https://www.simplifycpp.org

u d1(e]nl: olde: J

Prepared by: Ayman Alheraki

First Edition

Functional Programming Using Modern C+-+

Prepared By Ayman Alheraki
simplifycpp.org

January 2025

Contents

Contents

Author's Preface

1

Introduction to Functional Programming

1.1 What is Functional Programming?

1.2

1.3

1.1.1 Core Concepts of Functional Programming
1.1.2 Benefits of Functional Programming
1.1.3 Functional Programming in Modern C++
1.1.4 Example: Functional Programming in C++
115 Summary
Principles of Functional Programming: Pure Functions, Immutability,

Function Composition
1.2.1 Pure Functions
1.2.2 Immutability
1.2.3 Function Composition
1.2.4 Combining Principles in Practice

1.25 Summary

Benefits of Functional Programming in Software Development

1.3.1 Predictability and Readability

2

1.3.2 Easier Testing and Debugging 34
1.3.3 Concurrency and Parallelism 35
1.3.4 Modularity and Reusability 36
1.3.5 Maintainability and Scalability 37
1.3.6 Real-World Applications 38
1.3.7 Summary 40
2 Why Modern C++7? 41
2.1 The Evolution of C++ and Its Support for Functional Programming . . . 41
2.1.1 Early Days of C++: Procedural and Object-Oriented Focus 41
2.1.2 CH+11: A Paradigm Shift 42
2.1.3 CH+14: Refining Functional Programming Features 44
2.1.4 C++17: Expanding Functional Capabilities 45
2.1.5 C++20: A Functional Programming Powerhouse 47
2.1.6 Summary 49

2.2 Modern C++ Features Supporting Functional Programming (C++11 to
C++20and Beyond) 49
2.2.1 CH+11: Laying the Foundation 50
2.2.2 CH+14: Refining Functional Programming Features 51
2.2.3 CH++17: Expanding Functional Capabilities 52
2.24 C++420: A Functional Programming Powerhouse 54
2.2.5 Beyond C++20: The Future of Functional Programming in C++ . 56
2.2.6 SUMMATY 57

2.3 Comparison Between Functional Programming and Object-Oriented
Programming (OOP) in CH++ 58
2.3.1 Core Concepts 58
2.3.2 Comparison of Key Features 59

2.3.3 Example: FP vs. OOPin C++ 60

2.3.4 Strengths and Weaknesses 62
2.3.5 When to Use FP vs. OOPin C++ 63
2.3.6 Combining FP and OOP in Modern C++ 64
237 Summary 65
3 Development Tools 67
3.1 Setting Up a Modern C++ Development Environment (e.g., CMake,
Conan, Modern C++ Tools) oo 67
3.1.1 Why a Modern Development Environment Matters 67
3.1.2 Essential Tools for Modern C++ Development 68
3.1.3 Example: Setting Up a Functional C++ Project 73
3.1.4 Summary 75
3.2 Using Modern Compilers (GCC, Clang, MSVC) with C++420 Support . . . 76
3.2.1 Why Use Modern Compilers? 76
3.2.2 GCC (GNU Compiler Collection) 76
323 Clang 78
3.24 MSVC (Microsoft Visual C++) 80
3.2.5 Cross-Compiler Tips 82
3.2.6 Summary 83
3.3 Static Analysis Tools and Functional Testing 83
3.3.1 Static Analysis Tools 83
3.3.2 Clang-Tidy 83
3.3.3 Cppcheck 85
3.3.4 Functional Testing 86
3.35 Google Test 87
3.3.6 Catch2. 88
3.3.7 Integrating Static Analysis and Testing into CI/CD 90

3.3.8 Summary 91

4 Pure Functions 92
4.1 Concept of Pure Functions and How to Implement Them in C++ 92
4.1.1 What is a Pure Function? 92

4.1.2 Benefits of Pure Functions 93
4.1.3 Implementing Pure Functions in C++ 94
4.1.4 Example of an Impure Function 94

4.1.5 Common Pitfalls and How to Avoid Them 97
4.1.6 SUMMATYo 99

4.2 Benefits of Pure Functions in Avoiding Side Effects 99
4.2.1 What Are Side Effects? 99
4.2.2 Why Are Side Effects Problematic? 100
4.2.3 How Pure Functions Avoid Side Effects 101
4.2.4 Benefits of Avoiding Side Effects 102

4.2.5 Real-World Applications of Pure Functions 105
4.2.6 SUMMATY 107

5 Immutability 109
5.1 Using const and constexpr to Ensure Immutability 109
5.1.1 What is Immutability? 109

5.1.2 The const Keyword L 110
5.1.3 The constexpr Keyword 112

5.1.4 Practical Examples o 113

5.1.5 Benefits of Using const and constexpr 115

5.1.6 Summary 116

5.2 Immutable Data Structures in C++. 117
5.2.1 What Are Immutable Data Structures? 117
5.2.2 Benefits of Immutable Data Structures 117
5.2.3 Implementing Immutable Data Structures in C++ 118

5.2.4 Practical Applications of Immutable Data Structures 123

5.2.5 Summary 125

6 First-Class Functions 126
6.1 Using Functions as Values 126
6.1.1 What Are First-Class Functions? 126
6.1.2 Lambda Expressions in C++ 127
6.1.3 Using std::function for Type Safety 128
6.1.4 Higher-Order Functions 130
6.1.5 Storing Functions in Data Structures 131
6.1.6 Summary 133

6.2 Storing Functions in Variables and Passing Them as Arguments 134
6.2.1 Storing Functions in Variables 134
6.2.2 Passing Functions as Arguments 136
6.2.3 Practical Applications L. 138
6.2.4 SUmmary 140

7 Lambda Functions 142
7.1 Writing Lambda Functions in C++ 142
7.1.1 What Are Lambda Functions? 142

7.1.2 Syntax of Lambda Functions 142
7.1.3 Basic Examples of Lambda Functions. 143
7.1.4 Capturing Variables in Lambda Functions 144

7.1.5 Using Lambda Functions with Standard Algorithms 146
7.1.6 Advanced Lambda Features 148
717 Summary e 149

7.2 Capture Clauses and Their Use in Lambda Functions 149

7.2.1 What Are Capture Clauses? 149

7.2.2 Syntax of Capture Clauses 150
7.2.3 Types of Capture Clauses 150
724 SUMMATY oo e 156

8 Function Composition 158
8.1 Composing Functions Using std::bind and std::function 158
8.1.1 What is Function Composition? 158
8.1.2 std::function: A Type-Safe Function Wrapper 158
8.1.3 std::bind: Binding Arguments to Functions 160
8.1.4 Composing Functions Using std::bind and std::function 161
8.1.5 Summary 165

8.2 Using Modern Libraries for Function Composition 166
8.2.1 Range-v3: A Modern Range Library 166
8.2.2 Boost.Hana: A Modern Metaprogramming Library 169
8.2.3 Practical Applications of Modern Libraries for Function Composition 172
8.2.4 Summary 174

9 Templates and Functional Programming 176
9.1 Using Templates to Create Generic Functions 176
9.1.1 What Are Templates?, 176
9.1.2 Syntax of Function Templates 176
9.1.3 Example: A Simple Generic Function 177
9.1.4 Example: Generic Function with Multiple Types 178
9.1.5 Example: Generic Higher-Order Function 179
9.1.6 Example: Generic Function Composition 180
9.1.7 Example: Generic Filter Function 181
9.1.8 Example: Generic Reduce Function 182

9.1.9 Summary 183

9.2 Variadic Templates and Their Use in Functional Programming 183
9.2.1 What Are Variadic Templates? 184
9.2.2 Syntax of Variadic Templates 184
9.2.3 Example: A Simple Variadic Function 184
9.2.4 Example: Variadic Function Composition 185
9.2.,5 Example: Variadic Map Function 186
9.2.6 Example: Variadic Filter Function 187
9.2.7 Example: Variadic Reduce Function 188
9.2.8 Example: Variadic Zip Function. 189
0.2.9 Summary 190

10 Expression Templates 192

10.1 Concept of Expression Templates and How to Use Them for Performance
Optimization 192
10.1.1 What Are Expression Templates? 192
10.1.2 Benefits of Expression Templates 193
10.1.3 Basic Example: Vector Addition Without Expression Templates . . 193
10.1.4 Using Expression Templates for Vector Addition 195
10.1.5 Advanced Example: Matrix Multiplication with Expression

Templates 198
10.1.6 Summary 201

10.2 Practical Examples of Expression Templates in C++ 202
10.2.1 Example: Optimizing Vector Addition 202
10.2.2 Example: Optimizing Matrix Multiplication 205
10.2.3 Example: Optimizing Element-Wise Operations 208

10.2.4 Summary 211

11 Higher-Order Functions 213
11.1 Defining and Using Higher-Order Functions in C++. 213
11.1.1 What Are Higher-Order Functions? 213
11.1.2 Defining Higher-Order Functions 214
11.1.3 Returning Functions from Higher-Order Functions 216
11.1.4 Practical Applications of Higher-Order Functions 218
1115 Summary oo 220
11.2 Examples of Functions Like map, filter, and reduce 221
11.2.1 The map Function 221
11.2.2 The filter Function 224
11.2.3 The reduce Function 226
11.2.4 Practical Applications of map, filter, and reduce 228
11.2.5 Summary 231
12 Modern Functional Libraries 233
12.1 Using Libraries Like *Range-v3* and *Boost.Hana* to Support Functional
Programmingo 233
12.1.1 Range-v3: A Modern Range Library 233
12.1.2 Boost.Hana: A Modern Metaprogramming Library 236
12.1.3 Practical Applications of Modern Libraries for Functional
Programming o 239
12,14 Summary 242
12.2 Practical Examples of Using These Libraries 242
12.2.1 Example: Data Processing Pipeline with Range-v3 243
12.2.2 Example: Compile-Time Computations with Boost.Hana 244
12.2.3 Example: Combining Range-v3 and Boost.Hana 246
12.2.4 Example: Advanced Data Processing with Range-v3 247

12.2.5 Summary 249

10

13 Memory Management in Functional Programming 251

13.1 Using Smart Pointers (std::unique ptr, std::shared ptr) in Functional

Programming Lo 251
13.1.1 Overview of Smart Pointers 252
13.1.2 Smart Pointers and Immutability 252
13.1.3 Smart Pointers in Pure Functions 253
13.1.4 Smart Pointers and Higher-Order Functions 253
13.1.5 Smart Pointers and Functional Data Structures 254
13.1.6 Example: Using Smart Pointers in a Functional Context 254
13.1.7 Conclusion 256

13.2 Avoiding Memory Leaks with Functional Programming 256
13.2.1 Understanding Memory Leaks 257
13.2.2 Functional Programming Principles for Avoiding Memory Leaks . . 257
13.2.3 Leveraging RAII and Smart Pointers 258
13.2.4 Functional Data Structures and Memory Safety 260
13.2.5 Exception Safety and Functional Programming 262
13.2.6 Best Practices for Avoiding Memory Leaks 263
13.2.7 Conclusion 263

14 Performance Optimization 265
14.1 Techniques for Optimizing Performance in Functional Programming 265
14.1.1 Understanding Performance Challenges in Functional Programming 265
14.1.2 Leveraging Immutability Efficiently 266
14.1.3 Optimizing Pure Functions 268
14.1.4 Efficient Use of Higher-Order Functions 270
14.1.5 Optimizing Recursion 271
14.1.6 Leveraging Modern C++ Features 272
14.1.7 Conclusion 273

11

14.2 Using constexpr and noexcept to Optimize Code 273
14.2.1 Understanding constexpr 274
14.2.2 Benefits of constexpr in Functional Programming 275
14.2.3 Understanding noexcept L. 276
14.2.4 Benefits of noexcept in Functional Programming 277
14.2.5 Combining constexpr and noexcept 278
14.2.6 Practical Applications in Functional Programming 279
14.2.7 Conclusion 280

15 Concurrency and Functional Programming 282

15.1 Using Functional Programming in Concurrent Applications 282
15.1.1 The Challenges of Concurrency 282
15.1.2 Immutability and Concurrency 283
15.1.3 Pure Functions and Concurrency 284
15.1.4 Higher-Order Functions and Concurrency 285
15.1.5 Functional Concurrency Patterns 287
15.1.6 Conclusion 290

15.2 Examples of Using std::async and std::future 291
15.2.1 Overview of std::async and std::future 291
15.2.2 Basic Example: Asynchronous Computation 292
15.2.3 Example: Parallel Map with std::async 293
15.2.4 Example: Composing Asynchronous Tasks 295
15.2.5 Example: Asynchronous Pipeline 296
15.2.6 Example: Exception Handling in Asynchronous Tasks 298
15.2.7 Example: Using std::future with Functional Composition 299

15.2.8 Conclusion 300

12

16 Building Functional Libraries 301
16.1 How to Design Libraries That Support Functional Programming 301
16.1.1 Core Principles of Functional Programming 301
16.1.2 Designing for Immutability 302
16.1.3 Supporting Pure Functions 304
16.1.4 Leveraging Higher-Order Functions 305
16.1.5 Providing Declarative Abstractions 306
16.1.6 Ensuring Composability 308
16.1.7 Example: Designing a Functional Library 308
16.1.8 Conclusion 311

16.2 Examples of Functional Libraries Written in C++ 311
16.2.1 Range-v3 311
16.2.2 FunctionalPlus 312
16.2.3 Hana o 314
16.2.4 CppMonad 315
16.2.5 ETL (Embedded Template Library) 316
16.2.6 Mach7 318
16.2.7 Conclusion 319

17 Case Studies

321

17.1 Practical Applications of Functional Programming in Real-World Projects 321

17.1.1
17.1.2
17.1.3
17.14
17.1.5
17.1.6
17.1.7

Financial Systems 0oL 321
Data Processing and Analytics 323
Game Developmento 324
Web Development 326
Embedded Systems 327
Case Study: Functional Programming in a Real-World Project . . . 328
Conclusion 330

13

17.2 Analysis of Functional Code Written in C+4 330
17.2.1 Key Characteristics of Functional Code in C++ 331
17.2.2 Example: Functional Code for Data Processing 332
17.2.3 Example: Functional Code for Recursive Algorithms 334
17.2.4 Example: Functional Code with Higher-Order Functions 335
17.2.5 Common Pitfalls and Best Practices 337
17.2.6 Conclusion 338

18 Functional Programming in Games and Graphics 339

18.1 Using Functional Programming in Game and Graphics Development 339
18.1.1 Key Challenges in Game and Graphics Development 340
18.1.2 Immutability in Game State Management 340
18.1.3 Pure Functions for Game Logic 341
18.1.4 Higher-Order Functions for Al and Behavior Trees 342
18.1.5 Declarative Rendering Pipelines 343
18.1.6 Concurrency and Parallelism 344
18.1.7 Functional Reactive Programming (FRP) for User Input 345
18.1.8 Conclusion 347

18.2 Examples of Using Functional Programming with Libraries Like OpenGL
and Vulkan Lo 347
18.2.1 Functional Programming with OpenGL 347
18.2.2 Functional Programming with Vulkan 350
18.2.3 Functional Reactive Programming (FRP) for Event Handling . . . 354
18.2.4 Conclusion 356

19 Functional Programming in Operating Systems and Embedded Systems 357

19.1 Applications of Functional Programming in Operating Systems and

Embedded Systemso 357

14

19.1.1 Key Challenges in Operating Systems and Embedded Systems . . . 358
19.1.2 Immutability in System State Management 358
19.1.3 Pure Functions for System Logic, 359
19.1.4 Higher-Order Functions for Device Drivers 361
19.1.5 Declarative System Configuration 362
19.1.6 Concurrency and Parallelism 363
19.1.7 Functional Reactive Programming (FRP) for Event Handling . . . 364
19.1.8 Conclusion 366
19.2 Examples of Using Functional Programming in Firmware Development . . 366
19.2.1 Key Challenges in Firmware Development 366
19.2.2 Immutability in Firmware State Management 367
19.2.3 Pure Functions for Firmware Logic 368
19.2.4 Higher-Order Functions for Hardware Abstraction 369
19.2.5 Declarative Firmware Initialization 370
19.2.6 Concurrency and Parallelism in Firmware 372
19.2.7 Functional Reactive Programming (FRP) for Event Handling . . . 373
19.2.8 Example: Functional Programming in a Real-World Firmware
Project 374
19.2.9 Conclusion 377
20 Appendices 378
20.1 Appendix: C+420 and Beyond Features 378
20.1.1 Detailed Explanation of New Features in C++20 That Support
Functional Programming 378
20.1.2 Concepts 378
20.1.3 Ranges 380
20.1.4 Coroutines 381

20.1.5

stdispan ... L L 384

20.1.6 std:format oo 385
20.1.7 std:jthread oo 386
20.1.8 Conclusion 388
20.2 Examples of Using std::ranges, std::span, and std::format 388
20.2.1 Using std::ranges for Functional-Style Data Processing 388
20.2.2 Using std::span for Safe and Efficient Data Access 390
20.2.3 Using std::format for Type-Safe String Formatting 391
20.2.4 Combining std::ranges, std::span, and std::format 392
20.2.5 Conclusion 394
21 References and Additional Resources 395
21.1 Recommended Books and References for Deepening Understanding of
Functional Programming L oL 395
21.1.1 Books on Functional Programming 395
21.1.2 Books on Modern C++4 and Functional Programming 398
21.1.3 Academic Papers and Articles L. 399
21.1.4 Online Resources and Tutorials 400
21.1.5 Conclusion 402
21.2 Websites and Online Courses, 402
21.2.1 Websites for Learning Functional Programming 402
21.2.2 Online Courses for Learning Functional Programming 405
21.2.3 Interactive Learning Platforms 407
21.2.4 Conclusion 408
22 Glossary 409
22.1 Explanation of Technical Terms Used in the Book 409
22.1.1 Functional Programming Terms 409

22.1.2 CH+-Specific Terms 412

16

22.1.3 General Programming Terms

22.1.4 Conclusion

Author's Preface

77'

Welcome to "Functional Programming Using Modern C++

This book is the culmination of decades of experience working with C++-, a language
that has been my trusted companion for over 30 years. Throughout my journey, I have
witnessed the evolution of C++ from its early days to the powerful, modern language it
is today. With the introduction of functional programming features in Modern C++
(C++11 and beyond), the language has taken a significant leap forward, enabling

developers to write cleaner, more expressive, and more maintainable code.

Functional programming is not just a paradigm; it is a mindset that encourages us to
think differently about how we solve problems. By embracing immutability, pure
functions, and higher-order abstractions, we can create software that is not only efficient
but also easier to reason about and test. This book is designed to guide you through the
principles of functional programming and demonstrate how they can be seamlessly

integrated into Modern C++.

Whether you are a seasoned C++ developer or someone exploring functional
programming for the first time, this book aims to provide you with the tools and
knowledge to harness the full potential of Modern C++. We will explore key concepts
such as lambda expressions, ranges, monads, and more, all while keeping a practical

focus on real-world applications.

My goal is to make functional programming accessible and relevant to C+-+ developers.

17

18

I hope this book inspires you to embrace these techniques and incorporate them into
your projects, unlocking new levels of productivity and creativity.

Thank you for joining me on this journey. Let’s dive into the world of functional
programming with Modern C++ and discover how it can transform the way we write
code.

Happy coding!

Ayman Alheraki

Chapter 1

Introduction to Functional Programming

1.1 What is Functional Programming?

Functional Programming (FP) is a programming paradigm that treats computation as
the evaluation of mathematical functions and avoids changing state and mutable data.
It emphasizes the use of pure functions, immutability, and higher-order functions to

create programs that are more predictable, easier to test, and less prone to bugs.

1.1.1 Core Concepts of Functional Programming

1. Pure Functions:

e A pure function is a function where the output value is determined only by

its input values, without any observable side effects.
o Characteristics of Pure Functions:

— Deterministic: Given the same input, a pure function will always return

the same output.

19

20

— No Side Effects: Pure functions do not modify any external state or data

(e.g., no changes to global variables, no I/O operations).
o Example:

int add(int a, int b) {

return a + b;

Here, add is a pure function because it always returns the same result for the

same inputs and has no side effects.
2. Immutability:

o Immutability means that once a value is created, it cannot be changed.
Instead of modifying existing data, functional programming encourages

creating new data structures with the desired changes.
o Benefits of Immutability:

— Simplifies reasoning about code.
— Prevents unintended side effects.
— Makes concurrent programming safer.
o Example:
const std::vector<int> numbers = {1, 2, 3};
// Instead of modifying ‘numbers", create a new vector with the desired changes.

std::vector<int> newNumbers = numbers;

newNumbers.push_ back(4);

3. Higher-Order Functions:

21

e A higher-order function is a function that takes one or more functions as

arguments or returns a function as its result.
o Examples of Higher-Order Functions:

— map: Applies a function to each element of a collection.
— filter: Selects elements from a collection based on a predicate.

— reduce: Combines elements of a collection into a single value.

« Example in C++:

#include <vector>
#include <algorithm>

#include <iostream>

std::vector<int> map(const std::vector<int>& vec, int (*func)(int)) {
std::vector<int> result;
for (int x : vec) {
result.push__back(func(x));

}

return result;

int square(int x) {

return x * x;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, square);
for (int x : squaredNumbers) {
std::cout << x << 77 // Output: 149 16

22

4. Function Composition:

o Function composition is the process of combining two or more functions to
produce a new function. The output of one function is used as the input of

another.
o Example:

#include <functional>
#include <iostream>

int add(int a, int b) {

return a + b;

int square(int x) {

return x * x;

int main() {
auto addAndSquare = [|(int a, int b) {
return square(add(a, b));

b

std::cout << addAndSquare(2, 3); // Output: 25

1.1.2 Benefits of Functional Programming

1. Predictability and Readability:

23

e Pure functions and immutability make code easier to understand and predict,

as there are no hidden side effects or state changes.
2. Easier Testing and Debugging:

o Pure functions are easier to test because they depend only on their inputs

and produce consistent outputs.

o Immutability reduces the risk of bugs caused by unintended state changes.
3. Concurrency and Parallelism:

o Functional programming avoids shared mutable state, making it easier to

write concurrent and parallel programs without race conditions.
4. Modularity and Reusability:

e Higher-order functions and function composition promote modularity and

code reuse.

1.1.3 Functional Programming in Modern C++

Modern C++ (starting from C++11) has introduced several features that support

functional programming:
1. Lambda Functions:

o Lambda functions allow you to define anonymous functions inline, making it

easier to write higher-order functions.

o Example:

24

auto square = [|(int x) { return x * x; };

std::cout << square(5); // Output: 25

2. Standard Library Support:

e The C++ Standard Library provides functional programming tools like
std::function, std::bind, and algorithms like std::transform (equivalent to

map).
3. Immutability with const and constexpr:

e The const keyword ensures immutability, while constexpr allows compile-time

evaluation of functions.
4. Range-Based Algorithms (C++-20):

o The Ranges library in C++-20 provides a functional-style approach to

working with collections, including std::ranges::views for lazy evaluation.

1.1.4 Example: Functional Programming in C++

Here’s an example that demonstrates functional programming concepts in C++-:

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

// Pure function

int square(int x) {

25

return x * x;

// Higher-order function

std::vector<int> map(const std::vector<int>& vec, std::function<int(int)> func) {
std::vector<int> result;
for (int x : vec) {

result.push__back(func(x));

}

return result;

int main() {

std::vector<int> numbers = {1, 2, 3, 4};

// Use higher-order function with a pure function

std::vector<int> squaredNumbers = map(numbers, square);

// Print results
for (int x : squaredNumbers) {
std::cout << x << ””; // Output: 149 16

1.1.5 Summary

Functional programming is a powerful paradigm that emphasizes pure functions,
immutability, and higher-order functions. It offers benefits like predictability, easier
testing, and better support for concurrency. Modern C++ provides robust support for
functional programming through features like lambda functions, the Standard Library,

and the Ranges library. By embracing functional programming, developers can write

26

cleaner, more maintainable, and efficient code.

1.2 Principles of Functional Programming: Pure Functions,

Immutability, Function Composition

Functional programming is built on a set of core principles that distinguish it from other
programming paradigms like procedural or object-oriented programming. These
principles include pure functions, immutability, and function composition.
Understanding these principles is essential for writing functional code that is predictable,

maintainable, and efficient.

1.2.1 Pure Functions

A pure function is a function where the output value is determined only by its input
values, without any observable side effects. Pure functions are the cornerstone of
functional programming because they ensure predictability and make code easier to

reason about.
1. Characteristics of Pure Functions:

e Deterministic: Given the same input, a pure function will always return the

same output.

e No Side Effects: Pure functions do not modify any external state or data.
They do not perform I/O operations, modify global variables, or change the

state of mutable objects.

2. Example of a Pure Function:

27

int add(int a, int b) {

return a + b;

e The add function is pure because:

— It always returns the same result for the same inputs (e.g., add(2, 3) will
always return 5).

— It does not modify any external state or produce side effects.
3. Benefits of Pure Functions:

o Predictability: Pure functions are easier to debug and test because their

behavior is consistent.

o Reusability: Pure functions can be reused in different parts of a program

without worrying about side effects.

e Concurrency: Since pure functions do not depend on or modify shared state,

they are inherently thread-safe.

4. Example of an Impure Function:

Cpp

Copy
int counter = 0;

int increment() {

return ++counter; // Modifies external state (counter)

28

e The increment function is impure because it modifies the global variable

counter.

1.2.2 Immutability

Immutability is the principle that data should not be modified after it is created.
Instead of changing existing data, functional programming encourages creating new data

structures with the desired changes.
1. Why Immutability Matters:

o Predictability: Immutable data ensures that once a value is created, it cannot

be changed, making the program's behavior more predictable.

o Concurrency: Immutable data is inherently thread-safe because it cannot be

modified by multiple threads.

e Debugging: Immutable data simplifies debugging because you don’t need to

track changes to variables over time.
2. Immutability in C++:

e C++ supports immutability through the const and constexpr keywords.
o Example:

Cpp
Copy

const int x = 10; // x is immutable

// x = 20; // Error: Cannot modify a const variable

3. Immutable Data Structures:

29

o Functional programming often uses immutable data structures like lists,
maps, and trees. In C4++, you can achieve immutability by using const or

creating new objects instead of modifying existing ones.
o Example:
const std::vector<int> numbers = {1, 2, 3};
// Instead of modifying “numbers", create a new vector with the desired changes.

std::vector<int> newNumbers = numbers;

newNumbers.push_ back(4);

4. Benefits of Immutability:

o Simpler Code: Immutable data reduces the complexity of code by eliminating

the need to track changes.
o Safer Concurrency: Immutable data structures are inherently thread-safe.

o Easier Testing: Immutable data makes it easier to write unit tests because

the state of the data does not change.

1.2.3 Function Composition

Function composition is the process of combining two or more functions to produce a
new function. The output of one function is used as the input of another, enabling the

creation of complex behavior from simple, reusable functions.
1. Why Function Composition Matters:

e Modularity: Function composition promotes modularity by breaking down

complex tasks into smaller, reusable functions.

30

« Readability: Composing functions can make code more readable by

expressing complex logic in a declarative way.

e Reusability: Small, composable functions can be reused in different contexts.
2. Function Composition in C++:

e C++ supports function composition through libraries like the Standard
Library (std::function, std::bind) and modern libraries like Range-v3.

o Example:

#include <iostream>

#include <functional>

int add(int a, int b) {

return a + b;

int square(int x) {

return x * x;

int main() {
// Compose add and square functions
auto addAndSquare = [|(int a, int b) {
return square(add(a, b));

I

std::cout << addAndSquare(2, 3); // Output: 25

— In this example, the addAndSquare function is a composition of add and

square.

31

3. Benefits of Function Composition:

e Declarative Code: Function composition allows you to write declarative code

that expresses what the program should do, rather than how it should do it.

e Reusability: Small, composable functions can be reused in different parts of a

program.

e Maintainability: Composed functions are easier to maintain because they are

built from smaller, well-tested components.

1.2.4 Combining Principles in Practice

The principles of pure functions, immutability, and function composition work together
to create functional programs that are predictable, modular, and easy to maintain.

Here’s an example that combines all three principles:

#include <iostream>
#include <vector>
#include <algorithm>

#include <functional>

// Pure function
int square(int x) {

return x * x;

// Higher-order function

std::vector<int> map(const std::vector<int>& vec, std::function<int(int)> func) {
std::vector<int> result;
for (int x : vec) {

result.push_back(func(x));

32

return result;

int main() {

const std::vector<int> numbers = {1, 2, 3, 4}; // Immutable data

// Use higher-order function with a pure function

std::vector<int> squaredNumbers = map(numbers, square);
// Print results

for (int x : squaredNumbers) {
std::cout << x << 7 7”; // Output: 149 16

e Pure Function: square is a pure function.
o Immutability: numbers is declared as const, ensuring immutability.
o Function Composition: The map function composes the square function with the

input vector.

1.2.5 Summary

The principles of pure functions, immutability, and function composition form the
foundation of functional programming. By adhering to these principles, developers can

write code that is:

o Predictable: Pure functions and immutability ensure consistent behavior.

e Modular: Function composition promotes reusable and maintainable code.

33

o Efficient: Immutability and pure functions simplify concurrency and debugging.

These principles are not only theoretical but also practical, as demonstrated by their
implementation in modern C++. By embracing these principles, you can unlock the full

potential of functional programming in your C++ projects.

1.3 Benefits of Functional Programming in Software Development

Functional programming (FP) offers numerous advantages that make it a powerful
paradigm for modern software development. By emphasizing pure functions,
immutability, and declarative programming, FP enables developers to write code that is
more predictable, maintainable, and scalable. This section explores the key benefits of

functional programming and how they can improve software development practices.

1.3.1 Predictability and Readability
1. Predictable Behavior:
e Pure functions, a core concept in FP, ensure that the output of a function

depends only on its inputs and produces no side effects. This makes the

behavior of the program predictable and easier to reason about.

o Example:

int add(int a, int b) {

return a + b;

— The add function is predictable because it always returns the same result

for the same inputs.

34

2. Readable Code:

o Functional programming encourages writing declarative code, which focuses
on what the program should do rather than how it should do it. This leads to

code that is more readable and expressive.
o Example:

std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers = map(numbers, [](int x) { return x * x; });

— The use of higher-order functions like map makes the code more readable

by abstracting away implementation details.

1.3.2 Easier Testing and Debugging

1. Simplified Testing:

o Pure functions are easier to test because they do not depend on external
state or produce side effects. Each function can be tested in isolation with a

set of inputs and expected outputs.
o Example:

int square(int x) {

return x * x;

// Unit test for square function
assert(square(2) == 4);

assert(square(-3) == 9);

35

2. Reduced Debugging Complexity:

e Immutability ensures that data does not change unexpectedly, reducing the
likelihood of bugs caused by unintended side effects. This makes debugging

easier because the state of the program is more predictable.

o Example:

const std::vector<int> numbers = {1, 2, 3};

// numbers cannot be modified, reducing the risk of bugs

1.3.3 Concurrency and Parallelism

1. Thread Safety:

o Immutable data and pure functions make functional programming inherently
thread-safe. Since data cannot be modified after creation, there is no risk of

race conditions or data corruption in concurrent environments.
o Example:
const std::vector<int> data = {1, 2, 3};

// Multiple threads can safely read “data® without synchronization

2. Easier Parallelism:

o Functional programming encourages breaking down problems into smaller,
independent tasks that can be executed in parallel. This makes it easier to

leverage multi-core processors and improve performance.

36

o Example:

std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers(numbers.size());

std::transform(numbers.begin(), numbers.end(), squaredNumbers.begin(), [J(int x) {
return x * x;

H;

— The std::transform function can be parallelized to process elements

concurrently.

1.3.4 Modularity and Reusability

1. Modular Code:

e Functional programming promotes modularity by encouraging the use of
small, reusable functions. These functions can be combined to create complex

behavior, making the codebase more organized and maintainable.

o Example:

int square(int x) { return x * x; }

int add(int a, int b) { return a + b; }

int addAndSquare(int a, int b) {
return square(add(a, b));

— The addAndSquare function is composed of smaller, reusable functions.

2. Reusable Components:

37

o Higher-order functions and function composition enable the creation of

reusable components that can be applied to different problems.

o Example:

auto map = [](const std::vector<int>& vec, std::function<int(int)> func) {
std::vector<int> result;
for (int x : vec) {
result.push__back(func(x));

}

return result;
&
std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers = map(numbers, [|(int x) { return x * x; });

— The map function is reusable and can be applied to different vectors and

operations.

1.3.5 Maintainability and Scalability

1. Easier Maintenance:

o Functional programming leads to code that is easier to maintain because it is
modular, predictable, and free of side effects. Changes to one part of the

code are less likely to affect other parts.

o Example:

const std::vector<int> data = {1, 2, 3};

// Immutable data ensures that changes elsewhere do not affect *data’

38

2. Scalability:

e The modular and declarative nature of functional programming makes it
easier to scale applications. New features can be added by composing

existing functions, and the codebase remains organized as it grows.

o Example:

auto filter = [J(const std::vector<int>& vec, std::function<bool(int)> predicate) {
std::vector<int> result;
for (int x : vec) {
if (predicate(x)) {
result.push_back(x);

}

return result;

b
std::vector<int> evenNumbers = filter(numbers, [|(int x) { return x % 2 == 0; });

— The filter function can be reused to implement new filtering logic without

modifying existing code.

1.3.6 Real-World Applications

1. Data Processing:

o Functional programming is widely used in data processing tasks, such as
transforming and filtering large datasets. Libraries like Range-v3 in C++

make it easy to write efficient and expressive data pipelines.

o Example:

39

#include <range/v3/all.hpp>

#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
auto result = numbers | ranges::views::filter([](int x) { return x % 2 == 0; })

| ranges::views::transform([](int x) { return x * x; });

for (int x : result) {

std::cout << x << ””; // Output: 4 16

2. Concurrent and Distributed Systems:

o Functional programming is ideal for building concurrent and distributed

systems because of its emphasis on immutability and thread safety.

o Example:

std::future<int> futureResult = std::async([]() {

return 42; // Simulate a long-running computation

H;

int result = futureResult.get(); // Safely retrieve the result

3. Domain-Specific Languages (DSLs):

o Functional programming is often used to create domain-specific languages

(DSLs) that are expressive and easy to use.

40

o Example:

auto calculate = [|(int a, int b, std::function<int(int, int)> op) {
return op(a, b);

h

int sum = calculate(2, 3, [|(int a, int b) { return a + b; });

1.3.7 Summary

Functional programming offers numerous benefits that make it a valuable paradigm for
modern software development. By emphasizing pure functions, immutability, and

declarative programming, FP enables developers to write code that is:

Predictable and Readable: Easier to understand and reason about.

Easier to Test and Debug: Reduced complexity and fewer bugs.

Concurrency-Friendly: Safe and efficient parallel execution.

Modular and Reusable: Promotes code reuse and maintainability.

Scalable: Adaptable to growing and complex applications.

These benefits make functional programming an excellent choice for a wide range of
applications, from data processing to concurrent systems. By embracing functional
programming principles, developers can create robust, efficient, and maintainable

software.

Chapter 2

Why Modern C++7

2.1 The Evolution of C++ and Its Support for Functional

Programming

C++ has undergone significant evolution since its inception in the 1980s. With the
introduction of modern standards like C++11, C4++14, C++17, and C++20, the
language has embraced functional programming (FP) concepts, making it a powerful
tool for writing expressive, efficient, and maintainable code. This section explores the
evolution of C++ and how modern features have enhanced its support for functional

programming.

2.1.1 Early Days of C++: Procedural and Object-Oriented Focus

1. C++98 and C++03:

o The initial versions of C++ (C++98 and C++03) were primarily focused on

procedural and object-oriented programming (OOP). Functional

41

42

programming concepts were not a priority, and the language lacked features

like lambdas, type inference, and higher-order functions.
o Limitations:

— No support for lambda functions or closures.
— Limited support for immutability (only const was available).

— Verbose syntax for function objects (functors).

2. Example of C++98 Code:

struct Add {
int operator()(int a, int b) const {
return a + b;

}
h

int main() {
Add add,;
int result = add(2, 3); // Output: 5

return 0;

e Functors were used to emulate higher-order functions, but the syntax was

cumbersome.

2.1.2 C++411: A Paradigm Shift

C++11 marked a turning point in the evolution of C++, introducing several features

that made functional programming more accessible and practical.

1. Lambda Functions:

43

e C++11 introduced lambda functions, enabling the creation of anonymous
functions inline. This made it easier to write higher-order functions and pass

behavior as arguments.

o Example:
auto add = [|(int a, int b) { return a + b; };
int result = add(2, 3); // Output: 5
2. Type Inference (auto and decltype):

e The auto keyword allowed automatic type inference, reducing verbosity and

making functional-style code more concise.

o Example:

auto square = [|(int x) { return x * x; };

auto result = square(5); // Output: 25

3. Standard Library Enhancements:

e C++11 introduced std::function and std::bind, which made it easier to store

and pass functions as objects.

o Example:

#include <iostream>

#include <functional>

int main() {
std::function<int(int, int)> add = [|(int a, int b) { return a + b; };

44

std::cout << add(2, 3); // Output: 5

4. Immutable Data (constexpr):

e The constexpr keyword allowed compile-time evaluation of functions,

promoting immutability and performance optimization.

o Example:

constexpr int square(int x) {

return x * x;

int result = square(5); // Evaluated at compile time

2.1.3 C++14: Refining Functional Programming Features

C++14 built on the foundation of C4++11, refining and expanding its support for

functional programming.

1. Generic Lambdas:

e C++14 introduced generic lambdas, allowing lambda functions to accept

auto parameters. This made lambdas more flexible and reusable.
o Example:
auto add = [J(auto a, auto b) { return a + b; };

int resultl = add(2, 3); // Output: 5
double result2 = add(2.5, 3.5); // Output: 6.0

45

2. Improved constexpr:

o C++14 relaxed restrictions on constexpr functions, allowing them to contain

loops and conditional statements.

o Example:

constexpr int factorial(int n) {
int result = 1;
for (int i = 1;1 <= n; ++i) {
result *= i;

}

return result;

int result = factorial(5); // Output: 120 (evaluated at compile time)

2.1.4 C++17: Expanding Functional Capabilities

C++17 introduced features that further enhanced functional programming in C++.
1. Structured Bindings:

o Structured bindings made it easier to work with tuples and other structured

data, promoting immutability and declarative programming.

o Example:

auto [x, y] = std::make_tuple(2, 3);
std::cout << x + y; // Output: 5

2. std::optional and std::variant:

46

o These types provided safer alternatives to raw pointers and unions, enabling

more expressive and functional-style error handling.

o Example:

std::optional<int> divide(int a, int b) {
if (b == 0) return std::mullopt;

return a / b;

auto result = divide(10, 2);
if (result) {
std::cout << *result; // Output: 5

3. Parallel Algorithms:

e C++417 introduced parallel versions of Standard Library algorithms, making

it easier to write concurrent functional code.

o Example:

#include <vector>
#include <algorithm>

#include <execution>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::for _each(std::execution::par, numbers.begin(), numbers.end(), [J(int& x) {
R M= sw
ok
// numbers = {1, 4, 9, 16}

47

2.1.5 C4++20: A Functional Programming Powerhouse

C++420 brought significant advancements that solidified C++ as a modern functional

programming language.
1. Ranges Library:

e The Ranges library introduced a functional-style approach to working with

collections, enabling lazy evaluation and composable operations.

o Example:

#include <ranges>
#include <vector>

#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto result = numbers | std::views:filter([|(int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

for (int x : result) {
std::cout << x << 7 ”; // Output: 4 16

2. Concepts:

o Concepts improved template programming by enabling constraints on
template parameters, making generic functional code safer and more

expressive.

48

o Example:

template <typename T>
concept Addable = requires(T a, T b) {
{a+ b} -> std::same_as<T>;

&

template <Addable T>
T add(T a, T b) {

return a + b;

3. Coroutines:

o Coroutines enabled asynchronous programming in a functional style, making

it easier to write non-blocking code.

o Example:

#include <coroutine>

#include <iostream>

struct Task {
struct promise type {
Task get_return_ object() { return {}; }
std::suspend_ never initial _suspend() { return {}; }
std::suspend__never final _suspend() noexcept { return {}; }
void return_void() {}
void unhandled_exception() {}

49

Task asyncTask() {
std::cout << "Hello, Coroutines!\n”;

co__return;

int main() {

asyncTask();

2.1.6 Summary

The evolution of C++ has transformed it into a language that fully supports functional
programming. From the introduction of lambda functions in C++11 to the powerful
Ranges library in C4++20, modern C++ provides developers with the tools to write
expressive, efficient, and maintainable functional code. By embracing these features,
developers can leverage the strengths of functional programming while retaining the

performance and flexibility of C++.

2.2 Modern C++ Features Supporting Functional Programming
(C++11 to C++20 and Beyond)

Modern C++ (starting from C++11) has introduced a plethora of features that make it
a powerful language for functional programming (FP). These features enable developers
to write expressive, efficient, and maintainable functional-style code. This section
explores the key features of modern C++ that support functional programming, from

C++11 to C++20 and beyond.

20

2.2.1 C4++11: Laying the Foundation

C++11 marked a significant shift in the evolution of C++, introducing several features

that made functional programming more accessible.
1. Lambda Functions:

o Lambda functions allow the creation of anonymous functions inline, making

it easier to write higher-order functions and pass behavior as arguments.

o Example:

auto add = [|(int a, int b) { return a + b; };
int result = add(2, 3); // Output: 5

2. Type Inference (auto and decltype):

o The auto keyword enables automatic type inference, reducing verbosity and

making functional-style code more concise.

o Example:

auto square = [|(int x) { return x * x; };

auto result = square(5); // Output: 25

3. Standard Library Enhancements:

e CH4+11 introduced std::function and std::bind, which made it easier to store

and pass functions as objects.

o Example:

o1

#include <iostream>

#include <functional>
int main() {

std::function<int(int, int)> add = [|(int a, int b) { return a + b; };
std::cout << add(2, 3); // Output: 5

4. Immutable Data (constexpr):

o The constexpr keyword allows compile-time evaluation of functions,

promoting immutability and performance optimization.

o Example:

constexpr int square(int x) {

return x * x;

int result = square(5); // Evaluated at compile time

2.2.2 C4++14: Refining Functional Programming Features

C++14 built on the foundation of C++11, refining and expanding its support for

functional programming.
1. Generic Lambdas:

e (C++14 introduced generic lambdas, allowing lambda functions to accept

auto parameters. This made lambdas more flexible and reusable.

o2

o Example:

auto add = [J(auto a, auto b) { return a + b; };
int resultl = add(2, 3); // Output: 5
double result2 = add(2.5, 3.5); // Output: 6.0

2. Improved constexpr:

o (C++14 relaxed restrictions on constexpr functions, allowing them to contain

loops and conditional statements.

o Example:

constexpr int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; ++i) {
result *= i;

}

return result;

int result = factorial(5); // Output: 120 (evaluated at compile time)

2.2.3 C++417: Expanding Functional Capabilities

C++17 introduced features that further enhanced functional programming in C++.
1. Structured Bindings:

o Structured bindings made it easier to work with tuples and other structured

data, promoting immutability and declarative programming.

93

o Example:

auto [x, y] = std::make__tuple(2, 3);
std::cout << x + y; // Output: 5

2. std::optional and std::variant:

o These types provided safer alternatives to raw pointers and unions, enabling

more expressive and functional-style error handling.
o Example:
std::optional<int> divide(int a, int b) {

if (b == 0) return std::nullopt;

return a / b

auto result = divide(10, 2);
if (result) {
std::cout << *result; // Output: 5

3. Parallel Algorithms:

e C++417 introduced parallel versions of Standard Library algorithms, making

it easier to write concurrent functional code.

o Example:

#include <vector>

#include <algorithm>

o4

#include <execution>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::for__each(std::execution::par, numbers.begin(), numbers.end(), [J(int& x) {
R = s

}i
// numbers = {1, 4, 9, 16}

2.2.4 C+4-20: A Functional Programming Powerhouse

C++420 brought significant advancements that solidified C++ as a modern functional

programming language.
1. Ranges Library:

o The Ranges library introduced a functional-style approach to working with

collections, enabling lazy evaluation and composable operations.

o Example:

#include <ranges>
#include <vector>

#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto result = numbers | std::views:filter([|(int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

95

for (int x : result) {

std::cout << x << 77" // Output: 4 16

2. Concepts:

o Concepts improved template programming by enabling constraints on
template parameters, making generic functional code safer and more

expressive.
o Example:
template <typename T>

concept Addable = requires(T a, T b) {
{a+ b} -> std:same_as<T>;

b

template <Addable T>
T add(T a, T b) {

return a + b;

3. Coroutines:

o Coroutines enabled asynchronous programming in a functional style, making

it easier to write non-blocking code.

o Example:

o6

#include <coroutine>

#include <iostream>

struct Task {
struct promise_type {
Task get_return_object() { return {}; }
std::suspend_ never initial _suspend() { return {}; }
std::suspend__never final _suspend() noexcept { return {}; }
void return_ void() {}

void unhandled__exception() {}
b
b

Task asyncTask() {
std::cout << "Hello, Coroutines!\n”;

Cco_r et urn;

int main() {

asyncTask();

2.2.5 Beyond C++20: The Future of Functional Programming in C++

The evolution of C++ continues with proposals for future standards (C++23 and
beyond) that aim to further enhance functional programming capabilities. Some of the

anticipated features include:

1. Pattern Matching:

o Pattern matching would allow more expressive and functional-style handling

of data structures, similar to languages like Haskell and Rust.

57

« Example (Proposed Syntax):

auto result = std::visit([](auto& & arg) {
return std::match(arg) {
case 0 => "Zero”,
case 1 => "One”,

case _ => "Other”

7 Value)H

2. Improved Ranges and Functional Utilities:

o Future standards may introduce more utilities for functional programming,

such as additional range adaptors and monadic operations.
3. Enhanced Concurrency Support:

o Continued improvements in concurrency and parallelism will make it easier

to write functional-style code that leverages modern hardware.

2.2.6 Summary

Modern C++ (from C++11 to C++20 and beyond) has introduced a wide range of
features that make it a powerful language for functional programming. These features

include:
« Lambda Functions: Enabling inline anonymous functions.
o Type Inference (auto and decltype): Reducing verbosity and improving readability.

« Standard Library Enhancements: Supporting higher-order functions and

immutability.

o8

« Ranges Library: Providing a functional-style approach to working with collections.

o Concepts and Coroutines: Enhancing generic programming and asynchronous

code.

By leveraging these features, developers can write expressive, efficient, and maintainable
functional-style code in C++. The ongoing evolution of the language ensures that C++

will remain a strong choice for functional programming in the future.

2.3 Comparison Between Functional Programming and

Object-Oriented Programming (OOP) in C++

Functional programming (FP) and object-oriented programming (OOP) are two of the
most widely used programming paradigms. While OOP has been the dominant
paradigm in C+4+ for decades, modern C++ has embraced functional programming
concepts, making it a versatile language that supports both paradigms. This section
provides a detailed comparison between FP and OOP in the context of C++,

highlighting their strengths, weaknesses, and use cases.

2.3.1 Core Concepts

1. Functional Programming (FP):

e Focus: FP emphasizes the use of pure functions, immutability, and
higher-order functions to create programs that are predictable and easy to
reason about.

o Key Principles:

— Pure Functions: Functions that depend only on their inputs and produce

no side effects.

29

— Immutability: Data is not modified after creation; instead, new data

structures are created.

— Function Composition: Combining simple functions to build complex

behavior.
2. Object-Oriented Programming (OOP):

o Focus: OOP organizes code around objects, which are instances of classes. It

emphasizes encapsulation, inheritance, and polymorphism.
o Key Principles:
— Encapsulation: Bundling data and methods that operate on the data
within a single unit (class).

— Inheritance: Creating new classes based on existing ones to promote

code reuse.

— Polymorphism: Allowing objects of different classes to be treated as

objects of a common superclass.

2.3.2 Comparison of Key Features

Feature Functional Programming (FP)

State Management Immutable data; state changes are avoided by creating new data structur
Functions/Methods Pure functions with no side effects; functions are first-class citizens.

Data and Behavior Data and behavior are separate; functions operate on data.

Code Reusability Achieved through function composition and higher-order functions.
Concurrency Easier to manage due to immutability and lack of shared state.

Readability Declarative style; focuses on what the program should do.

60

Feature Functional Programming (FP)

Use Cases Data processing, concurrent systems, mathematical computations.

2.3.3 Example: FP vs. OOP in C++

1. Functional Programming Example:

o Task: Calculate the sum of squares of even numbers in a list.

e FP Approach:

#include <vector>
#include <algorithm>
#include <numeric>

#include <iostream>

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto isEven = [|(int x) { return x % 2 == 0; };

auto square = [|(int x) { return x * x; };
int sum = std::accumulate(numbers.begin(), numbers.end(), 0,
[&](int acc, int x) {
return isEven(x) 7 acc + square(x) : acc;

H;

std::cout << ”Sum of squares of even numbers: 7 << sum << "\n”; // Output: 56

— Key Points:

61

x Uses pure functions (isEven, square).

* Avoids mutable state; uses std::accumulate for aggregation.
2. Object-Oriented Programming Example:

o Task: Represent a bank account with deposit and withdrawal functionality.

e OOP Approach:

#include <iostream>

class BankAccount {
private:

double balance;

public:

BankAccount(double initialBalance) : balance(initialBalance) {}

void deposit(double amount) {

balance += amount;

void withdraw(double amount) {
if (amount <= balance) {
balance -= amount;

} else {

std::cout << "Insufficient funds!\n”;

double getBalance() const {

return balance;

62

g

int main() {
BankAccount account(100.0);
account.deposit(50.0);
account.withdraw(30.0);
std::cout << ”Current balance: 7 << account.getBalance() << "\n”; // Output: 120

— Key Points:

« Encapsulates data (balance) and behavior (deposit, withdraw)

within a class.

* Uses mutable state to track the account balance.

2.3.4 Strengths and Weaknesses

1. Functional Programming:

e Strengths:
— Predictability: Pure functions and immutability make code easier to
reason about.
— Concurrency: Immutable data simplifies concurrent programming.
— Modularity: Function composition promotes reusable and maintainable
code.

o Weaknesses:

— Learning Curve: Requires a shift in mindset for developers accustomed

to imperative programming.

63

— Performance Overhead: Immutability can lead to increased memory

usage due to the creation of new data structures.
2. Object-Oriented Programming;:

o Strengths:

— Encapsulation: Bundling data and behavior within objects promotes

modularity and information hiding.

— Reusability: Inheritance and polymorphism enable code reuse and
extensibility.

— Real-World Modeling: Objects naturally model real-world entities and

relationships.
o Weaknesses:

— Complexity: Deep inheritance hierarchies can lead to tightly coupled and

hard-to-maintain code.

— Concurrency Challenges: Mutable state complicates concurrent

programming.

2.3.5 When to Use FP vs. OOP in C++

1. Use Functional Programming When:

e You need to process large datasets or perform mathematical computations.
e You are working on concurrent or parallel systems.

e You want to write declarative and predictable code.

2. Use Object-Oriented Programming When:

64

¢ You are modeling real-world entities with complex state and behavior.
» You need to build graphical user interfaces (GUIs) or simulations.

« You want to leverage inheritance and polymorphism for code reuse.

2.3.6 Combining FP and OOP in Modern C++

Modern C++ allows developers to combine the strengths of both paradigms. For

example:

e Use OOP for modeling entities and managing state.

e Use FP for data processing, transformations, and concurrency.

Example: Combining FP and OOP

Cpp
Copy

#include <vector>
#include <algorithm>

#include <iostream>

class ShoppingCart {
private:

std::vector<double> items;
public:

void addItem(double price) {
items.push__back(price);

double calculateTotal() const {

65

return std::accumulate(items.begin(), items.end(), 0.0);

void applyDiscount(double discountRate) {
std::transform(items.begin(), items.end(), items.begin(),

[discountRate](double price) { return price * (1 - discountRate); });

}
5

int main() {
ShoppingCart cart;
cart.addItem(100.0);
cart.addItem(200.0);
cart.applyDiscount(0.1); // Apply 10% discount
std::cout << ”Total after discount: ” << cart.calculateTotal() << "\n”; // Output: 270

o OOP: The ShoppingCart class encapsulates data (items) and behavior (addItem,

calculateTotal).

o FP: The applyDiscount method uses std::transform to apply a discount

functionally.

2.3.7 Summary

Functional programming and object-oriented programming are complementary
paradigms, each with its own strengths and weaknesses. In modern C++, developers

can leverage the best of both worlds:
o Use FP for tasks that require predictability, concurrency, and declarative code.

o Use OOP for modeling complex systems with state and behavior.

66

By understanding the differences and combining the strengths of both paradigms,

developers can write more expressive, maintainable, and efficient code in C++.

Chapter 3

Development Tools

3.1 Setting Up a Modern C++ Development Environment (e.g.,
CMake, Conan, Modern C++ Tools)

To effectively write and manage modern C++ code, especially when embracing
functional programming, it is essential to set up a robust development environment.
This section guides you through the process of configuring a modern C++ development

environment using tools like CMake, Conan, and other essential utilities.

3.1.1 Why a Modern Development Environment Matters

A modern development environment ensures that you can:
o Manage Dependencies: Easily include and manage third-party libraries.
o Build Projects Efficiently: Use build systems that support modern C++ features.
o Write Clean Code: Leverage tools for formatting, linting, and static analysis.

67

68

o Debug and Test: Use integrated debugging and testing frameworks.

3.1.2 Essential Tools for Modern C++ Development

1. CMake: A Cross-Platform Build System

¢ What is CMake?

— CMake is an open-source, cross-platform build system that generates
build files (e.g., Makefiles, Visual Studio projects) for various compilers

and platforms.
e Why Use CMake?

— Portability: Write once, build anywhere.
— Scalability: Suitable for both small and large projects.
— Integration: Works seamlessly with IDEs and other tools.

e Setting Up CMake:

— Install CMake from the official website: https://cmake.org.

— Create a CMakeLists.txt file to define your project:

cmake minimum_ required(VERSION 3.14)
project(MyFunctional CppProject)

set(CMAKE CXX_ STANDARD 20)
set(CMAKE CXX STANDARD REQUIRED ON)

add__executable(MyApp main.cpp)

— Generate build files and compile:

https://cmake.org/

69

mkdir build
cd build
cmake ..

cmake --build .

2. Conan: A C++ Package Manager

¢ What is Conan?

— Conan is a decentralized package manager for C++ that simplifies

dependency management.
e Why Use Conan?

— Dependency Management: Easily include and manage third-party

libraries.
— Cross-Platform: Works on Windows, macOS, and Linux.

— Integration: Compatible with CMake, Visual Studio, and other build

systems.
e Setting Up Conan:

— Install Conan via pip:
pip install conan

— Create a conanfile.txt to specify dependencies:
frequires]

range-v3/0.11.0
fmt/8.0.1

70

[generators]

cmake
— Install dependencies and generate build files:

mkdir build
cd build
conan install ..
cmake ..

cmake --build .

3. Modern C++ Compilers

« GCC (GNU Compiler Collection):

— A widely used open-source compiler with excellent support for modern
CH+.

— Install on Ubuntu:

sudo apt install g-++

o Clang:
— Known for its fast compilation and helpful error messages.

— Install on Ubuntu:

sudo apt install clang

o MSVC (Microsoft Visual C++):

— The default compiler for Visual Studio, with strong support for Windows

development.

71

4. Integrated Development Environments (IDEs)

« Visual Studio Code (VS Code):

— A lightweight, extensible IDE with excellent C++ support via extensions
like C/C++ and CMake Tools.

— Install from: https://code.visualstudio.com.
» CLion:

— A powerful IDE from JetBrains specifically designed for C++

development.

— Install from: https://www.jetbrains.com/clion.
» Visual Studio:

— A full-featured IDE for Windows development with deep integration with
MSVC.

5. Code Formatting and Linting Tools

e Clang-Format:

— A tool to automatically format C++ code according to a specified style.
— Install on Ubuntu:

sudo apt install clang-format

— Create a .clang-format file to define formatting rules:

BasedOnStyle: Google
IndentWidth: 4

o Clang-Tidy:

https://code.visualstudio.com/
https://www.jetbrains.com/clion

72

— A static analysis tool that identifies potential bugs and style issues.

— Install on Ubuntu:

sudo apt install clang-tidy

— Run Clang-Tidy on your code:

clang-tidy main.cpp -- -std=c++20

6. Debugging Tools

« GDB (GNU Debugger):

— A powerful debugger for C++ programs.

— Install on Ubuntu:

sudo apt install gdb

— Debug your program:

gdb ./MyApp

« LLDB:

— A modern debugger that is part of the LLVM project.

— Install on macOS:

brew install 1ldb

7. Testing Frameworks

73

o Google Test:
— A popular unit testing framework for C++.

— Install via Conan:

[requires]
gtest/1.11.0

[generators]

cmake

— Write and run tests:
#include <gtest/gtest.h>

TEST(MyTestSuite, MyTestCase) {
EXPECT_EQ(2 + 2, 4);

int main(int arge, char **argv) {
::testing::InitGoogleTest(&arge, argv);
return RUN__ALL_TESTS();

3.1.3 Example: Setting Up a Functional C++ Project

1. Project Structure:

MyFunctionalCppProject/
CMakeLists.txt
conanfile.txt

include/

74

utils.h
src/

main.cpp
tests/

test__main.cpp

2. CMakeLists.txt:

cmake_minimum__ required(VERSION 3.14)
project(MyFunctional CppProject)

set(CMAKE_ CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

Include Conan-generated files
include(${CMAKE_BINARY DIR}/conanbuildinfo.cmake)

conan__basic__setup()

Add executable
add__executable(MyApp src/main.cpp)

Add tests

enable_ testing()

add__executable(MyTests tests/test_main.cpp)
target_link libraries(MyTests gtest_ main)
add__test(NAME MyTests COMMAND MyTests)

3. conanfile.txt:

75

[requires]
gtest/1.11.0
range-v3/0.11.0

[generators]

cmake

4. Building and Testing:

mkdir build

cd build

conan install ..
cmake ..
cmake --build .

ctest

3.1.4 Summary

Setting up a modern C++ development environment is crucial for writing efficient,
maintainable, and scalable code. By leveraging tools like CMake, Conan, modern
compilers, IDEs, and testing frameworks, you can create a robust workflow that
supports functional programming in C++4. This setup ensures that you can focus on
writing high-quality code while managing dependencies, building projects, and

debugging efficiently.

76

3.2 Using Modern Compilers (GCC, Clang, MSVC) with C++-20
Support

Modern C++ compilers are essential for leveraging the latest features of the C+4-20
standard, which introduces powerful tools for functional programming, such as concepts,
ranges, coroutines, and more. This section provides a detailed guide on using the three

major modern compilers—GCC, Clang, and MSVC—with C++20 support.

3.2.1 Why Use Modern Compilers?

Modern compilers provide:

Support for C++20 Features: Enable the use of new language and library features.

Optimizations: Generate highly optimized machine code for better performance.

Diagnostics: Offer improved error messages and warnings for easier debugging.

Cross-Platform Compatibility: Ensure your code runs on multiple platforms.
3.2.2 GCC (GNU Compiler Collection)
1. Overview:

e GCC is a widely used open-source compiler with excellent support for

modern C++ standards.

« It is available on Linux, macOS, and Windows (via MinGW or WSL).

2. Installing GCC with C++20 Support:

77

¢« On Ubuntu:

sudo apt update
sudo apt install g++-10

— Ensure GCC 10 or later is installed, as earlier versions do not fully

support C++20.

e On macOS (via Homebrew):
brew install gec
e On Windows (via MinGW):
— Download and install MinGW-w64 from https://mingw-w64.org.
3. Using GCC with C++-20:
o Compile a C++20 program:

g++ -std=c++20 -o MyApp main.cpp

o Enable all warnings and optimizations:

g++ -std=c++20 -Wall -Wextra -O2 -o MyApp main.cpp

4. Example: Using C++20 Ranges with GCC

#include <iostream>

#include <ranges>

https://mingw-w64.org/

78

#include <vector>
int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
auto even = numbers | std::views: filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

for (int x : even) {

std::cout << x << ” 7 // Output: 4 16

e Compile with:

g++ -std=c++20 -o RangesExample ranges_ example.cpp

3.2.3 Clang

1. Overview:

o Clang is part of the LLVM project and is known for its fast compilation and

helpful error messages.

e It is available on Linux, macOS, and Windows.
2. Installing Clang with C+4-20 Support:

¢« On Ubuntu:

79

sudo apt update
sudo apt install clang-10

— Ensure Clang 10 or later is installed.
e On macOS (via Homebrew):

brew install llvm

e On Windows:
— Download and install LLVM from https://llvm.org.

3. Using Clang with C++-20:
o Compile a C++20 program:

clang++ -std=c++20 -o MyApp main.cpp

o Enable all warnings and optimizations:

clang++ -std=c++20 -Wall -Wextra -O2 -o MyApp main.cpp

4. Example: Using C++20 Concepts with Clang

#include <iostream>

#include <concepts>

template <std::integral T>
T add(T a, T b) {

https://llvm.org/

30

return a + b;

int main() {
std::cout << add(2, 3) << ”\n”; // Output: 5

o Compile with:

clang++ -std=c++20 -o ConceptsExample concepts_ example.cpp

3.2.4 MSVC (Microsoft Visual C++)

1. Overview:

o« MSVC is the default compiler for Visual Studio and is widely used for

Windows development.

e It provides excellent support for C+-+20 features.
2. Installing MSVC with C4++420 Support:

« Download and install Visual Studio 2019 or later from

https:/ /visualstudio.microsoft.com.

o Ensure the Desktop development with C++ workload is selected during

installation.
3. Using MSVC with C++20:

e Open Visual Studio and create a new C++ project.

https://visualstudio.microsoft.com/

81

e Set the C++ language standard to C++-20:

— Go to Project Properties — C/C++ — Language — C++ Language
Standard and select ISO C++20 Standard (/std:c +4-20).

e Compile and run your project.

4. Example: Using C+420 Coroutines with MSVC

#include <iostream>

#include <coroutine>

struct Task {
struct promise_ type {
Task get_return_ object() { return {}; }
std::suspend_ never initial _suspend() { return {}; }
std::suspend_ never final suspend() noexcept { return {}; }
void return_ void() {}
void unhandled__exception() {}
b
b

Task asyncTask() {
std::cout << "Hello, Coroutines!\n”;

co_ return;

int main() {

asyncTask();

e Compile and run in Visual Studio with C+420 enabled.

82

3.2.5 Cross-Compiler Tips

1. Ensuring Compatibility:
e Use feature-test macros to check for C+420 support:

#if _ cplusplus >= 202002L

// C++20 code

#else

#error "C++20 support is required!”
#endif

2. Handling Compiler-Specific Code:
o Use preprocessor directives for compiler-specific code:

4ifdef GNUC___

// GCC-specific code

#elif defined(_ MSC_ VER)
// MSVC-specific code
#elif defined(__ clang)
// Clang-specific code
#endif

3. Using CMake for Cross-Platform Builds:
e Define the C++ standard in your CMakeLists.txt:

set(CMAKE__CXX_STANDARD 20)
set(CMAKE CXX STANDARD REQUIRED ON)

83

3.2.6 Summary

Modern compilers like GCC, Clang, and MSVC provide robust support for C++420,
enabling developers to leverage the latest features for functional programming. By
setting up and using these compilers effectively, you can write expressive, efficient, and
portable C4++ code. Whether you are working on Linux, macOS, or Windows, these

compilers offer the tools you need to build modern C++ applications.

3.3 Static Analysis Tools and Functional Testing

Static analysis tools and functional testing are critical components of a modern C++
development workflow. They help ensure code quality, catch potential bugs early, and
verify that your functional programming logic behaves as expected. This section
provides a detailed guide on using static analysis tools and functional testing

frameworks in C+-+.

3.3.1 Static Analysis Tools

Static analysis tools analyze your code without executing it, identifying potential issues
such as bugs, code smells, and security vulnerabilities. These tools are especially useful
in functional programming, where immutability and pure functions can help reduce

complexity.
3.3.2 Clang-Tidy
1. What is Clang-Tidy?

o Clang-Tidy is a clang-based static analysis tool that identifies potential bugs,

style issues, and performance problems in C++ code.

84

2. Installing Clang-Tidy:
e On Ubuntu:

sudo apt install clang-tidy

e On macOS (via Homebrew):

brew install llvm

¢ On Windows:

— Install Clang-Tidy as part of the LLVM package from https://llvm.org.
3. Using Clang-Tidy:
¢ Run Clang-Tidy on a single file:

clang-tidy main.cpp -- -std=c++20

o Integrate Clang-Tidy with CMake:

cmake -DCMAKE__CXX__CLANG_ TIDY=clang-tidy ..

cmake --build .

4. Example: Using Clang-Tidy

o Analyze a C++ file for potential issues:

https://llvm.org/

85

#include <iostream>
int main() {
int x = 10;

if (x = 20) { // Potential bug: assignment instead of comparison

std::cout << "x is 20\n”;

— Clang-Tidy will warn about the use of = instead of ==.

3.3.3 Cppcheck

1. What is Cppcheck?

e Cppcheck is a lightweight static analysis tool that focuses on detecting

undefined behavior, memory leaks, and other common issues.
2. Installing Cppcheck:

¢ On Ubuntu:

sudo apt install cppcheck

e On macOS (via Homebrew):

brew install cppcheck

e On Windows:

— Download and install Cppcheck from http://cppcheck.sourceforge.net.

http://cppcheck.sourceforge.net/

86

3. Using Cppcheck:
o Run Cppcheck on a single file:

cppcheck main.cpp

« Emnable all checks:

cppcheck --enable=all main.cpp

4. Example: Using Cppcheck
o Analyze a C++ file for memory leaks:

#include <iostream>

int main() {
int* ptr = new int(10);
std::cout << *ptr << "\n”;

// Memory leak: ptr is not deleted

— Cppcheck will warn about the memory leak.

3.3.4 Functional Testing

Functional testing ensures that your code behaves as expected by verifying the
correctness of individual functions and components. In functional programming, where

pure functions are emphasized, functional testing becomes even more critical.

87

3.3.5 Google Test

1. What is Google Test?

e Google Test is a popular unit testing framework for C++ that provides a rich

set of assertions and test fixtures.
2. Installing Google Test:

« Using Conan:

— Add Google Test to your conanfile.txt:

[requires]

gtest/1.11.0

[generators]

cmake

— Install dependencies:

conan install ..

3. Writing Tests with Google Test:
o Create a test file (test_main.cpp):
#include <gtest/gtest.h>

int add(int a, int b) {

return a + b;

38

TEST (MyTestSuite, MyTestCase) {
EXPECT_EQ(add(2, 3), 5);

int main(int arge, char **argv) {
::testing:: InitGoogleTest(&arge, argv);
return RUN_ALL_TESTS();

4. Running Tests:
e Compile and run tests:
cmake ..

cmake --build .

ctest

3.3.6 Catch2

1. What is Catch2?

o (Catch2 is a modern, header-only testing framework for C++ that is easy to

use and highly expressive.
2. Installing Catch2:

e Using Conan:

— Add Catch2 to your conanfile.txt:

89

[requires]
catch2/2.13.7

[generators]

cmake

— Install dependencies:

conan install ..

3. Writing Tests with Catch2:

o Create a test file (test_main.cpp):

#define CATCH_CONFIG__MAIN
#include <catch2/catch.hpp>

int add(int a, int b) {

return a + b;

TEST CASE(”Addition works”, ”[math]”) {
REQUIRE(add(2, 3) == 5);

4. Running Tests:

e Compile and run tests:

90

cmake ..
cmake --build .
./MyTests

3.3.7 Integrating Static Analysis and Testing into CI/CD

1. Continuous Integration (CI) Setup:

e Use CI platforms like GitHub Actions, GitLab CI, or Travis CI to automate

static analysis and testing.

« Example GitHub Actions workflow (.github/workflows/ci.yml):

name: CI
on: [push, pull request]

jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v?2
- name: Install dependencies
run: |
sudo apt update
sudo apt install clang-tidy cppcheck
pip install conan
- name: Configure and build
run: |
mkdir build
cd build

91

conan install ..
cmake -DCMAKE_CXX__CLANG_ TIDY=clang-tidy ..
cmake --build .
- name: Run tests
run: |
cd build

ctest

3.3.8 Summary

Static analysis tools and functional testing frameworks are essential for maintaining
high-quality C++ code, especially in functional programming. By using tools like
Clang-Tidy, Cppcheck, Google Test, and Catch2, you can:

 Identify Potential Issues: Catch bugs and code smells early.
o Ensure Correctness: Verify that your functions behave as expected.

« Automate Quality Checks: Integrate static analysis and testing into your CI/CD

pipeline.

These tools and practices will help you write robust, maintainable, and efficient

functional C++ code.

Chapter 4

Pure Functions

4.1 Concept of Pure Functions and How to Implement Them in

CH+

Pure functions are a cornerstone of functional programming. They are functions that
produce the same output for the same input and have no side effects. This section
explores the concept of pure functions, their benefits, and how to implement them in

C++.

4.1.1 What is a Pure Function?

A pure function is a function that:

1. Always produces the same output for the same input.

2. Has no side effects: It does not modify any external state or data.

Key Characteristics of Pure Functions:

92

93

e Deterministic: Given the same input, a pure function will always return the same

output.

» No Side Effects: Pure functions do not modify global variables, perform 1/0

operations, or change the state of mutable objects.

4.1.2 Benefits of Pure Functions

1. Predictability:

o Pure functions are easier to reason about because their behavior is consistent

and predictable.

2. Testability:

e Pure functions are easier to test because they depend only on their inputs

and produce no side effects.

3. Concurrency:

o Pure functions are inherently thread-safe because they do not rely on or

modify shared state.

4. Reusability:

e Pure functions can be reused in different parts of a program without

worrying about side effects.

94

4.1.3 Implementing Pure Functions in C++

In C++, you can implement pure functions by adhering to the principles of functional

programming. Below are examples and guidelines for writing pure functions in C++.

Example of a Pure Function

int add(int a, int b) {

return a + b;

» Explanation:

— The add function is pure because:

« It always returns the same result for the same inputs (e.g., add(2, 3) will

always return 5).

x It does not modify any external state or produce side effects.

4.1.4 Example of an Impure Function

int counter = 0;

int increment() {

return ++counter; // Modifies external state (counter)

» Explanation:

— The increment function is impure because:

95

x It modifies the global variable counter, which is an external state.

* Its output depends on the current value of counter, making it

non-deterministic.

Guidelines for Writing Pure Functions
1. Avoid Modifying External State:

« Do not modify global variables, static variables, or mutable objects passed by

reference.

o Example:

int add(int a, int b) {

return a + b; // No external state is modified

2. Avoid I/O Operations:

« Do not perform input/output operations, such as reading from or writing to

files, the console, or the network.

o Example:

int square(int x) {

return x * x; // No I/O operations

3. Use Immutable Data:

e Prefer using const and constexpr to ensure immutability.

96

o Example:

constexpr int square(int x) {

return x * x; // Immutable and evaluated at compile time

4. Return New Data Instead of Modifying Inputs:

o Instead of modifying input parameters, return new data structures.

o Example:

std::vector<int> squareElements(const std::vector<int>& input) {
std::vector<int> result;
for (int x : input) {
result.push_ back(x * x);

}

return result; // Returns a new vector instead of modifying the input

Advanced Example: Pure Function with Higher-Order Functions

#include <vector>
#include <algorithm>

#include <iostream>

// Pure function: squares an integer
int square(int x) {

return x * x;

97

// Higher-order function: applies a function to each element of a vector
std::vector<int> map(const std::vector<int>& input, int (*func)(int)) {
std::vector<int> result;
for (int x : input) {
result.push_ back(func(x));

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << 77 // Output: 149 16

« Explanation:

— The square function is pure because it always returns the same output for the

same input and has no side effects.

— The map function is also pure because it does not modify the input vector

and returns a new vector.

4.1.5 Common Pitfalls and How to Avoid Them

1. Accidentally Modifying External State:

e Ensure that your functions do not modify global or static variables.

98

o Example:

int globalCounter = 0;

int impurelncrement() {

return ++globalCounter; // Avoid this

2. Performing I/O Operations:

» Keep I/O operations separate from pure functions.

e Example:

void printMessage(const std::string& message) {

std::cout << message; // I/O operation should be separate

3. Using Mutable References:

e Avoid passing mutable references to functions if they modify the referenced
data.

o Example:

void impureModify(std::vector<int>& data) {
data.push_ back(42); // Avoid this in pure functions

99

4.1.6 Summary

Pure functions are a fundamental concept in functional programming, offering benefits
like predictability, testability, and concurrency safety. By adhering to the principles of
immutability and avoiding side effects, you can write pure functions in C++ that are

robust, maintainable, and efficient. Here are the key takeaways:

o Pure Functions: Always produce the same output for the same input and have no

side effects.

« Guidelines: Avoid modifying external state, performing 1/O operations, and using

mutable references.

o Examples: Use pure functions for mathematical operations, data transformations,

and higher-order functions.

By mastering pure functions, you can write functional-style C++ code that is easier to

reason about, test, and maintain.

4.2 Benefits of Pure Functions in Avoiding Side Effects

Pure functions are a cornerstone of functional programming, and one of their most
significant advantages is their ability to avoid side effects. Side effects can introduce
complexity, unpredictability, and bugs into your code. This section explores the benefits
of pure functions in avoiding side effects and how they contribute to writing cleaner,

more maintainable, and reliable code.

4.2.1 What Are Side Effects?

A side effect occurs when a function modifies some state outside its local scope or

interacts with the external world. Common examples of side effects include:

100

« Modifying global or static variables.
o Changing the value of mutable arguments passed by reference.

 Performing I/O operations (e.g., reading from or writing to files, the console, or

the network).

o Throwing exceptions or modifying the program's control flow.

4.2.2 Why Are Side Effects Problematic?

Side effects can lead to several issues in software development:
1. Unpredictability:

o Functions with side effects may produce different results depending on the

program's state, making their behavior harder to predict.
2. Harder Debugging:

o Side effects can introduce bugs that are difficult to trace because they depend

on external state or interactions.
3. Concurrency Issues:

« Shared mutable state can lead to race conditions and other concurrency

problems in multi-threaded programs.
4. Reduced Reusability:

o Functions with side effects are harder to reuse because they depend on or

modify external state.

101

4.2.3 How Pure Functions Avoid Side Effects

Pure functions, by definition, do not have side effects. They rely only on their input
parameters and produce output without modifying any external state. This property

makes them highly predictable, testable, and reusable.

Example: Pure Function Without Side Effects

int add(int a, int b) {

return a + b;

» Explanation:

— The add function is pure because:

« It depends only on its input parameters (a and b).
« It does not modify any external state or perform I1/O operations.

x It always returns the same result for the same inputs.
Example: Impure Function with Side Effects
int globalCounter = 0;

int increment() {

return ++globalCounter; // Modifies external state (globalCounter)

o Explanation:

— The increment function is impure because:

102

x It modifies the global variable globalCounter, which is an external state.

x Its output depends on the current value of globalCounter, making it

non-deterministic.

4.2.4 Benefits of Avoiding Side Effects

1. Predictable Behavior:

e Pure functions always produce the same output for the same input, making

their behavior predictable and easier to reason about.

o Example:

int square(int x) {

return x * x; // Always returns the same result for the same input

2. Easier Testing:

o Pure functions are easier to test because they do not depend on or modify
external state. You can test them in isolation with a set of inputs and

expected outputs.

o Example:

#include <cassert>

int add(int a, int b) {

return a + b;

103

void testAdd() {
assert(add(2, 3) == 5);
assert(add(-1, 1) == 0);

3. Concurrency Safety:

e Pure functions are inherently thread-safe because they do not rely on or
modify shared state. This makes them ideal for concurrent and parallel

programming.

o Example:

#include <vector>
#include <algorithm>
#include <execution>

#include <iostream>

int square(int x) {

return x * x;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::for _each(std::execution::par, numbers.begin(), numbers.end(), [J(int& x) {
x = square(x); // Safe to parallelize because square is pure

};

for (int x : numbers) {
std::cout << x << ””; // Output: 149 16

104

4. Reusability:

o Pure functions can be reused in different parts of a program without

worrying about side effects or external dependencies.
o Example:

int multiply(int a, int b) {

return a * by

int area(int length, int width) {
return multiply (length, width); // Reusing the pure function

5. Modularity:

e Pure functions promote modularity by breaking down complex tasks into

smaller, independent units that can be composed to build larger systems.
o Example:
#include <vector>

#include <algorithm>

#include <iostream>
int square(int x) {

return x * x;

std::vector<int> map(const std::vector<int>& input, int (*func)(int)) {

std::vector<int> result;

105

for (int x : input) {
result.push back(func(x));

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << ”7”; // Output: 149 16

4.2.5 Real-World Applications of Pure Functions

1. Data Processing:

o Pure functions are ideal for data processing tasks, such as filtering,

transforming, and aggregating data.
o Example:
#include <vector>

#include <algorithm>

#include <iostream>

bool isEven(int x) {

return x % 2 == 0;

106

int square(int x) {

return x * x;

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

std::vector<int> evenSquares;
std::copy__if(numbers.begin(), numbers.end(), std::back_inserter(evenSquares),
< isEven);

std::transform(evenSquares.begin(), evenSquares.end(), evenSquares.begin(), square);

for (int x : evenSquares) {
std::cout << x << 77 // Output: 4 16 36

2. Mathematical Computations:

o Pure functions are widely used in mathematical computations, where

predictability and correctness are critical.

o Example:

double calculateCircleArea(double radius) {

return 3.14159 * radius * radius;

3. Functional Programming Libraries:

107

o Libraries like Range-v3 leverage pure functions to provide functional-style

operations on collections.

o Example:

#include <ranges>
#include <vector>

#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto evenSquares = numbers | std::views: filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

for (int x : evenSquares) {
std::cout << x << 77 // Output: 4 16

4.2.6 Summary

Pure functions offer significant benefits in avoiding side effects, leading to code that is:
o Predictable: Always produces the same output for the same input.
« Testable: Easier to test in isolation.

o Concurrency-Safe: Inherently thread-safe due to the absence of shared mutable

state.
o Reusable: Can be reused across different parts of a program.

e Modular: Promotes modularity and composability.

108

By embracing pure functions, you can write cleaner, more maintainable, and reliable

C++ code that is well-suited for functional programming.

Chapter 5

Immutability

5.1 Using const and constexpr to Ensure Immutability

Immutability is a key principle in functional programming, ensuring that data does not
change after it is created. In C++4, immutability can be enforced using the const and
constexpr keywords. This section explores how to use these keywords effectively to write

immutable code, along with their benefits and practical examples.

5.1.1 What is Immutability?

Immutability refers to the property of data that cannot be modified after it is created.

Immutable data structures are essential in functional programming because they:
o Ensure Predictability: Data remains consistent throughout its lifetime.
o Simplify Concurrency: Immutable data is inherently thread-safe.

o Promote Functional Purity: Functions that operate on immutable data are easier

to reason about and test.

109

110

5.1.2 The const Keyword

The const keyword in C++ is used to declare that a variable, function parameter, or

member function does not modify the state of an object.

Immutable Variables
1. Declaring Immutable Variables:

o Use const to declare variables that cannot be modified after initialization.

o Example:

const int x = 10;

// x = 20; // Error: Cannot modify a const variable

2. Benefits:
o Prevents accidental modification of variables.
o« Makes the intent of the code clearer.
Immutable Function Parameters
1. Using const for Parameters:

o Use const to ensure that function parameters are not modified within the

function.

o Example:

111

void printValue(const int value) {
// value = 42; // Error: Cannot modify a const parameter

std::cout << value << "\n”;

2. Benefits:

¢ Prevents unintended side effects within functions.

o Makes functions more predictable and easier to test.

Immutable Member Functions

1. Declaring Immutable Member Functions:

o Use const to declare member functions that do not modify the state of the

object.

o Example:

class MyClass {
public:
int getValue() const {

return value; // This function does not modify the object

}
private:

int value = 42;

&

2. Benefits:

o Ensures that member functions do not alter the object's state.

o Allows const objects to call these functions.

112

5.1.3 The constexpr Keyword

The constexpr keyword in C++ is used to declare that a variable or function can be

evaluated at compile time. This promotes immutability and performance optimization.

Immutable Compile-Time Constants
1. Declaring Compile-Time Constants:

o Use constexpr to declare variables that are evaluated at compile time.

o Example:

constexpr int x = 10;

constexpr int y = x + 5; // Evaluated at compile time

2. Benefits:
o Improves performance by evaluating expressions at compile time.
e Ensures that the value is immutable and known at compile time.
Immutable Compile-Time Functions
1. Declaring Compile-Time Functions:

o Use constexpr to declare functions that can be evaluated at compile time.

o Example:

113

constexpr int square(int x) {

return x * x;

constexpr int result = square(5); // Evaluated at compile time

2. Benefits:

« Enables compile-time computation, improving runtime performance.

o Ensures that the function is pure and immutable.

Combining const and constexpr
1. Using const and constexpr Together:

o Combine const and constexpr to declare immutable compile-time constants.

o Example:

constexpr const int x = 10; // Immutable and evaluated at compile time

2. Benefits:

o Ensures both immutability and compile-time evaluation.

5.1.4 Practical Examples

Immutable Data Structures

114

1. Immutable Vector:

o Use const to ensure that a vector cannot be modified after creation.
o Example:

const std::vector<int> numbers = {1, 2, 3, 4};

// numbers.push_ back(5); // Error: Cannot modify a const vector

2. Immutable Class:

o Use const member functions to ensure that class methods do not modify the

object's state.

o Example:

class ImmutablePoint {
public:
ImmutablePoint(int x, int y) : x(x), y(y) {}

int getX() const { return x; }
int getY() const { return y; }

private:
const int x;

const int y;

b

ImmutablePoint point(3, 4);

// point.getX() = 5; // Error: Cannot modify a const member

Compile-Time Computations

115

1. Compile-Time Factorial:

« Use constexpr to compute factorials at compile time.

o Example:

constexpr int factorial(int n) {

return (n <= 1) 7 1 : n * factorial(n - 1);

constexpr int result = factorial(5); // Evaluated at compile time

2. Compile-Time String Length:

e Use constexpr to compute the length of a string at compile time.
o Example:
constexpr int stringLength(const char* str) {
int length = 0;
while (str[length] != "\0") {

++length;

}

return length;

constexpr int length = stringLength(”Hello”); // Evaluated at compile time

5.1.5 Benefits of Using const and constexpr

1. Predictability:

116

o Immutable data ensures that values remain consistent throughout their

lifetime.
2. Performance:
o constexpr enables compile-time evaluation, reducing runtime overhead.
3. Concurrency Safety:

o Immutable data is inherently thread-safe, simplifying concurrent

programming.
4. Code Clarity:

« Using const and constexpr makes the intent of the code clearer and reduces

the risk of bugs.

5.1.6 Summary

Using const and constexpr in C++ is essential for enforcing immutability, a key
principle in functional programming. By declaring variables, function parameters, and
member functions as const, you can ensure that data remains unchanged after creation.
Additionally, constexpr allows for compile-time evaluation, improving performance and
enabling immutable compile-time computations.

Key Takeaways:
» const: Ensures immutability at runtime.
o constexpr: Ensures immutability and compile-time evaluation.

o Benefits: Predictability, performance, concurrency safety, and code clarity.

By leveraging const and constexpr, you can write more robust, maintainable, and

efficient C++ code that aligns with functional programming principles.

117

5.2 Immutable Data Structures in C+-+

Immutable data structures are a fundamental concept in functional programming. They
ensure that once data is created, it cannot be modified, leading to more predictable and
maintainable code. This section explores how to implement and use immutable data

structures in C++, along with their benefits and practical examples.

5.2.1 What Are Immutable Data Structures?

Immutable data structures are data structures that cannot be modified after they are
created. Instead of changing the existing data, operations on immutable data structures
return new instances with the desired changes. This approach aligns with the principles

of functional programming, where immutability and purity are emphasized.

5.2.2 Benefits of Immutable Data Structures

1. Predictability:

o Immutable data structures ensure that data remains consistent throughout

its lifetime, making the program's behavior more predictable.
2. Concurrency Safety:

o Immutable data structures are inherently thread-safe because they cannot be

modified after creation, eliminating the risk of race conditions.
3. Easier Debugging:

« Since data does not change, debugging becomes easier as you do not need to

track changes to variables over time.

118

4. Functional Purity:

e Immutable data structures promote functional purity by ensuring that

functions do not have side effects.

5.2.3 Implementing Immutable Data Structures in C++

In C++, immutability can be enforced using the const keyword and by designing data

structures that return new instances instead of modifying existing ones.

Immutable Vector
1. Using const for Immutability:

e Declare a vector as const to prevent modifications after creation.
o Example:

const std::vector<int> numbers = {1, 2, 3, 4};

// numbers.push_ back(5); // Error: Cannot modify a const vector

2. Creating a New Vector for Modifications:

o Instead of modifying the existing vector, create a new vector with the desired

changes.

o Example:

std::vector<int> addElement(const std::vector<int>& vec, int element) {
std::vector<int> newVec = vec;
newVec.push__back(element);

return newVec;

119

int main() {
const std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> newNumbers = addElement(numbers, 5);

for (int x : newNumbers) {
std::cout << x << 77 // Output: 12345

Immutable Class
1. Immutable Class with const Members:

« Use const members to ensure that the class's state cannot be modified after

construction.

o Example:

class ImmutablePoint {
public:
ImmutablePoint(int x, int y) : x(x), y(y) {}

int getX() const { return x; }
int getY() const { return y; }

private:
const int x;

const int y;

|5

120

int main() {
ImmutablePoint point(3, 4);
// point.getX() = 5; // Error: Cannot modify a const member
std::cout << "X:” << point.getX() << 7, Y:” << point.getY () << "\n”; // Output:
- X:3,Y:4

2. Returning New Instances for Modifications:

o Instead of modifying the existing instance, return a new instance with the

desired changes.
o Example:
class ImmutablePoint {

public:
ImmutablePoint(int x, int y) : x(x), y(y) {}

int getX() const { return x; }
int getY() const { return y; }

ImmutablePoint withX(int newX) const {

return ImmutablePoint(newX, y);

ImmutablePoint withY (int newY) const {

return ImmutablePoint(x, newY);

private:

const int x;

121

const int y;

b

int main() {
ImmutablePoint point(3, 4);

ImmutablePoint newPoint = point.withX(5);

std::cout << "X: 7 << newPoint.getX() << 7, Y: ” << newPoint.getY() << "\n”; //
— Output: X: 5, Y: 4

Immutable Linked List
1. Immutable Linked List Implementation:

e Implement a linked list where each operation returns a new list instead of

modifying the existing one.

o Example:

#include <iostream>

#include <memory>

template <typename T>
class ImmutableList {
public:
ImmutableList() : head(nullptr) {}

ImmutableList(T value, std::shared ptr<ImmutableList<T>> tail)
- head(std::make_shared<Node>(value, tail)) {}

122

bool isEmpty() const {

return head == nullptr;

T front() const {
if (isEmpty()) {
throw std::runtime_ error(”List is empty”);

}

return head->value;

std::shared_ ptr<ImmutableList<T>> popFront() const {
if (isEmpty()) {
throw std::runtime__ error(”List is empty”);

}

return head->next;

std::shared ptr<ImmutableList<T>> pushFront(T value) const {
return std::make shared <ImmutableList<T>>(value, head);

private:
struct Node {
T value;

std::shared_ ptr<ImmutableList<T>> next;

Node(T value, std::shared_ ptr<ImmutableList<T>> next)

: value(value), next(next) {}

b

std::shared_ ptr<Node> head;

123

b

int main() {
auto list = std::make shared<ImmutableList<int>>();
list = list->pushFront(3);
list = list->pushFront(2);
list = list->pushFront(1);

while (!list->isEmpty()) {
std::cout << list->front() << ” ”; // Output: 1 2 3
list = list->popFront();

5.2.4 Practical Applications of Immutable Data Structures

1. Functional Transformations:

e Use immutable data structures for functional transformations, such as

mapping and filtering.

o Example:

std::vector<int> map(const std::vector<int>& input, int (*func)(int)) {
std::vector<int> result;
for (int x : input) {
result.push__back(func(x));

}

return result;

124

int square(int x) {

return x * x;

int main() {
const std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {

std::cout << x << ””; // Output: 149 16

2. Concurrent Programming:

e Immutable data structures simplify concurrent programming by eliminating

the need for locks and synchronization.

o Example:

#include <vector>
#include <thread>

#include <iostream>

void printVector(const std::vector<int>& vec) {
for (int x : vec) {
std::cout << x << 77

}

std::cout << 7\n”;

int main() {

125

const std::vector<int> numbers = {1, 2, 3, 4};

std::thread t1(printVector, numbers);
std::thread t2(printVector, numbers);

t1.join();
t2.join();

5.2.5 Summary

Immutable data structures are a powerful tool in functional programming, ensuring that
data remains consistent and predictable throughout its lifetime. By using const and
designing data structures that return new instances instead of modifying existing ones,
you can write more robust, maintainable, and concurrent-safe C++ code.

Key Takeaways:

o Immutable Data Structures: Ensure data cannot be modified after creation.

o Benefits: Predictability, concurrency safety, easier debugging, and functional

purity.
o Implementation: Use const and return new instances for modifications.

By embracing immutable data structures, you can write functional-style C++ code that

is easier to reason about, test, and maintain.

Chapter 6

First-Class Functions

6.1 Using Functions as Values

In functional programming, functions are first-class citizens, meaning they can be
treated like any other value. This includes passing functions as arguments to other
functions, returning functions from functions, and storing functions in data structures.
This section explores how to use functions as values in C++, leveraging modern features

like lambda expressions, std::function, and higher-order functions.

6.1.1 What Are First-Class Functions?
First-class functions are functions that can be:
o Assigned to variables.
o Passed as arguments to other functions.

¢ Returned from functions.

126

127

 Stored in data structures (e.g., vectors, maps).
This concept is central to functional programming and enables powerful abstractions like

higher-order functions and function composition.

6.1.2 Lambda Expressions in C+-+

Lambda expressions are a concise way to define anonymous functions in C++. They are

a key tool for using functions as values.

Syntax of Lambda Expressions

A lambda expression has the following syntax:

[capture](parameters) -> return_type { body }

o Capture: Specifies which variables from the surrounding scope are accessible inside
the lambda.

o Parameters: The input parameters of the lambda.

o Return Type: The type of the value returned by the lambda (can often be omitted

for the compiler to deduce).

e Body: The code executed when the lambda is called.

Example: Assigning a Lambda to a Variable

auto square = [|(int x) { return x * x; };

int result = square(5); // result = 25

» Explanation:

128

— The lambda [|(int x) { return x * x; } is assigned to the variable square.

— The lambda can then be called like a regular function.

Example: Passing a Lambda as an Argument

#include <iostream>
#include <vector>
#include <algorithm>

void printVector(const std::vector<int>& vec, void (*func)(int)) {
for (int x : vec) {

func(x);

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
printVector(numbers, [|(int x) { std::cout << x << ””; }); // Output: 1 2 3 4

o Explanation:

— The lambda [|(int x) { std::cout << x << ””; } is passed as an argument to

the printVector function.

— The lambda is used to print each element of the vector.

6.1.3 Using std::function for Type Safety

The std::function template provides a type-safe way to store and pass functions as

values. It can hold any callable object (e.g., lambdas, function pointers, functors).

129

Example: Storing a Lambda in std::function

#include <iostream>

#include <functional>

int main() {
std::function<int(int) > square = [J(int x) { return x * x; };
int result = square(5); // result = 25
std::cout << result << "\n”;

» Explanation:

— The lambda [|(int x) { return x * x; } is stored in a std::function<int(int)>

object.
— The std::function object can be called like a regular function.
Example: Passing std::function as an Argument

#include <iostream>

#include <functional>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << "\n”;

int main() {

applyFunction(5, [J(int x) { return x * x; }); // Output: 25

» Explanation:

130

— The applyFunction function takes a std::function<int(int)> as an argument.

— A lambda is passed to applyFunction and applied to the input value.

6.1.4 Higher-Order Functions

Higher-order functions are functions that take other functions as arguments or return

functions as results. They are a powerful abstraction in functional programming.

Example: A Higher-Order Function

#include <iostream>

#include <functional>
void applyFunction(int x, const std::function<int(int)>& func) {

std:-cout << fune(x) << "\n’;

int main() {

applyFunction(5, [J(int x) { return x * x; }); // Output: 25

« Explanation:

— The createMultiplier function returns a lambda that multiplies its input by a

given factor.

— The returned lambda is stored in doubleValue and tripleValue and used to

multiply values.

Example: Using std::transform with a Lambda

131

#include <iostream>
#include <vector>

#include <algorithm>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers(numbers.size());

std::transform(numbers.begin(), numbers.end(), squaredNumbers.begin(),
[[(int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << ””; // Output: 149 16

o Explanation:

— The std::transform function applies a lambda to each element of the numbers

vector.

— The result is stored in the squaredNumbers vector.

6.1.5 Storing Functions in Data Structures

Functions can be stored in data structures like vectors, maps, or custom containers,

enabling dynamic behavior and flexibility.

Example: Storing Lambdas in a Vector

132

#include <iostream>
#include <vector>

#include <functional>

int main() {

std::vector<std::function<int(int)>> functions;

functions.push__back([](int x) { return x * x; });
functions.push_ back([](int x) { return x + x; });
functions.push__back([](int x) { return x * 2; });

for (const auto& func : functions) {
std::cout << func(5) << "\n”; // Output: 25, 10, 10

» Explanation:

— A vector of std::function<int(int)> objects is created.

— Lambdas are added to the vector and called dynamically.

Example: Using a Map to Store Functions

#include <iostream>
#include <map>
#include <functional>

#include <string>

int main() {

std::map<std::string, std::function<int(int, int)>> operations;

133

operations[’add”] = [|(int a, int b) { return a + b; };
operations["multiply”] = [](int a, int b) { return a * b; };

std::cout << operations[’add”](2, 3) << "\n”; // Output: 5
std::cout << operations["multiply”](2, 3) << "\n”; // Output: 6

o Explanation:

— A map is used to associate strings (e.g., "add”, "multiply”) with functions.

— The functions are called dynamically based on the input string.

6.1.6 Summary

Using functions as values is a powerful feature of functional programming that enables
higher-order functions, dynamic behavior, and flexible abstractions. In C++, this is

achieved through:

Lambda Expressions: Concise syntax for defining anonymous functions.

std::function: Type-safe storage and passing of callable objects.

Higher-Order Functions: Functions that take or return other functions.

Storing Functions in Data Structures: Enables dynamic and flexible behavior.

By leveraging these features, you can write expressive, modular, and reusable C++ code

that aligns with functional programming principles.

134

6.2 Storing Functions in Variables and Passing Them as

Arguments

In functional programming, functions are first-class citizens, meaning they can be
treated like any other value. This includes storing functions in variables and passing
them as arguments to other functions. This section explores how to achieve this in C+-+

using lambda expressions, std::function, and function pointers.

6.2.1 Storing Functions in Variables

Storing functions in variables allows you to treat functions as data, enabling dynamic

behavior and flexibility in your programs.

Using Lambda Expressions
Lambda expressions are a concise way to define anonymous functions that can be stored

in variables.
1. Example: Storing a Lambda in a Variable
auto square = [|(int x) { return x * x; };

int result = square(5); // result = 25

o Explanation:

— The lambda [|(int x) { return x * x; } is assigned to the variable square.

— The lambda can then be called like a regular function.

2. Example: Storing a Lambda in std::function

135

#include <iostream>

#include <functional>

int main() {
std::function<int(int)> square = [|(int x) { return x * x; };
int result = square(5); // result = 25

std::cout << result << "\n”;

o Explanation:
— The lambda is stored in a std::function<int(int)> object, which provides
type safety and flexibility.

— The std::function object can be called like a regular function.

Using Function Pointers

Function pointers are a traditional way to store and call functions in C++.

1. Example: Storing a Function Pointer
#include <iostream>

int square(int x) {

return x * x;

int main() {
int (*funcPtr)(int) = square;
int result = funcPtr(5); // result = 25

std::cout << result << "\n”;

136

o Explanation:

— The function square is assigned to the function pointer funcPtr.

— The function pointer can be called like a regular function.

6.2.2 Passing Functions as Arguments

Passing functions as arguments to other functions enables higher-order functions, which

are a key concept in functional programming.
Using Lambda Expressions

1. Example: Passing a Lambda as an Argument

#include <iostream>
#include <vector>
#include <algorithm>

void applyFunction(const std::vector<int>& vec, const std::function<void(int)>& func) {
for (int x : vec) {

func(x);

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
applyFunction(numbers, [](int x) { std::cout << x << 7 7; }); // Output: 1 2 3 4

o Explanation:

— The lambda [|(int x) { std::cout << x << ””; } is passed as an

argument to the applyFunction function.

137

— The lambda is used to print each element of the vector.

Using std::function

1. Example: Passing a std::function as an Argument

#include <iostream>

#include <functional>
void applyFunction(int x, const std::function<int(int)>& func) {

std::cout << func(x) << "\n”;

int main() {
applyFunction(5, [|(int x) { return x * x; }); // Output: 25

o Explanation:

— The applyFunction function takes a std::function<int(int)> as an
argument.
— A lambda is passed to applyFunction and applied to the input value.
Using Function Pointers
1. Example: Passing a Function Pointer as an Argument
#include <iostream>

int square(int x) {

138

return x * x;

void applyFunction(int x, int (*func)(int)) {
std::cout << func(x) << "\n”;

int main() {

applyFunction(5, square); // Output: 25

o Explanation:

— The function square is passed as a function pointer to applyFunction.

— The function pointer is called within applyFunction.

6.2.3 Practical Applications

Custom Sorting with Lambdas
1. Example: Sorting a Vector with a Custom Comparator

#include <iostream>
#include <vector>

#include <algorithm>

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
std::sort(numbers.begin(), numbers.end(), [|(int a, int b) {

return a > b; // Sort in descending order

139

};

for (int x : numbers) {
std::cout << x << ”7; // Output: 43 2 1

« Explanation:

— A lambda is used as a custom comparator to sort the vector in

descending order.

Event Handling with std::function

1. Example: Simulating an Event Handler

#include <iostream>
#include <functional>
#include <vector>

class EventHandler {
public:
void registerCallback(const std::function<void()>& callback) {
callbacks.push_ back(callback);

void triggerEvent() {
for (const auto&s callback : callbacks) {
callback();

140

private:
std::vector<std::function<void()>> callbacks;

Ii5

int main() {
EventHandler handler;

handler.registerCallback([]() { std::cout << ”Callback 1\n"; });
handler.registerCallback([]() { std::cout << ”Callback 2\n”; });

handler.triggerEvent(); // Output: Callback 1, Callback 2

o Explanation:

— The EventHandler class stores callbacks in a vector of

std::function<void()>.

— Lambdas are registered as callbacks and triggered when an event occurs.

6.2.4 Summary

Storing functions in variables and passing them as arguments are powerful techniques in
functional programming that enable higher-order functions, dynamic behavior, and

flexible abstractions. In C++-, this is achieved through:
« Lambda Expressions: Concise syntax for defining anonymous functions.
o std::function: Type-safe storage and passing of callable objects.

» Function Pointers: Traditional way to store and call functions.

141

By leveraging these features, you can write expressive, modular, and reusable C++ code

that aligns with functional programming principles. Here are the key takeaways:

» Storing Functions: Use lambdas, std::function, or function pointers to store

functions in variables.

» Passing Functions: Pass functions as arguments to enable higher-order functions

and dynamic behavior.

» Practical Applications: Custom sorting, event handling, and more.

These techniques will help you write more flexible and maintainable code, making your

programs easier to reason about and extend.

Chapter 7

Lambda Functions

7.1 Writing Lambda Functions in C++

Lambda functions are a powerful feature in C++ that allow you to define anonymous
functions inline. They are particularly useful in functional programming for creating
concise and expressive code. This section explores the syntax, usage, and benefits of

lambda functions in C++.

7.1.1 What Are Lambda Functions?

Lambda functions are anonymous functions that can be defined inline and used as
first-class citizens. They are particularly useful for short, throwaway functions that are

used only once or passed as arguments to higher-order functions.

7.1.2 Syntax of Lambda Functions

The general syntax of a lambda function in C++ is as follows:

142

143

[capture|(parameters) -> return_ type { body }

o Capture: Specifies which variables from the surrounding scope are accessible inside
the lambda.

o Parameters: The input parameters of the lambda.

o Return Type: The type of the value returned by the lambda (can often be omitted

for the compiler to deduce).

e Body: The code executed when the lambda is called.

7.1.3 Basic Examples of Lambda Functions

Simple Lambda Function
auto square = [|(int x) { return x * x; };
int result = square(5); // result = 25
« Explanation:
— The lambda [|(int x) { return x * x; } is assigned to the variable square.
— The lambda can then be called like a regular function.
Lambda Function with Multiple Parameters

auto add = [](int a, int b) { return a + b; };
int result = add(3, 4); // result = 7

144

« Explanation:
— The lambda [|(int a, int b) { return a + b; } takes two parameters and

returns their sum.

Lambda Function with Explicit Return Type

auto divide = [|(double a, double b) -> double { return a / b; };
double result = divide(10.0, 2.0); // result = 5.0

o Explanation:
— The lambda [|(double a, double b) -> double { return a / b; } explicitly

specifies the return type as double.

7.1.4 Capturing Variables in Lambda Functions

Lambda functions can capture variables from their surrounding scope, allowing them to

use these variables within their body. There are several ways to capture variables:

Capture by Value

int x = 10;
auto lambda = [x]() { retwrn x; };
int result = lambda(); // result = 10

» Explanation:

— The lambda captures the variable x by value, meaning it gets a copy of x at

the time the lambda is created.

145

Capture by Reference

int x = 10;

auto lambda = [&x]() { return x; };
x = 20;

int result = lambda(); // result = 20

« Explanation:

— The lambda captures the variable x by reference, meaning it accesses the

original x and any changes to x are reflected in the lambda.

Capture All by Value

int x = 10, y = 20;
auto lambda = [=]() { return x + y; };
int result = lambda(); // result = 30

o Explanation:

— The lambda captures all variables from the surrounding scope by value using

=]

Capture All by Reference

int x = 10, y = 20;

auto lambda = [&]() { return x + y; };
x = 30;

int result = lambda(); // result = 50

146

« Explanation:

— The lambda captures all variables from the surrounding scope by reference

using [&].

Mixed Capture

int x = 10, y = 20;

auto lambda = [x, &y]() { return x + y; };
y = 30;

int result = lambda(); // result = 40

o Explanation:

— The lambda captures x by value and y by reference.

7.1.5 Using Lambda Functions with Standard Algorithms

Lambda functions are often used with Standard Library algorithms to provide custom

behavior.

Example: Using std::sort with a Lambda

#include <iostream>
#include <vector>

#include <algorithm>

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
std::sort(numbers.begin(), numbers.end(), [|(int a, int b) {

return a > b; // Sort in descending order

147

H;

for (int x : numbers) {

std::cout << x << 77 // Output: 43 2 1

» Explanation:

— A lambda is used as a custom comparator to sort the vector in descending

order.

Example: Using std::transform with a Lambda

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

std::vector<int> squaredNumbers(numbers.size());

std::transform(numbers.begin(), numbers.end(), squaredNumbers.begin(),

[J(int x) { return x * x; });

for (int x : squaredNumbers) {

std::cout << x << ””; // Output: 149 16

» Explanation:

148

— The std::transform function applies a lambda to each element of the numbers

vector.

— The result is stored in the squaredNumbers vector.

7.1.6 Advanced Lambda Features

Generic Lambdas (C++14)
Generic lambdas allow you to use auto as a parameter type, making the lambda more
flexible.

auto add = [J(auto a, auto b) { return a + b; };
int resultl = add(2, 3); // resultl = 5
double result2 = add(2.5, 3.5); // result2 = 6.0

« Explanation:
— The lambda [|(auto a, auto b) { return a + b; } can accept parameters of any

type.

Mutable Lambdas
By default, lambda functions are immutable, meaning they cannot modify variables

captured by value. The mutable keyword allows you to modify these variables.

int x = 10;
auto lambda = [x]() mutable { x += 5; return x; };
int result = lambda(); // result = 15

o Explanation:

— The lambda captures x by value and modifies it using the mutable keyword.

149

7.1.7 Summary

Lambda functions are a powerful and flexible feature in C++ that enable you to write
concise and expressive code. They are particularly useful in functional programming for
creating anonymous functions that can be passed as arguments, stored in variables, and
used with Standard Library algorithms.

Key Takeaways:

« Syntax: [capture](parameters) -> return_ type { body }

 Capturing Variables: By value ([x]), by reference ([&x]), or mixed ([x, &y]).
o Usage: With Standard Library algorithms, higher-order functions, and more.
o Advanced Features: Generic lambdas (C++14) and mutable lambdas.

By mastering lambda functions, you can write more expressive, modular, and reusable

C++ code that aligns with functional programming principles.

7.2 Capture Clauses and Their Use in Lambda Functions

Capture clauses in lambda functions allow you to specify how variables from the
surrounding scope are accessed within the lambda. They are a powerful feature that
enables lambdas to interact with their environment, making them more flexible and
expressive. This section explores the different types of capture clauses, their syntax, and

their practical applications.

7.2.1 What Are Capture Clauses?

Capture clauses define how variables from the enclosing scope are captured by a lambda

function. They determine whether the lambda accesses these variables by value or by

150

reference, and whether it can modify them.

7.2.2 Syntax of Capture Clauses

Capture clauses are specified within the square brackets [] at the beginning of a lambda

expression. The general syntax is:

[capture-list](parameters) -> return__type { body }

o Capture List: Specifies which variables are captured and how (by value or by

reference).

7.2.3 Types of Capture Clauses

Capture by Value
Capture by value creates a copy of the variable at the time the lambda is defined. The

lambda cannot modify the original variable.
1. Example: Capture by Value

int x = 10;
auto lambda = [x]() { return x; };
int result = lambda(); // result = 10

o Explanation:

— The lambda captures x by value, meaning it gets a copy of x at the time

the lambda is created.

— Changes to x after the lambda is defined do not affect the captured value.

151

2. Example: Capture Multiple Variables by Value

int x = 10, y = 20;
auto lambda = [x, y]() { return x + y; };
int result = lambda(); // result = 30

o Explanation:

— The lambda captures both x and y by value.

Capture by Reference

Capture by reference allows the lambda to access and modify the original variable.

1. Example: Capture by Reference

int x = 10;

auto lambda = [&x]() { return x; };
x = 20;

int result = lambda(); // result = 20

o Explanation:

— The lambda captures x by reference, meaning it accesses the original x.

— Changes to x are reflected in the lambda.

2. Example: Capture Multiple Variables by Reference

int x = 10, y = 20;

auto lambda = [&x, &y]() { return x + y; };
x = 30;

int result = lambdal(); // result = 50

152

o Explanation:

— The lambda captures both x and y by reference.

Capture All by Value

Capture all by value captures all variables from the surrounding scope by value using

=l
1. Example: Capture All by Value

int x = 10, y = 20;
auto lambda = [=]() { return x + y; };
int result = lambda(); // result = 30

o Explanation:

— The lambda captures all variables from the surrounding scope by value.

Capture All by Reference
Capture all by reference captures all variables from the surrounding scope by reference

using [&].
1. Example: Capture All by Reference

int x = 10, y = 20;

auto lambda = [&]() { return x + y; };
x = 30;

int result = lambda(); // result = 50

« Explanation:

153

— The lambda captures all variables from the surrounding scope by

reference.

Mixed Capture

Mixed capture allows you to capture some variables by value and others by reference.

1. Example: Mixed Capture

int x = 10, y = 20;

auto lambda = [x, &y]() { return x + y; };
y = 30;

int result = lambda(); // result = 40

o Explanation:

— The lambda captures x by value and y by reference.

Capture this Pointer
In a class or struct, you can capture the this pointer to access member variables and

functions.

1. Example: Capture this Pointer

class MyClass {
public:
int value = 10;
auto getLambda() {

return [this]() { return value; };

154

int main() {
MyClass obj;
auto lambda = obj.getLambda();
int result = lambda(); // result = 10

o Explanation:

— The lambda captures the this pointer, allowing it to access the member

variable value.

Custom Sorting with Captured Variables

1. Example: Sorting with a Custom Comparator

#include <iostream>
#include <vector>

#include <algorithm>

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
int threshold = 2;
std::sort(numbers.begin(), numbers.end(), [threshold](int a, int b) {
return a > threshold && b <= threshold; // Custom sorting logic

H;

for (int x : numbers) {

std::cout << x << 7 7”; // Output depends on threshold

155

o Explanation:

— The lambda captures threshold by value and uses it in the custom

sorting logic.

Event Handling with Captured Variables

1. Example: Simulating an Event Handler

#include <iostream>
#include <functional>

#include <vector>

class EventHandler {
public:
void registerCallback(const std::function<void()>& callback) {
callbacks.push_ back(callback);

void triggerEvent() {
for (const autod&s callback : callbacks) {
callback();

private:
std::vector<std::function<void()>> callbacks;

|%

int main() {
EventHandler handler;

int eventCount = 0;

156

handler.registerCallback([&eventCount]() {
eventCount-++;
std::cout << ”Event triggered! Count: 7 << eventCount << "\n”;

H;

handler.triggerEvent(); // Output: Event triggered! Count: 1
handler.triggerEvent(); // Output: Event triggered! Count: 2

« Explanation:

— The lambda captures eventCount by reference and modifies it each time

the event is triggered.

7.2.4 Summary

Capture clauses in lambda functions are a powerful feature that allows you to control
how variables from the surrounding scope are accessed and modified within the lambda.
By understanding and using capture clauses effectively, you can write more expressive,
flexible, and maintainable C++ code.

Key Takeaways:

Capture by Value: [x] creates a copy of x.

Capture by Reference: [&x] accesses the original x.

Capture All by Value: [=| captures all variables by value.

Capture All by Reference: [&] captures all variables by reference.

Mixed Capture: [x, &y| captures x by value and y by reference.

157

 Capture this Pointer: [this] captures the this pointer in a class or struct.

By mastering capture clauses, you can leverage the full power of lambda functions in
your C++4 programs, making your code more modular, reusable, and aligned with

functional programming principles.

Chapter 8

Function Composition

8.1 Composing Functions Using std::bind and std::function

Function composition is a fundamental concept in functional programming, where the
output of one function is used as the input to another. In C++, you can achieve
function composition using std::bind and std::function. This section explores how to use

these tools to compose functions effectively.

8.1.1 What is Function Composition?

Function composition involves combining two or more functions to create a new function.
For example, if you have two functions f and g, composing them results in a new
function h such that h(x) = f(g(x)).

8.1.2 std::function: A Type-Safe Function Wrapper

std::function is a template class that can store any callable object (e.g., functions,

lambdas, function objects). It provides a type-safe way to pass and store functions.

158

159

Example: Storing a Lambda in std::function

#include <iostream>

#include <functional>

int main() {
std::function<int(int) > square = [J(int x) { return x * x; };
int result = square(5); // result = 25
std::cout << result << "\n”;

» Explanation:

— The lambda [|(int x) { return x * x; } is stored in a std::function<int(int)>

object.
— The std::function object can be called like a regular function.
Example: Passing std::function as an Argument

#include <iostream>

#include <functional>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << "\n”;

int main() {

applyFunction(5, [J(int x) { return x * x; }); // Output: 25

» Explanation:

160

— The applyFunction function takes a std::function<int(int)> as an argument.

— A lambda is passed to applyFunction and applied to the input value.

8.1.3 std::bind: Binding Arguments to Functions

std::bind is a utility that allows you to bind arguments to a function, creating a new

callable object. This is useful for partial function application and function composition.

Example: Binding Arguments

#include <iostream>

#include <functional>

int add(int a, int b) {

return a + b;

int main() {
auto addFive = std::bind(add, 5, std::placeholders::_1);
int result = addFive(10); // result = 15
std::cout << result << "\n”;

o Explanation:

— std::bind binds the first argument of add to 5 and leaves the second argument

as a placeholder (_1).

— The resulting callable object addFive takes one argument and adds it to 5.

Example: Binding with Multiple Placeholders

161

#include <iostream>

#include <functional>

int multiply(int a, int b, int ¢) {

return a * b * ¢;

int main() {
auto multiplyPartial = std::bind(multiply, std::placeholders::_1, 2, std::placeholders::_2);
int result = multiplyPartial(3, 4); // result = 24
std::cout << result << "\n”;

» Explanation:

— std::bind binds the second argument of multiply to 2 and uses placeholders
for the first and third arguments.

— The resulting callable object multiplyPartial takes two arguments and

multiplies them with 2.

8.1.4 Composing Functions Using std::bind and std::function

Function composition can be achieved by combining std::bind and std::function to create

new functions from existing ones.

Example: Composing Two Functions

#include <iostream>

#include <functional>

162

int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;

int main() {
std::function<int(int)> squareThenAddOne = [](int x) {

return addOne(square(x));

i

int result = squareThenAddOne(4); // result = 17
std::cout << result << "\n”;

« Explanation:

— The lambda [|(int x) { return addOne(square(x)); } composes square and
addOne.

— The resulting function squareThenAddOne first squares the input and then

adds one.

Example: Composing Functions with std::bind

#include <iostream>

#include <functional>

int square(int x) {

163

return x * x;

int addOne(int x) {

return x + 1;

int main() {
auto squareThenAddOne = std::bind(addOne, std::bind(square, std::placeholders::_ 1));
int result = squareThenAddOne(4); // result = 17
std::cout << result << "\n”;

o Explanation:

— std::bind is used to compose square and addOne.

— The inner std::bind binds square to the placeholder, and the outer std::bind
binds addOne to the result of square.

Example: Custom Data Processing Pipeline

#include <iostream>
#include <functional>
#include <vector>

#include <algorithm>

int square(int x) {

return x * x;

164

int addOne(int x) {

return x + 1;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> processedNumbers(numbers.size());
auto squareThenAddOne = std::bind(addOne, std::bind(square, std::placeholders::_ 1));

std::transform(numbers.begin(), numbers.end(), processedNumbers.begin(), squareThenAddOne);

for (int x : processedNumbers) {

std::cout << x << ””; // Output: 2 5 10 17

o Explanation:

— The squareThenAddOne function is used in std::transform to process each

element of the numbers vector.

— The result is stored in the processedNumbers vector.

Example: Event Handling with Composed Callbacks

#include <iostream>

#include <functional>

void logMessage(const std::string& message) {
std::cout << "Log: 7 << message << "\n”;

165

void processData(int data, const std::function<void(int)>& callback) {
int processedData = data * 2;

callback(processedData);

int main() {

auto logProcessedData = std::bind(logMessage, std::bind(std::to_ string, std::placeholders::_1));

processData(5, logProcessedData); // Output: Log: 10

» Explanation:
— The logProcessedData function is composed using std::bind to convert the

processed data to a string and log it.

— The composed function is passed as a callback to processData.

8.1.5 Summary

Function composition is a powerful technique in functional programming that allows you
to create new functions by combining existing ones. In C++, you can achieve function
composition using std::bind and std::function.

Key Takeaways:

o std:function: A type-safe wrapper for storing and passing callable objects.

o std::bind: A utility for binding arguments to functions, enabling partial

application and composition.

166

 Function Composition: Combining functions to create new functions, such as h(x)
= f(g(x)).

By mastering std::bind and std::function, you can write more expressive, modular, and
reusable C++ code that aligns with functional programming principles. These tools
enable you to create flexible and powerful abstractions, making your programs easier to

reason about and extend.

8.2 Using Modern Libraries for Function Composition

Modern C++ libraries provide powerful tools for function composition, enabling you to
write expressive and concise code. These libraries often include utilities for composing
functions, manipulating ranges, and creating pipelines. This section explores how to use

modern libraries like Range-v3 and Boost.Hana for function composition.

8.2.1 Range-v3: A Modern Range Library

Range-v3 is a library that provides a set of composable range adaptors and algorithms,

making it easier to work with sequences of data in a functional style.
Installing Range-v3

1. Using Conan:

o Add Range-v3 to your conanfile.txt:

[requires]

range-v3/0.11.0

[generators]

cmake

167

o Install dependencies:

conan install ..

2. Using CMake:
o Include Range-v3 in your CMakeLists.txt:

find__package(range-v3 REQUIRED)
target_link_libraries(MyApp range-v3::range-v3)

Example: Composing Functions with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;
int main() {
std::vector<int> numbers = {1, 2, 3, 4};

auto processedNumbers = numbers

| ranges::views::transform(square)

168

| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << 7 7”; // Output: 2 5 10 17

« Explanation:

— The ranges::views::transform adaptor is used to apply square and addOne to

each element of the numbers vector.

— The result is a composed pipeline that processes the data in a functional style.

Example: Filtering and Transforming with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {

return x * x;

bool isEven(int x) {

return x % 2 == 0;

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

169

auto processedNumbers = numbers
| ranges::views: filter(isEven)

| ranges::views::transform(square);

for (int x : processedNumbers) {

std::cout << x << ””; // Output: 4 16 36

» Explanation:

— The ranges::views::filter adaptor is used to filter even numbers, and

ranges::views::transform is used to square them.

— The result is a composed pipeline that filters and transforms the data.

8.2.2 Boost.Hana: A Modern Metaprogramming Library

Boost.Hana is a library for metaprogramming and functional programming in C++. It
provides utilities for composing functions, manipulating types, and creating

compile-time computations.

Installing Boost.Hana
1. Using Conan:
e Add Boost.Hana to your conanfile.txt:

[requires]
boost/1.75.0

170

[generators]

cmake

o Install dependencies:

conan install ..

2. Using CMake:
e Include Boost.Hana in your CMakeLists.txt:

find package(Boost REQUIRED COMPONENTS hana)
target_ link libraries(MyApp Boost::hana)

Example: Composing Functions with Boost.Hana

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;
int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;

171

int main() {
auto composedFunction = hana::compose(addOne, square);
int result = composedFunction(4); // result = 17

std::cout << result << "\n”;

» Explanation:

— The hana::compose function is used to compose square and addOne.

— The resulting function composedFunction first squares the input and then

adds one.

Example: Compile-Time Function Composition with Boost.Hana

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;
constexpr int square(int x) {

return x * x;

constexpr int addOne(int x) {

return x + 1;

int main() {
constexpr auto composedFunction = hana::compose(addOne, square);

constexpr int result = composedFunction(4); // result = 17

172

std::cout << result << "\n”;

o Explanation:

— The hana::compose function is used to compose square and addOne at

compile time.

— The resulting function composedFunction is evaluated at compile time.

8.2.3 Practical Applications of Modern Libraries for Function Composition

Example: Data Processing Pipeline with Range-v3

cpp
Copy

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;

bool isEven(int x) {

return x % 2 == 0;

173

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
auto processedNumbers = numbers

| ranges::views: filter(isEven)

| ranges::views::transform(square)

| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << 77 // Output: 5 17 37

» Explanation:

— The ranges::views::filter adaptor is used to filter even numbers, and

ranges::views::transform is used to square them and add one.

— The result is a composed pipeline that processes the data in a functional style.

Example: Compile-Time Data Processing with Boost.Hana

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;

constexpr int square(int x) {

return x * x;

174

constexpr int addOne(int x) {

return x + 1;

constexpr bool isEven(int x) {

return x % 2 == 0;

int main() {
constexpr auto processNumber = hana::compose(addOne, square);
constexpr int result = processNumber(4); // result = 17
std::cout << result << "\n”;

« Explanation:

— The hana::compose function is used to compose square and addOne at

compile time.

— The resulting function processNumber is evaluated at compile time.

8.2.4 Summary

Modern libraries like Range-v3 and Boost.Hana provide powerful tools for function
composition, enabling you to write expressive and concise code. These libraries support
both runtime and compile-time function composition, making them suitable for a wide
range of applications.

Key Takeaways:

« Range-v3: Provides composable range adaptors and algorithms for functional-style

data processing.

175

e Boost.Hana: Offers utilities for metaprogramming and compile-time function

composition.

o Practical Applications: Data processing pipelines, compile-time computations, and

more.

By leveraging these modern libraries, you can write more expressive, modular, and
reusable C++ code that aligns with functional programming principles. These tools
enable you to create flexible and powerful abstractions, making your programs easier to

reason about and extend.

Chapter 9

Templates and Functional Programming

9.1 Using Templates to Create Generic Functions

Templates are a powerful feature in C++4 that allow you to write generic functions and
classes. They enable you to define functions that can operate on any data type, making
your code more flexible and reusable. This section explores how to use templates to

create generic functions in the context of functional programming.

9.1.1 What Are Templates?

Templates are a mechanism for generic programming in C++4-. They allow you to define
functions and classes that can work with any data type. Templates are particularly

useful in functional programming for creating reusable and type-safe abstractions.

9.1.2 Syntax of Function Templates

The syntax for defining a function template is as follows:

176

177

template <typename T>
return__type function_ name(parameters) {

// Function body

« template <typename T>: Declares a template with a type parameter T.
o T: A placeholder for any data type.

o return_ type: The return type of the function.

e function name: The name of the function.

« parameters: The parameters of the function.
9.1.3 Example: A Simple Generic Function

#include <iostream>

template <typename T>
T add(T a, T b) {

return a + b;

int main() {
int resultl = add(2, 3); // resultl =5
double result2 = add(2.5, 3.5); // result2 = 6.0

std::cout << resultl << "\n”; // Output: 5
std::cout << result2 << ”\n”; // Output: 6.0

178

« Explanation:

— The add function template can operate on any data type that supports the +
operator.

— The function is instantiated with int and double types.

9.1.4 Example: Generic Function with Multiple Types

#include <iostream>

template <typename T, typename U>

auto add(T a, U b) -> decltype(a + b) {
return a + b;

int main() {
int resultl = add(2, 3); // resultl =5
double result2 = add(2.5, 3); // result2 = 5.5

std::cout << resultl << "\n”; // Output: 5
std::cout << result2 << "\n”; // Output: 5.5
o Explanation:

— The add function template can operate on two different types T and U.

— The return type is deduced using decltype(a + b).

179

9.1.5 Example: Generic Higher-Order Function

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Func>

std::vector<T> map(const std::vector<T>& vec, Func func) {
std::vector<T> result;
for (const auto& x : vec) {

result.push__back(func(x));

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

auto squaredNumbers = map(numbers, [J(int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << ””; // Output: 149 16

» Explanation:

— The map function template takes a vector and a function func as arguments.

— The function func is applied to each element of the vector, and the results are

stored in a new vector.

180

9.1.6 Example: Generic Function Composition

#include <iostream>

#include <functional>

template <typename T, typename Funcl, typename Func2>
auto compose(Funcl f, Func2 g) {
return [f, g](T x) { return f(g(x)); };

int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;

int main() {
auto squareThenAddOne = compose<int>(addOne, square);
int result = squareThenAddOne(4); // result = 17
std::cout << result << "\n”;

« Explanation:

— The compose function template takes two functions f and g and returns a

new function that composes them.

— The resulting function squareThenAddOne first squares the input and then

adds one.

181

9.1.7 Example: Generic Filter Function

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Predicate>

std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {
std::vector<T> result;
for (const auto& x : vec) {

if (pred(x)) {
result.push__back(x);

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto evenNumbers = filter(numbers, [](int x) { return x % 2 == 0; });

for (int x : evenNumbers) {

std::cout << x << ””; // Output: 2 4 6

o Explanation:

— The filter function template takes a vector and a predicate pred as arguments.

— The predicate pred is applied to each element of the vector, and elements

that satisfy the predicate are stored in a new vector.

182

9.1.8 Example: Generic Reduce Function

#include <iostream>
#include <vector>

#include <numeric>

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {
T result = init;
for (const auto& x : vec) {
result = op(result, x);

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

int sum = reduce(numbers, 0, [|(int a, int b) { return a + b; });

std::cout << sum << ”\n”; // Output: 10

o Explanation:

— The reduce function template takes a vector, an initial value init, and a

binary operation op as arguments.

— The binary operation op is applied to the elements of the vector,

accumulating the result.

183

9.1.9 Summary

Templates are a powerful tool for creating generic functions in C++. They enable you
to write flexible and reusable code that can operate on any data type. By using
templates, you can create higher-order functions, function composition, and other
functional programming abstractions.

Key Takeaways:

Function Templates: Define functions that can operate on any data type.

Generic Higher-Order Functions: Create functions that take other functions as

arguments.

Function Composition: Combine functions to create new functions.

Practical Applications: Mapping, filtering, reducing, and more.

By mastering templates, you can write more expressive, modular, and reusable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about

and extend.

9.2 Variadic Templates and Their Use in Functional Programming

Variadic templates are a powerful feature in C++ that allow you to define functions and
classes that can accept a variable number of template arguments. This capability is
particularly useful in functional programming for creating flexible and reusable
abstractions. This section explores how to use variadic templates to enhance functional

programming in C++.

184

9.2.1 What Are Variadic Templates?

Variadic templates enable you to define templates that can accept an arbitrary number
of template arguments. They are particularly useful for creating functions and classes

that need to handle a variable number of parameters.

9.2.2 Syntax of Variadic Templates

The syntax for defining a variadic template is as follows:

Cpp
Copy

template <typename... Args>

return_ type function_name(Args... args) {

// Function body

o template <typename... Args>: Declares a variadic template with a parameter

pack Args.
o Args... args: A parameter pack that represents a variable number of arguments.
o return_ type: The return type of the function.

e function name: The name of the function.

9.2.3 Example: A Simple Variadic Function

185

#include <iostream>

template <typename... Args>
void print(Args... args) {
(std::cout << ... << args) << "\n”;

int main() {
print(1, 2, 3, "Hello”, 4.5); // Output: 123Hello4.5

« Explanation:

— The print function template can accept any number of arguments of any type.

— The fold expression (std::cout << ... << args) is used to print all arguments.

9.2.4 Example: Variadic Function Composition

#include <iostream>

#include <functional>

template <typename Func, typename... Funcs>
auto compose(Func f, Funcs... fs) {
return [f, fs...](auto x) {

return f(compose(fs...)(x));

it

template <typename Func>

auto compose(Func f) {

186

return f;

int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;

int main() {
auto composedFunction = compose(addOne, square);
int result = composedFunction(4); // result = 17
std::cout << result << "\n”;

» Explanation:

— The compose function template takes a variable number of functions and

composes them.

— The base case for the recursion is when there is only one function left to

compose.
9.2.5 Example: Variadic Map Function

#include <iostream>
#include <vector>

#include <algorithm>

187

template <typename Func, typename... Args>
auto map(Func func, Args... args) {

return std::vector{func(args)...};

int square(int x) {

return x * x;
int main() {
auto squaredNumbers = map(square, 1, 2, 3, 4);

for (int x : squaredNumbers) {

std::cout << x << ””; // Output: 149 16

» Explanation:

— The map function template applies a function func to each argument in the

parameter pack args.

— The results are stored in a vector and returned.

9.2.6 Example: Variadic Filter Function

#include <iostream>
#include <vector>

#include <algorithm>

template <typename Predicate, typename... Args>

188

auto filter(Predicate pred, Args... args) {
std::vector<int> result;
(void)std::initializer list<int>{(pred(args) 7 (void)result.push back(args) : (void)0)...};

return result;

bool isEven(int x) {

return x % 2 == 0;
int main() {
auto evenNumbers = filter(isEven, 1, 2, 3, 4, 5, 6);

for (int x : evenNumbers) {

std::cout << x << 77 // Output: 24 6

« Explanation:

— The filter function template applies a predicate pred to each argument in the

parameter pack args.

— Elements that satisfy the predicate are stored in a vector and returned.

9.2.7 Example: Variadic Reduce Function

#include <iostream>
#include <vector>

#include <numeric>

189

template <typename BinaryOp, typename T, typename... Args>
auto reduce(BinaryOp op, T init, Args... args) {

T result = init;

(void)std::initializer _list<int>{(result = op(result, args), 0)...};

return result;
int main() {
int sum = reduce([|(int a, int b) { return a + b; }, 0, 1, 2, 3, 4);

std::cout << sum << "\n”; // Output: 10

» Explanation:

— The reduce function template applies a binary operation op to the initial

value init and each argument in the parameter pack args.

— The result is accumulated and returned.

9.2.8 Example: Variadic Zip Function

#include <iostream>
#include <vector>
#include <tuple>

template <typename... Args>
auto zip(Args... args) {
return std::vector<std::tuple<Args...>>{std::make_ tuple(args...)};

190

int main() {

auto Zipped =] Zip(l, 257 77Helloa7);

for (const auto& item : zipped) {
std::cout << std::get<0>(item) << 77
<< std::get<1>(item) << 77
<< std::get<2>(item) << ”\n”; // Output: 1 2.5 Hello

» Explanation:

— The zip function template takes a variable number of arguments and returns

a vector of tuples.

— Each tuple contains the corresponding elements from the input arguments.

9.2.9 Summary

Variadic templates are a powerful tool for creating flexible and reusable abstractions in
C++. They enable you to define functions and classes that can accept a variable
number of arguments, making them particularly useful in functional programming.

Key Takeaways:

o Variadic Templates: Define templates that can accept an arbitrary number of

template arguments.
o Parameter Packs: Represent a variable number of arguments.

o Practical Applications: Function composition, mapping, filtering, reducing, and

more.

191

By mastering variadic templates, you can write more expressive, modular, and reusable
C++ code that aligns with functional programming principles. These tools enable you
to create flexible and powerful abstractions, making your programs easier to reason

about and extend.

Chapter 10

Expression Templates

10.1 Concept of Expression Templates and How to Use Them for

Performance Optimization

Expression templates are a powerful technique in C4++ for optimizing performance in
numerical computations and other domains where intermediate results can be avoided.
This section explores the concept of expression templates, their benefits, and how to use

them to optimize performance in functional programming.

10.1.1 What Are Expression Templates?

Expression templates are a metaprogramming technique that allows you to represent
complex expressions as types, enabling the compiler to optimize the evaluation of these
expressions. Instead of creating intermediate objects for each operation, expression
templates allow you to defer evaluation until the final result is needed, reducing

overhead and improving performance.

192

193

10.1.2 Benefits of Expression Templates

1. Performance Optimization:

e Avoids the creation of temporary objects, reducing memory allocation and

copying overhead.

« Enables the compiler to generate highly optimized code by fusing multiple

operations into a single loop.
2. Lazy Evaluation:

o Expressions are evaluated only when the final result is needed, allowing for

more efficient computation.
3. Code Reusability:

« Expression templates can be reused across different types of computations,

making the code more modular and maintainable.

10.1.3 Basic Example: Vector Addition Without Expression Templates

Consider a simple example of vector addition without using expression templates:

#include <iostream>

#include <vector>
class Vector {
public:

Vector(std::size_t size) : data(size) {}

double&s operator[](std::size_t index) { return data[index]; }

194

const double& operator[](std::size_t index) const { return datalindex]; }
std::size_t size() const { return data.size(); }

Vector operator+(const Vector& other) const {
Vector result(size());
for (std::size_t i = 051 < size(); ++i) {
result[i] = data[i] + other]i];
}

return result;

private:
std::vector<double> data;

5

int main() {
Vector v1(3), v2 3) (JE

(
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;
v3[0] = 7.0; v3[1] = 8.0; v3[2] = 9.0;

Vector result = vl + v2 + v3;

for (std::size_t i = 0;1 < result.size(); ++i) {
std::cout << result[i] << ””; // Output: 12.0 15.0 18.0

o Explanation:

— The operator+ function creates a temporary Vector object for each addition,

195

leading to unnecessary memory allocations and copying.

10.1.4 Using Expression Templates for Vector Addition

To optimize the above example, we can use expression templates to represent the

addition operation without creating intermediate objects.

Defining the Expression Template

#include <iostream>
#include <vector>

template <typename E1, typename E2>
class VectorSum {
public:
VectorSum(const E1& el, const E2& e2) : el(el), e2(e2) {}

double operator[](std::size_t index) const {

return elfindex] + e2[index];

std::size__t size() const {

return el.size();

private:
const E1& el;
const E2& e2;
¢

class Vector {
public:
Vector(std::size_t size) : data(size) {}

196

double&s operator[](std::size_t index) { return data[index]; }

const double& operator[](std::size t index) const { return data[index]; }

std::size_ t size() const { return data.size(); }

template <typename E>
Vector& operator=(const E& expr) {
for (std:size_t 1= 0;1 < size(); ++i) {
datali] = exprl[i];
}

return *this;

private:

std::vector<double> data;

};
template <typename E1, typename E2>

VectorSum<E1, E2> operator+(const E1& el, const E2& €2) {
return VectorSum<E1l, E2>(el, e2);

int main() {

Vector v1(3), v2(3), v3(3), result(3);
vi[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;
v3[0] = 7.0; v3[1] = 8.0; v3[2] = 9.0;

result = vl + v2 + v3;

for (std::size_t i = 0; 1 < result.size(); ++i) {

197

std::cout << result[i] << ””; // Output: 12.0 15.0 18.0

o Explanation:

— The VectorSum class template represents the addition of two vectors without

creating an intermediate vector.

— The operator+ function returns a VectorSum object that encapsulates the

addition operation.

— The operator= function in the Vector class evaluates the expression and

assigns the result to the vector.

Benefits of Expression Templates in This Example
1. Avoids Intermediate Objects:

o The expression vl + v2 + v3 is represented as a VectorSum object without

creating temporary vectors.
2. Lazy Evaluation:

e The addition operation is deferred until the result is assigned to the result

vector.
3. Optimized Computation:

e The compiler can generate efficient code by fusing the addition operations

into a single loop.

198

10.1.5 Advanced Example: Matrix Multiplication with Expression
Templates

Expression templates can also be used to optimize matrix multiplication by avoiding

intermediate matrices.

Defining the Expression Template for Matrix Multiplication

#include <iostream>

#include <vector>

template <typename E1, typename E2>
class MatrixProduct {
public:
MatrixProduct(const E1& el, const E2& e2) : el(el), e2(e2) {}

double operator()(std::size_t i, std::size_t j) const {
double result = 0.0;
for (std::size_t k = 0; k < el.cols(); ++k) {
result += el(i, k) * e2(k, j);
}

return result;

std::size t rows() const { return el.rows(); }

std::size_t cols() const { return e2.cols(); }

private:
const E1& el;
const E2& e2;

h

199

class Matrix {
public:
Matrix(std::size_t rows, std::size_t cols) : data(rows, std::vector<double>(cols)) {}

double& operator()(std::size_t i, std::size_t j) { return datali][j]; }
const double& operator()(std::size_t i, std::size_t j) const { return datal[i][j]; }

std::size_t rows() const { return data.size(); }

std::size_t cols() const { return datal0].size(); }

template <typename E>
Matrix& operator=(const E& expr) {
for (std:size_t 1= 0;1 < rows(); +-+1i) {
for (std::size_t j = 0; j < cols(); ++j) {
datali[j] = expr(i, j);

}

return *this;

private:

std::vector<std::vector<double>> data;

h

template <typename E1, typename E2>
MatrixProduct<E1, E2> operator®(const E1& el, const E2& €2) {
return MatrixProduct<E1, E2>(el, €2);

int main() {
Matrix A(2, 3), B(3, 2), C(2, 2);

200

for (std:size_ti= 0;1 < C.rows(); +-+i) {
for (std:size_t j = 0; j < C.cols(); ++j) {
std::cout << C(i, j) << 7 7; // Output: 58 64, 139 154

}

std::cout << "\n”;

» Explanation:

— The MatrixProduct class template represents the multiplication of two

matrices without creating an intermediate matrix.

— The operator* function returns a MatrixProduct object that encapsulates the

multiplication operation.

— The operator= function in the Matrix class evaluates the expression and

assigns the result to the matrix.

Benefits of Expression Templates in Matrix Multiplication

1. Avoids Intermediate Matrices:

e The expression A * B is represented as a MatrixProduct object without

creating temporary matrices.

201

2. Lazy Evaluation:

e The multiplication operation is deferred until the result is assigned to the C

matrix.
3. Optimized Computation:

e The compiler can generate efficient code by fusing the multiplication

operations into a single loop.

10.1.6 Summary

Expression templates are a powerful technique for optimizing performance in numerical
computations and other domains where intermediate results can be avoided. By

representing complex expressions as types and deferring evaluation until the final result
is needed, expression templates enable the compiler to generate highly optimized code.

Key Takeaways:

o Expression Templates: Represent complex expressions as types to avoid

intermediate objects.
o Lazy Evaluation: Defer evaluation until the final result is needed.

o Performance Optimization: Reduce memory allocation and copying overhead, and

enable efficient computation.

By mastering expression templates, you can write more efficient and maintainable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about

and extend.

202

10.2 Practical Examples of Expression Templates in C++

Expression templates are a powerful technique for optimizing performance in numerical
computations and other domains where intermediate results can be avoided. This
section provides practical examples of how to use expression templates in C++ to
optimize common operations such as vector addition, matrix multiplication, and

element-wise operations.

10.2.1 Example: Optimizing Vector Addition

Vector addition is a common operation in numerical computations. Using expression
templates, we can optimize this operation by avoiding the creation of intermediate

vectors.

Defining the Expression Template for Vector Addition

#include <iostream>

#include <vector>

template <typename E1, typename E2>
class VectorSum {
public:
VectorSum (const E1& el, const E2& e2) : el(el), e2(e2) {}

double operator[](std::size_t index) const {

return elfindex] + e2[index];

std::size_t size() const {

return el.size();

203

private:
const E1& el;
const E2& e2;

b

class Vector {
public:
Vector (std::size_t size) : data(size) {}

double& operator(|(std::size_t index) { return data[index]; }

const double& operator[](std::size_t index) const { return datalindex]; }

std::size_t size() const { return data.size(); }

template <typename E>
Vector& operator=(const E& expr) {
for (std::size ti= 0;1 < size(); ++i) {
datali] = exprl[i];
}

return *this;

private:
std::vector<double> data;

J%

template <typename E1, typename E2>
VectorSum<E1, E2> operator+(const E1& el, const E2& €2) {
return VectorSum<E1, E2>(el, €2);

204

int main() {

Vector v1(3), v2(3), v3(3), result(3);

(
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;
v3[0] = 7.0; v3[1] = 8.0; v3[2] = 9.0;

result = vl + v2 + v3;

for (std::size t i = 0;1 < result.size(); ++i) {
std::cout << result[i] << ” 7; // Output: 12.0 15.0 18.0

» Explanation:

— The VectorSum class template represents the addition of two vectors without

creating an intermediate vector.

— The operator+ function returns a VectorSum object that encapsulates the

addition operation.

— The operator= function in the Vector class evaluates the expression and

assigns the result to the vector.

Benefits of Expression Templates in Vector Addition

1. Avoids Intermediate Objects:

o The expression vl + v2 + v3 is represented as a VectorSum object without

creating temporary vectors.

2. Lazy Evaluation:

205

e The addition operation is deferred until the result is assigned to the result

vector.
3. Optimized Computation:

e The compiler can generate efficient code by fusing the addition operations

into a single loop.

10.2.2 Example: Optimizing Matrix Multiplication

Matrix multiplication is another common operation that can benefit from expression
templates. By avoiding intermediate matrices, we can optimize the performance of

matrix multiplication.

Defining the Expression Template for Matrix Multiplication

#include <iostream>

#include <vector>

template <typename E1, typename E2>
class MatrixProduct {

public:
MatrixProduct(const E1& el, const E2& e2) : el(el), e2(e2) {}

double operator()(std::size_t i, std::size_t j) const {
double result = 0.0;
for (std::size_t k = 0; k < el.cols(); ++k) {
result += el(i, k) * e2(k, j);
}

return result;

206

std::size_t rows() const { return el.rows(); }

std::size_t cols() const { return e2.cols(); }

private:
const E1& el;
const E2& e2;

h

class Matrix {
public:
Matrix(std::size_t rows, std::size_t cols) : data(rows, std::vector<double>(cols)) {}

double& operator()(std::size_t i, std::size_t j) { return datali][j]; }
const double& operator()(std::size_t i, std::size_t j) const { return datal[i][j]; }

std::size_t rows() const { return data.size(); }
std::size_t cols() const { return datal0].size(); }

template <typename E>
Matrix& operator=(const E& expr) {
for (std:size ti= 0;1 < rows(); ++i) {
for (std::size_t j = 0; j < cols(); ++j) {
datali][j] = expr(i, j);

}

return *this;

private:

std::vector<std::vector<double>> data;

h

207

template <typename E1, typename E2>
MatrixProduct<E1, E2> operator®(const E1& el, const E2& e2) {
return MatrixProduct<E1, E2>(el, €2);

int main() {
Matrix A(2, 3), B(3, 2), C(2, 2);

))

A0, 0) = 1; A(0, 1) = 2; A(0, 2) = 3;
A(1,0) = 4; A(1, 1) = 5; A(1, 2) = 6;

B(0, 0) = 7; B(0, 1) = §;
B(1, 0) = 9; B(1, 1) = 10;
B(2, 0) = 11; B(2, 1) = 12;

for (std:size ti= 0;1 < C.rows(); +-+i) {
for (std::size_t j = 0; j < C.cols(); ++j) {
std::cout << C(i, j) << 7 7; // Output: 58 64, 139 154

}

std::cout << "\n”;

» Explanation:

— The MatrixProduct class template represents the multiplication of two

matrices without creating an intermediate matrix.

— The operator®™ function returns a MatrixProduct object that encapsulates the

multiplication operation.

208

— The operator= function in the Matrix class evaluates the expression and

assigns the result to the matrix.

Benefits of Expression Templates in Matrix Multiplication

1. Avoids Intermediate Matrices:

e The expression A * B is represented as a MatrixProduct object without

creating temporary matrices.

2. Lazy Evaluation:

e The multiplication operation is deferred until the result is assigned to the C

matrix.

3. Optimized Computation:

e The compiler can generate efficient code by fusing the multiplication

operations into a single loop.

10.2.3 Example: Optimizing Element-Wise Operations

Element-wise operations, such as adding or multiplying corresponding elements of two

vectors, can also benefit from expression templates.

Defining the Expression Template for Element-Wise Operations

#include <iostream>

#include <vector>

template <typename E1, typename E2, typename Op>

209

class ElementWiseOperation {
public:
ElementWiseOperation(const E1& el, const E2& €2, Op op) : el(el), e2(e2), op(op) {}

double operator[|(std::size_t index) const {

return op(el[index], e2[index]);

std::size_t size() const {

return el.size();

private:
const E1& el;
const E2& e2;
Op op;

5

class Vector {
public:
Vector(std::size t size) : data(size) {}

double& operator(](std::size_t index) { return datalindex]; }

const double& operator[](std::size_t index) const { return datalindex]; }

std::size_t size() const { return data.size(); }

template <typename E>
Vector& operator=(const E& expr) {
for (std:size_t i = 0;1 < size(); ++i) {
datali] = exprl[i];

210

return *this;

private:
std::vector<double> data;

h

template <typename E1, typename E2, typename Op>
ElementWiseOperation<E1, E2, Op> elementWiseOperation(const E1& el, const E2& e2, Op op) {
return ElementWiseOperation<E1, E2, Op>(el, €2, op);

int main() {
Vector v1(3), v2(3), result(3);
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0

auto add = [|(double a, double b) { return a + b; };

result = elementWiseOperation(vl, v2, add);

for (std::size t i = 0;1 < result.size(); ++i) {
std::cout << result[i] << ” ”; // Output: 5.0 7.0 9.0

« Explanation:

— The ElementWiseOperation class template represents an element-wise

operation between two vectors without creating an intermediate vector.

— The elementWiseOperation function returns an ElementWiseOperation

object that encapsulates the operation.

211

— The operator= function in the Vector class evaluates the expression and

assigns the result to the vector.

Benefits of Expression Templates in Element-Wise Operations
1. Avoids Intermediate Objects:

e The element-wise operation is represented as an ElementWiseOperation

object without creating temporary vectors.
2. Lazy Evaluation:

o The operation is deferred until the result is assigned to the result vector.

3. Optimized Computation:

e The compiler can generate efficient code by fusing the operations into a single

loop.

10.2.4 Summary

Expression templates are a powerful technique for optimizing performance in numerical
computations and other domains where intermediate results can be avoided. By

representing complex expressions as types and deferring evaluation until the final result
is needed, expression templates enable the compiler to generate highly optimized code.

Key Takeaways:

o Expression Templates: Represent complex expressions as types to avoid

intermediate objects.

o Lazy Evaluation: Defer evaluation until the final result is needed.

212

o Performance Optimization: Reduce memory allocation and copying overhead, and

enable efficient computation.

By mastering expression templates, you can write more efficient and maintainable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about

and extend.

Chapter 11

Higher-Order Functions

11.1 Defining and Using Higher-Order Functions in C++

Higher-order functions are a cornerstone of functional programming. They are functions
that take other functions as arguments or return functions as results. This section
explores how to define and use higher-order functions in C++, leveraging modern

features like lambda expressions, std::function, and templates.

11.1.1 What Are Higher-Order Functions?
Higher-order functions are functions that:
o Take one or more functions as arguments.

e Return a function as a result.

They enable powerful abstractions and allow you to write more modular and reusable

code.

213

214

11.1.2 Defining Higher-Order Functions

In C++, higher-order functions can be defined using function pointers, lambda

expressions, std::function, and templates.

Using Function Pointers

Function pointers are a traditional way to pass functions as arguments.

1. Example: Higher-Order Function with Function Pointer
#include <iostream>

int square(int x) {

return x * x;

int cube(int x) {

*

return x * x * x;

void applyFunction(int x, int (*func)(int)) {
std::cout << func(x) << "\n”;

int main() {
applyFunction(5, square); // Output: 25
applyFunction(5, cube); // Output: 125

o Explanation:

— The applyFunction function takes a function pointer func as an

argument.

215

— The function pointer is called within applyFunction.

Using Lambda Expressions

Lambda expressions provide a concise way to define anonymous functions that can be

passed as arguments.

1. Example: Higher-Order Function with Lambda
#include <iostream>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << "\n”;

int main() {
applyFunction(5, [|(int x) { return x * x; }); // Output: 25
applyFunction(5, [|(int x) { return x * x * x; }); // Output: 125

o Explanation:
— The applyFunction function takes a std:function<int(int)> as an
argument.

— A lambda is passed to applyFunction and applied to the input value.

Using Templates

Templates allow you to define higher-order functions that can work with any callable

object.

1. Example: Higher-Order Function with Template

216

#include <iostream>

template <typename Func>
void applyFunction(int x, Func func) {

std::cout << func(x) << "\n”;

int main() {
applyFunction(5, [J(int x) { return x * x; }); // Output: 25

applyFunction(5, [|(int x) { return x * x * x; }); // Output: 125

o Explanation:

— The applyFunction function template takes a callable object func as an
argument.
— The function template can work with any callable object, including

lambdas and function pointers.

11.1.3 Returning Functions from Higher-Order Functions

Higher-order functions can also return functions as results, enabling powerful

abstractions like function composition and currying.

Example: Returning a Lambda

#include <iostream>

#include <functional>

std::function<int(int)> createMultiplier(int factor) {

return [factor](int x) { return x * factor; };

217

int main() {
auto doubleValue = createMultiplier(2);
auto tripleValue = createMultiplier(3);

std::cout << doubleValue(5) << "\n”; // Output: 10
std::cout << tripleValue(5) << "\n”; // Output: 15

o Explanation:

— The createMultiplier function returns a lambda that multiplies its input by a

given factor.

— The returned lambda is stored in doubleValue and tripleValue and used to

multiply values.

Example: Function Composition

#include <iostream>

#include <functional>

template <typename Funcl, typename Func2>
auto compose(Funcl f, Func2 g) {
return [f, g](int x) { return f(g(x)); };

int square(int x) {

return x * x;

218

int addOne(int x) {

return x + 1;

int main() {
auto squareThenAddOne = compose(addOne, square);
int result = squareThenAddOne(4); // result = 17
std::cout << result << "\n”;

o Explanation:

— The compose function takes two functions f and g and returns a new function

that composes them.

— The resulting function squareThenAddOne first squares the input and then

adds one.

11.1.4 Practical Applications of Higher-Order Functions

Example: Custom Sorting with Higher-Order Functions

#include <iostream>
#include <vector>

#include <algorithm>

template <typename Func>
void sortVector(std::vector<int>& vec, Func comp) {

std::sort(vec.begin(), vec.end(), comp);

219

int main() {
std::vector<int> numbers = {4, 2, 3, 1};

sortVector(numbers, [|(int a, int b) { return a > b; }); // Sort in descending order

for (int x : numbers) {

std::cout << x << ” 7 // Output: 4321

» Explanation:

— The sortVector function takes a vector and a comparator function comp as

arguments.

— The comparator function is used to sort the vector in a custom order.

Example: Event Handling with Higher-Order Functions

#include <iostream>
#include <functional>

#include <vector>

class EventHandler {
public:
void registerCallback(const std::function<void()>& callback) {
callbacks.push__back(callback);

void triggerEvent() {
for (const auto& callback : callbacks) {

220

callback();

private:
std::vector<std::function<void()>> callbacks;

Ji5

int main() {
EventHandler handler;

int eventCount = 0;

handler.registerCallback([&eventCount]() {
eventCount++;
std::cout << "Event triggered! Count: ” << eventCount << "\n";

};

handler.triggerEvent(); // Output: Event triggered! Count: 1
handler.triggerEvent(); // Output: Event triggered! Count: 2

« Explanation:

— The EventHandler class stores callbacks in a vector of std::function<void()>.

— A lambda is registered as a callback and triggered when an event occurs.

11.1.5 Summary

Higher-order functions are a powerful feature in functional programming that enable you
to write more modular, reusable, and expressive code. In C++, higher-order functions

can be defined using function pointers, lambda expressions, std::function, and templates.

221

Key Takeaways:

o Higher-Order Functions: Functions that take other functions as arguments or

return functions as results.
o Function Pointers: Traditional way to pass functions as arguments.
o Lambda Expressions: Concise syntax for defining anonymous functions.
o std::function: Type-safe wrapper for storing and passing callable objects.

o Templates: Enable generic higher-order functions that work with any callable

object.

By mastering higher-order functions, you can write more expressive and maintainable
C++ code that aligns with functional programming principles. These tools enable you
to create flexible and powerful abstractions, making your programs easier to reason

about and extend.

11.2 Examples of Functions Like map, filter, and reduce

The functions map, filter, and reduce are fundamental higher-order functions in
functional programming. They allow you to transform, filter, and aggregate data in a
declarative and expressive manner. This section provides detailed examples of how to

implement and use these functions in C++.

11.2.1 The map Function

The map function applies a given function to each element of a collection and returns a

new collection with the results.

222

Implementing map

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {
std::vector<T> result;
for (const auto& x : vec) {
result.push back(func(x));

}

return result;

int square(int x) {

return x * x;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

auto squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << ”7”; // Output: 149 16

« Explanation:

— The map function template takes a vector and a function func as arguments.

223

— The function func is applied to each element of the vector, and the results are

stored in a new vector.

Using map with Lambdas

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {
std::vector<T> result;
for (const auto& x : vec) {
result.push__back(func(x));

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

auto squaredNumbers = map(numbers, [|(int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << 77 // Output: 149 16

» Explanation:

— The map function is used with a lambda to square each element of the vector.

224

11.2.2 The filter Function

The filter function selects elements from a collection that satisfy a given predicate and

returns a new collection with the selected elements.

Implementing filter

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {
std::vector<T> result;
for (const auto& x : vec) {
if (pred(x)) {
result.push__back(x);

}

return result;

bool isEven(int x) {

return x % 2 == 0;

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto evenNumbers = filter(numbers, isEven);

for (int x : evenNumbers) {

std::cout << x << 77 // Output: 24 6

225

» Explanation:

— The filter function template takes a vector and a predicate pred as arguments.

— The predicate pred is applied to each element of the vector, and elements

that satisfy the predicate are stored in a new vector.

Using filter with Lambdas

#include <iostream>
#include <vector>

#include <algorithm>

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vee, Predicate pred) {
std::vector<T> result;
for (const auto& x : vec) {
if (pred(x)) {
result.push__back(x);

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto evenNumbers = filter(numbers, [J(int x) { return x % 2 == 0; });

for (int x : evenNumbers) {

226

std::cout << x << ”7”; // Output: 24 6

» Explanation:

— The filter function is used with a lambda to select even numbers from the

vector.

11.2.3 The reduce Function

The reduce function aggregates the elements of a collection using a binary operation and

returns the accumulated result.

Implementing reduce

#include <iostream>
#include <vector>

#include <numeric>

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {
T result = init;
for (const auto& x : vec) {
result = op(result, x);

}

return result;

int main() {

std::vector<int> numbers = {1, 2, 3, 4};

227

int sum = reduce(numbers, 0, [|(int a, int b) { return a + b; });

std::cout << sum << "\n”; // Output: 10

« Explanation:

— The reduce function template takes a vector, an initial value init, and a

binary operation op as arguments.

— The binary operation op is applied to the elements of the vector,

accumulating the result.

Using reduce with Lambdas

#include <iostream>
#include <vector>

#include <numeric>

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {
T result = init;
for (const auto& x : vec) {
result = op(result, x);

}

return result;

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

int product = reduce(numbers, 1, [J(int a, int b) { return a * b; });

228

std::cout << product << "\n”; // Output: 24

» Explanation:

— The reduce function is used with a lambda to calculate the product of the

elements in the vector.

11.2.4 Practical Applications of map, filter, and reduce

Example: Data Processing Pipeline

#include <iostream>
#include <vector>
#include <algorithm>

#include <numeric>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {
std::vector<T> result;
for (const auto& x : vec) {
result.push__back(func(x));

}

return result;

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vee, Predicate pred) {
std::vector<T> result;

for (const auto& x : vec) {

229

if (pred(x)) {
result.push__back(x);

}

return result;

template <typename T, typename BinaryOp>

T reduce(const std::vector<T>& vec, T init, BinaryOp op) {
T result = init;
for (const auto& x : vec) {

result = op(result, x);

}

return result;
int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
auto evenNumbers = filter(numbers, [J(int x) { return x % 2 == 0; });
auto squaredNumbers = map(evenNumbers, [](int x) { return x * x; });

int sum = reduce(squaredNumbers, 0, [|(int a, int b) { return a + b; });

std::cout << sum << "\n”; // Output: 56

o Explanation:

— The filter function is used to select even numbers from the vector.
— The map function is used to square each even number.

— The reduce function is used to calculate the sum of the squared even numbers.

230

Example: Custom Sorting with map, filter, and reduce

#include <iostream>
#include <vector>
#include <algorithm>

#include <numeric>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {
std::vector<T> result;
for (const auto& x : vec) {
result.push__back(func(x));

}

return result;

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {
std::vector<T> result;
for (const auto& x : vec) {
it (pred(x)) {
result.push_ back(x);

}

return result;

template <typename T, typename BinaryOp>

T reduce(const std::vector<T>& vec, T init, BinaryOp op) {
T result = init;
for (const auto& x : vec) {

result = op(result, x);

231

return result;

int main() {

std::vector<int> numbers = {4, 2, 3, 1, 5, 6};

auto sortedNumbers = map(numbers, [J(int x) { return x; });

std::sort(sortedNumbers.begin(), sortedNumbers.end());

auto evenNumbers = filter(sortedNumbers, [](int x) { return x % 2 == 0; });

int sum = reduce(evenNumbers, 0, [|(int a, int b) { return a + b; });

for (int x : evenNumbers) {

std::cout << x << ””; // Output: 2 4 6

}

std::cout << ”\nSum: 7 << sum << "\n”; // Output: Sum: 12

» Explanation:

— The map function is used to create a copy of the vector.
— The std::sort function is used to sort the copied vector.
— The filter function is used to select even numbers from the sorted vector.

— The reduce function is used to calculate the sum of the even numbers.

11.2.5 Summary

The functions map, filter, and reduce are powerful tools in functional programming that

allow you to transform, filter, and aggregate data in a declarative and expressive

232

manner. By implementing and using these functions in C++, you can write more
modular, reusable, and maintainable code.

Key Takeaways:

o map: Applies a function to each element of a collection and returns a new

collection with the results.

o filter: Selects elements from a collection that satisfy a given predicate and returns

a new collection with the selected elements.

o reduce: Aggregates the elements of a collection using a binary operation and

returns the accumulated result.

By mastering map, filter, and reduce, you can write more expressive and maintainable
C++ code that aligns with functional programming principles. These tools enable you
to create flexible and powerful abstractions, making your programs easier to reason

about and extend.

Chapter 12

Modern Functional Libraries

12.1 Using Libraries Like *Range-v3™ and *Boost.Hana™ to

Support Functional Programming

Modern C++ libraries like Range-v3 and Boost.Hana provide powerful tools for
functional programming. These libraries offer a wide range of utilities for working with
ranges, composing functions, and performing compile-time computations. This section

explores how to use these libraries to enhance functional programming in C++.

12.1.1 Range-v3: A Modern Range Library

Range-v3 is a library that provides a set of composable range adaptors and algorithms,

making it easier to work with sequences of data in a functional style.

Installing Range-v3

1. Using Conan:

233

234

o Add Range-v3 to your conanfile.txt:

[requires]
range-v3,/0.11.0

[generators]

cmake

« Install dependencies:

conan install ..

2. Using CMake:

e Include Range-v3 in your CMakelists.txt:

find_package(range-v3 REQUIRED)
target_link_libraries(MyApp range-v3::range-v3)

Example: Composing Functions with Range-v3

Cpp
Copy

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {

return x * x;

235

int addOne(int x) {

return x + 1;

int main() {

std::vector<int> numbers = {1, 2, 3, 4};

auto processedNumbers = numbers
| ranges::views::transform(square)

| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << 77 // Output: 2 5 10 17

» Explanation:

— The ranges::views::transform adaptor is used to apply square and addOne to

each element of the numbers vector.

— The result is a composed pipeline that processes the data in a functional style.
Example: Filtering and Transforming with Range-v3
#include <iostream>

#include <vector>
#include <range/v3/all.hpp>

236

int square(int x) {

return x * x;

bool isEven(int x) {

return x % 2 == 0;

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto processedNumbers = numbers
| ranges::views::filter(isEven)

| ranges::views::transform(square);

for (int x : processedNumbers) {
std::cout << x << ””; // Output: 4 16 36

» Explanation:

— The ranges::views::filter adaptor is used to filter even numbers, and

ranges::views::transform is used to square them.

— The result is a composed pipeline that filters and transforms the data.

12.1.2 Boost.Hana: A Modern Metaprogramming Library

Boost.Hana is a library for metaprogramming and functional programming in C++. It
provides utilities for composing functions, manipulating types, and creating

compile-time computations.

237

Installing Boost.Hana
1. Using Conan:

e Add Boost.Hana to your conanfile.txt:

[requires]
boost/1.75.0

[generators]

cmake

o Install dependencies:

conan install ..

2. Using CMake:
e Include Boost.Hana in your CMakeLists.txt:

find_package(Boost REQUIRED COMPONENTS hana)
target_link libraries(MyApp Boost::hana)

Example: Composing Functions with Boost.Hana

#include <iostream>

#include <boost/hana.hpp>

namespace hana = boost::hana;

238

int square(int x) {

return x * x;

int addOne(int x) {

return x + 1;

int main() {
auto composedFunction = hana::compose(addOne, square);
int result = composedFunction(4); // result = 17

std::cout << result << "\n”;

» Explanation:

— The hana::compose function is used to compose square and addOne.

— The resulting function composedFunction first squares the input and then

adds one.

Example: Compile-Time Function Composition with Boost.Hana

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;

constexpr int square(int x) {

return x * x;

239

constexpr int addOne(int x) {

return x + 1;

int main() {
constexpr auto composedFunction = hana::compose(addOne, square);
constexpr int result = composedFunction(4); // result = 17

std::cout << result << "\n”;

o Explanation:

— The hana::compose function is used to compose square and addOne at

compile time.

— The resulting function composedFunction is evaluated at compile time.

12.1.3 Practical Applications of Modern Libraries for Functional

Programming

Example: Data Processing Pipeline with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {

return x * x;

240

int addOne(int x) {

return x + 1;

bool isEven(int x) {

return x % 2 == 0;

int main() {

)

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
auto processedNumbers = numbers
| ranges::views: filter(isEven)

| ranges::views::transform(square)

| ranges::views::transform(addOne);

for (int x : processedNumbers) {

std::cout << x << 77 // Output: 5 17 37

o Explanation:

— The ranges::views::filter adaptor is used to filter even numbers, and

ranges::views::transform is used to square them and add one.

— The result is a composed pipeline that processes the data in a functional style.

Example: Compile-Time Data Processing with Boost.Hana

241

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;

constexpr int square(int x) {

return x * x;

constexpr int addOne(int x) {

return x + 1;

constexpr bool isEven(int x) {

return x % 2 == 0;

int main() {
constexpr auto processNumber = hana::compose(addOne, square);
constexpr int result = processNumber(4); // result = 17
std::cout << result << "\n”;

« Explanation:

— The hana::compose function is used to compose square and addOne at

compile time.

— The resulting function processNumber is evaluated at compile time.

242

12.1.4 Summary

Modern libraries like Range-v3 and Boost.Hana provide powerful tools for functional
programming, enabling you to write expressive and concise code. These libraries support
both runtime and compile-time function composition, making them suitable for a wide

range of applications.

Key Takeaways:

» Range-v3: Provides composable range adaptors and algorithms for functional-style

data processing.

o Boost.Hana: Offers utilities for metaprogramming and compile-time function

composition.

o Practical Applications: Data processing pipelines, compile-time computations, and

more.

By leveraging these modern libraries, you can write more expressive, modular, and
reusable C++ code that aligns with functional programming principles. These tools
enable you to create flexible and powerful abstractions, making your programs easier to

reason about and extend.

12.2 Practical Examples of Using These Libraries

Modern C++ libraries like Range-v3 and Boost.Hana provide powerful tools for
functional programming. This section provides practical examples of how to use these

libraries to solve real-world problems, demonstrating their capabilities and benefits.

243

12.2.1 Example: Data Processing Pipeline with Range-v3

Range-v3 is particularly well-suited for creating data processing pipelines. Let's consider
an example where we process a list of numbers by filtering, transforming, and

aggregating them.

Filtering, Transforming, and Aggregating Data

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int main() {
std::vector<int> numbers = {1, 2, 3,4, 5, 6, 7, 8, 9, 10};

// Define a pipeline: filter even numbers, square them, and sum the results

auto result = numbers
| ranges::views: filter([](int x) { return x % 2 == 0; }) // Filter even numbers
| ranges::views::transform([](int x) { return x * x; }) // Square each number
| ranges::actions::sort // Sort the squared numbers

| ranges::accumulate(0, [J(int acc, int x) { return acc + x; }); // Sum the squared numbers

std::cout << ”Sum of squared even numbers: 7 << result << "\n”; // Output: 220

« Explanation:

— Filtering: The ranges::views::filter adaptor is used to select even numbers

from the vector.

— Transforming: The ranges::views::transform adaptor is used to square each

even number.

244

— Sorting: The ranges::actions::sort action is used to sort the squared numbers.

— Aggregating: The ranges::accumulate function is used to sum the squared

numbers.

Benefits of Using Range-v3

1. Declarative Syntax: The pipeline is expressed in a declarative manner, making the

code easier to read and understand.

2. Lazy Evaluation: The operations are evaluated lazily, meaning that the

transformations are applied only when the result is needed.

3. Composability: The range adaptors can be easily composed to create complex

data processing pipelines.

12.2.2 Example: Compile-Time Computations with Boost.Hana

Boost.Hana is a metaprogramming library that allows you to perform compile-time
computations and manipulate types. Let's consider an example where we use

Boost.Hana to perform compile-time function composition.

Compile-Time Function Composition

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;

constexpr int square(int x) {

return x * x;

245

constexpr int addOne(int x) {

return x + 1;

int main() {
// Compose square and addOne at compile time

constexpr auto composedFunction = hana::compose(addOne, square);

// Evaluate the composed function at compile time

constexpr int result = composedFunction(4); // result = 17

std::cout << "Result of composed function: 7 << result << ”"\n”; // Output: 17

o Explanation:

— Function Composition: The hana::compose function is used to compose

square and addOne at compile time.

— Compile-Time Evaluation: The composed function is evaluated at compile

time, and the result is stored in a constexpr variable.

Benefits of Using Boost.Hana
1. Compile-Time Computations: Boost.Hana enables you to perform computations

at compile time, improving runtime performance.

2. Type Manipulation: Boost.Hana provides utilities for manipulating types, making

it easier to write generic and reusable code.

3. Expressive Syntax: The library offers a clean and expressive syntax for

metaprogramming tasks.

246

12.2.3 Example: Combining Range-v3 and Boost.Hana

You can combine the capabilities of Range-v3 and Boost.Hana to create powerful and
expressive functional programming solutions. Let's consider an example where we use

both libraries to process data at compile time and runtime.

Compile-Time Data Processing with Boost.Hana and Range-v3

#include <iostream>
#include <vector>

#include <range/v3/all.hpp>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {

return x * x;

constexpr int addOne(int x) {

return x + 1;

int main() {
// Compile-time function composition

constexpr auto composedFunction = hana::compose(addOne, square);

// Runtime data processing with Range-v3

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto processedNumbers = numbers
| ranges::views::transform(composedFunction) // Apply the composed function

| ranges::to<std::vector>; // Convert the range to a vector

247

for (int x : processedNumbers) {
std::cout << x << ””; // Output: 2 5 10 17 26 37

» Explanation:

— Compile-Time Function Composition: The hana::compose function is used to

compose square and addOne at compile time.

— Runtime Data Processing: The composed function is applied to each element

of the vector using ranges::views::transform.

— Conversion to Vector: The ranges::to<std::vector> action is used to convert

the range to a vector.

Benefits of Combining Range-v3 and Boost.Hana

1. Flexibility: You can leverage the strengths of both libraries to perform

compile-time and runtime computations.

2. Expressiveness: The combination of Range-v3 and Boost.Hana allows you to write

expressive and concise code.

3. Performance: Compile-time computations with Boost.Hana can improve runtime

performance by reducing the need for runtime calculations.

12.2.4 Example: Advanced Data Processing with Range-v3

Let's consider a more advanced example where we use Range-v3 to process a dataset of

employees, filtering, transforming, and aggregating the data.

248

Processing Employee Data

#include <iostream>
#include <vector>

#include <string>

#include <range/v3/all.hpp>

struct Employee {
std::string name;
int age;
double salary;

h

int main() {
std::vector<Employee> employees = {
{”Alice”, 30, 50000},
{"Bob”, 25, 45000},
{”Charlie”, 35, 60000},
{"David”, 40, 70000},
{"Eve”, 22, 40000}

&

// Define a pipeline: filter employees older than 30, increase their salary by 10%, and calculate the
— total salary
auto totalSalary = employees
| ranges::views::filter([](const Employee& e) { return e.age > 30; }) // Filter employees older
— than 30
| ranges::views::transform([](const Employee& e) { return e.salary * 1.1; }) // Increase salary by
- 10%
| ranges::accumulate(0.0, [J(double acc, double salary) { return acc + salary; }); // Sum the

— salaries

std::cout << ”Total salary after increase: ” << totalSalary << ”\n”; // Output: 143000

249

» Explanation:

— Filtering: The ranges::views::filter adaptor is used to select employees older
than 30.

— Transforming: The ranges::views::transform adaptor is used to increase the

salary of each selected employee by 10%.

— Aggregating: The ranges::accumulate function is used to sum the increased

salaries.

Benefits of Using Range-v3 for Data Processing

1. Readability: The pipeline is expressed in a clear and concise manner, making the

code easier to understand.

2. Modularity: Each step in the pipeline is modular and can be easily modified or

extended.

3. Efficiency: The lazy evaluation of ranges ensures that the operations are

performed efficiently.

12.2.5 Summary

Modern libraries like Range-v3 and Boost.Hana provide powerful tools for functional
programming, enabling you to write expressive and efficient code. By using these
libraries, you can create complex data processing pipelines, perform compile-time
computations, and manipulate types in a flexible and reusable manner.

Key Takeaways:

250

« Range-v3: Provides composable range adaptors and algorithms for functional-style

data processing.

o Boost.Hana: Offers utilities for metaprogramming and compile-time function

composition.

o Practical Applications: Data processing pipelines, compile-time computations, and

more.

By mastering these libraries, you can write more expressive, modular, and reusable C+-+
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about

and extend.

Chapter 13

Memory Management in Functional

Programming

13.1 Using Smart Pointers (std::unique_ ptr, std::shared_ ptr) in

Functional Programming

In modern C++, memory management is a critical aspect of writing robust, efficient,
and maintainable code. Functional programming, with its emphasis on immutability,
pure functions, and declarative style, can benefit significantly from the use of smart
pointers. Smart pointers, such as std::unique ptr and std::shared_ ptr, provide
automatic memory management, ensuring that resources are properly deallocated when
they are no longer needed. This section explores how smart pointers can be effectively

integrated into functional programming paradigms in C++.

251

252

13.1.1 Overview of Smart Pointers

Smart pointers are objects that manage the lifetime of dynamically allocated memory.
They automatically deallocate the memory they manage when the smart pointer goes
out of scope, thus preventing memory leaks. The two most commonly used smart

pointers in C++ are:

o std::unique ptr: A smart pointer that owns and manages a single object
exclusively. It cannot be copied, ensuring that only one std::unique_ ptr owns the

resource at any given time.

o std::shared ptr: A smart pointer that allows multiple pointers to share ownership
of the same object. The object is deallocated only when the last std::shared ptr

that owns it is destroyed or reset.

13.1.2 Smart Pointers and Immutability

Functional programming emphasizes immutability, where data is not modified after it is
created. Smart pointers can help enforce this principle by managing the lifecycle of

immutable objects.

o std::unique ptr and Immutability: Since std::unique_ ptr enforces exclusive
ownership, it can be used to manage immutable objects that should not be shared
or copied. For example, a std::unique_ptr can be used to manage a dynamically
allocated immutable data structure, ensuring that the data structure is not

accidentally modified or shared.

o std::shared ptr and Immutability: std::shared ptr can be used to manage shared
immutable objects. Since the object is immutable, multiple std::shared ptr
instances can safely point to the same object without the risk of data races or

unintended modifications.

253

13.1.3 Smart Pointers in Pure Functions

Pure functions are functions that do not have side effects and always produce the same
output for the same input. Smart pointers can be used to manage resources within pure

functions without introducing side effects.

e std::unique ptr in Pure Functions: A pure function can return a std::unique_ ptr
to a newly created object, transferring ownership to the caller. This ensures that
the function does not leak memory and that the caller is responsible for managing

the resource.

o std::shared ptr in Pure Functions: When a pure function needs to return a shared
resource, it can return a std::shared ptr. This allows multiple callers to share
ownership of the resource, while still ensuring that the resource is properly

deallocated when no longer needed.

13.1.4 Smart Pointers and Higher-Order Functions

Higher-order functions are functions that take other functions as arguments or return
functions as results. Smart pointers can be used to manage resources within
higher-order functions, ensuring that resources are properly managed even when

functions are passed around.

o std::unique_ ptr in Higher-Order Functions: A higher-order function can accept a
std::unique_ ptr as an argument, taking ownership of the resource. This allows the
function to manage the resource's lifecycle without worrying about ownership

issues.

o std::shared ptr in Higher-Order Functions: When a higher-order function needs to
share a resource with other functions, it can pass a std::shared ptr. This ensures

that the resource remains valid as long as any function holds a reference to it.

254

13.1.5 Smart Pointers and Functional Data Structures

Functional data structures, such as persistent data structures, often require careful
memory management. Smart pointers can be used to implement these data structures

efficiently.

o std::unique ptr in Functional Data Structures: std::unique_ ptr can be used to
manage nodes in a persistent data structure, ensuring that nodes are deallocated

when they are no longer part of the structure.

o std::ishared ptr in Functional Data Structures: std::shared ptr can be used to
implement shared nodes in a persistent data structure, allowing multiple versions

of the structure to share common nodes without duplicating memory.

13.1.6 Example: Using Smart Pointers in a Functional Context

Consider a simple example where we implement a functional-style linked list using smart

pointers:

#include <memory>

#include <iostream>

template <typename T>
class FunctionalList {
public:
struct Node {
T value;
std::shared_ ptr<Node> next;

Node(T val, std::shared_ ptr<Node> nxt = nullptr)

- value(val), next(nxt) {}

255

b
FunctionalList() : head(nullptr) {}

FunctionalList(T val, FunctionalList tail)
: head(std::make shared<Node>(val, tail.head)) {}

bool isEmpty() const {

return head == nullptr;

T front() const {
if (isEmpty()) throw std::runtime_ error(”List is empty”);

return head->value;

FunctionalList pop_ front() const {
if (isEmpty()) throw std::runtime__error(”List is empty”);

return FunctionalList(head->next);

private:
std::shared_ ptr<Node> head;

FunctionalList(std::shared_ ptr<Node> head) : head(head) {}
b

int main() {
FunctionalList<int> list1;
FunctionalList<int> list2(1, list1);
FunctionalList<int> list3(2, list2);

256

std::cout << "Front of list3: 7 << list3.front() << std::endl; // Output: 2
std::cout << 7Front of list2: 7 << list2.front() << std::endl; // Output: 1

return 0;

In this example, std::shared_ ptr is used to manage the nodes of the linked list, allowing
multiple lists to share common nodes. This approach ensures that memory is managed

correctly and that the list can be used in a functional style.

13.1.7 Conclusion

Smart pointers, particularly std::unique_ptr and std::shared_ ptr, are powerful tools for
managing memory in functional programming. They help enforce immutability, manage
resources in pure functions, and facilitate the implementation of functional data
structures. By integrating smart pointers into functional programming practices,
developers can write safer, more efficient, and more maintainable C++ code.

In the next section, we will explore how to manage memory in functional programming
using custom allocators and memory pools, further enhancing the performance and

flexibility of functional C++ programs.

13.2 Avoiding Memory Leaks with Functional Programming

Memory leaks are a common issue in programs that rely on manual memory
management. They occur when dynamically allocated memory is not properly
deallocated, leading to a gradual increase in memory usage and, eventually, program
crashes or system instability. Functional programming, with its emphasis on
immutability, pure functions, and declarative style, offers several strategies to avoid

memory leaks. This section explores how functional programming principles can help

257

prevent memory leaks and how modern C++ features, such as smart pointers and RAII
(Resource Acquisition Is Initialization), can be leveraged to ensure robust memory

management.

13.2.1 Understanding Memory Leaks

A memory leak occurs when a program allocates memory dynamically (e.g., using new
or malloc) but fails to release it (e.g., using delete or free). Over time, these unreleased
memory blocks accumulate, consuming system resources and degrading performance.

Common causes of memory leaks include:

o Forgetting to deallocate memory.
o Losing track of pointers to allocated memory.

» Exception safety issues, where an exception prevents deallocation code from

executing.

Functional programming, with its focus on immutability and deterministic behavior,

provides tools and techniques to mitigate these issues.

13.2.2 Functional Programming Principles for Avoiding Memory Leaks

Functional programming promotes practices that inherently reduce the risk of memory

leaks:
1. Immutability:

« Immutable data structures cannot be modified after creation. This eliminates

the risk of accidentally overwriting or losing pointers to allocated memory.

258

o Immutability also simplifies reasoning about memory ownership, as data is

either owned by a single entity or shared without modification.
2. Pure Functions:

o Pure functions do not have side effects, meaning they do not modify external

state or allocate memory that persists beyond their scope.

« By avoiding side effects, pure functions reduce the likelihood of memory leaks

caused by unintended interactions between functions.
3. Deterministic Resource Management:

o Functional programming encourages deterministic behavior, where the
lifecycle of resources is predictable and tied to specific scopes or ownership

rules.

o This aligns well with C+-+'s RAII principle, where resources are

automatically released when objects go out of scope.
4. Higher-Order Functions and Composition:

e Higher-order functions allow for the creation of reusable abstractions for

memory management, such as smart pointers or custom allocators.

o Function composition ensures that resources are managed in a structured and

predictable manner.

13.2.3 Leveraging RAII and Smart Pointers

RAII is a cornerstone of C++ memory management. It ensures that resources are

automatically released when an object goes out of scope. Smart pointers, such as

259

std::unique_ ptr and std::shared_ ptr, are RAIl-compliant tools that help prevent

memory leaks.
1. std::unique_ ptr:

o A std::unique_ ptr exclusively owns the memory it points to. When the

std::unique__ptr goes out of scope, the memory is automatically deallocated.

o This ensures that there is no ambiguity about ownership, reducing the risk of

memory leaks.
Example:

void processData() {
auto data = std::make_unique<int[]>(100); // Allocate memory
// Use data...

// Memory is automatically deallocated when 'data' goes out of scope

2. std::shared ptr:

e A std::shared ptr allows multiple pointers to share ownership of the same
memory. The memory is deallocated only when the last std::shared ptr

referencing it is destroyed.

e This is useful for shared resources but should be used judiciously to avoid

cyclic references, which can lead to memory leaks.

Example:

260

void shareData() {
auto data = std::make shared<int>(42);

auto data2 = data; // Share ownership

// Memory is deallocated when both 'data' and 'data2' go out of scope

3. Avoiding Cyclic References:

o Cyclic references occur when two or more std::shared ptr instances reference

each other, preventing their reference counts from reaching zero.

e To avoid this, use std::weak ptr for non-owning references.
Example:

struct Node {
std::shared_ ptr<Node> next;
std::weak_ ptr<Node> prev; // Use weak ptr to break cyclic references

%

13.2.4 Functional Data Structures and Memory Safety

Functional programming often relies on persistent data structures, which preserve

previous versions of themselves when modified. These structures can be implemented in

C++ using smart pointers to ensure memory safety.

1. Persistent Linked List:

o A persistent linked list can be implemented using std::shared_ptr to share

nodes between versions of the list.

261

e Since nodes are immutable, multiple lists can safely share common nodes

without risking memory leaks.

Example:

template <typename T>
class PersistentList {
public:
struct Node {
T value;
std::shared_ ptr<Node> next;
Node(T val, std::shared_ptr<Node> nxt = nullptr)

: value(val), next(nxt) {}

e

PersistentList() : head(nullptr) {}
PersistentList(T val, PersistentList tail)
: head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const { return head == nullptr; }

T front() const {
if (isEmpty()) throw std::runtime_ error(”List is empty”);
return head->value;

}

PersistentList pop_ front() const {
if (isEmpty()) throw std::runtime_error(”List is empty”);

return PersistentList(head->next);

private:
std::shared_ ptr<Node> head;
PersistentList(std::shared ptr<Node> head) : head(head) {}

I

262

2. Garbage Collection Analogy:

« Functional languages often rely on garbage collection to manage memory. In
C++, smart pointers provide a similar mechanism, ensuring that memory is

deallocated when no longer needed.

13.2.5 Exception Safety and Functional Programming

Exceptions can disrupt the normal flow of a program, potentially leading to memory

leaks if resources are not properly managed. Functional programming, combined with

RAII, ensures exception safety.

1. RAII Guarantees:

o When an exception is thrown, all local objects (including smart pointers) are

destroyed, ensuring that their associated resources are released.

2. No Raw Pointers:

e Avoid using raw pointers for dynamic memory allocation. Instead, use smart

pointers to ensure that memory is deallocated even if an exception occurs.

Example:

void safeFunction() {
auto resource = std::make_unique<Resource>();
// If an exception is thrown here, 'resource' will still be deallocated

riskyOperation();

263

13.2.6 Best Practices for Avoiding Memory Leaks

1. Prefer Smart Pointers Over Raw Pointers:

o Use std::unique_ ptr for exclusive ownership and std::shared_ ptr for shared

ownership.

e Avoid using new and delete directly.
2. Use Immutable Data Structures:

o Immutable data structures simplify memory management by eliminating the

need to track modifications.

3. Avoid Global State:

e Global variables can lead to memory leaks if they hold references to
dynamically allocated memory. Functional programming discourages global

state in favor of local, scoped variables.
4. Test for Memory Leaks:

o Use tools like Valgrind or AddressSanitizer to detect memory leaks in your

code.

13.2.7 Conclusion

Functional programming provides a robust framework for avoiding memory leaks by
promoting immutability, pure functions, and deterministic resource management. When
combined with modern C++ features like smart pointers and RAII, these principles

enable developers to write memory-safe, efficient, and maintainable code. By adhering

264

to functional programming practices and leveraging the power of C++, you can
eliminate memory leaks and build high-performance applications.

In the next section, we will explore advanced memory management techniques, including
custom allocators and memory pools, to further optimize memory usage in functional

C++ programs.

Chapter 14

Performance Optimization

14.1 Techniques for Optimizing Performance in Functional

Programming

Functional programming is often associated with elegant, declarative code and
immutable data structures. However, these characteristics can sometimes lead to
performance overhead if not managed carefully. This section explores techniques for
optimizing performance in functional programming, focusing on modern C++ features

and paradigms that balance functional purity with efficiency.

14.1.1 Understanding Performance Challenges in Functional Programming
Functional programming introduces certain performance challenges due to its core
principles:

1. Immutability:

265

266

o Immutable data structures ensure safety and predictability but can lead to
increased memory usage and copying overhead, especially when creating new

versions of data structures.

2. Pure Functions:

o Pure functions avoid side effects, making them easier to reason about, but

they may require additional computations or intermediate data structures.

3. Higher-Order Functions:

« Functions like map, filter, and reduce are powerful abstractions but can

introduce overhead due to function calls and temporary objects.

4. Recursion:

o Recursion is a natural fit for functional programming but can lead to stack

overflow or inefficiency if not optimized.

To address these challenges, we can employ a variety of techniques that leverage modern

C++ features and functional programming principles.

14.1.2 Leveraging Immutability Efficiently

Immutability is a cornerstone of functional programming, but it can be optimized to

reduce overhead:
1. Persistent Data Structures:

e Persistent data structures, such as immutable linked lists or trees, allow

sharing of common data between versions, minimizing memory usage.

267

e In C+4+, persistent data structures can be implemented using smart pointers

(std::shared ptr) to manage shared nodes.

Example:

template <typename T>
class PersistentList {
public:
struct Node {
T value;
std::shared_ ptr<Node> next;
Node(T val, std::shared_ptr<Node> nxt = nullptr)

: value(val), next(nxt) {}

e

PersistentList() : head(nullptr) {}
PersistentList(T val, PersistentList tail)
: head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const { return head == nullptr; }

T front() const {
if (isEmpty()) throw std::runtime_ error(”List is empty”);
return head->value;

}

PersistentList pop_ front() const {
if (isEmpty()) throw std::runtime_error(”List is empty”);

return PersistentList(head->next);

private:
std::shared_ ptr<Node> head;
PersistentList(std::shared ptr<Node> head) : head(head) {}

I

268

2. Structural Sharing:

o Structural sharing ensures that only the modified parts of a data structure

are copied, while the unchanged parts are shared between versions.

e This technique is commonly used in functional languages like Clojure and can

be implemented in C++ using smart pointers and custom data structures.

14.1.3 Optimizing Pure Functions

Pure functions are deterministic and side-effect-free, but they can be optimized for

performance:
1. Memoization:

o Memoization caches the results of expensive function calls, avoiding

redundant computations.

e In C++, memoization can be implemented using std::unordered map or

custom caching mechanisms.
Example:

#include <unordered map>

#include <functional>

template <typename Result, typename... Args>
auto memoize(std::function<Result(Args...)> func) {
std::unordered__map<std::tuple<Args...>>, Result> cache;
return [=](Args... args) mutable {
auto key = std::make_ tuple(args...);
if (cache.find(key) == cache.end()) {

cachelkey] = func(args...);

269

}

return cachelkey];

%

int fibonacci(int n) {
if (n <= 1) return n;
static auto memoized_fib = memoize<int, int>(fibonacci);

return memoized_fib(n - 1) + memoized_ fib(n - 2);

2. Loop Fusion:

o Loop fusion combines multiple operations (e.g., map and filter) into a single
pass over the data, reducing intermediate allocations and improving cache

locality.

e In C++, loop fusion can be achieved by manually combining operations or

using libraries like Range-v3.
Example:

#include <vector>
#include <algorithm>

#include <iostream>

void fusedLoop(const std::vector<int>& input) {
for (int x : input) {
if (x % 2 ==0) {// Filter
std::cout << x * 2 << 77 // Map

270

14.1.4 Efficient Use of Higher-Order Functions

Higher-order functions like map, filter, and reduce are powerful but can introduce

overhead. Optimizing their use is key to improving performance:
1. Lazy Evaluation:

o Lazy evaluation delays computation until the result is needed, avoiding

unnecessary work.

e In C++, lazy evaluation can be implemented using iterators or custom lazy

data structures.
Example:

#include <ranges>
#include <vector>

#include <iostream>

void lazyEvaluation(const std::vector<int>& input) {
auto even = input | std::views::filter([](int x) { return x % 2 == 0; });
for (int x : even) {

std::cout << x << 77

2. Batch Processing;:

271

o Batch processing applies operations to chunks of data at once, reducing

function call overhead and improving cache efficiency.

e This technique is particularly useful for large datasets.

14.1.5 Optimizing Recursion

Recursion is a natural fit for functional programming but can be inefficient if not

optimized:
1. Tail Recursion Optimization:

o Tail recursion occurs when the recursive call is the last operation in a function.

Some compilers optimize tail-recursive functions to avoid stack overflow.

e In C++, tail recursion can be manually optimized using iterative loops.
Example:
int factorial(int n, int acc = 1) {

if (n <= 1) return acc;

return factorial(n - 1, n * acc); // Tail-recursive

2. Iterative Solutions:

o For deeply recursive algorithms, converting recursion to iteration can improve

performance and avoid stack overflow.

Example:

272

int factoriallterative(int n) {
int result = 1;
for (int i = 1;1 <= n; ++i) {
result *= i;

}

return result;

14.1.6 Leveraging Modern C++ Features

Modern C++ provides several features that can enhance the performance of functional

programming;:
1. Move Semantics:

« Move semantics allow resources to be transferred rather than copied,

reducing overhead for large objects.

o Use std::move to transfer ownership of resources in functional-style code.

Example:
std::vector<int> processData(std::vector<int> data) {

// Modify data...

return std::move(data); // Avoid copying

2. Parallel Algorithms:

e C+4+17 introduced parallel algorithms, which can be used to parallelize

functional-style operations like map and reduce.

273

Example:

#include <vector>
#include <algorithm>

#include <execution>

void parallel Transform(std::vector<int>& data) {
std::transform(std::execution::par, data.begin(), data.end(), data.begin(),
[J(int x) { return x * 2; });

14.1.7 Conclusion

Optimizing performance in functional programming requires a balance between
functional purity and efficiency. By leveraging techniques like persistent data structures,
memoization, lazy evaluation, and modern C++ features, developers can write
high-performance functional code without sacrificing clarity or safety. In the next
section, we will explore advanced optimization strategies, including profiling,
benchmarking, and custom allocators, to further enhance the performance of functional

C++ programs.

14.2 Using constexpr and noexcept to Optimize Code

In modern C++, the keywords constexpr and noexcept are powerful tools for optimizing
code. They enable compile-time computation, improve runtime performance, and
provide guarantees that help the compiler generate more efficient code. This section
explores how these features can be used in functional programming to enhance

performance while maintaining the principles of immutability, purity, and safety.

274

14.2.1 Understanding constexpr

The constexpr keyword allows computations to be performed at compile time, reducing
runtime overhead. It can be applied to variables, functions, and even complex data

structures, enabling compile-time evaluation of expressions.
1. constexpr Variables:

e A constexpr variable is a constant whose value is computed at compile time.
This eliminates runtime computation and allows the value to be used in
contexts where a compile-time constant is required, such as array sizes or

template arguments.
Example:
constexpr int factorial(int n) {
return (n <= 1) 7 1 : n * factorial(n - 1);

constexpr int fact_5 = factorial(5); // Computed at compile time

2. constexpr Functions:

e A constexpr function can be evaluated at compile time if its arguments are
constant expressions. This is particularly useful for functional programming,

where pure functions are common.

e constexpr functions can be used to compute values, generate data structures,

or even implement algorithms at compile time.

Example:

275

constexpr int square(int x) {

return x * x;

constexpr int squared_ value = square(10); // Computed at compile time

3. constexpr Data Structures:

o constexpr can be used with user-defined types to create compile-time data
structures. This is useful for functional programming, where immutable data

structures are often used.
Example:

struct Point {
int x, y;
constexpr Point(int x, int y) : x(x), y(y) {}
constexpr int magnitude() const { return x * x + y * y; }

b

constexpr Point p(3, 4);

constexpr int mag = p.magnitude(); // Computed at compile time

14.2.2 Benefits of constexpr in Functional Programming

1. Compile-Time Computation:

e By moving computations to compile time, constexpr reduces runtime

overhead, making programs faster and more efficient.

276

e This is particularly useful for functional programming, where many

computations are deterministic and pure.
2. Immutable Data:

e constexpr ensures that data is immutable and computed at compile time,

aligning with the principles of functional programming.
3. Optimization Opportunities:

e The compiler can optimize constexpr expressions more aggressively, leading

to smaller and faster binaries.

14.2.3 Understanding noexcept

The noexcept keyword indicates that a function does not throw exceptions. This

provides guarantees to the compiler, enabling optimizations and improving performance.
1. noexcept Functions:

e A noexcept function promises not to throw exceptions. If an exception is

thrown, the program will terminate, ensuring predictable behavior.

o This allows the compiler to generate more efficient code, as it does not need

to handle exception propagation.

Example:

void safeOperation() noexcept {

// This function guarantees no exceptions

277

2. noexcept Expressions:

o The noexcept operator can be used to check whether an expression is

noexcept. This is useful for conditional compilation or optimization.
Example:

template <typename T>
void callFunction(T func) noexcept(noexcept(func())) {

func();

14.2.4 Benefits of noexcept in Functional Programming

1. Performance Optimization:

e noexcept functions allow the compiler to omit exception-handling overhead,

resulting in faster and smaller code.

o This is particularly useful for functional programming, where many functions

are pure and do not throw exceptions.

2. Predictable Behavior:

« By guaranteeing that a function does not throw exceptions, noexcept ensures

predictable behavior, which is a key principle of functional programming.

3. Improved Code Safety:

e noexcept encourages developers to write exception-safe code, reducing the

risk of runtime errors and improving program reliability.

278

14.2.5 Combining constexpr and noexcept

Combining constexpr and noexcept can lead to highly optimized code that is both fast

and safe. This is particularly useful in functional programming, where immutability and

purity are emphasized.
1. Compile-Time Safe Functions:

e A constexpr function that is also noexcept guarantees both compile-time

evaluation and exception safety.
Example:
constexpr int safeAdd(int a, int b) noexcept {

return a + b;

constexpr int result = safeAdd(10, 20); // Computed at compile time, no exceptions

2. Optimized Data Structures:

o Combining constexpr and noexcept in data structures ensures that they can

be used in compile-time contexts without the risk of exceptions.
Example:

struct Vector {
int x, y;
constexpr Vector(int x, int y) noexcept : x(x), y(y) {}
constexpr int dot(const Vector& other) const noexcept {

return x * other.x + y * other.y;

279

%

constexpr Vector v1(1, 2);
constexpr Vector v2(3, 4);

constexpr int dot_ product = v1.dot(v2); // Computed at compile time, no exceptions

14.2.6 Practical Applications in Functional Programming

1. Compile-Time Functional Algorithms:

o Functional algorithms like map, filter, and reduce can be implemented using

constexpr to enable compile-time evaluation.

Example:

template <typename Func, typename T, std::size_t N>
constexpr auto map(Func func, const std::array<T, N>& arr) noexcept {
std::array <decltype(func(std::declval<T>())), N> result{};
for (std:size_ti=0;1 < N; ++i) {
result[i] = func(arr[i]);
}

return result;

constexpr std::array<int, 3> input = {1, 2, 3};

constexpr auto squared = map([](int x) noexcept { return x * x; }, input);

2. Immutable Data Structures:

280

o Immutable data structures can be implemented using constexpr and noexcept

to ensure compile-time safety and performance.

Example:

template <typename T>
class ImmutableList {
public:
constexpr ImmutableList() noexcept : head(nullptr) {}
constexpr ImmutableList(T val, ImmutableList tail) noexcept
- head(std::make_shared<Node>(val, tail.head)) {}

constexpr bool isSEmpty() const noexcept { return head == nullptr; }
constexpr T front() const noexcept {

return head->value;

private:

struct Node {
T value;
std::shared_ ptr<Node> next;
constexpr Node(T val, std::shared_ ptr<Node> nxt = nullptr) noexcept

: value(val), next(nxt) {}
¥
std::shared_ ptr<Node> head;

%

14.2.7 Conclusion

The constexpr and noexcept keywords are powerful tools for optimizing code in

functional programming. By enabling compile-time computation and providing

281

exception safety guarantees, they help developers write faster, safer, and more efficient
programs. When combined with functional programming principles like immutability
and purity, these features enable the creation of high-performance, modern C++
applications.

In the next section, we will explore advanced optimization techniques, including
profiling, benchmarking, and custom allocators, to further enhance the performance of

functional C++ programs.

Chapter 15

Concurrency and Functional Programming

15.1 Using Functional Programming in Concurrent Applications

Concurrency is a critical aspect of modern software development, enabling programs to
perform multiple tasks simultaneously and take full advantage of multi-core processors.
Functional programming, with its emphasis on immutability, pure functions, and
declarative style, provides a robust foundation for writing concurrent applications. This
section explores how functional programming principles can be applied to concurrent
programming in C++, leveraging modern language features and libraries to build

efficient, scalable, and maintainable concurrent systems.

15.1.1 The Challenges of Concurrency

Concurrent programming introduces several challenges, including;:
1. Race Conditions:

e Race conditions occur when multiple threads access shared data concurrently,

282

283

leading to unpredictable behavior.
2. Deadlocks:

o Deadlocks arise when two or more threads are blocked forever, waiting for

each other to release resources.
3. Complexity:

o Managing threads, synchronization, and shared state can make concurrent

programs difficult to reason about and maintain.

Functional programming addresses these challenges by promoting immutability, avoiding

shared state, and using higher-level abstractions for concurrency.

15.1.2 Immutability and Concurrency

Immutability is a core principle of functional programming that ensures data cannot be

modified after creation. This property is particularly valuable in concurrent applications:
1. No Shared Mutable State:

o Immutable data structures eliminate the need for locks or synchronization

mechanisms, as they cannot be modified by multiple threads.
2. Thread Safety:

o Immutable objects are inherently thread-safe, as they can be safely shared

across threads without the risk of race conditions.

3. Predictable Behavior:

284

o Immutability simplifies reasoning about concurrent programs, as the state of

an object remains constant throughout its lifetime.

Example:

#include <string>
#include <vector>

class ImmutableMessage {
public:
ImmutableMessage(std::string sender, std::string content)

: sender(std::move(sender)), content(std::move(content)) {}

std::string getSender() const { return sender; }

std::string getContent() const { return content; }

private:
std::string sender;

std::string content;

h

void processMessage(const ImmutableMessage& msg) {

// Safe to use 'msg' in a concurrent context

15.1.3 Pure Functions and Concurrency

Pure functions are functions that do not have side effects and always produce the same

output for the same input. They are ideal for concurrent programming because:

1. No Side Effects:

285

e Pure functions do not modify shared state, eliminating the risk of race

conditions.
2. Deterministic Behavior:

o Pure functions are deterministic, making them easier to test and debug in

concurrent contexts.
3. Parallel Execution:

o Pure functions can be safely executed in parallel, as they do not depend on or

modify external state.
Example:

#include <vector>
#include <algorithm>

#include <execution>

int square(int x) {

return x * x;

void parallelTransform(const std::vector<int>& input, std::vector<int>& output) {

std::transform (std::execution::par, input.begin(), input.end(), output.begin(), square);

15.1.4 Higher-Order Functions and Concurrency

Higher-order functions, which take functions as arguments or return functions as results,

are a powerful tool for concurrent programming:

286

1. Abstraction:

o Higher-order functions abstract away the details of concurrency, allowing

developers to focus on the logic of their programs.
2. Composition:

e Higher-order functions enable the composition of concurrent operations, such

as mapping, filtering, and reducing data in parallel.
3. Reusability:

o Higher-order functions can be reused across different concurrent contexts,

reducing code duplication and improving maintainability.
Example:

#include <vector>
#include <future>
#include <algorithm>

template <typename Func, typename T>
std::vector<std::future<T>> asyncMap(Func func, const std::vector<T>& input) {
std::vector<std::future<T>> futures;
for (const auto& item : input) {
futures.push_ back(std::async(std::launch::async, func, item));

}

return futures;

int main() {

std::vector<int> input = {1, 2, 3, 4, 5};

287

auto futures = asyncMap([](int x) { return x * x; }, input);

for (auto& fut : futures) {
std::cout << fut.get() << 77

}

return 0;

15.1.5 Functional Concurrency Patterns

Functional programming encourages the use of patterns that simplify concurrent

programming;:
1. Map-Reduce:

o The map-reduce pattern divides a task into smaller sub-tasks (map),

processes them in parallel, and combines the results (reduce).

o This pattern is well-suited for functional programming, as it aligns with the

principles of immutability and pure functions.
Example:

#include <vector>
#include <numeric>

#include <execution>

int main() {
std::vector<int> data = {1, 2, 3, 4, 5};
auto squared = std::transform__reduce(

std::execution::par, data.begin(), data.end(), 0, std::plus<>(),

288

[J(int x) { return x * x; });
std::cout << ”"Sum of squares: 7 << squared << std::endl;

return 0;

2. Futures and Promises:

e Futures and promises provide a way to represent asynchronous computations

and their results.

o Functional programming can leverage futures to compose asynchronous

operations in a declarative manner.

Example:

#include <future>

#include <iostream>

int compute(int x) {

return x * x;

int main() {
std::future<int> fut = std::async(std::launch::async, compute, 10);
std::cout << "Result: 7 << fut.get() << std::endl;

return 0;

3. Actors:

289

o The actor model is a concurrency pattern where independent entities (actors)

communicate by sending messages.

o Functional programming can be used to implement actors with immutable

messages and pure message handlers.

Example:

#include <iostream>
#include <thread>
#include <queue>
#include <mutex>

#include <condition_ variable>

class Actor {
public:
void send(int message) {
std::lock_ guard<std::mutex> lock(mtx);
queue.push(message);

cv.notify__one();

void run() {
while (true) {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [this] { return !queue.empty(); });
int message = queue.front();
queue.pop();
lock.unlock();

if (message == -1) break; // Termination signal

process(message);

290

private:
void process(int message) {

std::cout << "Processing: 7 << message << std::endl;

std::queue<int> queue;
std::mutex mtx;

std::condition_ variable cv;

%

int main() {
Actor actor;
std::thread t([&actor] { actor.run(); });

for (int i = 1;1 <= 5; ++i) {
actor.send(i);

}

actor.send(-1); // Signal termination

t.join();

return 0;

15.1.6 Conclusion

Functional programming provides a strong foundation for writing concurrent
applications by promoting immutability, pure functions, and higher-level abstractions.
By leveraging these principles, developers can build concurrent systems that are efficient,

scalable, and easy to reason about. Modern C++ features, such as parallel algorithms,

291

futures, and immutable data structures, further enhance the ability to write
high-performance concurrent code in a functional style.

In the next section, we will explore advanced concurrency techniques, including lock-free
programming, thread pools, and task-based parallelism, to further optimize concurrent

applications in C++-.

15.2 Examples of Using std::async and std::future

Concurrency is a cornerstone of modern software development, and C++ provides
powerful tools like std::async and std::future to simplify asynchronous programming.
These tools align well with functional programming principles, enabling developers to
write concurrent code that is both efficient and easy to reason about. This section
explores practical examples of using std::async and std::future in functional
programming, demonstrating how they can be used to perform asynchronous

computations, compose parallel tasks, and manage concurrency in a declarative manner.

15.2.1 Overview of std::async and std::future

1. std::async:

e std::async is a high-level abstraction for launching asynchronous tasks. It

returns a std::future object that represents the result of the computation.

o It can be configured to run tasks either asynchronously (std::launch::async)

or deferred (std::launch::deferred).
2. std::future:

e A std:future represents the result of an asynchronous computation. It allows

you to retrieve the result of a task once it is completed.

292

o The get() method blocks until the result is available, while wait() blocks until

the task is completed without retrieving the result.
3. Functional Programming Synergy:

o std::async and std::future work well with functional programming principles,
as they enable pure, side-effect-free computations to be executed

asynchronously.

o They also support composition, allowing multiple asynchronous tasks to be

combined into larger workflows.

15.2.2 Basic Example: Asynchronous Computation

The simplest use case for std::async is to perform an asynchronous computation and
retrieve the result using std::future.

Example:

#include <iostream>
#include <future>

#include <chrono>

int compute(int x) {
std::this_thread::sleep_ for(std::chrono::seconds(2)); // Simulate work

return x * x;

int main() {
// Launch an asynchronous task

std::future<int> fut = std::async(std::launch::async, compute, 10);

// Do other work while the task is running

293

std::cout << "Waiting for the result...” << std::endl;

// Retrieve the result (blocks until the task is complete)
int result = fut.get();
std::cout << "Result: 7 << result << std::endl;

return 0;

Explanation:
e The compute function simulates a time-consuming computation.

o std::async launches the task asynchronously, and std::future is used to retrieve the

result.

e The main thread can perform other work while the task is running.

15.2.3 Example: Parallel Map with std::async

Functional programming often uses higher-order functions like map to transform data.
Using std::async, we can implement a parallel version of map that processes elements
concurrently.

Example:

#include <iostream>
#include <vector>
#include <future>
#include <algorithm>

// Pure function to square a number

int square(int x) {

294

return x * x;

// Parallel map using std::async

template <typename Func, typename T>

std::vector<T> parallelMap(Func fune, const std::vector<T>& input) {
std::vector<std::future<T>> futures;
for (const auto& item : input) {

futures.push_ back(std::async(std::launch::async, func, item));

std::vector<T> result;
for (auto& fut : futures) {
result.push__back(fut.get());

}

return result;

int main() {
std::vector<int> input = {1, 2, 3, 4, 5};
auto output = parallelMap(square, input);

for (const auto&s val : output) {
std::cout << val << 77

}
return 0;
Explanation:

o The square function is a pure function that squares its input.

o parallelMap uses std::async to apply the function to each element of the input

295

vector concurrently.

e The results are collected into a new vector and returned.

15.2.4 Example: Composing Asynchronous Tasks

std::future can be used to compose multiple asynchronous tasks into a larger workflow.
This is particularly useful in functional programming, where tasks can be chained
together declaratively.

Example:

#include <iostream>

#include <future>

int add(int a, int b) {

return a + b;

int multiply(int a, int b) {

return a * b;

int main() {
// Launch asynchronous tasks
std::future<int> futl = std::async(std::launch::async, add, 10, 20);
std::future<int> fut2 = std::async(std::launch::async, multiply, 5, 6);

// Wait for both tasks to complete and combine their results
int result = futl.get() + fut2.get();

std::cout << ”"Combined result: 7 << result << std::endl;

return 0;

296

Explanation:

o Two asynchronous tasks are launched using std::async: one for addition and one

for multiplication.

o The results of the tasks are retrieved using std::future::get and combined.

15.2.5 Example: Asynchronous Pipeline

Functional programming often uses pipelines to process data through a series of
transformations. Using std::async and std::future, we can create an asynchronous
pipeline.

Example:

#include <iostream>
#include <future>
#include <vector>

int square(int x) {

return x * x;

int sum(const std::vector<int>& input) {
int result = 0;
for (int x : input) {
result += x;
}

return result;

297

int main() {

std::vector<int> input = {1, 2, 3, 4, 5};

// Stage 1: Square all elements (parallel)
std::vector<std::future<int>> futures;
for (int x : input) {

futures.push__back(std::async(std::launch::async, square, x));

// Collect results from Stage 1

std::vector<int> squared;

for (auto& fut : futures) {
squared.push_ back(fut.get());

// Stage 2: Sum the squared elements (sequential)
std::future<int> fut = std::async(std::launch::async, sum, squared);

int result = fut.get();

std::cout << "Sum of squares: 7 << result << std::endl;

return 0;

Explanation:

o The input data is processed in two stages: squaring the elements (parallel) and

summing the results (sequential).

o std::async is used to parallelize the squaring stage, and std::future is used to

synchronize the results.

298

15.2.6 Example: Exception Handling in Asynchronous Tasks

Functional programming emphasizes robustness and predictability. When using
std::async and std::future, it is important to handle exceptions that may occur in
asynchronous tasks.

Example:

#include <iostream>
#include <future>
#include <stdexcept>

int compute(int x) {
if (x<0){
throw std::invalid_ argument(”Input must be non-negative”);

}

return x * x;

int main() {

std::future<int> fut = std::async(std::launch::async, compute, -10);

try {
int result = fut.get();

std::cout << "Result: 7 << result << std::endl;
} catch (const std::exception& e) {
std::cerr << "Error: 7 << e.what() << std::endl;

return 0;

Explanation:

299

e The compute function throws an exception if the input is invalid.

» The exception is propagated to the main thread when fut.get() is called, allowing

it to be handled gracefully.

15.2.7 Example: Using std::future with Functional Composition

Functional programming encourages the composition of functions to build complex
workflows. std::future can be used to compose asynchronous tasks in a functional style.

Example:

#include <iostream>

#include <future>

int add(int a, int b) {

return a + b;

int multiply(int a, int b) {

return a * b;

int main() {
auto futl = std::async(std::launch::async, add, 10, 20);

auto fut2 = std::async(std::launch::async, multiply, 5, 6);

// Compose the results of the two tasks
auto result = [J(std::future<int> f1, std::future<int> £2) {
return fl.get() + £2.get();

%

std::cout << ”Combined result: 7 << result(std::move(futl), std::move(fut2)) << std::endl,

300

return 0;

Explanation:

o Two asynchronous tasks are launched, and their results are composed using a

lambda function.

e This demonstrates how std::future can be used to build functional workflows.

15.2.8 Conclusion

std::async and std::future are powerful tools for writing concurrent applications in a
functional style. They enable asynchronous computations, parallel processing, and
functional composition while maintaining the principles of immutability and purity. By
leveraging these tools, developers can build efficient, scalable, and maintainable
concurrent systems in modern C+-+.

In the next section, we will explore advanced concurrency techniques, including thread
pools, task-based parallelism, and lock-free programming, to further enhance the

performance and scalability of functional C++ applications.

Chapter 16

Building Functional Libraries

16.1 How to Design Libraries That Support Functional

Programming

Designing libraries that support functional programming requires a deep understanding
of the principles and practices that define the paradigm. Functional programming
emphasizes immutability, pure functions, higher-order functions, and declarative style.
When designing libraries, these principles must be carefully integrated to ensure that
the library is both functional in nature and practical for real-world use. This section
explores the key considerations and strategies for designing functional programming

libraries in modern C+-+.

16.1.1 Core Principles of Functional Programming

Before diving into library design, it is essential to understand the core principles of

functional programming;:

301

302

1. Immutability:

o Data is immutable, meaning it cannot be modified after creation. This

ensures thread safety and predictability.
2. Pure Functions:

o Functions are pure, meaning they do not have side effects and always

produce the same output for the same input.
3. Higher-Order Functions:

o Functions can take other functions as arguments or return functions as

results, enabling powerful abstractions.
4. Declarative Style:

o Code is written in a declarative manner, focusing on what to do rather than

how to do it.
5. Composition:

o Functions and data structures are designed to be composable, allowing

complex behaviors to be built from simple components.

16.1.2 Designing for Immutability

Immutability is a cornerstone of functional programming. When designing libraries,

immutability should be enforced wherever possible.

1. Immutable Data Structures:

303

e Provide immutable versions of common data structures, such as lists, maps,

and sets.

o Use const and constexpr to enforce immutability at compile time.
Example:

class ImmutableList {

public:
ImmutableList(int head, ImmutableList tail) : head(head), tail(tail) {}
int getHead() const { return head; }
ImmutableList getTail() const { return tail; }

private:
int head;

ImmutableList tail;

Iis

2. Copy-on-Write Semantics:

o Implement copy-on-write semantics to optimize performance while

maintaining immutability.

« Use smart pointers (std::shared_ptr) to manage shared data efficiently.
Example:

class ImmutableVector {
public:
ImmutableVector(std::vector<int> data) :
— data(std::make_ shared<std::vector<int>>(std::move(data))) {}

304

ImmutableVector set(int index, int value) const {
auto newData = std::make_ shared <std::vector<int>>(*data);
(*newData)[index] = value;

return ImmutableVector(newData);

private:

std::shared_ ptr<std::vector<int>> data;

Iis

16.1.3 Supporting Pure Functions

Pure functions are a key aspect of functional programming. Libraries should encourage

and facilitate the use of pure functions.
1. Avoid Side Effects:

o Design functions to be side-effect-free, ensuring they do not modify external

state.
2. Functional Interfaces:

e Provide interfaces that accept pure functions as arguments, enabling

higher-order functions.
Example:
template <typename Func, typename T >

std::vector<T> map(Func func, const std::vector<T>& input) {
std::vector<T> result;

305

for (const autod& item : input) {
result.push_ back(func(item));

}

return result;

3. Const-Correctness:
o Use const to ensure that functions do not modify their inputs.

Example:

int sum(const std::vector<int>& numbers) {

return std::accumulate(numbers.begin(), numbers.end(), 0);

16.1.4 Leveraging Higher-Order Functions

Higher-order functions are a powerful tool in functional programming. Libraries should

provide utilities that enable the use of higher-order functions.
1. Function Composition:

o Provide utilities for composing functions, allowing complex behaviors to be

built from simple functions.

Example:

306

template <typename Funcl, typename Func2>
auto compose(Funcl fl, Func2 2) {
return [=](auto x) { return f1(f2(x)); };

}
auto square = [|(int x) { return x * x; };
auto increment = [J(int x) { return x + 1; };

auto squareThenIncrement = compose(increment, square);

2. Currying:

e Support currying, where a function that takes multiple arguments is

transformed into a sequence of functions that each take a single argument.
Example:

template <typename Func, typename Argl>
auto curry(Func func, Argl argl) {
return [=](auto arg2) { return func(argl, arg2); };

auto add = [|(int a, int b) { return a + b; };
auto addFive = curry(add, 5);

16.1.5 Providing Declarative Abstractions

Functional programming emphasizes declarative style, where code describes what to do
rather than how to do it. Libraries should provide abstractions that enable declarative

programming.

307

1. Range-Based Abstractions:

e Provide range-based utilities for working with collections in a declarative

manner.

Example:

template <typename Func, typename Range>

auto transformRange(Func func, Range range) {
std::vector<decltype(func(*range.begin()))> result;
for (const auto& item : range) {

result.push__back(func(item));

}

return result;

2. Monadic Abstractions:

e Provide monadic abstractions, such as std::optional or std::expected, to

handle computations that may fail or produce optional results.

Example:

template <typename T>
std::optional<T> safeDivide(T a, T b) {
if (b == 0) return std::nullopt;

return a / b

308

16.1.6 Ensuring Composability

Composability is a key principle of functional programming. Libraries should be

designed to enable the composition of functions and data structures.
1. Interoperable Interfaces:

e Ensure that functions and data structures have interoperable interfaces,

allowing them to be easily combined.
2. Pipeline Operators:

o Provide utilities for creating pipelines, where the output of one function is

passed as the input to the next.
Example:

template <typename Func, typename T>
auto operator|(T value, Func func) {

return func(value);

auto result = 5 | square | increment;

16.1.7 Example: Designing a Functional Library

Let’s design a simple functional library that supports immutability, pure functions, and
higher-order functions.

Example:

309

#include <iostream>
#include <vector>
#include <functional>

#include <numeric>

// Immutable List
template <typename T>
class ImmutableList {
public:
ImmutableList() : head(nullptr) {}
ImmutableList(T val, ImmutableList tail) : head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const { return head == nullptr; }

T front() const {
if (isEmpty()) throw std::runtime_ error(”List is empty”);
return head->value;

}

ImmutableList pop_ front() const {
if (isEmpty()) throw std::runtime_ error(”List is empty”);
return ImmutableList(head- >next);

private:
struct Node {
T value;
std::shared_ ptr<Node> next;
Node(T val, std::shared_ ptr<Node> nxt = nullptr) : value(val), next(nxt) {}
b
std::shared_ ptr<Node> head;
ImmutableList(std::shared ptr<Node> head) : head(head) {}

h

310

// Higher-Order Functions
template <typename Func, typename T>
ImmutableList<T> map(Func func, const ImmutableList<T>& list) {
if (list.isEmpty()) return ImmutableList<T>();
return ImmutableList<T> (func(list.front()), map(func, list.pop_ front()));

template <typename Func, typename T>
T reduce(Func func, T init, const ImmutableList<T>& list) {
if (list.isEmpty()) return init;

return reduce(func, func(init, list.front()), list.pop_ front());

int main() {
ImmutableList<int> list;
list = ImmutableList<int>(1, list);
list = ImmutableList<int>(2, list);
list = ImmutableList<int>(3, list);

auto squared = map([](int x) { return x * x; }, list);

auto sum = reduce([](int a, int b) { return a + b; }, 0, squared);

std::cout << ”Sum of squares: 7 << sum << std::endl;

return 0;

Explanation:

o The library provides an immutable list and higher-order functions like map and

reduce.

o These functions are pure and composable, enabling declarative programming.

311

16.1.8 Conclusion

Designing libraries that support functional programming requires careful consideration

of immutability, pure functions, higher-order functions, and composability. By adhering
to these principles and leveraging modern C++ features, developers can create libraries
that are both functional in nature and practical for real-world use. In the next section,

we will explore advanced techniques for building functional libraries, including lazy

evaluation, monads, and concurrency support.

16.2 Examples of Functional Libraries Written in C++

Functional programming in C4++ has gained significant traction in recent years, thanks
to the language's evolving features and the growing interest in functional paradigms.
Several libraries have been developed to bring functional programming concepts to
C++, making it easier for developers to write expressive, declarative, and efficient code.
This section explores some of the most prominent functional libraries written in C++,

highlighting their features, use cases, and examples.

16.2.1 Range-v3

Overview:

Range-v3 is a modern library that provides composable range-based abstractions for
working with collections. It is the foundation for the C+420 Ranges library and is
heavily inspired by functional programming concepts like lazy evaluation, higher-order
functions, and declarative style.

Key Features:

o Lazy Evaluation: Operations are evaluated only when needed, improving

performance.

312

« Composable Pipelines: Ranges can be transformed, filtered, and reduced using a

pipeline operator (|).

o Interoperability: Works seamlessly with STL containers and algorithms.
Example:

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5};
// Create a pipeline: filter even numbers, square them, and sum the results
auto result = numbers

| ranges::views: filter([](int x) { return x % 2 == 0; })

| ranges::views::transform([](int x) { return x * x; })

| ranges::accumulate(0);
std::cout << "Sum of squares of even numbers: 7 << result << std::endl;
return 0;
Explanation:

o The pipeline filters even numbers, squares them, and sums the results.

o The operations are composable and evaluated lazily.

16.2.2 FunctionalPlus

Overview:

313

FunctionalPlus is a header-only library that brings functional programming to C++ by
providing a rich set of higher-order functions and utilities. It emphasizes immutability,
pure functions, and declarative programming.

Key Features:
o Higher-Order Functions: Includes map, filter, fold, and more.
o Immutable Data Structures: Encourages immutability and avoids side effects.
» Interoperability: Works with STL containers and algorithms.

Example:

#include <iostream>
#include <vector>
#include <fplus/fplus.hpp>

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5};

// Use FunctionalPlus to filter, transform, and sum
auto result = fplus::sum(fplus::transform(
[[(int x) { return x * x; },
fplus:filter([](int x) { return x % 2 == 0; }, numbers)

));

std::cout << "Sum of squares of even numbers: 7 << result << std::endl;

return 0;

Explanation:

e The code filters even numbers, squares them, and sums the results using

FunctionalPlus.

314

o The library provides a functional and declarative API.

16.2.3 Hana

Overview:

Hana is a modern C++ metaprogramming library that provides functional
programming constructs for compile-time computations. It is part of the Boost library
and is designed to work seamlessly with C++14 and later.

Key Features:

o Compile-Time Computations: Enables functional programming at compile time.

o Type-Level Programming: Provides tools for working with types as first-class

citizens.

o Interoperability: Works with runtime computations and STL containers.
Example:

#include <iostream>

#include <boost/hana.hpp>
namespace hana = boost::hana;

int main() {
// Create a compile-time list of integers

constexpr auto numbers = hana::make_ tuple(1, 2, 3, 4, 5);

// Use Hana to filter, transform, and sum at compile time
constexpr auto result = hana::sum(
hana::transform(
hana:filter(numbers, [J(auto x) { return x % 2 == 0; }),

315

[[(auto x) { return x * x; }

std::cout << "Sum of squares of even numbers: 7 << result << std::endl;

return 0;

Explanation:

o The code performs filtering, transformation, and summation at compile time using

Hana.

o Hana is particularly useful for metaprogramming and type-level computations.

16.2.4 CppMonad

Overview:
CppMonad is a library that brings monadic programming to C++. It provides
implementations of common monads like Maybe, Either, and 10, enabling functional

programming patterns such as error handling and effect management.

Key Features:

o Monadic Types: Includes Maybe, Either, IO, and more.

e Do Notation: Provides a macro-based do notation for chaining monadic

operations.

o Interoperability: Works with STL containers and algorithms.

Example:

316

#include <iostream>

#include <cpp_monad/maybe.h>
using namespace cpp_ monad;
int main() {

// Create a Maybe monad representing a value

auto maybeValue = Just(10);

// Use monadic operations to transform and chain computations
auto result = maybeValue
>>=[|(int x) { return Just(x * 2); }
>>= [](int x) { return x > 15 ? Just(x) : Nothing<int>(); };

// Check the result

if (result.isJust()) {
std::cout << "Result: 7 << result.fromJust() << std::endl;

}else {

std::cout << "No result” << std::endl,;

return 0;

Explanation:

o The code uses the Maybe monad to perform chained computations.

e The >>= operator is used to sequence monadic operations.

16.2.5 ETL (Embedded Template Library)

Overview:

317

ETL is a library designed for embedded systems but is also useful for general-purpose
functional programming. It provides a range of functional programming utilities,
including immutable data structures and higher-order functions.

Key Features:

o Immutable Data Structures: Includes vectors, lists, and maps.
o Higher-Order Functions: Provides map, filter, reduce, and more.

o Lightweight: Designed for resource-constrained environments.

Example:

#include <iostream>
#include <etl/vector.h>
#include <etl/algorithm.h>

int main() {

etl::vector<int, 5> numbers = {1, 2, 3, 4, 5};

// Use ETL to filter, transform, and sum
etl::vector<int, 5> evenNumbers;

etl::copy if(numbers.begin(), numbers.end(), evenNumbers.begin(), [J(int x) { return x % 2 == 0;

=)

etl::vector<int, 5> squaredNumbers;

etl::transform(evenNumbers.begin(), evenNumbers.end(), squaredNumbers.begin(), [](int x) {
< return x * x; });

int result = etl::accumulate(squaredNumbers.begin(), squaredNumbers.end(), 0);

std::cout << "Sum of squares of even numbers: 7 << result << std::endl;

318

return 0;

Explanation:
e The code uses ETL to filter even numbers, square them, and sum the results.

o ETL is particularly useful for embedded systems and resource-constrained

environments.

16.2.6 Mach7

Overview:

Mach7 is a library that brings pattern matching to C++. Pattern matching is a core
feature of many functional programming languages and enables expressive and
declarative code.

Key Features:
o Pattern Matching: Provides powerful pattern matching capabilities.
o Functional Style: Encourages a functional programming style.
o Interoperability: Works with STL containers and algorithms.

Example:

#include <iostream>

#include <mach7/type_ switchN.hpp>

struct Circle { double radius; };
struct Rectangle { double width, height; };

319

void printArea(const auto& shape) {

using namespace mch;

Match(shape) {
Case(Circle{ radius }) std::cout << "Circle area: 7 << 3.14 * radius * radius << std::endl;
— break;
Case(Rectangle{ w, h }) std::cout << "Rectangle arca: 7 << w * h << std::endl; break;
Otherwise() std::cout << "Unknown shape” << std::endl; break;

}
EndMatch

int main() {
Circle ¢{ 5.0 };
Rectangle r{ 4.0, 6.0 };

printArea(c);
printArea(r);

return 0;

Explanation:

o The code uses Mach7 to perform pattern matching on shapes and calculate their

areas.

« Pattern matching enables expressive and declarative code.

16.2.7 Conclusion

Functional libraries in C4++ provide powerful tools for writing expressive, declarative,

and efficient code. Libraries like Range-v3, FunctionalPlus, Hana, CppMonad, ETL, and

320

Mach7 bring functional programming concepts to C++, enabling developers to leverage
immutability, higher-order functions, and composability. By using these libraries,
developers can write modern C++ code that is both functional in nature and practical
for real-world applications.

In the next section, we will explore advanced techniques for building custom functional

libraries, including lazy evaluation, monads, and concurrency support.

Chapter 17

Case Studies

17.1 Practical Applications of Functional Programming in

Real-World Projects

Functional programming (FP) is not just an academic exercise; it has practical
applications in real-world projects across various domains. By leveraging the principles
of immutability, pure functions, higher-order functions, and declarative programming,
developers can build robust, maintainable, and scalable systems. This section explores
how functional programming is applied in real-world projects, focusing on modern C+-+

and its evolving features.

17.1.1 Financial Systems

Overview:
Financial systems require high levels of correctness, predictability, and performance.
Functional programming is well-suited for this domain due to its emphasis on

immutability and pure functions, which reduce the risk of errors and side effects.

321

322

Applications:
1. Risk Management:

e FP is used to model complex financial instruments and calculate risk metrics.

o Immutable data structures ensure that historical data remains unchanged,

enabling accurate risk analysis.

Example:

struct RiskParameters {
double volatility;

double correlation;

Iis

double calculateRisk(const RiskParameters& params, const std::vector<double>& portfolio) {
// Pure function to calculate risk
double risk = 0.0;
for (double value : portfolio) {

risk += value * params.volatility;

}

return risk;

2. Algorithmic Trading:

e FP is used to implement trading algorithms that are deterministic and free of

side effects.

o Higher-order functions enable the composition of trading strategies.

Example:

323

using TradingStrategy = std::function<double(const std::vector<double>&)>;

TradingStrategy createStrategy(double threshold) {
return [threshold](const std::vector<double>& prices) {
double average = std::accumulate(prices.begin(), prices.end(), 0.0) / prices.size();

return (prices.back() > average * threshold) ? 1.0 : -1.0;

%

17.1.2 Data Processing and Analytics

Overview:
Data processing pipelines often involve transforming, filtering, and aggregating large

datasets. Functional programming provides a declarative and composable approach to
building these pipelines.
Applications:

1. ETL (Extract, Transform, Load):

o FP is used to implement ETL pipelines that are easy to reason about and

maintain.

o Lazy evaluation and immutable data structures optimize performance.

Example:
#include <range/v3/all.hpp>

std::vector<int> processData(const std::vector<int>& rawData) {

return rawData

324

| ranges::views: filter([](int x) { return x % 2 == 0; })
| ranges::views::transform([](int x) { return x * x; })

| ranges::to<std::vector>;

2. Real-Time Analytics:

e FP is used to implement real-time analytics systems that process streams of

data.

e Pure functions ensure that the system is predictable and free of side effects.

Example:

double calculateMovingAverage(const std::vector<double>& data, int windowSize) {

double sum = 0.0;

for (int i = 0; i < windowSize; ++1i) {
sum += datalil;

}

return sum / windowSize;

17.1.3 Game Development

Overview:
Game development involves complex state management and real-time performance

requirements. Functional programming can help manage state in a predictable and
maintainable way.

Applications:

325

1. Game State Management:

o FP is used to manage game state using immutable data structures, ensuring

that state changes are predictable and traceable.

Example:

struct GameState {
int playerHealth;
int enemyHealth;

std::vector<std::string> inventory;

%

GameState applyDamage(const GameState&s state, int damage) {

return { state.playerHealth - damage, state.enemyHealth, state.inventory };

2. Al and Behavior Trees:

e FP is used to implement Al behavior trees, where each node is a pure

function that determines the next action.
Example:

using BehaviorNode = std::function<bool(const GameState&)>;

BehaviorNode createAttackNode(int damage) {
return [damage](const GameState& state) {

return state.enemyHealth > 0 && state.playerHealth > damage;

i

326

17.1.4 Web Development

Overview:

Web development involves handling HTTP requests, managing state, and rendering
views. Functional programming can simplify these tasks by promoting immutability and
declarative programming.

Applications:
1. Server-Side Logic:

o FP is used to implement server-side logic that is free of side effects and easy

to test.
Example:

struct HttpRequest {
std::string method;
std::string path;
std::map<std::string, std::string> headers;

155

struct HttpResponse {
int statusCode;
std::string body;

Iis

HttpResponse handleRequest(const HttpRequest& request) {
if (request.path == 7/hello”) {
return { 200, "Hello, World!” };

}

return { 404, "Not Found” };

327

2. Front-End Development:

e FP is used to implement front-end logic using declarative frameworks like

React (via C++ bindings).
Example:

#include <reactcpp.h>

auto App = [J() {
return React::createElement(”div”, nullptr,

React::createElement(”h1”, nullptr, "Hello, World!”)
);
b

17.1.5 Embedded Systems

Overview:

Embedded systems often have strict resource constraints and require deterministic

behavior. Functional programming can help manage complexity and ensure correctness.

Applications:
1. Sensor Data Processing:

o FP is used to process sensor data streams using pure functions and

immutable data structures.

Example:

328

double calculateAverage(const std::vector<double>& sensorData) {

return std::accumulate(sensorData.begin(), sensorData.end(), 0.0) / sensorData.size();

2. Control Systems:

e FP is used to implement control systems that are predictable and free of side

effects.
Example:

double controlLoop(double setpoint, double currentValue) {
double error = setpoint - currentValue;

return error * 0.5; // Simple proportional control

17.1.6 Case Study: Functional Programming in a Real-World Project

Project: Real-Time Trading System

Overview:
A real-time trading system processes market data, executes trades, and manages risk.

Functional programming is used to ensure correctness, performance, and maintainability.

Key Features:
1. Immutable Market Data:

o Market data is represented as immutable data structures, ensuring that

historical data remains unchanged.

329

Example:

struct MarketData {
double price;
double volume;

std::chrono::system_ clock::time_ point timestamp;
b
2. Pure Trading Strategies:

o Trading strategies are implemented as pure functions, ensuring that they are

deterministic and free of side effects.

Example:

using TradingStrategy = std::function<bool(const MarketDatads)>;
TradingStrategy createStrategy(double threshold) {

return [threshold](const MarketData& data) {
return data.price > threshold;

J%

3. Composable Pipelines:

o Data processing pipelines are built using higher-order functions, enabling the

composition of complex workflows.

Example:

330

auto pipeline = [|(const std::vector<MarketData>& data, TradingStrategy strategy) {
return data
| ranges::views: filter(strategy)
| ranges::views::transform([](const MarketData& data) { return data.price; })

| ranges::to<std::vector>;

17.1.7 Conclusion

Functional programming has practical applications in a wide range of real-world projects,
from financial systems and data processing to game development and embedded systems.
By leveraging the principles of immutability, pure functions, and declarative
programming, developers can build systems that are robust, maintainable, and scalable.
Modern C++ provides the tools and features needed to apply functional programming
effectively, making it a valuable paradigm for real-world software development.

In the next section, we will explore additional case studies, focusing on how functional

programming is used in large-scale systems and open-source projects.

17.2 Analysis of Functional Code Written in C++

Functional programming in C++ is gaining traction as developers recognize its benefits
in terms of code clarity, maintainability, and robustness. However, writing functional

code in C++ requires a deep understanding of both functional programming principles
and the language's features. This section provides a detailed analysis of functional code

written in C++, highlighting best practices, common patterns, and potential pitfalls.

331

17.2.1 Key Characteristics of Functional Code in C++

Functional code in C++ is characterized by the following principles:
1. Immutability:

e Data is immutable, meaning it cannot be modified after creation. This is

achieved using const and immutable data structures.
2. Pure Functions:

o Functions are pure, meaning they do not have side effects and always

produce the same output for the same input.
3. Higher-Order Functions:

e Functions can take other functions as arguments or return functions as

results, enabling powerful abstractions.
4. Declarative Style:

e Code is written in a declarative manner, focusing on what to do rather than

how to do it.
5. Composition:

o Functions and data structures are designed to be composable, allowing

complex behaviors to be built from simple components.

332

17.2.2 Example: Functional Code for Data Processing

Let’s analyze a piece of functional C++ code that processes a list of numbers by

filtering even numbers, squaring them, and summing the results.

Code:

#include <iostream>
#include <vector>
#include <algorithm>

#include <numeric>

// Pure function to filter even numbers
std::vector<int> filterEven(const std::vector<int>& numbers) {
std::vector<int> result;
std::copy__if(numbers.begin(), numbers.end(), std::back__inserter(result),
[J(int x) { return x % 2 == 0; });

return result;

// Pure function to square numbers
std::vector<int> squareNumbers(const std::vector<int>& numbers) {
std::vector<int> result;
std::transform(numbers.begin(), numbers.end(), std::back__inserter(result),
[J(int x) { return x * x; });

return result;

// Pure function to sum numbers
int sumNumbers(const std::vector<int>& numbers) {

return std::accumulate(numbers.begin(), numbers.end(), 0);

333

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5};

// Compose the functions to process the data
auto evenNumbers = filterEven(numbers);
auto squaredNumbers = squareNumbers(evenNumbers);

int result = sumNumbers(squaredNumbers);

std::cout << "Sum of squares of even numbers: 7 << result << std::endl;

return 0;

Analysis:

1. Immutability:

e The input vector numbers is passed by const reference, ensuring it is not
modified.

o Each function (filterEven, squareNumbers, sumNumbers) returns a new

vector or value, preserving immutability.
2. Pure Functions:

o Each function is pure, as it does not modify external state and always

produces the same output for the same input.

o The use of lambda functions ([|(int x) { return x % 2 == 0; }) ensures that

the logic is encapsulated and side-effect-free.
3. Higher-Order Functions:

e The std::copy_if and std::transform algorithms are higher-order functions

that take a predicate or transformation function as an argument.

334

4. Declarative Style:

o The code is written in a declarative style, focusing on what to do (filter,

square, sum) rather than how to do it (loops, conditionals).

5. Composition:

e The functions are composed in a pipeline-like manner, where the output of

one function is passed as the input to the next.

17.2.3 Example: Functional Code for Recursive Algorithms

Functional programming often uses recursion to solve problems. Let’s analyze a
recursive implementation of the factorial function.

Code:
#include <iostream>
// Pure recursive function to calculate factorial

constexpr int factorial(int n) {

return (n <= 1) 7 1 : n * factorial(n - 1);

int main() {
constexpr int result = factorial(5);
std::cout << "Factorial of 5: 7 << result << std::endl;

return 0;

Analysis:

1. Immutability:

335

e The function factorial is constexpr, meaning it is evaluated at compile time

and produces an immutable result.

2. Pure Functions:

o The function is pure, as it does not modify external state and always

produces the same output for the same input.

3. Recursion:

e The function uses recursion to solve the problem, which is a common pattern

in functional programming.
4. Compile-Time Computation:

e The use of constexpr ensures that the computation is performed at compile

time, improving runtime performance.

17.2.4 Example: Functional Code with Higher-Order Functions

Higher-order functions are a key feature of functional programming. Let’s analyze a

piece of code that uses higher-order functions to implement a generic map function.

Code:

#include <iostream>
#include <vector>
#include <algorithm>

// Higher-order function to apply a function to each element of a vector
template <typename Func, typename T>

std::vector<T> map(Func func, const std::vector<T>& input) {

336

std::vector<T> result;
std::transform(input.begin(), input.end(), std::back__inserter(result), func);

return result;

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5};

// Use the map function to square each number

auto squaredNumbers = map([](int x) { return x * x; }, numbers);

for (int x : squaredNumbers) {

std::cout << x << 77

}

return 0;

Analysis:
1. Higher-Order Functions:

e The map function takes a function func as an argument and applies it to each

element of the input vector.
2. Genericity:

e The map function is generic, meaning it can work with any type T and any

function Funec.
3. Immutability:

o The input vector is passed by const reference, ensuring it is not modified.

337

e The map function returns a new vector, preserving immutability.
4. Declarative Style:

o The code is written in a declarative style, focusing on what to do (apply a

function to each element) rather than how to do it (loops, conditionals).

17.2.5 Common Pitfalls and Best Practices

1. Avoiding Side Effects:

o Ensure that functions are pure and do not modify external state.

o Use const and immutable data structures to enforce immutability.
2. Managing Recursion:

e Be cautious with deep recursion, as it can lead to stack overflow.

o Consider using tail recursion or iterative solutions for performance-critical

code.
3. Optimizing Performance:

o Use constexpr for compile-time computations where possible.

o Leverage lazy evaluation and range-based abstractions to optimize data

processing pipelines.
4. Composing Functions:

e Design functions to be composable, enabling the creation of complex

workflows from simple components.

o Use higher-order functions to abstract common patterns.

338

17.2.6 Conclusion

Functional programming in C++ offers a powerful paradigm for writing clear,
maintainable, and robust code. By adhering to principles like immutability, pure
functions, and higher-order functions, developers can leverage the full potential of
functional programming in real-world projects. The examples and analysis provided in
this section demonstrate how functional code can be written and optimized in C++,
highlighting best practices and common patterns.

In the next section, we will explore advanced topics in functional programming,
including monads, lazy evaluation, and concurrency, to further enhance the capabilities

of functional C++ code.

Chapter 18

Functional Programming in Games and

Graphics

18.1 Using Functional Programming in Game and Graphics

Development

Game and graphics development are domains that demand high performance, real-time
responsiveness, and complex state management. Functional programming (FP) offers a
unique set of tools and principles that can help address these challenges. By leveraging
immutability, pure functions, and declarative programming, developers can create more
maintainable, scalable, and robust game and graphics systems. This section explores
how functional programming can be applied in game and graphics development using

modern C++.

339

340

18.1.1 Key Challenges in Game and Graphics Development

1. State Management:

o Games and graphics applications often involve complex state transitions,

which can be difficult to manage and debug.
2. Performance:

o Real-time rendering and physics simulations require high performance and

low latency.
3. Concurrency:

e Modern games and graphics applications often leverage multi-core processors,

requiring effective concurrency management.
4. Complexity:

o The interplay between graphics rendering, physics, Al, and user input can

lead to highly complex codebases.

Functional programming can help address these challenges by promoting immutability,

reducing side effects, and enabling declarative programming.

18.1.2 Immutability in Game State Management

Immutability is a core principle of functional programming that ensures data cannot be
modified after creation. In game development, immutability can simplify state
management and make the code more predictable.

Example: Immutable Game State

341

struct GameState {
int playerHealth;
int enemyHealth;

std::vector<std::string> inventory;

5

GameState applyDamage(const GameStateds state, int damage) {

return { state.playerHealth - damage, state.enemyHealth, state.inventory };

GameState addTolnventory(const GameState& state, const std::string& item) {
auto newlnventory = state.inventory;
newlnventory.push_ back(item);

return { state.playerHealth, state.enemyHealth, newInventory };

Analysis:

o The GameState struct is immutable; any modification results in a new GameState

instance.

o Functions like applyDamage and addTolnventory return new instances of

GameState, ensuring that the original state remains unchanged.

18.1.3 Pure Functions for Game Logic

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for implementing game logic, as they are easy
to test and reason about.

Example: Pure Function for Damage Calculation

342

int calculateDamage(int baseDamage, int playerAttack, int enemyDefense) {

return std::max(0, baseDamage + playerAttack - enemyDefense);

Analysis:

o The calculateDamage function is pure, as it does not modify external state and

always produces the same output for the same input.

o This makes it easy to test and reuse in different parts of the game.

18.1.4 Higher-Order Functions for Al and Behavior Trees

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are useful for implementing AI and behavior trees in games.

Example: Behavior Tree Node
using BehaviorNode = std::function<bool(const GameState&)>;

BehaviorNode createAttackNode(int damage) {
return [damage](const GameState& state) {
return state.enemyHealth > 0 && state.playerHealth > damage;

%

BehaviorNode createHealNode(int health) {
return [health](const GameState& state) {
return state.playerHealth < 100;

h

Analysis:

343

e The createAttackNode and createHealNode functions return behavior nodes that

can be used in a behavior tree.

o This approach allows for flexible and composable Al logic.

18.1.5 Declarative Rendering Pipelines

Functional programming encourages a declarative style, where code describes what to do
rather than how to do it. This is particularly useful for rendering pipelines in graphics

development.

Example: Declarative Rendering Pipeline

struct Vertex {

float x, vy, z;

5

std::vector< Vertex> transformVertices(const std::vector<Vertex>& vertices, const
— std::function<Vertex(Vertex)>& transform) {
std::vector<Vertex> result;
std::transform(vertices.begin(), vertices.end(), std::back_inserter(result), transform);

return result;

Vertex scaleVertex(const Vertexds v, float scale) {

return { v.x * scale, v.y * scale, v.z * scale };

int main() {
std::vector<Vertex> vertices = { {1, 2, 3}, {4, 5, 6} };

auto scaledVertices = transformVertices(vertices, [|(Vertex v) { return scaleVertex(v, 2.0f); });

for (const auto&s v : scaledVertices) {

344

std::cout << 7(” << vx << 7,7 << vy << 7,7 << vz << ")\n”

}

return 0;

Analysis:

o The transformVertices function applies a transformation to each vertex in a

declarative manner.

e The scaleVertex function is a pure function that scales a vertex by a given factor.

18.1.6 Concurrency and Parallelism

Modern games and graphics applications often leverage multi-core processors to achieve
high performance. Functional programming can help manage concurrency and
parallelism by avoiding shared mutable state.

Example: Parallel Processing of Game Entities

#include <vector>
#include <algorithm>

#include <execution>

struct Entity {
int id;
float position;

h

void updateEntity(Entity& entity) {
entity.position += 1.0f;

345

int main() {
std::vector<Entity> entities = { {1, 0.0f}, {2, 0.0}, {3, 0.0} };

std::for__each(std::execution::par, entities.begin(), entities.end(), [|(Entity& entity) {
updateEntity (entity);

1}

for (const autod& entity : entities) {
std::cout << "Entity 7 << entity.id << ” position: 7 << entity.position << "\n”;

}

return 0;

Analysis:

o The std::for each algorithm is used with std::execution::par to update entities in

parallel.

o The updateEntity function modifies the state of each entity, but since each entity

is independent, there are no race conditions.

18.1.7 Functional Reactive Programming (FRP) for User Input

Functional Reactive Programming (FRP) is a paradigm that combines functional
programming with reactive programming. It is particularly useful for handling user
input and events in games.

Example: FRP for User Input

#include <iostream>
#include <functional>

#include <vector>

346

class EventStream {
public:
void subscribe(const std::function<void(int)>& callback) {
callbacks.push__back(callback);

void emit(int value) {
for (const autod& callback : callbacks) {

callback(value);

private:

std::vector<std::function<void(int)>> callbacks;

i

int main() {

EventStream mouseClicks;

mouseClicks.subscribe([](int x) {
std::cout << "Mouse clicked at position: 7 << x << "\n”;

};

mouseClicks.emit(100); // Simulate a mouse click at position 100
return 0;
Analysis:

o The EventStream class allows for the subscription of callbacks to handle events.

« This approach enables a declarative and composable way to handle user input.

347

18.1.8 Conclusion

Functional programming offers a powerful set of tools and principles for game and
graphics development. By leveraging immutability, pure functions, higher-order
functions, and declarative programming, developers can create more maintainable,
scalable, and robust systems. Modern C++ provides the features needed to apply
functional programming effectively, making it a valuable paradigm for real-time and
performance-critical applications.

In the next section, we will explore advanced topics in functional programming for
games and graphics, including shader programming, physics simulations, and procedural

generation.

18.2 Examples of Using Functional Programming with Libraries

Like OpenGL and Vulkan

Functional programming (FP) can be effectively integrated with graphics libraries like
OpenGL and Vulkan to create more maintainable, scalable, and robust graphics
applications. By leveraging FP principles such as immutability, pure functions, and
higher-order functions, developers can simplify complex graphics pipelines, manage state
more effectively, and write cleaner, more declarative code. This section provides detailed
examples of how functional programming can be used with OpenGL and Vulkan in

modern C++.

18.2.1 Functional Programming with OpenGL

OpenGL is a widely-used graphics API for rendering 2D and 3D vector graphics. While
OpenGL is inherently stateful, functional programming can help manage this state more

effectively and create more modular and reusable code.

348

Example: Functional Shader Compilation

Shader compilation in OpenGL involves several steps, including loading shader source
code, compiling shaders, and linking them into a program. These steps can be

encapsulated in pure functions for better modularity.

#include <GL/glew.h>
#include <iostream>
#include <fstream>
#include <sstream>

#include <string>

// Pure function to load shader source code from a file
std::string loadShaderSource(const std::string& filePath) {
std::ifstream file(filePath);
std::stringstream buffer;
buffer << file.rdbuf();

return buffer.str();

// Pure function to compile a shader

GLuint compileShader(GLenum type, const std::string& source) {
GLuint shader = glCreateShader(type);
const char® src = source.c_str();
glShaderSource(shader, 1, &src, nullptr);
glCompileShader(shader);

// Check for compilation errors
GLint success;
glGetShaderiv(shader, GL_ COMPILE STATUS, &success);
if (!success) {
char infoLog[512];
glGetShaderInfoLog(shader, 512, nullptr, infoLog);

349

std::cerr << ”Shader compilation error: 7 << infoLog << std::endl;

return shader;

// Pure function to link shaders into a program
GLuint createShaderProgram(GLuint vertexShader, GLuint fragmentShader) {
GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram (program);

// Check for linking errors
GLint success;
glGetProgramiv(program, GL_ LINK STATUS, &success);
if (Isuccess) {
char infoLog[512];
glGetProgramInfoLog(program, 512, nullptr, infoLog);
std::cerr << ”Shader program linking error: 7 << infolog << std::end]l;

return program;

int main() {

// Initialize OpenGL context (not shown)

// Load and compile shaders

auto vertexSource = loadShaderSource(”vertex shader.glsl”);

auto fragmentSource = loadShaderSource(”fragment_shader.glsl”);

350

auto vertexShader = compileShader(GL_VERTEX SHADER, vertexSource);
auto fragmentShader = compileShader(GL_FRAGMENT__SHADER, fragmentSource);

// Link shaders into a program

auto shaderProgram = createShaderProgram(vertexShader, fragmentShader);

Se the snader program
// Use the shader prog

glUseProgram (shaderProgram);

// Clean up
glDeleteShader(vertexShader);
glDeleteShader (fragmentShader);

return 0;

Analysis:

o The loadShaderSource, compileShader, and createShaderProgram functions are

pure and modular, making the code easier to test and reuse.

o This approach encapsulates the stateful OpenGL API calls within pure functions,

reducing the risk of errors and improving code clarity.

18.2.2 Functional Programming with Vulkan

Vulkan is a modern graphics API that provides fine-grained control over GPU
operations. Vulkan's explicit nature and low-level API can benefit from functional
programming principles to manage complexity and improve maintainability.

Example: Functional Pipeline Creation

351

Creating a graphics pipeline in Vulkan involves several steps, including shader module
creation, pipeline layout creation, and pipeline assembly. These steps can be

encapsulated in pure functions.

#include <vulkan/vulkan.h>
#include <iostream>

#include <vector>

// Pure function to create a shader module

VkShaderModule createShaderModule(VkDevice device, const std::vector<char>& code) {
VkShaderModuleCreateInfo createlnfo{};
createlnfo.sType = VK_STRUCTURE_TYPE SHADER MODULE CREATE INFO;
createlnfo.codeSize = code.size();

createlnfo.pCode = reinterpret cast<const uint32 t*>(code.data());

VkShaderModule shaderModule;
if (vkCreateShaderModule(device, &createlnfo, nullptr, &shaderModule) != VK__SUCCESS) {

throw std::runtime_ error(”Failed to create shader module”);

return shaderModule;

// Pure function to create a pipeline layout

VkPipelineLayout createPipelineLayout(VkDevice device) {
VkPipelineLayoutCreatelnfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType =
— VK _STRUCTURE_TYPE PIPELINE LAYOUT_ CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 0;
pipelineLayoutInfo.pushConstantRangeCount = 0;

VkPipelineLayout pipelineLayout;

352

if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) !=
< VK_SUCCESS) {

throw std::runtime_ error(”Failed to create pipeline layout”);

return pipelineLayout;

// Pure function to create a graphics pipeline
VkPipeline createGraphicsPipeline(VkDevice device, VkPipelineLayout pipelineLayout,
— VkShaderModule vertShaderModule, VkShaderModule fragShaderModule) {
VkPipelineShaderStageCreatelnfo vertShaderStagelnfo{};
vertShaderStagelnfo.sType =
— VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vertShaderStagelnfo.stage = VK_SHADER,_ STAGE_VERTEX_ BIT;
vertShaderStagelnfo.module = vertShaderModule;

vertShaderStagelnfo.pName = "main”;

VkPipelineShaderStageCreatelnfo fragShaderStagelnfo{};

fragShaderStagelnfo.sType =

< VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fragShaderStagelnfo.stage = VK_SHADER_ STAGE_FRAGMENT_ BIT;
fragShaderStagelnfo.module = fragShaderModule;

fragShaderStageInfo.pName = "main”;

VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStagelnfo, fragShaderStagelnfo};

VkGraphicsPipelineCreatelnfo pipelineInfo{};

pipelinelnfo.sType = VK_ STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_ INFO;
pipelinelnfo.stageCount = 2;

pipelinelnfo.pStages = shaderStages;

pipelinelnfo.layout = pipelineLayout;

353

VkPipeline graphicsPipeline;
if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelinelnfo, nullptr,
— &graphicsPipeline) |= VK_ SUCCESS) {

throw std::runtime_ error(”Failed to create graphics pipeline”);

return graphicsPipeline;

int main() {

// Initialize Vulkan instance, device, etc. (not shown)

// Load shader code (not shown)
std::vector<char> vertShaderCode = ...;
std::vector<char> fragShaderCode = ...;

// Create shader modules
auto vertShaderModule = createShaderModule(device, vertShaderCode);
auto fragShaderModule = createShaderModule(device, fragShaderCode);

// Create pipeline layout

auto pipelineLayout = createPipelineLayout(device);

// Create graphics pipeline
auto graphicsPipeline = createGraphicsPipeline(device, pipelineLayout, vertShaderModule,
< fragShaderModule);

// Clean up

vkDestroyShaderModule(device, vertShaderModule, nullptr);
vkDestroyShaderModule(device, fragShaderModule, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);

354

vkDestroyPipeline(device, graphicsPipeline, nullptr);

return 0;

Analysis:

o The createShaderModule, createPipelineLayout, and createGraphicsPipeline

functions are pure and modular, encapsulating the stateful Vulkan API calls.

o This approach simplifies the creation of graphics pipelines and makes the code

more maintainable and reusable.

18.2.3 Functional Reactive Programming (FRP) for Event Handling

Functional Reactive Programming (FRP) can be used to handle input events and state
changes in a declarative manner, making it easier to manage complex interactions in
graphics applications.

Example: FRP for Mouse Input Handling

#include <iostream>
#include <functional>
#include <vector>

class EventStream {

public:
void subscribe(const std::function<void(int, int)>& callback) {

callbacks.push__back(callback);

void emit(int x, int y) {

355

for (const autod& callback : callbacks) {
callback(x, y);

private:

std::vector<std::function<void(int, int)>> callbacks;

5

int main() {

EventStream mouseMoves;

mouseMoves.subscribe([](int x, int y) {
std::cout << "Mouse moved to: (7 << x << 7,7 <<y << 7")\n”;

};

// Simulate mouse moves
mouseMoves.emit (100, 200);

mouseMoves.emit (150, 250);

return 0;

Analysis:

o The EventStream class allows for the subscription of callbacks to handle mouse

move events.

o This approach enables a declarative and composable way to handle user input,

making the code easier to manage and extend.

356

18.2.4 Conclusion

Functional programming can be effectively integrated with graphics libraries like
OpenGL and Vulkan to create more maintainable, scalable, and robust graphics
applications. By leveraging FP principles such as immutability, pure functions, and
higher-order functions, developers can simplify complex graphics pipelines, manage state
more effectively, and write cleaner, more declarative code. The examples provided in
this section demonstrate how functional programming can be applied to real-world
graphics development tasks, highlighting the benefits of this approach.

In the next section, we will explore advanced topics in functional programming for
games and graphics, including shader programming, physics simulations, and procedural

generation.

Chapter 19

Functional Programming in Operating

Systems and Embedded Systems

19.1 Applications of Functional Programming in Operating

Systems and Embedded Systems

Functional programming (FP) is increasingly being recognized for its potential in
operating systems (OS) and embedded systems development. These domains often
require high reliability, predictability, and performance, which align well with the
principles of FP. By leveraging immutability, pure functions, and declarative
programming, developers can create more robust, maintainable, and efficient systems.
This section explores the applications of functional programming in operating systems

and embedded systems, providing detailed examples and analysis.

357

358

19.1.1 Key Challenges in Operating Systems and Embedded Systems

1. Reliability:

¢ Operating systems and embedded systems must operate reliably under

various conditions, often with minimal human intervention.
2. Predictability:

e These systems often require deterministic behavior, especially in real-time

applications.
3. Performance:

e Resource constraints in embedded systems and the need for high performance

in operating systems demand efficient code.
4. Complexity:

o Managing the complexity of low-level hardware interactions and system

states can be challenging.

Functional programming can help address these challenges by promoting immutability,

reducing side effects, and enabling declarative programming.

19.1.2 Immutability in System State Management

Immutability ensures that data cannot be modified after creation, which simplifies state
management and reduces the risk of errors.

Example: Immutable System Configuration

359

struct SystemConfig {
int cpuFrequency;
int memorySize;

std::vector<std::string> peripherals;

5

SystemConfig updateConfig(const SystemConfigds config, int newCpuFrequency) {

return { newCpuFrequency, config.memorySize, config.peripherals };

int main() {
SystemConfig config = { 1000, 512, {"UART”, "SPI"} };
auto newConfig = updateConfig(config, 1200);

std::cout << "New CPU Frequency: 7 << newConfig.cpuFrequency << std::endl;

return 0;

Analysis:

e The SystemConfig struct is immutable; any modification results in a new

SystemConfig instance.

« Functions like updateConfig return new instances of SystemConfig, ensuring that

the original state remains unchanged.

19.1.3 Pure Functions for System Logic

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for implementing system logic, as they are
easy to test and reason about.

Example: Pure Function for Task Scheduling

360

#include <vector>

#include <algorithm>

struct Task {
int id;
int priority;

Ji5

std::vector<Task> scheduleTasks(const std::vector<Task>& tasks) {
auto sortedTasks = tasks;
std::sort(sorted Tasks.begin(), sortedTasks.end(), [J(const Task&s a, const Task& b) {
return a.priority > b.priority;

H;

return sorted Tasks;

int main() {
std::vector<Task> tasks = { {1, 3}, {2, 1}, {3, 2} };
auto scheduledTasks = scheduleTasks(tasks);

for (const auto& task : scheduledTasks) {
std::cout << "Task ID: 7 << task.id << 7, Priority: 7 << task.priority << std::endl;

}

return 0;

Analysis:

o The scheduleTasks function is pure, as it does not modify external state and

always produces the same output for the same input.

o This makes it easy to test and reuse in different parts of the system.

361

19.1.4 Higher-Order Functions for Device Drivers

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are useful for implementing device drivers and hardware
abstractions.

Example: Higher-Order Function for GPIO Control

#include <iostream>

#include <functional>
using GpioCallback = std::function<void(int)>;
void setGpioCallback(const GpioCallback& callback, int pinState) {

callback(pinState);

void handleGpioEvent(int pinState) {
std::cout << "GPIO Pin State: 7 << pinState << std::endl;

int main() {
setGpioCallback(handleGpioEvent, 1); // Simulate GPIO pin high

return 0;

Analysis:

o The setGpioCallback function takes a callback function as an argument, allowing

for flexible and reusable GPIO control logic.

o This approach enables a declarative and composable way to handle hardware

events.

362

19.1.5 Declarative System Configuration

Functional programming encourages a declarative style, where code describes what to do
rather than how to do it. This is particularly useful for system configuration and
initialization.

Example: Declarative System Initialization

#include <iostream>
#include <vector>

#include <functional>
using InitFunction = std::function<void()>;

void initializeSystem(const std::vector<InitFunction>& initFunctions) {
for (const auto& init : initFunctions) {
init();

void initUart() {
std::cout << "UART Initialized” << std::endl;

void initSpi() {
std::cout << ”SPI Initialized” << std::endl;

int main() {
std::vector<InitFunction> initFunctions = { initUart, initSpi };
initializeSystem(initFunctions);

return 0;

363

Analysis:

o The initializeSystem function takes a list of initialization functions and executes

them in sequence.

o This approach allows for a declarative and modular system initialization process.

19.1.6 Concurrency and Parallelism

Modern operating systems and embedded systems often leverage multi-core processors
to achieve high performance. Functional programming can help manage concurrency
and parallelism by avoiding shared mutable state.

Example: Parallel Processing of Sensor Data

#include <vector>
#include <algorithm>

#include <execution>

struct SensorData {
int id;
float value;

h

void processSensorData(SensorDatads data) {

data.value *= 2.0f; // Simulate data processing

int main() {
std::vector<SensorData> sensorData = { {1, 1.0f}, {2, 2.0f}, {3, 3.0} };

std::for__each(std::execution::par, sensorData.begin(), sensorData.end(), [](SensorData& data) {

processSensorData(data);

364

H;

for (const auto& data : sensorData) {

std::cout << "Sensor ID: 7 << data.id << 7, Processed Value: 7 << data.value << std::endl;

}

return 0;

Analysis:

o The std::for_each algorithm is used with std::execution::par to process sensor data

in parallel.

o The processSensorData function modifies the state of each sensor data point, but

since each data point is independent, there are no race conditions.

19.1.7 Functional Reactive Programming (FRP) for Event Handling

Functional Reactive Programming (FRP) is a paradigm that combines functional
programming with reactive programming. It is particularly useful for handling events
and state changes in operating systems and embedded systems.

Example: FRP for Interrupt Handling

#include <iostream>
#include <functional>

#include <vector>

class InterruptStream {
public:
void subscribe(const std::function<void(int)>& callback) {
callbacks.push__back(callback);

365

void emit(int interruptCode) {
for (const auto& callback : callbacks) {
callback(interruptCode);

private:
std::vector<std::function<void(int)>> callbacks;

5

int main() {

InterruptStream interrupts;

interrupts.subscribe([](int code) {

std::cout << "Interrupt handled: 7 << code << std::endl;

;s

// Simulate interrupts
interrupts.emit(1);

interrupts.emit(2);

return 0;

Analysis:

o The InterruptStream class allows for the subscription of callbacks to handle

interrupt events.

o This approach enables a declarative and composable way to handle hardware

interrupts.

366

19.1.8 Conclusion

Functional programming offers a powerful set of tools and principles for operating
systems and embedded systems development. By leveraging immutability, pure
functions, higher-order functions, and declarative programming, developers can create
more robust, maintainable, and efficient systems. The examples provided in this section
demonstrate how functional programming can be applied to real-world tasks in these
domains, highlighting the benefits of this approach.

In the next section, we will explore advanced topics in functional programming for
operating systems and embedded systems, including real-time scheduling, memory

management, and low-level hardware interactions.

19.2 Examples of Using Functional Programming in Firmware

Development

Firmware development is a critical aspect of embedded systems, where software
interacts directly with hardware to control devices and systems. Functional
programming (FP) can bring significant benefits to firmware development by promoting
immutability, pure functions, and declarative programming. These principles help
manage complexity, improve reliability, and enhance maintainability. This section
provides detailed examples of how functional programming can be applied in firmware

development using modern C++.

19.2.1 Key Challenges in Firmware Development

1. Reliability:

o Firmware must operate reliably under various conditions, often with minimal

367

human intervention.
2. Predictability:

o Firmware often requires deterministic behavior, especially in real-time

applications.
3. Performance:
¢ Resource constraints in embedded systems demand efficient code.
4. Complexity:

o Managing low-level hardware interactions and system states can be

challenging.

Functional programming can help address these challenges by promoting immutability,

reducing side effects, and enabling declarative programming.

19.2.2 Immutability in Firmware State Management

Immutability ensures that data cannot be modified after creation, which simplifies state
management and reduces the risk of errors.

Example: Immutable System Configuration

struct FirmwareConfig {
int clockSpeed;
int memorySize;

std::vector<std::string> peripherals;

b

FirmwareConfig updateConfig(const FirmwareConfig& config, int newClockSpeed) {

368

return { newClockSpeed, config.memorySize, config.peripherals };

int main() {
FirmwareConfig config = { 16, 512, {"UART”, "SPI"} };
auto newConfig = updateConfig(config, 32);

std::cout << "New Clock Speed: 7 << newConfig.clockSpeed << std::endl;

return 0;

Analysis:

o The FirmwareConfig struct is immutable; any modification results in a new

FirmwareConfig instance.

» Functions like updateConfig return new instances of FirmwareConfig, ensuring

that the original state remains unchanged.

19.2.3 Pure Functions for Firmware Logic

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for implementing firmware logic, as they are
easy to test and reason about.

Example: Pure Function for Sensor Data Processing

#include <vector>
#include <algorithm>

struct SensorData {

int id;

369

float value;

h

std::vector<SensorData> processSensorData(const std::vector<SensorData>& data) {
std::vector<SensorData> processedData;
std::transform(data.begin(), data.end(), std::back_ inserter(processedData),
[[(const SensorData& d) { return SensorData{ d.id, d.value * 2.0f }; });

return processedData;

int main() {
std::vector<SensorData> sensorData = { {1, 1.0f}, {2, 2.0f}, {3, 3.0f} };

auto processedData = processSensorData(sensorData);

for (const autods data : processedData) {
std::cout << ”Sensor ID: 7 << data.id << 7, Processed Value: 7 << data.value << std::endl;

}

return 0;

Analysis:

o The processSensorData function is pure, as it does not modify external state and

always produces the same output for the same input.

o This makes it easy to test and reuse in different parts of the firmware.

19.2.4 Higher-Order Functions for Hardware Abstraction

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are useful for implementing hardware abstractions and device

drivers.

370

Example: Higher-Order Function for GPIO Control

#include <iostream>

#include <functional>
using GpioCallback = std::function<void(int)>;

void setGpioCallback(const GpioCallback& callback, int pinState) {
callback(pinState);

void handleGpioEvent(int pinState) {
std::cout << "GPIO Pin State: 7 << pinState << std::endl;

int main() {
setGpioCallback(handleGpioEvent, 1); // Simulate GPIO pin high

return 0;

Analysis:

o The setGpioCallback function takes a callback function as an argument, allowing

for flexible and reusable GPIO control logic.

o This approach enables a declarative and composable way to handle hardware

events.

19.2.5 Declarative Firmware Initialization

Functional programming encourages a declarative style, where code describes what to do
rather than how to do it. This is particularly useful for firmware initialization and

configuration.

371

Example: Declarative Firmware Initialization

#include <iostream>
#include <vector>
#include <functional>

using InitFunction = std::function<void()>;

void initializeFirmware(const std::vector<InitFunction>& initFunctions) {
for (const auto& init : initFunctions) {
init();

void initUart() {
std::cout << "UART Initialized” << std::endl;

void initSpi() {
std::cout << ”SPI Initialized” << std::endl;

int main() {
std::vector<InitFunction> initFunctions = { initUart, initSpi };
initializeFirmware(initFunctions);

return 0;

Analysis:

e The initializeFirmware function takes a list of initialization functions and executes

them in sequence.

o This approach allows for a declarative and modular firmware initialization process.

372

19.2.6 Concurrency and Parallelism in Firmware

Modern firmware often leverages multi-core processors to achieve high performance.
Functional programming can help manage concurrency and parallelism by avoiding
shared mutable state.

Example: Parallel Processing of Sensor Data

#include <vector>
#include <algorithm>

#include <execution>

struct SensorData {
int id;
float value;

h

void processSensorData(SensorData& data) {

data.value *= 2.0f; // Simulate data processing

int main() {
std::vector<SensorData> sensorData = { {1, 1.0f}, {2, 2.0f}, {3, 3.0} };

std::for__each(std::execution::par, sensorData.begin(), sensorData.end(), [](SensorData& data) {

processSensorData(data);

;s

for (const autod&s data : sensorData) {

std::cout << "Sensor ID: 7 << data.id << 7, Processed Value: 7 << data.value << std::endl;

}

return 0;

373

Analysis:

o The std::for each algorithm is used with std::execution::par to process sensor data

in parallel.

e The processSensorData function modifies the state of each sensor data point, but

since each data point is independent, there are no race conditions.

19.2.7 Functional Reactive Programming (FRP) for Event Handling

Functional Reactive Programming (FRP) is a paradigm that combines functional
programming with reactive programming. It is particularly useful for handling events
and state changes in firmware.

Example: FRP for Interrupt Handling

#include <iostream>
#include <functional>
#include <vector>

class InterruptStream {
public:
void subscribe(const std::function<void(int)>& callback) {
callbacks.push_ back(callback);

void emit(int interruptCode) {
for (const auto& callback : callbacks) {
callback(interruptCode);

private:

374

std::vector<std::function<void(int)>> callbacks;

h

int main() {

InterruptStream interrupts;

interrupts.subscribe([](int code) {
std::cout << "Interrupt handled: 7 << code << std::endl;

H;

// Simulate interrupts
interrupts.emit(1);

interrupts.emit(2);

return 0;

Analysis:

o The InterruptStream class allows for the subscription of callbacks to handle

interrupt events.

o This approach enables a declarative and composable way to handle hardware

interrupts.

19.2.8 Example: Functional Programming in a Real-World Firmware

Project

Project: Smart Thermostat Firmware

Overview:

375

A smart thermostat firmware controls heating and cooling systems based on sensor data

and user settings. Functional programming is used to ensure reliability, predictability,

and maintainability.

Key Features:
1. Immutable System State:

« System state is represented as immutable data structures, ensuring that

historical data remains unchanged.
Example:

struct ThermostatState {
float currentTemperature;
float targetTemperature;

bool heatingOn;
};

ThermostatState updateTemperature(const ThermostatState&s state, float newTemperature) {

return { newTemperature, state.targetTemperature, state.heatingOn };

2. Pure Functions for Control Logic:

o Control logic is implemented as pure functions, ensuring that it is

deterministic and free of side effects.

Example:

376

bool shouldTurnOnHeating(const ThermostatStateds state) {

return state.currentTemperature < state.targetTemperature;

3. Higher-Order Functions for Event Handling:

o Higher-order functions are used to handle sensor events and user inputs.

Example:

using EventCallback = std::function<void(const ThermostatStateds)>;

void handleSensorEvent(const EventCallbackds callback, const ThermostatStateds state) {
callback(state);

4. Declarative System Initialization:

e System initialization is done in a declarative manner, making the code easier

to understand and maintain.
Example:
void initializeThermostat(const std::vector<InitFunction>& initFunctions) {

for (const auto& init : initFunctions) {
init();

377

19.2.9 Conclusion

Functional programming offers a powerful set of tools and principles for firmware
development. By leveraging immutability, pure functions, higher-order functions, and
declarative programming, developers can create more robust, maintainable, and efficient
firmware. The examples provided in this section demonstrate how functional
programming can be applied to real-world firmware development tasks, highlighting the
benefits of this approach.

In the next section, we will explore advanced topics in functional programming for
firmware development, including real-time scheduling, memory management, and

low-level hardware interactions.

Chapter 20

Appendices

20.1 Appendix: C+4-20 and Beyond Features

20.1.1 Detailed Explanation of New Features in C+4++20 That Support

Functional Programming

C++420 introduces several new features and enhancements that significantly support
functional programming (FP) paradigms. These features enable developers to write
more expressive, concise, and efficient functional-style code. This section provides a
detailed explanation of the key C++20 features that align with functional programming

principles, including concepts, ranges, coroutines, and more.

20.1.2 Concepts

Overview:
Concepts are a major addition to C++20 that allow developers to specify constraints on

template parameters. They enable more expressive and readable generic programming,

378

379

which is a cornerstone of functional programming.

Key Features:

o Type Constraints: Concepts allow you to define constraints on template

parameters, ensuring that only types meeting certain criteria can be used.

o Improved Error Messages: Concepts provide clearer error messages when template

constraints are not met.

o Enhanced Readability: Concepts make template code more readable by explicitly

stating requirements.

Example:

#include <concepts>

#include <iostream>

// Define a concept for printable types
template<typename T>
concept Printable = requires(T t) {

{ std::cout << t } -> std::same_as<std::ostreamd& >;

5

// Function template constrained by the Printable concept
template<Printable T>
void print(const T& value) {

std::cout << value << std::endl;

int main() {
print(42); // Works: int is printable
print("Hello”); // Works: const char* is printable
// print(std::vector<int>{1, 2, 3}); // Error: std::vector<int> is not printable

380

return 0;

Analysis:

o The Printable concept ensures that only types that can be printed to std::cout are

allowed.

o The print function template is constrained by the Printable concept, making the

code more expressive and safer.

20.1.3 Ranges

Overview:

The Ranges library, introduced in C++20, provides a modern and functional approach
to working with sequences of elements. It includes range adaptors and algorithms that
support lazy evaluation and composability.

Key Features:

o Range Adaptors: Allow for the composition of operations on ranges, such as

filtering and transforming.

o Lazy Evaluation: Operations are evaluated only when needed, improving

performance.

o Interoperability: Works seamlessly with STL containers and algorithms.

Example:

381

#include <iostream>
#include <ranges>

#include <vector>

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5};

// Create a pipeline: filter even numbers, square them, and sum the results
auto result = numbers

| std::views::filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; })

| std::ranges::accumulate(0);

std::cout << ”Sum of squares of even numbers: 7 << result << std::endl;

return 0;

Analysis:

o The pipeline filters even numbers, squares them, and sums the results.

o The operations are composable and evaluated lazily, making the code more

efficient and expressive.

20.1.4 Coroutines

Overview:

Coroutines are a new feature in C+4-20 that enable asynchronous programming and
lazy computation. They allow functions to be suspended and resumed, making it easier
to write asynchronous and generator-like code.

Key Features:

382

o Asynchronous Programming: Coroutines simplify the implementation of

asynchronous operations.

o Lazy Computation: Coroutines can be used to create generators that produce

values on demand.

o Improved Readability: Coroutines make asynchronous code more readable and

maintainable.

Example:

Cpp
Copy

#include <iostream>
#include <coroutine>

#include <optional>

// Generator class for producing a sequence of values
template<typename T>
class Generator {
public:
struct promise_ type {
T value;
std::suspend__always yield _value(T v) {
value = v;
return {};
}
std::suspend__always initial _suspend() { return {}; }
std::suspend__always final suspend() noexcept { return {}; }
Generator get_return_object() { return Generator{this}; }
void return_ void() {}
void unhandled__exception() { std::terminate(); }

383

b
using handle_ type = std::coroutine_handle<promise_ type>;

explicit Generator(promise_type™ p) : coro(handle type::from_ promise(*p)) {}
~Generator() { if (coro) coro.destroy(); }

std::optional<T> next() {
if (!coro.done()) {
coro.resume();
return coro.promise().value;

}

return std::nullopt;

private:
handle_type coro;

h

// Coroutine that generates a sequence of numbers
Generator<int> generateNumbers(int start, int end) {
for (int i = start; i <= end; +-+i) {

co_yield i;

int main() {
auto gen = generateNumbers(1, 5);
while (auto num = gen.next()) {
std::cout << *num << std::endl;

}

return 0;

384

Analysis:

e The Generator class implements a coroutine that produces a sequence of numbers.

e The generateNumbers coroutine yields values on demand, making it a lazy

generator.

o Coroutines simplify the implementation of asynchronous and generator-like code.

20.1.5 std::span

Overview:

std::span is a new feature in C++20 that provides a non-owning view over a contiguous
sequence of elements. It is useful for passing arrays or ranges to functions without
copying the data.

Key Features:

e Non-Owning: std::span does not own the data it refers to, making it lightweight

and efficient.
e Bounds Checking: std::span can perform bounds checking, improving safety.

o Interoperability: Works seamlessly with arrays, STL containers, and other

contiguous sequences.

Example:

385

#include <iostream>

#include

void printSpan(std::span<int> s) {
for (int i:s) {
std::cout << i << 77

}

std::cout << std::endl;

int main() {
int arr[] = {1, 2, 3, 4, 5};
std::vector<int> vec = {6, 7, 8, 9, 10};

printSpan(arr); // Works with arrays
printSpan(vec); // Works with vectors

return 0;

Analysis:

e std::span provides a non-owning view over the array and vector.

e The printSpan function can accept both arrays and vectors, making the code more

flexible and reusable.

20.1.6 std::format

Overview:
std::format is a new feature in C++20 that provides a type-safe and extensible way to
format strings. It is inspired by Python's str.format and is more expressive and safer

than traditional C-style formatting.

386

Key Features:

o Type-Safe: std::format ensures that the format string and arguments match,

reducing the risk of errors.
o Extensible: std::format can be extended to support user-defined types.

» Readable: The syntax is more readable and expressive than traditional formatting.
Example:

#include <iostream>

#include <format>

int main() {
int x = 42;
double y = 3.14;
std::string message = std::format("x = {}, y = {:.2f}”, x, y);
std::cout << message << std::endl;

return 0;

Analysis:

o std::format provides a type-safe and readable way to format strings.

o The format string "x = {}, y = {:.2f}” is more expressive and safer than

traditional C-style formatting.

20.1.7 std::jthread

Overview:

387

std::jthread is a new feature in C++20 that provides a safer and more convenient way to
manage threads. It automatically joins the thread on destruction, reducing the risk of
resource leaks.

Key Features:

o Automatic Joining: std::jthread automatically joins the thread on destruction,

ensuring that resources are properly cleaned up.

o Interruptible: std::jthread supports interruption, allowing for more controlled

thread termination.

o Simplified Thread Management: std::jthread simplifies thread management,

making the code safer and more maintainable.
Example:

#include <iostream>
#include <thread>

#include <chrono>

void threadFunction() {
for (int i = 0; i < 5; ++i) {
std::cout << "Thread running: 7 << i << std::endl;
std::this_thread::sleep_ for(std::chrono::seconds(1));

int main() {
std::jthread t(threadFunction);
// The thread will automatically join when t goes out of scope

return 0;

388

Analysis:

o std::jthread automatically joins the thread on destruction, ensuring that resources

are properly cleaned up.

o This simplifies thread management and reduces the risk of resource leaks.

20.1.8 Conclusion

C++20 introduces several new features and enhancements that significantly support
functional programming paradigms. Concepts, ranges, coroutines, std::span, std::format,
and std::jthread enable developers to write more expressive, concise, and efficient
functional-style code. These features align with the principles of immutability, pure
functions, and declarative programming, making C++ a more powerful language for
functional programming.

In the next section, we will explore additional C++20 features and their impact on

functional programming, including modules, constexpr enhancements, and more.

20.2 Examples of Using std::ranges, std::span, and std::format

C++420 introduces several powerful features that align well with functional
programming principles. Among these, std::ranges, std::span, and std::format stand out
for their ability to simplify code, improve safety, and enhance expressiveness. This
section provides detailed examples of how these features can be used in functional

programming contexts, demonstrating their benefits and practical applications.

20.2.1 Using std::ranges for Functional-Style Data Processing

Overview:

389

The std::ranges library provides a modern and functional approach to working with
sequences of elements. It includes range adaptors and algorithms that support lazy
evaluation and composability, making it ideal for functional programming.

Example: Filtering and Transforming a Range

#include <iostream>
#include <ranges>
#include <vector>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Create a pipeline: filter even numbers, square them, and collect the results

auto result = numbers
| std::views::filter([](int x) { return x % 2 == 0; }) // Filter even numbers
| std::views::transform([](int x) { return x * x; }) // Square each number

| std::ranges::to<std::vector>(); // Collect results into a vector

// Print the results
for (int x : result) {

std::cout << x << 77

}

std::cout << std::endl;

return 0;

Analysis:

o The pipeline filters even numbers, squares them, and collects the results into a

vector.

o The operations are composable and evaluated lazily, making the code more

390

efficient and expressive.

o The use of std::views::filter and std::views::transform aligns with functional

programming principles of immutability and declarative style.

20.2.2 Using std::span for Safe and Efficient Data Access

Overview:

std::span is a non-owning view over a contiguous sequence of elements. It is useful for
passing arrays or ranges to functions without copying the data, improving both safety
and performance.

Example: Processing a Subrange with std::span

#include <iostream>
#include
#include <vector>

// Function to print a span of integers
void printSpan(std::span<int> s) {
for (int i:s) {
std::cout << i << 7”7

}

std::cout << std::endl;
int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Create a span over a subrange of the vector

std::span<int> subrange(numbers.begin() + 2, 5); // Elements 3, 4, 5, 6, 7

// Print the subrange

391

printSpan (subrange);

return 0;

Analysis:

o std::span provides a non-owning view over a subrange of the vector, avoiding

unnecessary copying.

o The printSpan function can accept any contiguous sequence, making the code

more flexible and reusable.

» std::span ensures bounds safety, reducing the risk of out-of-range access.

20.2.3 Using std::format for Type-Safe String Formatting

Overview:

std::format provides a type-safe and extensible way to format strings. It is more
expressive and safer than traditional C-style formatting, making it ideal for functional
programming.

Example: Formatting Strings with std::format

#include <iostream>

#include <format>

int main() {
int x = 42;
double y = 3.14159;

std::string name = ”Alice”;

392

// Format a string with placeholders

std::string message = std::format(”Hello, {}! The answer is {}, and pi is {:.2f}”, name, x, y);

// Print the formatted string
std::cout << message << std::endl;

return 0;

Analysis:

o std::format provides a type-safe and readable way to format strings.

 The format string "Hello, {}! The answer is {}, and pi is {:.2f}.” is more expressive

and safer than traditional C-style formatting.

o The placeholders {} and format specifiers like {:.2f} make the code more concise

and maintainable.

20.2.4 Combining std::ranges, std::span, and std::format

Example: Processing and Formatting Data

#include <iostream>
#include <ranges>
#include
#include <vector>
#include <format>

// Function to process a span of integers and return a formatted string
std::string processAndFormat(std::span<int> s) {

auto result = s

393

| std::views::filter([](int x) { return x % 2 == 0; }) // Filter even numbers
| std::views::transform([](int x) { return x * x; }) // Square each number

| std::ranges::to<std::vector>(); // Collect results into a vector

// Format the results into a string
std::string formattedResult;
for (int x : result) {

formattedResult += std::format(”{}, 7, x);

}

if (formattedResult.empty()) {
formattedResult.pop_ back(); // Remove the trailing comma and space

formattedResult.pop_ back();

return std::format(”Processed results: [{}]”, formattedResult);

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Create a span over the entire vector

std::span<int> span(numbers);

// Process and format the data

std::string output = processAndFormat(span);

// Print the formatted output
std::cout << output << std::endl;

return 0;

Analysis:

394

o The processAndFormat function processes a span of integers by filtering even

numbers and squaring them.

o The results are collected into a vector and formatted into a string using

std::format.

e The combination of std::ranges, std::span, and std::format demonstrates how these
features can be used together to write expressive, safe, and efficient

functional-style code.

20.2.5 Conclusion

The C++420 features std::ranges, std::span, and std::format provide powerful tools for
functional programming. std::ranges enables composable and lazy evaluation of
sequences, std::span offers safe and efficient access to contiguous data, and std::format
provides type-safe and expressive string formatting. By leveraging these features,
developers can write more maintainable, efficient, and expressive functional-style code in
modern C++.

In the next section, we will explore additional C+420 features and their impact on

functional programming, including modules, constexpr enhancements, and more.

Chapter 21

References and Additional Resources

21.1 Recommended Books and References for Deepening

Understanding of Functional Programming

Functional programming (FP) is a rich and evolving paradigm that has gained
significant traction in recent years. To deepen your understanding of functional
programming, especially in the context of modern C++, it is essential to explore a
variety of resources, including books, academic papers, and online references. This
section provides a curated list of recommended books and references that cover both the

theoretical foundations and practical applications of functional programming.

21.1.1 Books on Functional Programming

1. "Functional Programming in C4++" by Ivan Cuki¢

e Overview: This book is a comprehensive guide to applying functional

programming techniques in C++. It covers modern C++ features, such as

395

396

lambdas, ranges, and monads, and demonstrates how to use them to write
functional-style code.
o Key Topics:
— Functional programming principles in C+-+
— Using modern C++ features for FP
— Practical examples and case studies

o« Why Read It: Ideal for C++ developers looking to integrate functional

programming into their projects.
2. "Programming: Principles and Practice Using C++" by Bjarne Stroustrup

e Overview: Written by the creator of C++, this book provides a broad
introduction to programming with a focus on C++. It includes discussions
on functional programming concepts and how they can be applied in C++.

o Key Topics:

— Basics of programming and C++
— Functional programming concepts
— Practical applications and exercises
o Why Read It: A great resource for understanding the foundational principles

of programming, including functional programming, from the perspective of

C++.
3. "Functional Programming in Scala” by Paul Chiusano and Rinar Bjarnason

e Overview: Although focused on Scala, this book provides a deep dive into
functional programming concepts that are applicable across languages,

including C++.

397

o Key Topics:
— Functional programming principles
— Monads, functors, and applicatives
— Functional design patterns

« Why Read It: Offers a thorough understanding of functional programming
concepts that can be translated to C++.

4. "Real World Haskell” by Bryan O'Sullivan, John Goerzen, and Donald Bruce

Stewart

e Overview: This book provides a practical introduction to Haskell, a purely
functional programming language. It covers a wide range of topics, from
basic syntax to advanced concepts.

o Key Topics:

— Haskell syntax and semantics
— Functional programming techniques
— Real-world applications and case studies

« Why Read It: Understanding Haskell can provide insights into functional
programming paradigms that can be applied in C++.

5. ”Structure and Interpretation of Computer Programs” (SICP) by Harold Abelson

and Gerald Jay Sussman

o Overview: A classic textbook that uses Scheme (a dialect of Lisp) to teach
fundamental concepts of computer programming, including functional

programming.

o Key Topics:

398

— Abstraction and modularity
— Functional programming techniques

— Metalinguistic abstraction

o« Why Read It: Provides a deep understanding of the principles underlying
functional programming, which can be applied to any language, including

C++.

21.1.2 Books on Modern C++ and Functional Programming

1. "Effective Modern C++" by Scott Meyers

o Overview: This book covers best practices for using modern C++ features,
including those that support functional programming, such as lambdas,

smart pointers, and concurrency.
o Key Topics:
— Modern C++ features and best practices

— Functional programming techniques in C++

— Performance and efficiency considerations

« Why Read It: Essential for C++ developers looking to leverage modern

language features for functional programming.
2. 7C++ High Performance” by Bjorn Andrist and Viktor Sehr

e Overview: This book focuses on writing high-performance C++ code,
including the use of functional programming techniques to achieve efficiency

and maintainability.

o Key Topics:

399

— Performance optimization in C++
— Functional programming and concurrency

— Practical examples and case studies

« Why Read It: Combines performance considerations with functional

programming, making it a valuable resource for C++ developers.
3. "Functional Programming in C#” by Oliver Sturm
e Overview: While focused on C#, this book provides a comprehensive
introduction to functional programming concepts that are applicable to C++.
o Key Topics:
— Functional programming principles

— Immutability and pure functions

— Functional design patterns

« Why Read It: Offers insights into functional programming techniques that
can be adapted to C++.

21.1.3 Academic Papers and Articles

1. "Why Functional Programming Matters” by John Hughes

e Overview: This seminal paper argues for the importance of functional
programming in software development, highlighting its benefits in terms of

modularity, maintainability, and correctness.
o Key Topics:

— Modularity and code reuse

— Higher-order functions and lazy evaluation

400

— Case studies and examples

« Why Read It: Provides a strong theoretical foundation for understanding the

benefits of functional programming.

2. "Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire” by

Erik Meijer, Maarten Fokkinga, and Ross Paterson

e Overview: This paper introduces advanced functional programming concepts,
such as recursion schemes and catamorphisms, using a mathematical

approach.
o Key Topics:
— Recursion schemes

— Functional programming patterns

— Theoretical foundations

« Why Read It: For those interested in the deeper theoretical aspects of

functional programming.

21.1.4 Online Resources and Tutorials

1. C++ Reference (cppreference.com)

o Overview: An extensive online reference for the C++ programming language,
including documentation on modern C++ features that support functional
programming.

o Key Topics:

— C++ standard library

— Modern C++ features (e.g., lambdas, ranges, coroutines)

401

— Functional programming techniques

e« Why Use It: A reliable and comprehensive resource for C++ developers.
2. Functional Programming in C++ (Blogs and Articles)

e Overview: Various blogs and articles by C++ experts that explore functional

programming techniques and their application in C++.
o Key Topics:
— Practical examples and tutorials

— Modern C++ features and best practices

— Case studies and real-world applications

o Why Use It: Provides practical insights and examples that complement

theoretical knowledge.
3. Haskell Wiki (wiki.haskell.org)

e Overview: The official wiki for Haskell, a purely functional programming
language. It includes tutorials, articles, and references on functional

programming concepts.
o Key Topics:
— Haskell syntax and semantics

— Functional programming techniques

— Advanced topics and research

o Why Use It: A valuable resource for understanding functional programming

concepts that can be applied to C++.

402

21.1.5 Conclusion

Deepening your understanding of functional programming requires a combination of
theoretical knowledge and practical experience. The recommended books, academic
papers, and online resources listed in this section provide a comprehensive foundation
for mastering functional programming concepts and applying them in modern C++. By
exploring these resources, you can enhance your skills, write more expressive and
maintainable code, and leverage the full potential of functional programming in your
projects.

In the next section, we will explore additional resources, including online courses,
communities, and tools, to further support your journey in functional programming with

modern C+-+.

21.2 Websites and Online Courses

In addition to books and academic papers, websites and online courses are invaluable
resources for deepening your understanding of functional programming (FP) and its
application in modern C++. These platforms offer interactive learning experiences,
practical examples, and community support, making them ideal for both beginners and
experienced developers. This section provides a curated list of websites and online

courses that cover functional programming concepts and their implementation in C++.

21.2.1 Websites for Learning Functional Programming

1. C++ Reference (cppreference.com)

o Overview: An extensive online reference for the C++ programming language,
including documentation on modern C++ features that support functional

programming.

403

o Key Features:

— Comprehensive documentation on C++ standard library and language

features.

— Examples and explanations of modern C++ features like lambdas,

ranges, and coroutines.

— Regularly updated to reflect the latest C++ standards.

e« Why Use It: A reliable and comprehensive resource for C++ developers

looking to understand and apply functional programming techniques.
2. Haskell Wiki (wiki.haskell.org)

o Overview: The official wiki for Haskell, a purely functional programming
language. It includes tutorials, articles, and references on functional

programming concepts.
o Key Features:

— Tutorials and guides on Haskell syntax and semantics.
— Articles on advanced functional programming techniques.

— Community-contributed content and research papers.

e« Why Use It: A valuable resource for understanding functional programming

concepts that can be applied to C++.
3. Functional Programming in C++ (Blogs and Articles)

e Overview: Various blogs and articles by C++ experts that explore functional

programming techniques and their application in C++.
o Key Features:

— Practical examples and tutorials.

404

— Modern C++ features and best practices.

— Case studies and real-world applications.

o Why Use It: Provides practical insights and examples that complement

theoretical knowledge.
4. Learn You a Haskell for Great Good! (learnyouahaskell.com)

o Overview: An online book that provides a beginner-friendly introduction to

Haskell, a purely functional programming language.
o Key Features:

— Easy-to-follow tutorials and examples.
— Covers basic to advanced functional programming concepts.

— Interactive exercises and quizzes.

o Why Use It: A great starting point for understanding functional

programming concepts that can be translated to C++.
5. Functional Programming in JavaScript (mostly-adequate.gitbooks.io)

e Overview: An online book that teaches functional programming concepts

using JavaScript, which can be easily adapted to C++.
o Key Features:

— Practical examples and exercises.
— Covers functional programming principles and techniques.
— Focus on real-world applications.

o Why Use It: Offers a practical approach to learning functional programming

concepts that can be applied to C++.

405

21.2.2 Online Courses for Learning Functional Programming

1. Functional Programming in C++ (Pluralsight)

o Overview: A course on Pluralsight that focuses on applying functional

programming techniques in C++-.
o Key Topics:
— Modern C++ features supporting FP.

— Practical examples and case studies.

— Best practices for writing functional-style C++ code.

o Why Take It: Ideal for C++ developers looking to integrate functional

programming into their projects.
2. Functional Programming Principles in Scala (Coursera)

« Overview: A Coursera course offered by Ecole Polytechnique Fédérale de
Lausanne (EPFL) that teaches functional programming principles using

Scala.
o Key Topics:
— Functional programming basics.

— Higher-order functions, immutability, and recursion.

— Functional design patterns.

o Why Take It: Provides a deep understanding of functional programming
concepts that can be applied to C++.

3. Programming Languages, Part A (Coursera)

406

o Overview: A Coursera course offered by the University of Washington that

covers functional programming concepts using Standard ML.
o Key Topics:
— Functional programming fundamentals.

— Type systems and polymorphism.

— Functional design and abstraction.

o« Why Take It: Offers a strong theoretical foundation in functional

programming that is applicable to C++.
4. Functional Programming in Haskell (edX)

o Overview: An edX course offered by the University of Glasgow that provides

an introduction to functional programming using Haskell.
o Key Topics:
— Haskell syntax and semantics.

— Functional programming techniques.

— Real-world applications and case studies.

o Why Take It: A comprehensive course for understanding functional

programming concepts that can be translated to C++.

5. Advanced C++ Programming (Udemy)
e Overview: A Udemy course that covers advanced C++ topics, including
functional programming techniques.
o Key Topics:

— Modern C++ features and best practices.

407

— Functional programming in C++-.

— Performance and efficiency considerations.

e Why Take It: Combines advanced C++ programming with functional

programming, making it a valuable resource for C++ developers.

21.2.3 Interactive Learning Platforms

1. LeetCode (leetcode.com)

o Overview: An online platform that offers coding challenges and competitions,

many of which can be solved using functional programming techniques.
o Key Features:

— A wide range of coding problems.
— Support for multiple programming languages, including C++-.

— Community discussions and solutions.

o Why Use It: Provides practical experience in applying functional

programming techniques to solve real-world problems.

2. Exercism (exercism.io)

o Overview: An online platform that offers coding exercises and mentorship in

various programming languages, including C++.
o Key Features:

— Functional programming exercises.
— Feedback from mentors and the community.

— Support for multiple programming languages.

408

o Why Use It: Offers a structured way to practice and improve your functional

programming skills in C++.
3. HackerRank (hackerrank.com)

e Overview: An online platform that offers coding challenges and competitions,

with a focus on functional programming and algorithms.
o Key Features:

— Functional programming challenges.
— Competitions and hackathons.

— Community discussions and solutions.

o Why Use It: Provides a competitive environment to practice and hone your

functional programming skills.

21.2.4 Conclusion

Websites and online courses are invaluable resources for deepening your understanding
of functional programming and its application in modern C++. The platforms listed in
this section offer a range of learning experiences, from interactive tutorials and coding
challenges to comprehensive courses and community support. By leveraging these
resources, you can enhance your skills, gain practical experience, and stay up-to-date
with the latest developments in functional programming and C++-.

In the next section, we will explore additional resources, including communities, forums,
and tools, to further support your journey in functional programming with modern

C++.

Chapter 22

Glossary

22.1 Explanation of Technical Terms Used in the Book

Understanding the technical terms and concepts used in functional programming (FP) is
crucial for mastering the paradigm and applying it effectively in modern C++. This
section provides a detailed glossary of key terms and concepts used throughout the book,
offering clear definitions and explanations to help readers navigate the material with

confidence.

22.1.1 Functional Programming Terms
1. Functional Programming (FP):
e Definition: A programming paradigm that treats computation as the

evaluation of mathematical functions and avoids changing state and mutable

data.

o Explanation: FP emphasizes immutability, pure functions, and declarative

409

410

programming, making programs easier to reason about and test.
2. Pure Function:

e Definition: A function that, given the same input, will always return the

same output and does not cause any side effects.

o Explanation: Pure functions do not modify external state or rely on mutable

data, making them predictable and easier to test.
3. Immutability:

e Definition: The property of data that cannot be modified after it is created.

o Explanation: Immutable data structures ensure that once a value is set, it
cannot be changed, which simplifies reasoning about program state and

enhances thread safety.
4. Higher-Order Function:

e Definition: A function that takes one or more functions as arguments or

returns a function as its result.

o Explanation: Higher-order functions enable powerful abstractions and

composability, allowing for concise and expressive code.
5. Lambda Expression:

e Definition: An anonymous function that can be defined inline and passed as

an argument to other functions.

o Explanation: Lambda expressions in C++ provide a concise way to define
small, reusable functions, often used in functional programming for

operations like mapping and filtering.

411

6. Monad:

e Definition: A design pattern in functional programming that allows for

chaining operations while encapsulating side effects.

o FExplanation: Monads provide a way to sequence computations in a context,
such as handling optional values (std::optional) or asynchronous

computations (std::future).
7. Functor:

e Definition: A type that implements a mapping operation, allowing functions

to be applied to values within a context.

o Explanation: In C++, functors can be thought of as objects that can be used

as functions, often implemented using operator overloading.
8. Applicative:

e Definition: A type that allows for applying functions wrapped in a context to

values wrapped in the same context.

« Explanation: Applicatives generalize the concept of functors by enabling the

application of functions to multiple arguments within a context.
9. Currying:

o Definition: The technique of transforming a function that takes multiple

arguments into a sequence of functions that each take a single argument.

o Explanation: Currying allows for partial application of functions, enabling

more flexible and reusable code.

10. Recursion:

412

e Definition: A programming technique where a function calls itself to solve a

problem by breaking it down into smaller instances of the same problem.

o Explanation: Recursion is a fundamental concept in FP, often used in place

of iterative loops for tasks like traversing data structures.

22.1.2 C4++-Specific Terms

1. Lambda Expression:

e Definition: An anonymous function that can be defined inline and passed as

an argument to other functions.

« Explanation: Lambda expressions in C++ provide a concise way to define
small, reusable functions, often used in functional programming for

operations like mapping and filtering.
2. std::function:

e Definition: A general-purpose polymorphic function wrapper that can store,

copy, and invoke any callable target.

o Explanation: std::function allows for the storage and invocation of functions,
lambdas, and other callable objects, making it useful for higher-order

functions.
3. std::optional:

o Definition: A template class that represents an optional value, which may or

may not be present.

o Explanation: std::optional is used to handle cases where a value might be

absent, providing a safer alternative to using null pointers.

413

4. std::variant:

e Definition: A type-safe union that can hold one of several types.

o Explanation: std::variant allows for type-safe storage and retrieval of different

types, useful in scenarios where a value can be one of multiple types.
5. std::any:

o Definition: A type-safe container for single values of any type.

« Explanation: std::any provides a way to store and retrieve values of any type,

with type safety ensured at runtime.
6. std::ranges:

e Definition: A library that provides a modern and functional approach to

working with sequences of elements.

o Explanation: std::ranges includes range adaptors and algorithms that
support lazy evaluation and composability, making it ideal for functional

programming.
7. std::span:

o Definition: A non-owning view over a contiguous sequence of elements.

« Explanation: std::span provides a safe and efficient way to work with arrays

and other contiguous data structures without copying the data.
8. std::format:

o Definition: A type-safe and extensible way to format strings.

414

o Explanation: std::format provides a modern alternative to C-style formatting,

with support for placeholders and format specifiers.
9. std::jthread:

e Definition: A thread class that automatically joins the thread on destruction.

o Explanation: std::jthread simplifies thread management by ensuring that

resources are properly cleaned up, reducing the risk of resource leaks.
10. constexpr:

e Definition: A keyword that indicates that a function or variable can be

evaluated at compile time.

o Explanation: constexpr enables compile-time computation, improving

performance and allowing for more expressive and efficient code.

22.1.3 General Programming Terms

1. Declarative Programming:

o Definition: A programming paradigm that expresses the logic of a

computation without describing its control flow.

« Explanation: Declarative programming focuses on what to do rather than

how to do it, making code more readable and maintainable.
2. Imperative Programming:

e Definition: A programming paradigm that uses statements to change a

program's state.

415

o Explanation: Imperative programming focuses on how to achieve a result

through a sequence of commands, often involving loops and conditionals.
3. Side Effect:

o Definition: Any change in the state of a program that is observable outside

the function being executed.

» Explanation: Side effects include modifying global variables, performing 1/0

operations, or changing mutable data structures.
4. Referential Transparency:

e Definition: A property of expressions that can be replaced with their values

without changing the program's behavior.

o Explanation: Referential transparency ensures that functions are pure and

their behavior is predictable, making programs easier to reason about.
5. Lazy Evaluation:

e Definition: An evaluation strategy that delays the evaluation of an expression

until its value is needed.

o Explanation: Lazy evaluation can improve performance by avoiding
unnecessary computations and enabling the creation of infinite data

structures.
6. Pattern Matching:

e Definition: A technique for decomposing data structures and matching them

against patterns to extract values.

416

o Explanation: Pattern matching is commonly used in functional programming

languages to simplify data manipulation and control flow.
7. Tail Recursion:

e Definition: A form of recursion where the recursive call is the last operation

in the function.

o Explanation: Tail recursion allows for efficient recursion by enabling compiler

optimizations that avoid stack overflow.
8. Closure:

e Definition: A function that captures and retains references to variables from

its enclosing scope.

o Explanation: Closures allow for the creation of functions with persistent

state, useful in functional programming for creating higher-order functions.

22.1.4 Conclusion

This glossary provides a comprehensive overview of the key terms and concepts used in
functional programming and modern C++4. By understanding these terms, readers can
better grasp the material presented in the book and apply functional programming
techniques effectively in their projects. The explanations and definitions offered here
serve as a valuable reference for navigating the complexities of functional programming
in C4++.

In the next section, we will explore additional resources, including communities, forums,
and tools, to further support your journey in functional programming with modern
C++.

	Contents
	Author's Preface
	Introduction to Functional Programming
	What is Functional Programming?
	Core Concepts of Functional Programming
	Benefits of Functional Programming
	Functional Programming in Modern C++
	Example: Functional Programming in C++
	Summary

	Principles of Functional Programming: Pure Functions, Immutability, Function Composition
	Pure Functions
	Immutability
	Function Composition
	Combining Principles in Practice
	Summary

	Benefits of Functional Programming in Software Development
	Predictability and Readability
	Easier Testing and Debugging
	Concurrency and Parallelism
	Modularity and Reusability
	Maintainability and Scalability
	Real-World Applications
	Summary

	Why Modern C++?
	The Evolution of C++ and Its Support for Functional Programming
	Early Days of C++: Procedural and Object-Oriented Focus
	C++11: A Paradigm Shift
	C++14: Refining Functional Programming Features
	C++17: Expanding Functional Capabilities
	C++20: A Functional Programming Powerhouse
	Summary

	Modern C++ Features Supporting Functional Programming (C++11 to C++20 and Beyond)
	C++11: Laying the Foundation
	C++14: Refining Functional Programming Features
	C++17: Expanding Functional Capabilities
	C++20: A Functional Programming Powerhouse
	Beyond C++20: The Future of Functional Programming in C++
	Summary

	Comparison Between Functional Programming and Object-Oriented Programming (OOP) in C++
	Core Concepts
	Comparison of Key Features
	Example: FP vs. OOP in C++
	Strengths and Weaknesses
	When to Use FP vs. OOP in C++
	Combining FP and OOP in Modern C++
	Summary

	Development Tools
	Setting Up a Modern C++ Development Environment (e.g., CMake, Conan, Modern C++ Tools)
	Why a Modern Development Environment Matters
	Essential Tools for Modern C++ Development
	Example: Setting Up a Functional C++ Project
	Summary

	Using Modern Compilers (GCC, Clang, MSVC) with C++20 Support
	Why Use Modern Compilers?
	GCC (GNU Compiler Collection)
	Clang
	MSVC (Microsoft Visual C++)
	Cross-Compiler Tips
	Summary

	Static Analysis Tools and Functional Testing
	Static Analysis Tools
	Clang-Tidy
	Cppcheck
	Functional Testing
	Google Test
	Catch2
	Integrating Static Analysis and Testing into CI/CD
	Summary

	Pure Functions
	Concept of Pure Functions and How to Implement Them in C++
	What is a Pure Function?
	Benefits of Pure Functions
	Implementing Pure Functions in C++
	Example of an Impure Function
	Common Pitfalls and How to Avoid Them
	Summary

	Benefits of Pure Functions in Avoiding Side Effects
	What Are Side Effects?
	Why Are Side Effects Problematic?
	How Pure Functions Avoid Side Effects
	Benefits of Avoiding Side Effects
	Real-World Applications of Pure Functions
	Summary

	Immutability
	Using const and constexpr to Ensure Immutability
	What is Immutability?
	The const Keyword
	The constexpr Keyword
	Practical Examples
	Benefits of Using const and constexpr
	Summary

	Immutable Data Structures in C++
	What Are Immutable Data Structures?
	Benefits of Immutable Data Structures
	Implementing Immutable Data Structures in C++
	Practical Applications of Immutable Data Structures
	Summary

	First-Class Functions
	Using Functions as Values
	What Are First-Class Functions?
	Lambda Expressions in C++
	Using std::function for Type Safety
	Higher-Order Functions
	Storing Functions in Data Structures
	Summary

	Storing Functions in Variables and Passing Them as Arguments
	Storing Functions in Variables
	Passing Functions as Arguments
	Practical Applications
	Summary

	Lambda Functions
	Writing Lambda Functions in C++
	What Are Lambda Functions?
	Syntax of Lambda Functions
	Basic Examples of Lambda Functions
	Capturing Variables in Lambda Functions
	Using Lambda Functions with Standard Algorithms
	Advanced Lambda Features
	Summary

	Capture Clauses and Their Use in Lambda Functions
	What Are Capture Clauses?
	Syntax of Capture Clauses
	Types of Capture Clauses
	Summary

	Function Composition
	Composing Functions Using std::bind and std::function
	What is Function Composition?
	std::function: A Type-Safe Function Wrapper
	std::bind: Binding Arguments to Functions
	Composing Functions Using std::bind and std::function
	Summary

	Using Modern Libraries for Function Composition
	Range-v3: A Modern Range Library
	Boost.Hana: A Modern Metaprogramming Library
	Practical Applications of Modern Libraries for Function Composition
	Summary

	Templates and Functional Programming
	Using Templates to Create Generic Functions
	What Are Templates?
	Syntax of Function Templates
	Example: A Simple Generic Function
	Example: Generic Function with Multiple Types
	Example: Generic Higher-Order Function
	Example: Generic Function Composition
	Example: Generic Filter Function
	Example: Generic Reduce Function
	Summary

	Variadic Templates and Their Use in Functional Programming
	What Are Variadic Templates?
	Syntax of Variadic Templates
	Example: A Simple Variadic Function
	Example: Variadic Function Composition
	Example: Variadic Map Function
	Example: Variadic Filter Function
	Example: Variadic Reduce Function
	Example: Variadic Zip Function
	Summary

	Expression Templates
	Concept of Expression Templates and How to Use Them for Performance Optimization
	What Are Expression Templates?
	Benefits of Expression Templates
	Basic Example: Vector Addition Without Expression Templates
	Using Expression Templates for Vector Addition
	Advanced Example: Matrix Multiplication with Expression Templates
	Summary

	Practical Examples of Expression Templates in C++
	Example: Optimizing Vector Addition
	Example: Optimizing Matrix Multiplication
	Example: Optimizing Element-Wise Operations
	Summary

	Higher-Order Functions
	Defining and Using Higher-Order Functions in C++
	What Are Higher-Order Functions?
	Defining Higher-Order Functions
	Returning Functions from Higher-Order Functions
	Practical Applications of Higher-Order Functions
	Summary

	Examples of Functions Like map, filter, and reduce
	The map Function
	The filter Function
	The reduce Function
	Practical Applications of map, filter, and reduce
	Summary

	Modern Functional Libraries
	Using Libraries Like *Range-v3* and *Boost.Hana* to Support Functional Programming
	Range-v3: A Modern Range Library
	Boost.Hana: A Modern Metaprogramming Library
	Practical Applications of Modern Libraries for Functional Programming
	Summary

	Practical Examples of Using These Libraries
	Example: Data Processing Pipeline with Range-v3
	Example: Compile-Time Computations with Boost.Hana
	Example: Combining Range-v3 and Boost.Hana
	Example: Advanced Data Processing with Range-v3
	Summary

	Memory Management in Functional Programming
	Using Smart Pointers (std::unique_ptr, std::shared_ptr) in Functional Programming
	Overview of Smart Pointers
	Smart Pointers and Immutability
	Smart Pointers in Pure Functions
	Smart Pointers and Higher-Order Functions
	Smart Pointers and Functional Data Structures
	Example: Using Smart Pointers in a Functional Context
	Conclusion

	Avoiding Memory Leaks with Functional Programming
	Understanding Memory Leaks
	Functional Programming Principles for Avoiding Memory Leaks
	Leveraging RAII and Smart Pointers
	Functional Data Structures and Memory Safety
	Exception Safety and Functional Programming
	Best Practices for Avoiding Memory Leaks
	Conclusion

	Performance Optimization
	Techniques for Optimizing Performance in Functional Programming
	Understanding Performance Challenges in Functional Programming
	Leveraging Immutability Efficiently
	Optimizing Pure Functions
	Efficient Use of Higher-Order Functions
	Optimizing Recursion
	Leveraging Modern C++ Features
	Conclusion

	Using constexpr and noexcept to Optimize Code
	Understanding constexpr
	Benefits of constexpr in Functional Programming
	Understanding noexcept
	Benefits of noexcept in Functional Programming
	Combining constexpr and noexcept
	Practical Applications in Functional Programming
	Conclusion

	Concurrency and Functional Programming
	Using Functional Programming in Concurrent Applications
	The Challenges of Concurrency
	Immutability and Concurrency
	Pure Functions and Concurrency
	Higher-Order Functions and Concurrency
	Functional Concurrency Patterns
	Conclusion

	Examples of Using std::async and std::future
	Overview of std::async and std::future
	Basic Example: Asynchronous Computation
	Example: Parallel Map with std::async
	Example: Composing Asynchronous Tasks
	Example: Asynchronous Pipeline
	Example: Exception Handling in Asynchronous Tasks
	Example: Using std::future with Functional Composition
	Conclusion

	Building Functional Libraries
	How to Design Libraries That Support Functional Programming
	Core Principles of Functional Programming
	Designing for Immutability
	Supporting Pure Functions
	Leveraging Higher-Order Functions
	Providing Declarative Abstractions
	Ensuring Composability
	Example: Designing a Functional Library
	Conclusion

	Examples of Functional Libraries Written in C++
	Range-v3
	FunctionalPlus
	Hana
	CppMonad
	ETL (Embedded Template Library)
	Mach7
	Conclusion

	Case Studies
	Practical Applications of Functional Programming in Real-World Projects
	Financial Systems
	Data Processing and Analytics
	Game Development
	Web Development
	Embedded Systems
	Case Study: Functional Programming in a Real-World Project
	Conclusion

	Analysis of Functional Code Written in C++
	Key Characteristics of Functional Code in C++
	Example: Functional Code for Data Processing
	Example: Functional Code for Recursive Algorithms
	Example: Functional Code with Higher-Order Functions
	Common Pitfalls and Best Practices
	Conclusion

	Functional Programming in Games and Graphics
	Using Functional Programming in Game and Graphics Development
	Key Challenges in Game and Graphics Development
	Immutability in Game State Management
	Pure Functions for Game Logic
	Higher-Order Functions for AI and Behavior Trees
	Declarative Rendering Pipelines
	Concurrency and Parallelism
	Functional Reactive Programming (FRP) for User Input
	Conclusion

	Examples of Using Functional Programming with Libraries Like OpenGL and Vulkan
	Functional Programming with OpenGL
	Functional Programming with Vulkan
	Functional Reactive Programming (FRP) for Event Handling
	Conclusion

	Functional Programming in Operating Systems and Embedded Systems
	Applications of Functional Programming in Operating Systems and Embedded Systems
	Key Challenges in Operating Systems and Embedded Systems
	Immutability in System State Management
	Pure Functions for System Logic
	Higher-Order Functions for Device Drivers
	Declarative System Configuration
	Concurrency and Parallelism
	Functional Reactive Programming (FRP) for Event Handling
	Conclusion

	Examples of Using Functional Programming in Firmware Development
	Key Challenges in Firmware Development
	Immutability in Firmware State Management
	Pure Functions for Firmware Logic
	Higher-Order Functions for Hardware Abstraction
	Declarative Firmware Initialization
	Concurrency and Parallelism in Firmware
	Functional Reactive Programming (FRP) for Event Handling
	Example: Functional Programming in a Real-World Firmware Project
	Conclusion

	Appendices
	Appendix: C++20 and Beyond Features
	Detailed Explanation of New Features in C++20 That Support Functional Programming
	Concepts
	Ranges
	Coroutines
	std::span
	std::format
	std::jthread
	Conclusion

	Examples of Using std::ranges, std::span, and std::format
	Using std::ranges for Functional-Style Data Processing
	Using std::span for Safe and Efficient Data Access
	Using std::format for Type-Safe String Formatting
	Combining std::ranges, std::span, and std::format
	Conclusion

	References and Additional Resources
	Recommended Books and References for Deepening Understanding of Functional Programming
	Books on Functional Programming
	Books on Modern C++ and Functional Programming
	Academic Papers and Articles
	Online Resources and Tutorials
	Conclusion

	Websites and Online Courses
	Websites for Learning Functional Programming
	Online Courses for Learning Functional Programming
	Interactive Learning Platforms
	Conclusion

	Glossary
	Explanation of Technical Terms Used in the Book
	Functional Programming Terms
	C++-Specific Terms
	General Programming Terms
	Conclusion

