scoping Behavior
	Recursive Support in Locals
	Return Scoping and Error Prevention
	Diagnostics and Debug Support
	C++20/23 Techniques
	Summary Table
	Conclusion

	Built-in Function Integration
	What Are Built-in Functions?
	Unified Function Representation
	Defining Built-in Functions
	Calling Built-in Functions at Runtime
	Type-Checking and Safety
	Registering Built-in Functions
	Reflection and Debugging Support
	Modern C++ Integration
	Example: Advanced Built-in
	Summary Table
	Conclusion

	Milestone — Complete C-Style Function System
	Architectural Overview
	Execution Pipeline Summary
	Language Capabilities Achieved
	Modern C++ Implementation Features
	Testing and Validation Cases
	Developer-Focused Extensions
	Diagnostic and Debugging Support
	Final Architecture Snapshot
	Conclusion

	VI Collections and Advanced Features
	Arrays and C-Style Data Structures
	Static and dynamic array implementation
	Introduction
	Conceptual Design: Static vs Dynamic
	Type Representation
	Declaration Syntax and Semantics
	Runtime Value Model
	Array Initialization
	Access and Bounds Checking
	Array Type Inference and Consistency
	Array Utilities and Built-ins
	C++20/23 Techniques
	Error Handling
	Summary
	Conclusion

	Array Indexing with Bounds Checking
	Introduction
	Understanding Indexing Semantics
	Internal Value Representation
	Bounds Checking Logic
	Performance Consideration
	Compiler-Level Optimizations and C++ Tools
	Error Diagnostics and User Feedback
	Extended Feature: Runtime Safe Mode
	Integration into AST and REPL
	Test Cases
	Summary
	Conclusion

	Pointer-like Operations (Optional)
	Introduction
	Design Philosophy
	Value Representation for Pointers
	Implementing & (Address-of)
	Implementing * (Dereference)
	Pointer Arithmetic (Simulated)
	Simulating Array Decay to Pointer
	Debug and Trace Output
	C++20/23 Enhancements
	Test Cases
	Summary
	Conclusion

	Hands-on — C-Style Array Manipulation
	Introduction
	Step-by-Step Implementation
	Test Programs
	Debug and REPL Tracing
	C++20/23 Features in Use
	Summary
	Conclusion

	Standard Library for C-Style Language
	Built-in Functions — printf, scanf Equivalents
	Introduction
	Objective: Design Goals
	Built-in print() Equivalent (printf-like)
	Built-in input() Equivalent (scanf-like)
	REPL Integration
	Test Scenarios
	C++20/23 Features Used
	Summary
	Conclusion

	File I/O Operations
	Introduction
	Design Considerations
	File Handle Representation
	Built-in: fopen(filename, mode)
	Built-in: fclose(file)
	Built-in: fprintf(file, format, ...)
	Built-in: freadline(file) and fwrite(file, data)
	File I/O in the REPL and Scripting
	Modern C++20/23 Use
	Summary
	Conclusion

	String Manipulation Utilities
	Introduction
	Internal Representation
	Core Built-in Functions
	Concatenation and Comparison
	Search and Replace Utilities
	Advanced String Utilities
	Modern C++20/23 Concepts in Practice
	REPL Examples and Integration
	Summary
	Conclusion

	Milestone — Usable Standard Library for Our Language
	Introduction
	Components of the Standard Library
	Architectural Strengths of the Current Design
	Usability from a Language User's View
	Modern C++ Foundation
	Documentation Strategy
	Future Expansion Plan
	Summary of This Milestone
	Conclusion

	VII Production Quality Features
	Comprehensive Error Handling
	Runtime Error Reporting with C-Style Context
	Introduction
	Runtime Error System Requirements
	Error Kind Classification (Structured Typing)
	Error Class Design in Modern C++
	Generating Errors in the Evaluation Engine
	Centralized Error Display Logic
	REPL vs File Execution Behavior
	Benefits of Structured Error Reporting
	Error Propagation and Catching (Optional Feature)
	Internal Logging and Debugging
	Future Work
	Summary Checklist
	Conclusion

	Stack Traces for Function Calls
	Overview
	Motivation for Stack Traces in Interpreters
	Architectural Design of the Call Stack
	Entering and Exiting Functions
	Capturing the Stack Trace on Error
	Stack Trace Presentation
	Special Considerations for REPL
	Recursive and Deep Call Chains
	Filtering Internal Frames
	Language-Level Integration (Optional)
	Benefits of a Structured Stack Trace System
	Summary and Next Steps
	Conclusion

	Memory Error Detection and Reporting
	Introduction: The Role of Memory Error Handling in C-Style Interpreters
	Understanding Memory Semantics in C-Style Languages
	Virtual Memory Representation
	Use-After-Free Detection
	Out-of-Bounds Access Detection
	Null Pointer and Uninitialized Access
	Enhanced Error Reporting
	Debugging Tools and Memory State Dump
	Optional: Tagged Memory Blocks
	Preventing Memory Leaks
	C++20/23 Features Used
	Summary of Memory Error Handling Capabilities
	Conclusion

	Hands-on — Robust Error Handling System
	Overview
	Design Objectives
	Core Error Structure
	Printing a Structured ErrorReport
	Integrating with Runtime Execution
	Top-Level Catch and Error Propagation
	Lexical and Syntax Error Integration
	Extending with Logging
	C++20/23 Features in Use
	Debug Commands in REPL
	Example Errors in Action
	Test Coverage Strategy
	Benefits and Future Expansion
	Conclusion

	Debugging and Development Tools
	AST Visualization for C-Style Constructs
	Introduction
	Goals of AST Visualization
	AST Node Representation
	Visualization of C-Style Constructs
	Integration into REPL
	Exporting AST for External Tools
	Modern C++ Enhancements
	Use Cases
	Testing Visualization Output
	Conclusion

	Step-by-Step Execution Tracing
	Introduction
	Objectives of Execution Tracing
	Design Strategy
	Tracer Interface Design
	Instrumenting Execution Engine
	Sample Console Tracer Implementation
	Step Mode vs Auto Mode
	Trace Output Example
	Trace Control API (Advanced Use)
	Modern C++20/23 Enhancements
	Test Coverage and Validation
	Conclusion

	Performance Profiling Integration
	Introduction
	Objectives of Performance Profiling
	Instrumentation Architecture
	Measuring Execution Time
	Profiling Control Flow and Statements
	Memory Access Profiling (Optional)
	Report Generation and Visualization
	Leveraging Modern C++ Features
	Integration with Debugging and Tracing
	Test Cases and Validation
	Conclusion

	Milestone — Complete Debugging Toolkit
	Introduction
	Definition of ``Complete Debugging Toolkit''
	Implementation Strategy
	Step Execution and Breakpoint Engine
	Watchpoints and Variable Monitoring
	Value and Scope Inspector
	Call Stack View and Navigation
	Profiling Summary Integration
	Enhanced Error Reporting and Live Fixing
	Modern C++ Tools Used
	Final Milestone Checklist
	Conclusion

	File Execution and Script Support
	Executing .lang Files from Command Line
	Introduction
	CLI Design Principles
	Parsing Command Line Arguments
	File Loading and Parsing
	Error Handling for Script Execution
	Flags and Options for Script Control
	Integration with REPL and Standard I/O
	Modern C++ Enhancements
	Testing and Validation
	Sample Execution Session
	Conclusion

	Basic Module/Include System
	Introduction
	Design Philosophy
	Syntax Proposal
	Parser and AST Extension
	Interpreter Execution Logic
	Scope Management: Global vs Module
	Path Resolution
	Preventing Redundant Inclusion
	Command-Line and Module Search Paths
	Modern C++ Enhancements
	Example Usage
	Conclusion

	Command-Line Interface Design
	Introduction
	CLI Roles and Requirements
	C++20/23-Oriented CLI Architecture
	CLI Syntax Design
	CLI Argument Parsing in Modern C++
	Dispatch Logic
	Environment Injection
	Error and Exit Code Handling
	Logging and Output
	Testing and Validation
	Extensibility for Future Features
	Conclusion

	Milestone — Standalone Interpreter for Our C-Style Language
	Overview
	Interpreter Entry Point: main
	File Execution Integration
	REPL Fallback
	Integration of All Language Subsystems
	Deployment Readiness
	Exit Codes and External Tooling
	Optional: Static Embedding or Packaging
	Summary: What This Milestone Unlocks

	VIII Optimization and Advanced Topics
	Performance Optimization
	Optimizing C-style expression evaluation
	Identifying Performance Bottlenecks
	Evaluation Model: Recursive vs Iterative
	Optimizing Constant Expressions: Folding and Hoisting
	Short-Circuit Boolean Evaluation
	Memory Efficiency and Value Reuse
	AST Layout for Cache Locality
	Dispatch Optimization: std::visit vs if constexpr
	Operator Table Optimization
	Inlining and Precomputed Expression Paths
	Testing and Profiling Optimizations
	Summary

	Memory Management for Language Runtime
	Introduction
	Memory Categories in C-Style Languages
	Modern C++ Memory Tools for Interpreter Design
	Stack Frame and Local Variable Lifetime
	Arena Allocation for AST and Environments
	Managing Heap-like Memory Safely
	Avoiding Memory Fragmentation
	Memory Profiling and Leak Detection
	Object Lifetime Contracts
	Memory Error Prevention
	Summary

	Profiling and Bottleneck Identification
	Introduction
	Why Profiling is Critical
	Instrumentation Using Modern C++
	Building a Centralized Profiler
	Targeting Hot Paths
	External Tools for Full-Scale Profiling
	Profiling the Interpreter Lifecycle
	Interpreted Language Profiling Considerations
	Summary Reports
	Summary

	Hands-on — Performance Measurement and Tuning
	Overview
	Setting Up a Benchmark Harness
	Tuning Evaluation Performance
	Memory Allocation Reduction
	Optimize Variable Lookup
	Loop Execution Optimizations
	Real-World Benchmarking Scripts
	Multi-phase Optimization Loop
	Other C++20/23 Features for Performance
	Summary

	Bytecode Virtual Machine (Optional)
	Compiling C-Style Constructs to Bytecode
	Introduction
	Bytecode Overview
	Compiler Architecture
	Expression Compilation
	Control Flow Compilation
	Loop Constructs
	Function Compilation
	Optimization Before Emission (Optional)
	Bytecode Format Design Considerations
	Integration with VM
	Summary

	Stack-Based VM for Better Performance
	Introduction
	Why Stack-Based?
	Core Components of the Stack-Based VM
	Call Stack for Function Support
	Stack Discipline and Scope
	Performance Considerations
	Exception-Free Execution
	Extending the VM with New Instructions
	Instruction Tracing for Debugging
	Summary

	Instruction Set Design for C-Style Operations
	Introduction
	Instruction Set Requirements for C Semantics
	Instruction Structure
	Expression Evaluation Instructions
	Control Flow Instructions
	Function Instructions
	Type-Specific Operations
	Variable Instructions
	Literal Handling
	Special and System Instructions
	Instruction Encoding Strategy
	Expanding the Instruction Set in Future
	Summary

	Advanced Milestone — High-Performance VM Option
	Introduction
	Key Goals for High-Performance VM
	Core Optimization Strategies
	Register-Based VM (Alternative to Stack-Based)
	Inlined Built-ins and Fast-Path Execution
	Function Call Optimization
	Parallel Execution and Fibers (Optional)
	Performance Metrics and Tuning
	Modular Design for Future JIT
	Summary

	Language Distribution and Embedding
	Embedding Our Language in C++ Applications
	Introduction
	Embedding Architecture Overview
	Creating a C++ Embedding Interface
	Host Binding: From C++ to the Interpreter
	Execution Context Control
	Embedding via Scripting Files
	Bi-directional Communication
	Error Handling Strategy
	Embedding Use Cases
	Modern C++ Features Used
	Summary

	Creating Language Runtime Library
	Introduction
	Definition and Purpose of the Runtime Library
	Runtime Library Structure
	API Interface: Clean and Stable
	Compilation and Export Mechanics
	C++20/23 Features for Cleaner Runtime
	Standard Library Initialization
	Language Runtime as a Static vs. Dynamic Library
	Versioning and Compatibility
	Example Usage in a Host App
	Testing and Continuous Validation
	Distribution Guidelines
	Conclusion

	Cross-Platform Distribution
	Introduction
	Target Platforms and Considerations
	Using CMake for Portable Builds
	Handling Platform-Specific Differences
	Compiler Compatibility
	Packaging for Distribution
	Testing Across Platforms
	Optional: WebAssembly (WASI) Target
	API Compatibility Across Platforms
	Summary and Best Practices
	Conclusion

	Final Milestone – Production-ready C-style Language
	Introduction
	Checklist for Production Readiness
	Packaging and Deployment
	Maintainability
	Extensibility
	Final Words

