
1

Functional Programming Using Modern C++

Prepared By Ayman Alheraki
simplifycpp.org

January 2025

Contents

Contents 2

Author's Preface 17

1 Introduction to Functional Programming 19
1.1 What is Functional Programming? . 19

1.1.1 Core Concepts of Functional Programming 19
1.1.2 Benefits of Functional Programming 22
1.1.3 Functional Programming in Modern C++ 23
1.1.4 Example: Functional Programming in C++ 24
1.1.5 Summary . 25

1.2 Principles of Functional Programming: Pure Functions, Immutability,
Function Composition . 26
1.2.1 Pure Functions . 26
1.2.2 Immutability . 28
1.2.3 Function Composition . 29
1.2.4 Combining Principles in Practice 31
1.2.5 Summary . 32

1.3 Benefits of Functional Programming in Software Development 33
1.3.1 Predictability and Readability . 33

2

3

1.3.2 Easier Testing and Debugging . 34
1.3.3 Concurrency and Parallelism . 35
1.3.4 Modularity and Reusability . 36
1.3.5 Maintainability and Scalability . 37
1.3.6 Real-World Applications . 38
1.3.7 Summary . 40

2 Why Modern C++? 41
2.1 The Evolution of C++ and Its Support for Functional Programming . . . 41

2.1.1 Early Days of C++: Procedural and Object-Oriented Focus 41
2.1.2 C++11: A Paradigm Shift . 42
2.1.3 C++14: Refining Functional Programming Features 44
2.1.4 C++17: Expanding Functional Capabilities 45
2.1.5 C++20: A Functional Programming Powerhouse 47
2.1.6 Summary . 49

2.2 Modern C++ Features Supporting Functional Programming (C++11 to
C++20 and Beyond) . 49
2.2.1 C++11: Laying the Foundation . 50
2.2.2 C++14: Refining Functional Programming Features 51
2.2.3 C++17: Expanding Functional Capabilities 52
2.2.4 C++20: A Functional Programming Powerhouse 54
2.2.5 Beyond C++20: The Future of Functional Programming in C++ . 56
2.2.6 Summary . 57

2.3 Comparison Between Functional Programming and Object-Oriented
Programming (OOP) in C++ . 58
2.3.1 Core Concepts . 58
2.3.2 Comparison of Key Features . 59
2.3.3 Example: FP vs. OOP in C++ . 60

4

2.3.4 Strengths and Weaknesses . 62
2.3.5 When to Use FP vs. OOP in C++ 63
2.3.6 Combining FP and OOP in Modern C++ 64
2.3.7 Summary . 65

3 Development Tools 67
3.1 Setting Up a Modern C++ Development Environment (e.g., CMake,

Conan, Modern C++ Tools) . 67
3.1.1 Why a Modern Development Environment Matters 67
3.1.2 Essential Tools for Modern C++ Development 68
3.1.3 Example: Setting Up a Functional C++ Project 73
3.1.4 Summary . 75

3.2 Using Modern Compilers (GCC, Clang, MSVC) with C++20 Support . . . 76
3.2.1 Why Use Modern Compilers? . 76
3.2.2 GCC (GNU Compiler Collection) 76
3.2.3 Clang . 78
3.2.4 MSVC (Microsoft Visual C++) . 80
3.2.5 Cross-Compiler Tips . 82
3.2.6 Summary . 83

3.3 Static Analysis Tools and Functional Testing 83
3.3.1 Static Analysis Tools . 83
3.3.2 Clang-Tidy . 83
3.3.3 Cppcheck . 85
3.3.4 Functional Testing . 86
3.3.5 Google Test . 87
3.3.6 Catch2 . 88
3.3.7 Integrating Static Analysis and Testing into CI/CD 90
3.3.8 Summary . 91

5

4 Pure Functions 92
4.1 Concept of Pure Functions and How to Implement Them in C++ 92

4.1.1 What is a Pure Function? . 92
4.1.2 Benefits of Pure Functions . 93
4.1.3 Implementing Pure Functions in C++ 94
4.1.4 Example of an Impure Function . 94
4.1.5 Common Pitfalls and How to Avoid Them 97
4.1.6 Summary . 99

4.2 Benefits of Pure Functions in Avoiding Side Effects 99
4.2.1 What Are Side Effects? . 99
4.2.2 Why Are Side Effects Problematic? 100
4.2.3 How Pure Functions Avoid Side Effects 101
4.2.4 Benefits of Avoiding Side Effects 102
4.2.5 Real-World Applications of Pure Functions 105
4.2.6 Summary . 107

5 Immutability 109
5.1 Using const and constexpr to Ensure Immutability 109

5.1.1 What is Immutability? . 109
5.1.2 The const Keyword . 110
5.1.3 The constexpr Keyword . 112
5.1.4 Practical Examples . 113
5.1.5 Benefits of Using const and constexpr 115
5.1.6 Summary . 116

5.2 Immutable Data Structures in C++ . 117
5.2.1 What Are Immutable Data Structures? 117
5.2.2 Benefits of Immutable Data Structures 117
5.2.3 Implementing Immutable Data Structures in C++ 118

6

5.2.4 Practical Applications of Immutable Data Structures 123
5.2.5 Summary . 125

6 First-Class Functions 126
6.1 Using Functions as Values . 126

6.1.1 What Are First-Class Functions? 126
6.1.2 Lambda Expressions in C++ . 127
6.1.3 Using std::function for Type Safety 128
6.1.4 Higher-Order Functions . 130
6.1.5 Storing Functions in Data Structures 131
6.1.6 Summary . 133

6.2 Storing Functions in Variables and Passing Them as Arguments 134
6.2.1 Storing Functions in Variables . 134
6.2.2 Passing Functions as Arguments 136
6.2.3 Practical Applications . 138
6.2.4 Summary . 140

7 Lambda Functions 142
7.1 Writing Lambda Functions in C++ . 142

7.1.1 What Are Lambda Functions? . 142
7.1.2 Syntax of Lambda Functions . 142
7.1.3 Basic Examples of Lambda Functions 143
7.1.4 Capturing Variables in Lambda Functions 144
7.1.5 Using Lambda Functions with Standard Algorithms 146
7.1.6 Advanced Lambda Features . 148
7.1.7 Summary . 149

7.2 Capture Clauses and Their Use in Lambda Functions 149
7.2.1 What Are Capture Clauses? . 149

7

7.2.2 Syntax of Capture Clauses . 150
7.2.3 Types of Capture Clauses . 150
7.2.4 Summary . 156

8 Function Composition 158
8.1 Composing Functions Using std::bind and std::function 158

8.1.1 What is Function Composition? . 158
8.1.2 std::function: A Type-Safe Function Wrapper 158
8.1.3 std::bind: Binding Arguments to Functions 160
8.1.4 Composing Functions Using std::bind and std::function 161
8.1.5 Summary . 165

8.2 Using Modern Libraries for Function Composition 166
8.2.1 Range-v3: A Modern Range Library 166
8.2.2 Boost.Hana: A Modern Metaprogramming Library 169
8.2.3 Practical Applications of Modern Libraries for Function Composition172
8.2.4 Summary . 174

9 Templates and Functional Programming 176
9.1 Using Templates to Create Generic Functions 176

9.1.1 What Are Templates? . 176
9.1.2 Syntax of Function Templates . 176
9.1.3 Example: A Simple Generic Function 177
9.1.4 Example: Generic Function with Multiple Types 178
9.1.5 Example: Generic Higher-Order Function 179
9.1.6 Example: Generic Function Composition 180
9.1.7 Example: Generic Filter Function 181
9.1.8 Example: Generic Reduce Function 182
9.1.9 Summary . 183

8

9.2 Variadic Templates and Their Use in Functional Programming 183
9.2.1 What Are Variadic Templates? . 184
9.2.2 Syntax of Variadic Templates . 184
9.2.3 Example: A Simple Variadic Function 184
9.2.4 Example: Variadic Function Composition 185
9.2.5 Example: Variadic Map Function 186
9.2.6 Example: Variadic Filter Function 187
9.2.7 Example: Variadic Reduce Function 188
9.2.8 Example: Variadic Zip Function . 189
9.2.9 Summary . 190

10 Expression Templates 192
10.1 Concept of Expression Templates and How to Use Them for Performance

Optimization . 192
10.1.1 What Are Expression Templates? 192
10.1.2 Benefits of Expression Templates 193
10.1.3 Basic Example: Vector Addition Without Expression Templates . . 193
10.1.4 Using Expression Templates for Vector Addition 195
10.1.5 Advanced Example: Matrix Multiplication with Expression

Templates . 198
10.1.6 Summary . 201

10.2 Practical Examples of Expression Templates in C++ 202
10.2.1 Example: Optimizing Vector Addition 202
10.2.2 Example: Optimizing Matrix Multiplication 205
10.2.3 Example: Optimizing Element-Wise Operations 208
10.2.4 Summary . 211

9

11 Higher-Order Functions 213
11.1 Defining and Using Higher-Order Functions in C++ 213

11.1.1 What Are Higher-Order Functions? 213
11.1.2 Defining Higher-Order Functions 214
11.1.3 Returning Functions from Higher-Order Functions 216
11.1.4 Practical Applications of Higher-Order Functions 218
11.1.5 Summary . 220

11.2 Examples of Functions Like map, filter, and reduce 221
11.2.1 The map Function . 221
11.2.2 The filter Function . 224
11.2.3 The reduce Function . 226
11.2.4 Practical Applications of map, filter, and reduce 228
11.2.5 Summary . 231

12 Modern Functional Libraries 233
12.1 Using Libraries Like *Range-v3* and *Boost.Hana* to Support Functional

Programming . 233
12.1.1 Range-v3: A Modern Range Library 233
12.1.2 Boost.Hana: A Modern Metaprogramming Library 236
12.1.3 Practical Applications of Modern Libraries for Functional

Programming . 239
12.1.4 Summary . 242

12.2 Practical Examples of Using These Libraries 242
12.2.1 Example: Data Processing Pipeline with Range-v3 243
12.2.2 Example: Compile-Time Computations with Boost.Hana 244
12.2.3 Example: Combining Range-v3 and Boost.Hana 246
12.2.4 Example: Advanced Data Processing with Range-v3 247
12.2.5 Summary . 249

10

13 Memory Management in Functional Programming 251
13.1 Using Smart Pointers (std::unique_ptr, std::shared_ptr) in Functional

Programming . 251
13.1.1 Overview of Smart Pointers . 252
13.1.2 Smart Pointers and Immutability 252
13.1.3 Smart Pointers in Pure Functions 253
13.1.4 Smart Pointers and Higher-Order Functions 253
13.1.5 Smart Pointers and Functional Data Structures 254
13.1.6 Example: Using Smart Pointers in a Functional Context 254
13.1.7 Conclusion . 256

13.2 Avoiding Memory Leaks with Functional Programming 256
13.2.1 Understanding Memory Leaks . 257
13.2.2 Functional Programming Principles for Avoiding Memory Leaks . . 257
13.2.3 Leveraging RAII and Smart Pointers 258
13.2.4 Functional Data Structures and Memory Safety 260
13.2.5 Exception Safety and Functional Programming 262
13.2.6 Best Practices for Avoiding Memory Leaks 263
13.2.7 Conclusion . 263

14 Performance Optimization 265
14.1 Techniques for Optimizing Performance in Functional Programming 265

14.1.1 Understanding Performance Challenges in Functional Programming 265
14.1.2 Leveraging Immutability Efficiently 266
14.1.3 Optimizing Pure Functions . 268
14.1.4 Efficient Use of Higher-Order Functions 270
14.1.5 Optimizing Recursion . 271
14.1.6 Leveraging Modern C++ Features 272
14.1.7 Conclusion . 273

11

14.2 Using constexpr and noexcept to Optimize Code 273
14.2.1 Understanding constexpr . 274
14.2.2 Benefits of constexpr in Functional Programming 275
14.2.3 Understanding noexcept . 276
14.2.4 Benefits of noexcept in Functional Programming 277
14.2.5 Combining constexpr and noexcept 278
14.2.6 Practical Applications in Functional Programming 279
14.2.7 Conclusion . 280

15 Concurrency and Functional Programming 282
15.1 Using Functional Programming in Concurrent Applications 282

15.1.1 The Challenges of Concurrency . 282
15.1.2 Immutability and Concurrency . 283
15.1.3 Pure Functions and Concurrency 284
15.1.4 Higher-Order Functions and Concurrency 285
15.1.5 Functional Concurrency Patterns 287
15.1.6 Conclusion . 290

15.2 Examples of Using std::async and std::future 291
15.2.1 Overview of std::async and std::future 291
15.2.2 Basic Example: Asynchronous Computation 292
15.2.3 Example: Parallel Map with std::async 293
15.2.4 Example: Composing Asynchronous Tasks 295
15.2.5 Example: Asynchronous Pipeline 296
15.2.6 Example: Exception Handling in Asynchronous Tasks 298
15.2.7 Example: Using std::future with Functional Composition 299
15.2.8 Conclusion . 300

12

16 Building Functional Libraries 301
16.1 How to Design Libraries That Support Functional Programming 301

16.1.1 Core Principles of Functional Programming 301
16.1.2 Designing for Immutability . 302
16.1.3 Supporting Pure Functions . 304
16.1.4 Leveraging Higher-Order Functions 305
16.1.5 Providing Declarative Abstractions 306
16.1.6 Ensuring Composability . 308
16.1.7 Example: Designing a Functional Library 308
16.1.8 Conclusion . 311

16.2 Examples of Functional Libraries Written in C++ 311
16.2.1 Range-v3 . 311
16.2.2 FunctionalPlus . 312
16.2.3 Hana . 314
16.2.4 CppMonad . 315
16.2.5 ETL (Embedded Template Library) 316
16.2.6 Mach7 . 318
16.2.7 Conclusion . 319

17 Case Studies 321
17.1 Practical Applications of Functional Programming in Real-World Projects 321

17.1.1 Financial Systems . 321
17.1.2 Data Processing and Analytics . 323
17.1.3 Game Development . 324
17.1.4 Web Development . 326
17.1.5 Embedded Systems . 327
17.1.6 Case Study: Functional Programming in a Real-World Project . . . 328
17.1.7 Conclusion . 330

13

17.2 Analysis of Functional Code Written in C++ 330
17.2.1 Key Characteristics of Functional Code in C++ 331
17.2.2 Example: Functional Code for Data Processing 332
17.2.3 Example: Functional Code for Recursive Algorithms 334
17.2.4 Example: Functional Code with Higher-Order Functions 335
17.2.5 Common Pitfalls and Best Practices 337
17.2.6 Conclusion . 338

18 Functional Programming in Games and Graphics 339
18.1 Using Functional Programming in Game and Graphics Development 339

18.1.1 Key Challenges in Game and Graphics Development 340
18.1.2 Immutability in Game State Management 340
18.1.3 Pure Functions for Game Logic . 341
18.1.4 Higher-Order Functions for AI and Behavior Trees 342
18.1.5 Declarative Rendering Pipelines . 343
18.1.6 Concurrency and Parallelism . 344
18.1.7 Functional Reactive Programming (FRP) for User Input 345
18.1.8 Conclusion . 347

18.2 Examples of Using Functional Programming with Libraries Like OpenGL
and Vulkan . 347
18.2.1 Functional Programming with OpenGL 347
18.2.2 Functional Programming with Vulkan 350
18.2.3 Functional Reactive Programming (FRP) for Event Handling . . . 354
18.2.4 Conclusion . 356

19 Functional Programming in Operating Systems and Embedded Systems 357
19.1 Applications of Functional Programming in Operating Systems and

Embedded Systems . 357

14

19.1.1 Key Challenges in Operating Systems and Embedded Systems . . . 358
19.1.2 Immutability in System State Management 358
19.1.3 Pure Functions for System Logic 359
19.1.4 Higher-Order Functions for Device Drivers 361
19.1.5 Declarative System Configuration 362
19.1.6 Concurrency and Parallelism . 363
19.1.7 Functional Reactive Programming (FRP) for Event Handling . . . 364
19.1.8 Conclusion . 366

19.2 Examples of Using Functional Programming in Firmware Development . . 366
19.2.1 Key Challenges in Firmware Development 366
19.2.2 Immutability in Firmware State Management 367
19.2.3 Pure Functions for Firmware Logic 368
19.2.4 Higher-Order Functions for Hardware Abstraction 369
19.2.5 Declarative Firmware Initialization 370
19.2.6 Concurrency and Parallelism in Firmware 372
19.2.7 Functional Reactive Programming (FRP) for Event Handling . . . 373
19.2.8 Example: Functional Programming in a Real-World Firmware

Project . 374
19.2.9 Conclusion . 377

20 Appendices 378
20.1 Appendix: C++20 and Beyond Features 378

20.1.1 Detailed Explanation of New Features in C++20 That Support
Functional Programming . 378

20.1.2 Concepts . 378
20.1.3 Ranges . 380
20.1.4 Coroutines . 381
20.1.5 std::span . 384

15

20.1.6 std::format . 385
20.1.7 std::jthread . 386
20.1.8 Conclusion . 388

20.2 Examples of Using std::ranges, std::span, and std::format 388
20.2.1 Using std::ranges for Functional-Style Data Processing 388
20.2.2 Using std::span for Safe and Efficient Data Access 390
20.2.3 Using std::format for Type-Safe String Formatting 391
20.2.4 Combining std::ranges, std::span, and std::format 392
20.2.5 Conclusion . 394

21 References and Additional Resources 395
21.1 Recommended Books and References for Deepening Understanding of

Functional Programming . 395
21.1.1 Books on Functional Programming 395
21.1.2 Books on Modern C++ and Functional Programming 398
21.1.3 Academic Papers and Articles . 399
21.1.4 Online Resources and Tutorials . 400
21.1.5 Conclusion . 402

21.2 Websites and Online Courses . 402
21.2.1 Websites for Learning Functional Programming 402
21.2.2 Online Courses for Learning Functional Programming 405
21.2.3 Interactive Learning Platforms . 407
21.2.4 Conclusion . 408

22 Glossary 409
22.1 Explanation of Technical Terms Used in the Book 409

22.1.1 Functional Programming Terms . 409
22.1.2 C++-Specific Terms . 412

16

22.1.3 General Programming Terms . 414
22.1.4 Conclusion . 416

Author's Preface

Welcome to ”Functional Programming Using Modern C++”!

This book is the culmination of decades of experience working with C++, a language
that has been my trusted companion for over 30 years. Throughout my journey, I have
witnessed the evolution of C++ from its early days to the powerful, modern language it
is today. With the introduction of functional programming features in Modern C++
(C++11 and beyond), the language has taken a significant leap forward, enabling
developers to write cleaner, more expressive, and more maintainable code.

Functional programming is not just a paradigm; it is a mindset that encourages us to
think differently about how we solve problems. By embracing immutability, pure
functions, and higher-order abstractions, we can create software that is not only efficient
but also easier to reason about and test. This book is designed to guide you through the
principles of functional programming and demonstrate how they can be seamlessly
integrated into Modern C++.

Whether you are a seasoned C++ developer or someone exploring functional
programming for the first time, this book aims to provide you with the tools and
knowledge to harness the full potential of Modern C++. We will explore key concepts
such as lambda expressions, ranges, monads, and more, all while keeping a practical
focus on real-world applications.

My goal is to make functional programming accessible and relevant to C++ developers.

17

18

I hope this book inspires you to embrace these techniques and incorporate them into
your projects, unlocking new levels of productivity and creativity.
Thank you for joining me on this journey. Let’s dive into the world of functional
programming with Modern C++ and discover how it can transform the way we write
code.
Happy coding!
Ayman Alheraki

Chapter 1

Introduction to Functional Programming

1.1What is Functional Programming?

Functional Programming (FP) is a programming paradigm that treats computation as
the evaluation of mathematical functions and avoids changing state and mutable data.
It emphasizes the use of pure functions, immutability, and higher-order functions to
create programs that are more predictable, easier to test, and less prone to bugs.

1.1.1 Core Concepts of Functional Programming

1. Pure Functions:

• A pure function is a function where the output value is determined only by
its input values, without any observable side effects.

• Characteristics of Pure Functions:

– Deterministic: Given the same input, a pure function will always return
the same output.

19

20

– No Side Effects: Pure functions do not modify any external state or data
(e.g., no changes to global variables, no I/O operations).

• Example:

int add(int a, int b) {
return a + b;

}

Here, add is a pure function because it always returns the same result for the
same inputs and has no side effects.

2. Immutability:

• Immutability means that once a value is created, it cannot be changed.
Instead of modifying existing data, functional programming encourages
creating new data structures with the desired changes.

• Benefits of Immutability:

– Simplifies reasoning about code.

– Prevents unintended side effects.

– Makes concurrent programming safer.

• Example:

const std::vector<int> numbers = {1, 2, 3};
// Instead of modifying `numbers`, create a new vector with the desired changes.
std::vector<int> newNumbers = numbers;
newNumbers.push_back(4);

3. Higher-Order Functions:

21

• A higher-order function is a function that takes one or more functions as
arguments or returns a function as its result.

• Examples of Higher-Order Functions:

– map: Applies a function to each element of a collection.
– filter: Selects elements from a collection based on a predicate.
– reduce: Combines elements of a collection into a single value.

• Example in C++:

#include <vector>
#include <algorithm>
#include <iostream>

std::vector<int> map(const std::vector<int>& vec, int (*func)(int)) {
std::vector<int> result;
for (int x : vec) {

result.push_back(func(x));
}
return result;

}

int square(int x) {
return x * x;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, square);
for (int x : squaredNumbers) {

std::cout << x << ” ”; // Output: 1 4 9 16
}

}

22

4. Function Composition:

• Function composition is the process of combining two or more functions to
produce a new function. The output of one function is used as the input of
another.

• Example:

#include <functional>
#include <iostream>

int add(int a, int b) {
return a + b;

}

int square(int x) {
return x * x;

}

int main() {
auto addAndSquare = [](int a, int b) {

return square(add(a, b));
};
std::cout << addAndSquare(2, 3); // Output: 25

}

1.1.2 Benefits of Functional Programming

1. Predictability and Readability:

23

• Pure functions and immutability make code easier to understand and predict,
as there are no hidden side effects or state changes.

2. Easier Testing and Debugging:

• Pure functions are easier to test because they depend only on their inputs
and produce consistent outputs.

• Immutability reduces the risk of bugs caused by unintended state changes.

3. Concurrency and Parallelism:

• Functional programming avoids shared mutable state, making it easier to
write concurrent and parallel programs without race conditions.

4. Modularity and Reusability:

• Higher-order functions and function composition promote modularity and
code reuse.

1.1.3 Functional Programming in Modern C++

Modern C++ (starting from C++11) has introduced several features that support
functional programming:

1. Lambda Functions:

• Lambda functions allow you to define anonymous functions inline, making it
easier to write higher-order functions.

• Example:

24

auto square = [](int x) { return x * x; };
std::cout << square(5); // Output: 25

2. Standard Library Support:

• The C++ Standard Library provides functional programming tools like
std::function, std::bind, and algorithms like std::transform (equivalent to
map).

3. Immutability with const and constexpr:

• The const keyword ensures immutability, while constexpr allows compile-time
evaluation of functions.

4. Range-Based Algorithms (C++20):

• The Ranges library in C++20 provides a functional-style approach to
working with collections, including std::ranges::views for lazy evaluation.

1.1.4 Example: Functional Programming in C++

Here’s an example that demonstrates functional programming concepts in C++:

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

// Pure function
int square(int x) {

25

return x * x;
}

// Higher-order function
std::vector<int> map(const std::vector<int>& vec, std::function<int(int)> func) {

std::vector<int> result;
for (int x : vec) {

result.push_back(func(x));
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

// Use higher-order function with a pure function
std::vector<int> squaredNumbers = map(numbers, square);

// Print results
for (int x : squaredNumbers) {

std::cout << x << ” ”; // Output: 1 4 9 16
}

}

1.1.5 Summary

Functional programming is a powerful paradigm that emphasizes pure functions,
immutability, and higher-order functions. It offers benefits like predictability, easier
testing, and better support for concurrency. Modern C++ provides robust support for
functional programming through features like lambda functions, the Standard Library,
and the Ranges library. By embracing functional programming, developers can write

26

cleaner, more maintainable, and efficient code.

1.2 Principles of Functional Programming: Pure Functions,
Immutability, Function Composition

Functional programming is built on a set of core principles that distinguish it from other
programming paradigms like procedural or object-oriented programming. These
principles include pure functions, immutability, and function composition.
Understanding these principles is essential for writing functional code that is predictable,
maintainable, and efficient.

1.2.1 Pure Functions

A pure function is a function where the output value is determined only by its input
values, without any observable side effects. Pure functions are the cornerstone of
functional programming because they ensure predictability and make code easier to
reason about.

1. Characteristics of Pure Functions:

• Deterministic: Given the same input, a pure function will always return the
same output.

• No Side Effects: Pure functions do not modify any external state or data.
They do not perform I/O operations, modify global variables, or change the
state of mutable objects.

2. Example of a Pure Function:

27

int add(int a, int b) {
return a + b;

}

• The add function is pure because:

– It always returns the same result for the same inputs (e.g., add(2, 3) will
always return 5).

– It does not modify any external state or produce side effects.

3. Benefits of Pure Functions:

• Predictability: Pure functions are easier to debug and test because their
behavior is consistent.

• Reusability: Pure functions can be reused in different parts of a program
without worrying about side effects.

• Concurrency: Since pure functions do not depend on or modify shared state,
they are inherently thread-safe.

4. Example of an Impure Function:

cpp

Copy

int counter = 0;

int increment() {
return ++counter; // Modifies external state (counter)

}

28

• The increment function is impure because it modifies the global variable
counter.

1.2.2 Immutability

Immutability is the principle that data should not be modified after it is created.
Instead of changing existing data, functional programming encourages creating new data
structures with the desired changes.

1. Why Immutability Matters:

• Predictability: Immutable data ensures that once a value is created, it cannot
be changed, making the program's behavior more predictable.

• Concurrency: Immutable data is inherently thread-safe because it cannot be
modified by multiple threads.

• Debugging: Immutable data simplifies debugging because you don’t need to
track changes to variables over time.

2. Immutability in C++:

• C++ supports immutability through the const and constexpr keywords.

• Example:
cpp
Copy

const int x = 10; // x is immutable
// x = 20; // Error: Cannot modify a const variable

3. Immutable Data Structures:

29

• Functional programming often uses immutable data structures like lists,
maps, and trees. In C++, you can achieve immutability by using const or
creating new objects instead of modifying existing ones.

• Example:

const std::vector<int> numbers = {1, 2, 3};
// Instead of modifying `numbers`, create a new vector with the desired changes.
std::vector<int> newNumbers = numbers;
newNumbers.push_back(4);

4. Benefits of Immutability:

• Simpler Code: Immutable data reduces the complexity of code by eliminating
the need to track changes.

• Safer Concurrency: Immutable data structures are inherently thread-safe.

• Easier Testing: Immutable data makes it easier to write unit tests because
the state of the data does not change.

1.2.3 Function Composition

Function composition is the process of combining two or more functions to produce a
new function. The output of one function is used as the input of another, enabling the
creation of complex behavior from simple, reusable functions.

1. Why Function Composition Matters:

• Modularity: Function composition promotes modularity by breaking down
complex tasks into smaller, reusable functions.

30

• Readability: Composing functions can make code more readable by
expressing complex logic in a declarative way.

• Reusability: Small, composable functions can be reused in different contexts.

2. Function Composition in C++:

• C++ supports function composition through libraries like the Standard
Library (std::function, std::bind) and modern libraries like Range-v3.

• Example:

#include <iostream>
#include <functional>

int add(int a, int b) {
return a + b;

}

int square(int x) {
return x * x;

}

int main() {
// Compose add and square functions
auto addAndSquare = [](int a, int b) {

return square(add(a, b));
};

std::cout << addAndSquare(2, 3); // Output: 25
}

– In this example, the addAndSquare function is a composition of add and
square.

31

3. Benefits of Function Composition:

• Declarative Code: Function composition allows you to write declarative code
that expresses what the program should do, rather than how it should do it.

• Reusability: Small, composable functions can be reused in different parts of a
program.

• Maintainability: Composed functions are easier to maintain because they are
built from smaller, well-tested components.

1.2.4 Combining Principles in Practice

The principles of pure functions, immutability, and function composition work together
to create functional programs that are predictable, modular, and easy to maintain.
Here’s an example that combines all three principles:

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

// Pure function
int square(int x) {

return x * x;
}

// Higher-order function
std::vector<int> map(const std::vector<int>& vec, std::function<int(int)> func) {

std::vector<int> result;
for (int x : vec) {

result.push_back(func(x));
}

32

return result;
}

int main() {
const std::vector<int> numbers = {1, 2, 3, 4}; // Immutable data

// Use higher-order function with a pure function
std::vector<int> squaredNumbers = map(numbers, square);

// Print results
for (int x : squaredNumbers) {

std::cout << x << ” ”; // Output: 1 4 9 16
}

}

• Pure Function: square is a pure function.

• Immutability: numbers is declared as const, ensuring immutability.

• Function Composition: The map function composes the square function with the
input vector.

1.2.5 Summary

The principles of pure functions, immutability, and function composition form the
foundation of functional programming. By adhering to these principles, developers can
write code that is:

• Predictable: Pure functions and immutability ensure consistent behavior.

• Modular: Function composition promotes reusable and maintainable code.

33

• Efficient: Immutability and pure functions simplify concurrency and debugging.

These principles are not only theoretical but also practical, as demonstrated by their
implementation in modern C++. By embracing these principles, you can unlock the full
potential of functional programming in your C++ projects.

1.3 Benefits of Functional Programming in Software Development

Functional programming (FP) offers numerous advantages that make it a powerful
paradigm for modern software development. By emphasizing pure functions,
immutability, and declarative programming, FP enables developers to write code that is
more predictable, maintainable, and scalable. This section explores the key benefits of
functional programming and how they can improve software development practices.

1.3.1 Predictability and Readability

1. Predictable Behavior:

• Pure functions, a core concept in FP, ensure that the output of a function
depends only on its inputs and produces no side effects. This makes the
behavior of the program predictable and easier to reason about.

• Example:

int add(int a, int b) {
return a + b;

}

– The add function is predictable because it always returns the same result
for the same inputs.

34

2. Readable Code:

• Functional programming encourages writing declarative code, which focuses
on what the program should do rather than how it should do it. This leads to
code that is more readable and expressive.

• Example:

std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, [](int x) { return x * x; });

– The use of higher-order functions like map makes the code more readable
by abstracting away implementation details.

1.3.2 Easier Testing and Debugging

1. Simplified Testing:

• Pure functions are easier to test because they do not depend on external
state or produce side effects. Each function can be tested in isolation with a
set of inputs and expected outputs.

• Example:

int square(int x) {
return x * x;

}

// Unit test for square function
assert(square(2) == 4);
assert(square(-3) == 9);

35

2. Reduced Debugging Complexity:

• Immutability ensures that data does not change unexpectedly, reducing the
likelihood of bugs caused by unintended side effects. This makes debugging
easier because the state of the program is more predictable.

• Example:

const std::vector<int> numbers = {1, 2, 3};
// numbers cannot be modified, reducing the risk of bugs

1.3.3 Concurrency and Parallelism

1. Thread Safety:

• Immutable data and pure functions make functional programming inherently
thread-safe. Since data cannot be modified after creation, there is no risk of
race conditions or data corruption in concurrent environments.

• Example:

const std::vector<int> data = {1, 2, 3};
// Multiple threads can safely read `data` without synchronization

2. Easier Parallelism:

• Functional programming encourages breaking down problems into smaller,
independent tasks that can be executed in parallel. This makes it easier to
leverage multi-core processors and improve performance.

36

• Example:

std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers(numbers.size());

std::transform(numbers.begin(), numbers.end(), squaredNumbers.begin(), [](int x) {
return x * x;

});

– The std::transform function can be parallelized to process elements
concurrently.

1.3.4 Modularity and Reusability

1. Modular Code:

• Functional programming promotes modularity by encouraging the use of
small, reusable functions. These functions can be combined to create complex
behavior, making the codebase more organized and maintainable.

• Example:

int square(int x) { return x * x; }
int add(int a, int b) { return a + b; }

int addAndSquare(int a, int b) {
return square(add(a, b));

}

– The addAndSquare function is composed of smaller, reusable functions.

2. Reusable Components:

37

• Higher-order functions and function composition enable the creation of
reusable components that can be applied to different problems.

• Example:

auto map = [](const std::vector<int>& vec, std::function<int(int)> func) {
std::vector<int> result;
for (int x : vec) {

result.push_back(func(x));
}
return result;

};

std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, [](int x) { return x * x; });

– The map function is reusable and can be applied to different vectors and
operations.

1.3.5 Maintainability and Scalability

1. Easier Maintenance:

• Functional programming leads to code that is easier to maintain because it is
modular, predictable, and free of side effects. Changes to one part of the
code are less likely to affect other parts.

• Example:

const std::vector<int> data = {1, 2, 3};
// Immutable data ensures that changes elsewhere do not affect `data`

38

2. Scalability:

• The modular and declarative nature of functional programming makes it
easier to scale applications. New features can be added by composing
existing functions, and the codebase remains organized as it grows.

• Example:

auto filter = [](const std::vector<int>& vec, std::function<bool(int)> predicate) {
std::vector<int> result;
for (int x : vec) {

if (predicate(x)) {
result.push_back(x);

}
}
return result;

};

std::vector<int> evenNumbers = filter(numbers, [](int x) { return x % 2 == 0; });

– The filter function can be reused to implement new filtering logic without
modifying existing code.

1.3.6 Real-World Applications

1. Data Processing:

• Functional programming is widely used in data processing tasks, such as
transforming and filtering large datasets. Libraries like Range-v3 in C++
make it easy to write efficient and expressive data pipelines.

• Example:

39

#include <range/v3/all.hpp>
#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
auto result = numbers | ranges::views::filter([](int x) { return x % 2 == 0; })

| ranges::views::transform([](int x) { return x * x; });

for (int x : result) {
std::cout << x << ” ”; // Output: 4 16

}
}

2. Concurrent and Distributed Systems:

• Functional programming is ideal for building concurrent and distributed
systems because of its emphasis on immutability and thread safety.

• Example:

std::future<int> futureResult = std::async([]() {
return 42; // Simulate a long-running computation

});

int result = futureResult.get(); // Safely retrieve the result

3. Domain-Specific Languages (DSLs):

• Functional programming is often used to create domain-specific languages
(DSLs) that are expressive and easy to use.

40

• Example:

auto calculate = [](int a, int b, std::function<int(int, int)> op) {
return op(a, b);

};

int sum = calculate(2, 3, [](int a, int b) { return a + b; });

1.3.7 Summary

Functional programming offers numerous benefits that make it a valuable paradigm for
modern software development. By emphasizing pure functions, immutability, and
declarative programming, FP enables developers to write code that is:

• Predictable and Readable: Easier to understand and reason about.

• Easier to Test and Debug: Reduced complexity and fewer bugs.

• Concurrency-Friendly: Safe and efficient parallel execution.

• Modular and Reusable: Promotes code reuse and maintainability.

• Scalable: Adaptable to growing and complex applications.

These benefits make functional programming an excellent choice for a wide range of
applications, from data processing to concurrent systems. By embracing functional
programming principles, developers can create robust, efficient, and maintainable
software.

Chapter 2

Why Modern C++?

2.1 The Evolution of C++ and Its Support for Functional
Programming

C++ has undergone significant evolution since its inception in the 1980s. With the
introduction of modern standards like C++11, C++14, C++17, and C++20, the
language has embraced functional programming (FP) concepts, making it a powerful
tool for writing expressive, efficient, and maintainable code. This section explores the
evolution of C++ and how modern features have enhanced its support for functional
programming.

2.1.1 Early Days of C++: Procedural and Object-Oriented Focus

1. C++98 and C++03:

• The initial versions of C++ (C++98 and C++03) were primarily focused on
procedural and object-oriented programming (OOP). Functional

41

42

programming concepts were not a priority, and the language lacked features
like lambdas, type inference, and higher-order functions.

• Limitations:

– No support for lambda functions or closures.
– Limited support for immutability (only const was available).
– Verbose syntax for function objects (functors).

2. Example of C++98 Code:

struct Add {
int operator()(int a, int b) const {

return a + b;
}

};

int main() {
Add add;
int result = add(2, 3); // Output: 5
return 0;

}

• Functors were used to emulate higher-order functions, but the syntax was
cumbersome.

2.1.2 C++11: A Paradigm Shift

C++11 marked a turning point in the evolution of C++, introducing several features
that made functional programming more accessible and practical.

1. Lambda Functions:

43

• C++11 introduced lambda functions, enabling the creation of anonymous
functions inline. This made it easier to write higher-order functions and pass
behavior as arguments.

• Example:

auto add = [](int a, int b) { return a + b; };
int result = add(2, 3); // Output: 5

2. Type Inference (auto and decltype):

• The auto keyword allowed automatic type inference, reducing verbosity and
making functional-style code more concise.

• Example:

auto square = [](int x) { return x * x; };
auto result = square(5); // Output: 25

3. Standard Library Enhancements:

• C++11 introduced std::function and std::bind, which made it easier to store
and pass functions as objects.

• Example:

#include <iostream>
#include <functional>

int main() {
std::function<int(int, int)> add = [](int a, int b) { return a + b; };

44

std::cout << add(2, 3); // Output: 5
}

4. Immutable Data (constexpr):

• The constexpr keyword allowed compile-time evaluation of functions,
promoting immutability and performance optimization.

• Example:

constexpr int square(int x) {
return x * x;

}

int result = square(5); // Evaluated at compile time

2.1.3 C++14: Refining Functional Programming Features

C++14 built on the foundation of C++11, refining and expanding its support for
functional programming.

1. Generic Lambdas:

• C++14 introduced generic lambdas, allowing lambda functions to accept
auto parameters. This made lambdas more flexible and reusable.

• Example:

auto add = [](auto a, auto b) { return a + b; };
int result1 = add(2, 3); // Output: 5
double result2 = add(2.5, 3.5); // Output: 6.0

45

2. Improved constexpr:

• C++14 relaxed restrictions on constexpr functions, allowing them to contain
loops and conditional statements.

• Example:

constexpr int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; ++i) {

result *= i;
}
return result;

}

int result = factorial(5); // Output: 120 (evaluated at compile time)

2.1.4 C++17: Expanding Functional Capabilities

C++17 introduced features that further enhanced functional programming in C++.

1. Structured Bindings:

• Structured bindings made it easier to work with tuples and other structured
data, promoting immutability and declarative programming.

• Example:

auto [x, y] = std::make_tuple(2, 3);
std::cout << x + y; // Output: 5

2. std::optional and std::variant:

46

• These types provided safer alternatives to raw pointers and unions, enabling
more expressive and functional-style error handling.

• Example:

std::optional<int> divide(int a, int b) {
if (b == 0) return std::nullopt;
return a / b;

}

auto result = divide(10, 2);
if (result) {

std::cout << *result; // Output: 5
}

3. Parallel Algorithms:

• C++17 introduced parallel versions of Standard Library algorithms, making
it easier to write concurrent functional code.

• Example:

#include <vector>
#include <algorithm>
#include <execution>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::for_each(std::execution::par, numbers.begin(), numbers.end(), [](int& x) {

x *= x;
});
// numbers = {1, 4, 9, 16}

}

47

2.1.5 C++20: A Functional Programming Powerhouse

C++20 brought significant advancements that solidified C++ as a modern functional
programming language.

1. Ranges Library:

• The Ranges library introduced a functional-style approach to working with
collections, enabling lazy evaluation and composable operations.

• Example:

#include <ranges>
#include <vector>
#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto result = numbers | std::views::filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

for (int x : result) {
std::cout << x << ” ”; // Output: 4 16

}
}

2. Concepts:

• Concepts improved template programming by enabling constraints on
template parameters, making generic functional code safer and more
expressive.

48

• Example:

template <typename T>
concept Addable = requires(T a, T b) {

{ a + b } -> std::same_as<T>;
};

template <Addable T>
T add(T a, T b) {

return a + b;
}

3. Coroutines:

• Coroutines enabled asynchronous programming in a functional style, making
it easier to write non-blocking code.

• Example:

#include <coroutine>
#include <iostream>

struct Task {
struct promise_type {

Task get_return_object() { return {}; }
std::suspend_never initial_suspend() { return {}; }
std::suspend_never final_suspend() noexcept { return {}; }
void return_void() {}
void unhandled_exception() {}

};
};

49

Task asyncTask() {
std::cout << ”Hello, Coroutines!\n”;
co_return;

}

int main() {
asyncTask();

}

2.1.6 Summary

The evolution of C++ has transformed it into a language that fully supports functional
programming. From the introduction of lambda functions in C++11 to the powerful
Ranges library in C++20, modern C++ provides developers with the tools to write
expressive, efficient, and maintainable functional code. By embracing these features,
developers can leverage the strengths of functional programming while retaining the
performance and flexibility of C++.

2.2 Modern C++ Features Supporting Functional Programming
(C++11 to C++20 and Beyond)

Modern C++ (starting from C++11) has introduced a plethora of features that make it
a powerful language for functional programming (FP). These features enable developers
to write expressive, efficient, and maintainable functional-style code. This section
explores the key features of modern C++ that support functional programming, from
C++11 to C++20 and beyond.

50

2.2.1 C++11: Laying the Foundation

C++11 marked a significant shift in the evolution of C++, introducing several features
that made functional programming more accessible.

1. Lambda Functions:

• Lambda functions allow the creation of anonymous functions inline, making
it easier to write higher-order functions and pass behavior as arguments.

• Example:

auto add = [](int a, int b) { return a + b; };
int result = add(2, 3); // Output: 5

2. Type Inference (auto and decltype):

• The auto keyword enables automatic type inference, reducing verbosity and
making functional-style code more concise.

• Example:

auto square = [](int x) { return x * x; };
auto result = square(5); // Output: 25

3. Standard Library Enhancements:

• C++11 introduced std::function and std::bind, which made it easier to store
and pass functions as objects.

• Example:

51

#include <iostream>
#include <functional>

int main() {
std::function<int(int, int)> add = [](int a, int b) { return a + b; };
std::cout << add(2, 3); // Output: 5

}

4. Immutable Data (constexpr):

• The constexpr keyword allows compile-time evaluation of functions,
promoting immutability and performance optimization.

• Example:

constexpr int square(int x) {
return x * x;

}

int result = square(5); // Evaluated at compile time

2.2.2 C++14: Refining Functional Programming Features

C++14 built on the foundation of C++11, refining and expanding its support for
functional programming.

1. Generic Lambdas:

• C++14 introduced generic lambdas, allowing lambda functions to accept
auto parameters. This made lambdas more flexible and reusable.

52

• Example:

auto add = [](auto a, auto b) { return a + b; };
int result1 = add(2, 3); // Output: 5
double result2 = add(2.5, 3.5); // Output: 6.0

2. Improved constexpr:

• C++14 relaxed restrictions on constexpr functions, allowing them to contain
loops and conditional statements.

• Example:

constexpr int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; ++i) {

result *= i;
}
return result;

}

int result = factorial(5); // Output: 120 (evaluated at compile time)

2.2.3 C++17: Expanding Functional Capabilities

C++17 introduced features that further enhanced functional programming in C++.

1. Structured Bindings:

• Structured bindings made it easier to work with tuples and other structured
data, promoting immutability and declarative programming.

53

• Example:

auto [x, y] = std::make_tuple(2, 3);
std::cout << x + y; // Output: 5

2. std::optional and std::variant:

• These types provided safer alternatives to raw pointers and unions, enabling
more expressive and functional-style error handling.

• Example:

std::optional<int> divide(int a, int b) {
if (b == 0) return std::nullopt;
return a / b;

}

auto result = divide(10, 2);
if (result) {

std::cout << *result; // Output: 5
}

3. Parallel Algorithms:

• C++17 introduced parallel versions of Standard Library algorithms, making
it easier to write concurrent functional code.

• Example:

#include <vector>
#include <algorithm>

54

#include <execution>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::for_each(std::execution::par, numbers.begin(), numbers.end(), [](int& x) {

x *= x;
});
// numbers = {1, 4, 9, 16}

}

2.2.4 C++20: A Functional Programming Powerhouse

C++20 brought significant advancements that solidified C++ as a modern functional
programming language.

1. Ranges Library:

• The Ranges library introduced a functional-style approach to working with
collections, enabling lazy evaluation and composable operations.

• Example:

#include <ranges>
#include <vector>
#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto result = numbers | std::views::filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

55

for (int x : result) {
std::cout << x << ” ”; // Output: 4 16

}
}

2. Concepts:

• Concepts improved template programming by enabling constraints on
template parameters, making generic functional code safer and more
expressive.

• Example:

template <typename T>
concept Addable = requires(T a, T b) {

{ a + b } -> std::same_as<T>;
};

template <Addable T>
T add(T a, T b) {

return a + b;
}

3. Coroutines:

• Coroutines enabled asynchronous programming in a functional style, making
it easier to write non-blocking code.

• Example:

56

#include <coroutine>
#include <iostream>

struct Task {
struct promise_type {

Task get_return_object() { return {}; }
std::suspend_never initial_suspend() { return {}; }
std::suspend_never final_suspend() noexcept { return {}; }
void return_void() {}
void unhandled_exception() {}

};
};

Task asyncTask() {
std::cout << ”Hello, Coroutines!\n”;
co_return;

}

int main() {
asyncTask();

}

2.2.5 Beyond C++20: The Future of Functional Programming in C++

The evolution of C++ continues with proposals for future standards (C++23 and
beyond) that aim to further enhance functional programming capabilities. Some of the
anticipated features include:

1. Pattern Matching:

• Pattern matching would allow more expressive and functional-style handling
of data structures, similar to languages like Haskell and Rust.

57

• Example (Proposed Syntax):

auto result = std::visit([](auto&& arg) {
return std::match(arg) {

case 0 => ”Zero”,
case 1 => ”One”,
case _ => ”Other”

};
}, value);

2. Improved Ranges and Functional Utilities:

• Future standards may introduce more utilities for functional programming,
such as additional range adaptors and monadic operations.

3. Enhanced Concurrency Support:

• Continued improvements in concurrency and parallelism will make it easier
to write functional-style code that leverages modern hardware.

2.2.6 Summary

Modern C++ (from C++11 to C++20 and beyond) has introduced a wide range of
features that make it a powerful language for functional programming. These features
include:

• Lambda Functions: Enabling inline anonymous functions.

• Type Inference (auto and decltype): Reducing verbosity and improving readability.

• Standard Library Enhancements: Supporting higher-order functions and
immutability.

58

• Ranges Library: Providing a functional-style approach to working with collections.

• Concepts and Coroutines: Enhancing generic programming and asynchronous
code.

By leveraging these features, developers can write expressive, efficient, and maintainable
functional-style code in C++. The ongoing evolution of the language ensures that C++
will remain a strong choice for functional programming in the future.

2.3 Comparison Between Functional Programming and
Object-Oriented Programming (OOP) in C++

Functional programming (FP) and object-oriented programming (OOP) are two of the
most widely used programming paradigms. While OOP has been the dominant
paradigm in C++ for decades, modern C++ has embraced functional programming
concepts, making it a versatile language that supports both paradigms. This section
provides a detailed comparison between FP and OOP in the context of C++,
highlighting their strengths, weaknesses, and use cases.

2.3.1 Core Concepts

1. Functional Programming (FP):

• Focus: FP emphasizes the use of pure functions, immutability, and
higher-order functions to create programs that are predictable and easy to
reason about.

• Key Principles:

– Pure Functions: Functions that depend only on their inputs and produce
no side effects.

59

– Immutability: Data is not modified after creation; instead, new data
structures are created.

– Function Composition: Combining simple functions to build complex
behavior.

2. Object-Oriented Programming (OOP):

• Focus: OOP organizes code around objects, which are instances of classes. It
emphasizes encapsulation, inheritance, and polymorphism.

• Key Principles:

– Encapsulation: Bundling data and methods that operate on the data
within a single unit (class).

– Inheritance: Creating new classes based on existing ones to promote
code reuse.

– Polymorphism: Allowing objects of different classes to be treated as
objects of a common superclass.

2.3.2 Comparison of Key Features

Feature Functional Programming (FP) Object-Oriented Programming (OOP)

State Management Immutable data; state changes are avoided by creating new data structures. Mutable objects; state changes are common through method calls.
Functions/Methods Pure functions with no side effects; functions are first-class citizens. Methods are tied to objects and may have side effects.
Data and Behavior Data and behavior are separate; functions operate on data. Data and behavior are encapsulated within objects.
Code Reusability Achieved through function composition and higher-order functions. Achieved through inheritance and polymorphism.
Concurrency Easier to manage due to immutability and lack of shared state. More challenging due to mutable state and potential race conditions.
Readability Declarative style; focuses on what the program should do. Imperative style; focuses on how the program should do it.

60

Feature Functional Programming (FP) Object-Oriented Programming (OOP)

Use Cases Data processing, concurrent systems, mathematical computations. GUI development, simulation, and systems with complex state management.

2.3.3 Example: FP vs. OOP in C++

1. Functional Programming Example:

• Task: Calculate the sum of squares of even numbers in a list.

• FP Approach:

#include <vector>
#include <algorithm>
#include <numeric>
#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto isEven = [](int x) { return x % 2 == 0; };
auto square = [](int x) { return x * x; };

int sum = std::accumulate(numbers.begin(), numbers.end(), 0,
[&](int acc, int x) {

return isEven(x) ? acc + square(x) : acc;
});

std::cout << ”Sum of squares of even numbers: ” << sum << ”\n”; // Output: 56
}

– Key Points:

61

∗ Uses pure functions (isEven, square).

∗ Avoids mutable state; uses std::accumulate for aggregation.

2. Object-Oriented Programming Example:

• Task: Represent a bank account with deposit and withdrawal functionality.

• OOP Approach:

#include <iostream>

class BankAccount {
private:

double balance;

public:
BankAccount(double initialBalance) : balance(initialBalance) {}

void deposit(double amount) {
balance += amount;

}

void withdraw(double amount) {
if (amount <= balance) {

balance -= amount;
} else {

std::cout << ”Insufficient funds!\n”;
}

}

double getBalance() const {
return balance;

}

62

};

int main() {
BankAccount account(100.0);
account.deposit(50.0);
account.withdraw(30.0);
std::cout << ”Current balance: ” << account.getBalance() << ”\n”; // Output: 120

}

– Key Points:

∗ Encapsulates data (balance) and behavior (deposit, withdraw)
within a class.

∗ Uses mutable state to track the account balance.

2.3.4 Strengths and Weaknesses

1. Functional Programming:

• Strengths:

– Predictability: Pure functions and immutability make code easier to
reason about.

– Concurrency: Immutable data simplifies concurrent programming.

– Modularity: Function composition promotes reusable and maintainable
code.

• Weaknesses:

– Learning Curve: Requires a shift in mindset for developers accustomed
to imperative programming.

63

– Performance Overhead: Immutability can lead to increased memory
usage due to the creation of new data structures.

2. Object-Oriented Programming:

• Strengths:

– Encapsulation: Bundling data and behavior within objects promotes
modularity and information hiding.

– Reusability: Inheritance and polymorphism enable code reuse and
extensibility.

– Real-World Modeling: Objects naturally model real-world entities and
relationships.

• Weaknesses:

– Complexity: Deep inheritance hierarchies can lead to tightly coupled and
hard-to-maintain code.

– Concurrency Challenges: Mutable state complicates concurrent
programming.

2.3.5When to Use FP vs. OOP in C++

1. Use Functional Programming When:

• You need to process large datasets or perform mathematical computations.

• You are working on concurrent or parallel systems.

• You want to write declarative and predictable code.

2. Use Object-Oriented Programming When:

64

• You are modeling real-world entities with complex state and behavior.

• You need to build graphical user interfaces (GUIs) or simulations.

• You want to leverage inheritance and polymorphism for code reuse.

2.3.6 Combining FP and OOP in Modern C++

Modern C++ allows developers to combine the strengths of both paradigms. For
example:

• Use OOP for modeling entities and managing state.

• Use FP for data processing, transformations, and concurrency.

Example: Combining FP and OOP
cpp
Copy

#include <vector>
#include <algorithm>
#include <iostream>

class ShoppingCart {
private:

std::vector<double> items;

public:
void addItem(double price) {

items.push_back(price);
}

double calculateTotal() const {

65

return std::accumulate(items.begin(), items.end(), 0.0);
}

void applyDiscount(double discountRate) {
std::transform(items.begin(), items.end(), items.begin(),

[discountRate](double price) { return price * (1 - discountRate); });
}

};

int main() {
ShoppingCart cart;
cart.addItem(100.0);
cart.addItem(200.0);
cart.applyDiscount(0.1); // Apply 10% discount
std::cout << ”Total after discount: ” << cart.calculateTotal() << ”\n”; // Output: 270

}

• OOP: The ShoppingCart class encapsulates data (items) and behavior (addItem,
calculateTotal).

• FP: The applyDiscount method uses std::transform to apply a discount
functionally.

2.3.7 Summary

Functional programming and object-oriented programming are complementary
paradigms, each with its own strengths and weaknesses. In modern C++, developers
can leverage the best of both worlds:

• Use FP for tasks that require predictability, concurrency, and declarative code.

• Use OOP for modeling complex systems with state and behavior.

66

By understanding the differences and combining the strengths of both paradigms,
developers can write more expressive, maintainable, and efficient code in C++.

Chapter 3

Development Tools

3.1 Setting Up a Modern C++ Development Environment (e.g.,
CMake, Conan, Modern C++ Tools)

To effectively write and manage modern C++ code, especially when embracing
functional programming, it is essential to set up a robust development environment.
This section guides you through the process of configuring a modern C++ development
environment using tools like CMake, Conan, and other essential utilities.

3.1.1Why a Modern Development Environment Matters

A modern development environment ensures that you can:

• Manage Dependencies: Easily include and manage third-party libraries.

• Build Projects Efficiently: Use build systems that support modern C++ features.

• Write Clean Code: Leverage tools for formatting, linting, and static analysis.

67

68

• Debug and Test: Use integrated debugging and testing frameworks.

3.1.2 Essential Tools for Modern C++ Development

1. CMake: A Cross-Platform Build System

• What is CMake?

– CMake is an open-source, cross-platform build system that generates
build files (e.g., Makefiles, Visual Studio projects) for various compilers
and platforms.

• Why Use CMake?

– Portability: Write once, build anywhere.

– Scalability: Suitable for both small and large projects.

– Integration: Works seamlessly with IDEs and other tools.

• Setting Up CMake:

– Install CMake from the official website: https://cmake.org.

– Create a CMakeLists.txt file to define your project:

cmake_minimum_required(VERSION 3.14)
project(MyFunctionalCppProject)

set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_executable(MyApp main.cpp)

– Generate build files and compile:

https://cmake.org/

69

mkdir build
cd build
cmake ..
cmake --build .

2. Conan: A C++ Package Manager

• What is Conan?

– Conan is a decentralized package manager for C++ that simplifies
dependency management.

• Why Use Conan?

– Dependency Management: Easily include and manage third-party
libraries.

– Cross-Platform: Works on Windows, macOS, and Linux.

– Integration: Compatible with CMake, Visual Studio, and other build
systems.

• Setting Up Conan:

– Install Conan via pip:

pip install conan

– Create a conanfile.txt to specify dependencies:

[requires]
range-v3/0.11.0
fmt/8.0.1

70

[generators]
cmake

– Install dependencies and generate build files:

mkdir build
cd build
conan install ..
cmake ..
cmake --build .

3. Modern C++ Compilers

• GCC (GNU Compiler Collection):

– A widely used open-source compiler with excellent support for modern
C++.

– Install on Ubuntu:

sudo apt install g++

• Clang:

– Known for its fast compilation and helpful error messages.
– Install on Ubuntu:

sudo apt install clang

• MSVC (Microsoft Visual C++):

– The default compiler for Visual Studio, with strong support for Windows
development.

71

4. Integrated Development Environments (IDEs)

• Visual Studio Code (VS Code):

– A lightweight, extensible IDE with excellent C++ support via extensions
like C/C++ and CMake Tools.

– Install from: https://code.visualstudio.com.

• CLion:

– A powerful IDE from JetBrains specifically designed for C++
development.

– Install from: https://www.jetbrains.com/clion.

• Visual Studio:

– A full-featured IDE for Windows development with deep integration with
MSVC.

5. Code Formatting and Linting Tools

• Clang-Format:

– A tool to automatically format C++ code according to a specified style.
– Install on Ubuntu:

sudo apt install clang-format

– Create a .clang-format file to define formatting rules:

BasedOnStyle: Google
IndentWidth: 4

• Clang-Tidy:

https://code.visualstudio.com/
https://www.jetbrains.com/clion

72

– A static analysis tool that identifies potential bugs and style issues.

– Install on Ubuntu:

sudo apt install clang-tidy

– Run Clang-Tidy on your code:

clang-tidy main.cpp -- -std=c++20

6. Debugging Tools

• GDB (GNU Debugger):

– A powerful debugger for C++ programs.

– Install on Ubuntu:

sudo apt install gdb

– Debug your program:

gdb ./MyApp

• LLDB:

– A modern debugger that is part of the LLVM project.

– Install on macOS:

brew install lldb

7. Testing Frameworks

73

• Google Test:

– A popular unit testing framework for C++.
– Install via Conan:

[requires]
gtest/1.11.0

[generators]
cmake

– Write and run tests:

#include <gtest/gtest.h>

TEST(MyTestSuite, MyTestCase) {
EXPECT_EQ(2 + 2, 4);

}

int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

3.1.3 Example: Setting Up a Functional C++ Project

1. Project Structure:

MyFunctionalCppProject/
��� CMakeLists.txt
��� conanfile.txt
��� include/

74

� ��� utils.h
��� src/
� ��� main.cpp
��� tests/

��� test_main.cpp

2. CMakeLists.txt:

cmake_minimum_required(VERSION 3.14)
project(MyFunctionalCppProject)

set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

Include Conan-generated files
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

Add executable
add_executable(MyApp src/main.cpp)

Add tests
enable_testing()
add_executable(MyTests tests/test_main.cpp)
target_link_libraries(MyTests gtest_main)
add_test(NAME MyTests COMMAND MyTests)

3. conanfile.txt:

75

[requires]
gtest/1.11.0
range-v3/0.11.0

[generators]
cmake

4. Building and Testing:

mkdir build
cd build
conan install ..
cmake ..
cmake --build .
ctest

3.1.4 Summary

Setting up a modern C++ development environment is crucial for writing efficient,
maintainable, and scalable code. By leveraging tools like CMake, Conan, modern
compilers, IDEs, and testing frameworks, you can create a robust workflow that
supports functional programming in C++. This setup ensures that you can focus on
writing high-quality code while managing dependencies, building projects, and
debugging efficiently.

76

3.2 Using Modern Compilers (GCC, Clang, MSVC) with C++20
Support

Modern C++ compilers are essential for leveraging the latest features of the C++20
standard, which introduces powerful tools for functional programming, such as concepts,
ranges, coroutines, and more. This section provides a detailed guide on using the three
major modern compilers—GCC, Clang, and MSVC—with C++20 support.

3.2.1Why Use Modern Compilers?

Modern compilers provide:

• Support for C++20 Features: Enable the use of new language and library features.

• Optimizations: Generate highly optimized machine code for better performance.

• Diagnostics: Offer improved error messages and warnings for easier debugging.

• Cross-Platform Compatibility: Ensure your code runs on multiple platforms.

3.2.2 GCC (GNU Compiler Collection)

1. Overview:

• GCC is a widely used open-source compiler with excellent support for
modern C++ standards.

• It is available on Linux, macOS, and Windows (via MinGW or WSL).

2. Installing GCC with C++20 Support:

77

• On Ubuntu:

sudo apt update
sudo apt install g++-10

– Ensure GCC 10 or later is installed, as earlier versions do not fully
support C++20.

• On macOS (via Homebrew):

brew install gcc

• On Windows (via MinGW):

– Download and install MinGW-w64 from https://mingw-w64.org.

3. Using GCC with C++20:

• Compile a C++20 program:

g++ -std=c++20 -o MyApp main.cpp

• Enable all warnings and optimizations:

g++ -std=c++20 -Wall -Wextra -O2 -o MyApp main.cpp

4. Example: Using C++20 Ranges with GCC

#include <iostream>
#include <ranges>

https://mingw-w64.org/

78

#include <vector>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
auto even = numbers | std::views::filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

for (int x : even) {
std::cout << x << ” ”; // Output: 4 16

}
}

• Compile with:

g++ -std=c++20 -o RangesExample ranges_example.cpp

3.2.3 Clang

1. Overview:

• Clang is part of the LLVM project and is known for its fast compilation and
helpful error messages.

• It is available on Linux, macOS, and Windows.

2. Installing Clang with C++20 Support:

• On Ubuntu:

79

sudo apt update
sudo apt install clang-10

– Ensure Clang 10 or later is installed.

• On macOS (via Homebrew):

brew install llvm

• On Windows:

– Download and install LLVM from https://llvm.org.

3. Using Clang with C++20:

• Compile a C++20 program:

clang++ -std=c++20 -o MyApp main.cpp

• Enable all warnings and optimizations:

clang++ -std=c++20 -Wall -Wextra -O2 -o MyApp main.cpp

4. Example: Using C++20 Concepts with Clang

#include <iostream>
#include <concepts>

template <std::integral T>
T add(T a, T b) {

https://llvm.org/

80

return a + b;
}

int main() {
std::cout << add(2, 3) << ”\n”; // Output: 5

}

• Compile with:

clang++ -std=c++20 -o ConceptsExample concepts_example.cpp

3.2.4 MSVC (Microsoft Visual C++)

1. Overview:

• MSVC is the default compiler for Visual Studio and is widely used for
Windows development.

• It provides excellent support for C++20 features.

2. Installing MSVC with C++20 Support:

• Download and install Visual Studio 2019 or later from
https://visualstudio.microsoft.com.

• Ensure the Desktop development with C++ workload is selected during
installation.

3. Using MSVC with C++20:

• Open Visual Studio and create a new C++ project.

https://visualstudio.microsoft.com/

81

• Set the C++ language standard to C++20:

– Go to Project Properties → C/C++ → Language → C++ Language
Standard and select ISO C++20 Standard (/std:c ++20).

• Compile and run your project.

4. Example: Using C++20 Coroutines with MSVC

#include <iostream>
#include <coroutine>

struct Task {
struct promise_type {

Task get_return_object() { return {}; }
std::suspend_never initial_suspend() { return {}; }
std::suspend_never final_suspend() noexcept { return {}; }
void return_void() {}
void unhandled_exception() {}

};
};

Task asyncTask() {
std::cout << ”Hello, Coroutines!\n”;
co_return;

}

int main() {
asyncTask();

}

• Compile and run in Visual Studio with C++20 enabled.

82

3.2.5 Cross-Compiler Tips

1. Ensuring Compatibility:

• Use feature-test macros to check for C++20 support:

#if __cplusplus >= 202002L
// C++20 code
#else
#error ”C++20 support is required!”
#endif

2. Handling Compiler-Specific Code:

• Use preprocessor directives for compiler-specific code:

#ifdef __GNUC__
// GCC-specific code
#elif defined(_MSC_VER)
// MSVC-specific code
#elif defined(__clang__)
// Clang-specific code
#endif

3. Using CMake for Cross-Platform Builds:

• Define the C++ standard in your CMakeLists.txt:

set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

83

3.2.6 Summary

Modern compilers like GCC, Clang, and MSVC provide robust support for C++20,
enabling developers to leverage the latest features for functional programming. By
setting up and using these compilers effectively, you can write expressive, efficient, and
portable C++ code. Whether you are working on Linux, macOS, or Windows, these
compilers offer the tools you need to build modern C++ applications.

3.3 Static Analysis Tools and Functional Testing

Static analysis tools and functional testing are critical components of a modern C++
development workflow. They help ensure code quality, catch potential bugs early, and
verify that your functional programming logic behaves as expected. This section
provides a detailed guide on using static analysis tools and functional testing
frameworks in C++.

3.3.1 Static Analysis Tools

Static analysis tools analyze your code without executing it, identifying potential issues
such as bugs, code smells, and security vulnerabilities. These tools are especially useful
in functional programming, where immutability and pure functions can help reduce
complexity.

3.3.2 Clang-Tidy

1. What is Clang-Tidy?

• Clang-Tidy is a clang-based static analysis tool that identifies potential bugs,
style issues, and performance problems in C++ code.

84

2. Installing Clang-Tidy:

• On Ubuntu:

sudo apt install clang-tidy

• On macOS (via Homebrew):

brew install llvm

• On Windows:

– Install Clang-Tidy as part of the LLVM package from https://llvm.org.

3. Using Clang-Tidy:

• Run Clang-Tidy on a single file:

clang-tidy main.cpp -- -std=c++20

• Integrate Clang-Tidy with CMake:

cmake -DCMAKE_CXX_CLANG_TIDY=clang-tidy ..
cmake --build .

4. Example: Using Clang-Tidy

• Analyze a C++ file for potential issues:

https://llvm.org/

85

#include <iostream>

int main() {
int x = 10;
if (x = 20) { // Potential bug: assignment instead of comparison

std::cout << ”x is 20\n”;
}

}

– Clang-Tidy will warn about the use of = instead of ==.

3.3.3 Cppcheck

1. What is Cppcheck?

• Cppcheck is a lightweight static analysis tool that focuses on detecting
undefined behavior, memory leaks, and other common issues.

2. Installing Cppcheck:

• On Ubuntu:

sudo apt install cppcheck

• On macOS (via Homebrew):

brew install cppcheck

• On Windows:

– Download and install Cppcheck from http://cppcheck.sourceforge.net.

http://cppcheck.sourceforge.net/

86

3. Using Cppcheck:

• Run Cppcheck on a single file:

cppcheck main.cpp

• Enable all checks:

cppcheck --enable=all main.cpp

4. Example: Using Cppcheck

• Analyze a C++ file for memory leaks:

#include <iostream>

int main() {
int* ptr = new int(10);
std::cout << *ptr << ”\n”;
// Memory leak: ptr is not deleted

}

– Cppcheck will warn about the memory leak.

3.3.4 Functional Testing

Functional testing ensures that your code behaves as expected by verifying the
correctness of individual functions and components. In functional programming, where
pure functions are emphasized, functional testing becomes even more critical.

87

3.3.5 Google Test

1. What is Google Test?

• Google Test is a popular unit testing framework for C++ that provides a rich
set of assertions and test fixtures.

2. Installing Google Test:

• Using Conan:

– Add Google Test to your conanfile.txt:

[requires]
gtest/1.11.0

[generators]
cmake

– Install dependencies:

conan install ..

3. Writing Tests with Google Test:

• Create a test file (test_main.cpp):

#include <gtest/gtest.h>

int add(int a, int b) {
return a + b;

}

88

TEST(MyTestSuite, MyTestCase) {
EXPECT_EQ(add(2, 3), 5);

}

int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

4. Running Tests:

• Compile and run tests:

cmake ..
cmake --build .
ctest

3.3.6 Catch2

1. What is Catch2?

• Catch2 is a modern, header-only testing framework for C++ that is easy to
use and highly expressive.

2. Installing Catch2:

• Using Conan:

– Add Catch2 to your conanfile.txt:

89

[requires]
catch2/2.13.7

[generators]
cmake

– Install dependencies:

conan install ..

3. Writing Tests with Catch2:

• Create a test file (test_main.cpp):

#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>

int add(int a, int b) {
return a + b;

}

TEST_CASE(”Addition works”, ”[math]”) {
REQUIRE(add(2, 3) == 5);

}

4. Running Tests:

• Compile and run tests:

90

cmake ..
cmake --build .
./MyTests

3.3.7 Integrating Static Analysis and Testing into CI/CD

1. Continuous Integration (CI) Setup:

• Use CI platforms like GitHub Actions, GitLab CI, or Travis CI to automate
static analysis and testing.

• Example GitHub Actions workflow (.github/workflows/ci.yml):

name: CI

on: [push, pull_request]

jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install clang-tidy cppcheck
pip install conan

- name: Configure and build
run: |
mkdir build
cd build

91

conan install ..
cmake -DCMAKE_CXX_CLANG_TIDY=clang-tidy ..
cmake --build .

- name: Run tests
run: |
cd build
ctest

3.3.8 Summary

Static analysis tools and functional testing frameworks are essential for maintaining
high-quality C++ code, especially in functional programming. By using tools like
Clang-Tidy, Cppcheck, Google Test, and Catch2, you can:

• Identify Potential Issues: Catch bugs and code smells early.

• Ensure Correctness: Verify that your functions behave as expected.

• Automate Quality Checks: Integrate static analysis and testing into your CI/CD
pipeline.

These tools and practices will help you write robust, maintainable, and efficient
functional C++ code.

Chapter 4

Pure Functions

4.1 Concept of Pure Functions and How to Implement Them in
C++

Pure functions are a cornerstone of functional programming. They are functions that
produce the same output for the same input and have no side effects. This section
explores the concept of pure functions, their benefits, and how to implement them in
C++.

4.1.1What is a Pure Function?

A pure function is a function that:

1. Always produces the same output for the same input.

2. Has no side effects: It does not modify any external state or data.

Key Characteristics of Pure Functions:

92

93

• Deterministic: Given the same input, a pure function will always return the same
output.

• No Side Effects: Pure functions do not modify global variables, perform I/O
operations, or change the state of mutable objects.

4.1.2 Benefits of Pure Functions

1. Predictability:

• Pure functions are easier to reason about because their behavior is consistent
and predictable.

2. Testability:

• Pure functions are easier to test because they depend only on their inputs
and produce no side effects.

3. Concurrency:

• Pure functions are inherently thread-safe because they do not rely on or
modify shared state.

4. Reusability:

• Pure functions can be reused in different parts of a program without
worrying about side effects.

94

4.1.3 Implementing Pure Functions in C++

In C++, you can implement pure functions by adhering to the principles of functional
programming. Below are examples and guidelines for writing pure functions in C++.

Example of a Pure Function

int add(int a, int b) {
return a + b;

}

• Explanation:

– The add function is pure because:

∗ It always returns the same result for the same inputs (e.g., add(2, 3) will
always return 5).

∗ It does not modify any external state or produce side effects.

4.1.4 Example of an Impure Function

int counter = 0;

int increment() {
return ++counter; // Modifies external state (counter)

}

• Explanation:

– The increment function is impure because:

95

∗ It modifies the global variable counter, which is an external state.

∗ Its output depends on the current value of counter, making it
non-deterministic.

Guidelines for Writing Pure Functions

1. Avoid Modifying External State:

• Do not modify global variables, static variables, or mutable objects passed by
reference.

• Example:

int add(int a, int b) {
return a + b; // No external state is modified

}

2. Avoid I/O Operations:

• Do not perform input/output operations, such as reading from or writing to
files, the console, or the network.

• Example:

int square(int x) {
return x * x; // No I/O operations

}

3. Use Immutable Data:

• Prefer using const and constexpr to ensure immutability.

96

• Example:

constexpr int square(int x) {
return x * x; // Immutable and evaluated at compile time

}

4. Return New Data Instead of Modifying Inputs:

• Instead of modifying input parameters, return new data structures.

• Example:

std::vector<int> squareElements(const std::vector<int>& input) {
std::vector<int> result;
for (int x : input) {

result.push_back(x * x);
}
return result; // Returns a new vector instead of modifying the input

}

Advanced Example: Pure Function with Higher-Order Functions

#include <vector>
#include <algorithm>
#include <iostream>

// Pure function: squares an integer
int square(int x) {

return x * x;
}

97

// Higher-order function: applies a function to each element of a vector
std::vector<int> map(const std::vector<int>& input, int (*func)(int)) {

std::vector<int> result;
for (int x : input) {

result.push_back(func(x));
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

– The square function is pure because it always returns the same output for the
same input and has no side effects.

– The map function is also pure because it does not modify the input vector
and returns a new vector.

4.1.5 Common Pitfalls and How to Avoid Them

1. Accidentally Modifying External State:

• Ensure that your functions do not modify global or static variables.

98

• Example:

int globalCounter = 0;

int impureIncrement() {
return ++globalCounter; // Avoid this

}

2. Performing I/O Operations:

• Keep I/O operations separate from pure functions.

• Example:

void printMessage(const std::string& message) {
std::cout << message; // I/O operation should be separate

}

3. Using Mutable References:

• Avoid passing mutable references to functions if they modify the referenced
data.

• Example:

void impureModify(std::vector<int>& data) {
data.push_back(42); // Avoid this in pure functions

}

99

4.1.6 Summary

Pure functions are a fundamental concept in functional programming, offering benefits
like predictability, testability, and concurrency safety. By adhering to the principles of
immutability and avoiding side effects, you can write pure functions in C++ that are
robust, maintainable, and efficient. Here are the key takeaways:

• Pure Functions: Always produce the same output for the same input and have no
side effects.

• Guidelines: Avoid modifying external state, performing I/O operations, and using
mutable references.

• Examples: Use pure functions for mathematical operations, data transformations,
and higher-order functions.

By mastering pure functions, you can write functional-style C++ code that is easier to
reason about, test, and maintain.

4.2 Benefits of Pure Functions in Avoiding Side Effects

Pure functions are a cornerstone of functional programming, and one of their most
significant advantages is their ability to avoid side effects. Side effects can introduce
complexity, unpredictability, and bugs into your code. This section explores the benefits
of pure functions in avoiding side effects and how they contribute to writing cleaner,
more maintainable, and reliable code.

4.2.1What Are Side Effects?

A side effect occurs when a function modifies some state outside its local scope or
interacts with the external world. Common examples of side effects include:

100

• Modifying global or static variables.

• Changing the value of mutable arguments passed by reference.

• Performing I/O operations (e.g., reading from or writing to files, the console, or
the network).

• Throwing exceptions or modifying the program's control flow.

4.2.2Why Are Side Effects Problematic?

Side effects can lead to several issues in software development:

1. Unpredictability:

• Functions with side effects may produce different results depending on the
program's state, making their behavior harder to predict.

2. Harder Debugging:

• Side effects can introduce bugs that are difficult to trace because they depend
on external state or interactions.

3. Concurrency Issues:

• Shared mutable state can lead to race conditions and other concurrency
problems in multi-threaded programs.

4. Reduced Reusability:

• Functions with side effects are harder to reuse because they depend on or
modify external state.

101

4.2.3 How Pure Functions Avoid Side Effects

Pure functions, by definition, do not have side effects. They rely only on their input
parameters and produce output without modifying any external state. This property
makes them highly predictable, testable, and reusable.

Example: Pure Function Without Side Effects

int add(int a, int b) {
return a + b;

}

• Explanation:

– The add function is pure because:

∗ It depends only on its input parameters (a and b).

∗ It does not modify any external state or perform I/O operations.

∗ It always returns the same result for the same inputs.

Example: Impure Function with Side Effects

int globalCounter = 0;

int increment() {
return ++globalCounter; // Modifies external state (globalCounter)

}

• Explanation:

– The increment function is impure because:

102

∗ It modifies the global variable globalCounter, which is an external state.

∗ Its output depends on the current value of globalCounter, making it
non-deterministic.

4.2.4 Benefits of Avoiding Side Effects

1. Predictable Behavior:

• Pure functions always produce the same output for the same input, making
their behavior predictable and easier to reason about.

• Example:

int square(int x) {
return x * x; // Always returns the same result for the same input

}

2. Easier Testing:

• Pure functions are easier to test because they do not depend on or modify
external state. You can test them in isolation with a set of inputs and
expected outputs.

• Example:

#include <cassert>

int add(int a, int b) {
return a + b;

}

103

void testAdd() {
assert(add(2, 3) == 5);
assert(add(-1, 1) == 0);

}

3. Concurrency Safety:

• Pure functions are inherently thread-safe because they do not rely on or
modify shared state. This makes them ideal for concurrent and parallel
programming.

• Example:

#include <vector>
#include <algorithm>
#include <execution>
#include <iostream>

int square(int x) {
return x * x;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::for_each(std::execution::par, numbers.begin(), numbers.end(), [](int& x) {

x = square(x); // Safe to parallelize because square is pure
});

for (int x : numbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

104

4. Reusability:

• Pure functions can be reused in different parts of a program without
worrying about side effects or external dependencies.

• Example:

int multiply(int a, int b) {
return a * b;

}

int area(int length, int width) {
return multiply(length, width); // Reusing the pure function

}

5. Modularity:

• Pure functions promote modularity by breaking down complex tasks into
smaller, independent units that can be composed to build larger systems.

• Example:

#include <vector>
#include <algorithm>
#include <iostream>

int square(int x) {
return x * x;

}

std::vector<int> map(const std::vector<int>& input, int (*func)(int)) {
std::vector<int> result;

105

for (int x : input) {
result.push_back(func(x));

}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

4.2.5 Real-World Applications of Pure Functions

1. Data Processing:

• Pure functions are ideal for data processing tasks, such as filtering,
transforming, and aggregating data.

• Example:

#include <vector>
#include <algorithm>
#include <iostream>

bool isEven(int x) {
return x % 2 == 0;

}

106

int square(int x) {
return x * x;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
std::vector<int> evenSquares;

std::copy_if(numbers.begin(), numbers.end(), std::back_inserter(evenSquares),
isEven);↪→

std::transform(evenSquares.begin(), evenSquares.end(), evenSquares.begin(), square);

for (int x : evenSquares) {
std::cout << x << ” ”; // Output: 4 16 36

}
}

2. Mathematical Computations:

• Pure functions are widely used in mathematical computations, where
predictability and correctness are critical.

• Example:

double calculateCircleArea(double radius) {
return 3.14159 * radius * radius;

}

3. Functional Programming Libraries:

107

• Libraries like Range-v3 leverage pure functions to provide functional-style
operations on collections.

• Example:

#include <ranges>
#include <vector>
#include <iostream>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto evenSquares = numbers | std::views::filter([](int x) { return x % 2 == 0; })

| std::views::transform([](int x) { return x * x; });

for (int x : evenSquares) {
std::cout << x << ” ”; // Output: 4 16

}
}

4.2.6 Summary

Pure functions offer significant benefits in avoiding side effects, leading to code that is:

• Predictable: Always produces the same output for the same input.

• Testable: Easier to test in isolation.

• Concurrency-Safe: Inherently thread-safe due to the absence of shared mutable
state.

• Reusable: Can be reused across different parts of a program.

• Modular: Promotes modularity and composability.

108

By embracing pure functions, you can write cleaner, more maintainable, and reliable
C++ code that is well-suited for functional programming.

Chapter 5

Immutability

5.1 Using const and constexpr to Ensure Immutability

Immutability is a key principle in functional programming, ensuring that data does not
change after it is created. In C++, immutability can be enforced using the const and
constexpr keywords. This section explores how to use these keywords effectively to write
immutable code, along with their benefits and practical examples.

5.1.1What is Immutability?

Immutability refers to the property of data that cannot be modified after it is created.
Immutable data structures are essential in functional programming because they:

• Ensure Predictability: Data remains consistent throughout its lifetime.

• Simplify Concurrency: Immutable data is inherently thread-safe.

• Promote Functional Purity: Functions that operate on immutable data are easier
to reason about and test.

109

110

5.1.2 The const Keyword

The const keyword in C++ is used to declare that a variable, function parameter, or
member function does not modify the state of an object.

Immutable Variables

1. Declaring Immutable Variables:

• Use const to declare variables that cannot be modified after initialization.

• Example:

const int x = 10;
// x = 20; // Error: Cannot modify a const variable

2. Benefits:

• Prevents accidental modification of variables.

• Makes the intent of the code clearer.

Immutable Function Parameters

1. Using const for Parameters:

• Use const to ensure that function parameters are not modified within the
function.

• Example:

111

void printValue(const int value) {
// value = 42; // Error: Cannot modify a const parameter
std::cout << value << ”\n”;

}

2. Benefits:

• Prevents unintended side effects within functions.

• Makes functions more predictable and easier to test.

Immutable Member Functions

1. Declaring Immutable Member Functions:

• Use const to declare member functions that do not modify the state of the
object.

• Example:

class MyClass {
public:

int getValue() const {
return value; // This function does not modify the object

}
private:

int value = 42;
};

2. Benefits:

• Ensures that member functions do not alter the object's state.

• Allows const objects to call these functions.

112

5.1.3 The constexpr Keyword

The constexpr keyword in C++ is used to declare that a variable or function can be
evaluated at compile time. This promotes immutability and performance optimization.

Immutable Compile-Time Constants

1. Declaring Compile-Time Constants:

• Use constexpr to declare variables that are evaluated at compile time.

• Example:

constexpr int x = 10;
constexpr int y = x + 5; // Evaluated at compile time

2. Benefits:

• Improves performance by evaluating expressions at compile time.

• Ensures that the value is immutable and known at compile time.

Immutable Compile-Time Functions

1. Declaring Compile-Time Functions:

• Use constexpr to declare functions that can be evaluated at compile time.

• Example:

113

constexpr int square(int x) {
return x * x;

}

constexpr int result = square(5); // Evaluated at compile time

2. Benefits:

• Enables compile-time computation, improving runtime performance.

• Ensures that the function is pure and immutable.

Combining const and constexpr

1. Using const and constexpr Together:

• Combine const and constexpr to declare immutable compile-time constants.

• Example:

constexpr const int x = 10; // Immutable and evaluated at compile time

2. Benefits:

• Ensures both immutability and compile-time evaluation.

5.1.4 Practical Examples

Immutable Data Structures

114

1. Immutable Vector:

• Use const to ensure that a vector cannot be modified after creation.

• Example:

const std::vector<int> numbers = {1, 2, 3, 4};
// numbers.push_back(5); // Error: Cannot modify a const vector

2. Immutable Class:

• Use const member functions to ensure that class methods do not modify the
object's state.

• Example:

class ImmutablePoint {
public:

ImmutablePoint(int x, int y) : x(x), y(y) {}

int getX() const { return x; }
int getY() const { return y; }

private:
const int x;
const int y;

};

ImmutablePoint point(3, 4);
// point.getX() = 5; // Error: Cannot modify a const member

Compile-Time Computations

115

1. Compile-Time Factorial:

• Use constexpr to compute factorials at compile time.

• Example:

constexpr int factorial(int n) {
return (n <= 1) ? 1 : n * factorial(n - 1);

}

constexpr int result = factorial(5); // Evaluated at compile time

2. Compile-Time String Length:

• Use constexpr to compute the length of a string at compile time.

• Example:

constexpr int stringLength(const char* str) {
int length = 0;
while (str[length] != '\0') {

++length;
}
return length;

}

constexpr int length = stringLength(”Hello”); // Evaluated at compile time

5.1.5 Benefits of Using const and constexpr

1. Predictability:

116

• Immutable data ensures that values remain consistent throughout their
lifetime.

2. Performance:

• constexpr enables compile-time evaluation, reducing runtime overhead.

3. Concurrency Safety:

• Immutable data is inherently thread-safe, simplifying concurrent
programming.

4. Code Clarity:

• Using const and constexpr makes the intent of the code clearer and reduces
the risk of bugs.

5.1.6 Summary

Using const and constexpr in C++ is essential for enforcing immutability, a key
principle in functional programming. By declaring variables, function parameters, and
member functions as const, you can ensure that data remains unchanged after creation.
Additionally, constexpr allows for compile-time evaluation, improving performance and
enabling immutable compile-time computations.
Key Takeaways:

• const: Ensures immutability at runtime.

• constexpr: Ensures immutability and compile-time evaluation.

• Benefits: Predictability, performance, concurrency safety, and code clarity.

By leveraging const and constexpr, you can write more robust, maintainable, and
efficient C++ code that aligns with functional programming principles.

117

5.2 Immutable Data Structures in C++

Immutable data structures are a fundamental concept in functional programming. They
ensure that once data is created, it cannot be modified, leading to more predictable and
maintainable code. This section explores how to implement and use immutable data
structures in C++, along with their benefits and practical examples.

5.2.1What Are Immutable Data Structures?

Immutable data structures are data structures that cannot be modified after they are
created. Instead of changing the existing data, operations on immutable data structures
return new instances with the desired changes. This approach aligns with the principles
of functional programming, where immutability and purity are emphasized.

5.2.2 Benefits of Immutable Data Structures

1. Predictability:

• Immutable data structures ensure that data remains consistent throughout
its lifetime, making the program's behavior more predictable.

2. Concurrency Safety:

• Immutable data structures are inherently thread-safe because they cannot be
modified after creation, eliminating the risk of race conditions.

3. Easier Debugging:

• Since data does not change, debugging becomes easier as you do not need to
track changes to variables over time.

118

4. Functional Purity:

• Immutable data structures promote functional purity by ensuring that
functions do not have side effects.

5.2.3 Implementing Immutable Data Structures in C++

In C++, immutability can be enforced using the const keyword and by designing data
structures that return new instances instead of modifying existing ones.

Immutable Vector

1. Using const for Immutability:

• Declare a vector as const to prevent modifications after creation.

• Example:

const std::vector<int> numbers = {1, 2, 3, 4};
// numbers.push_back(5); // Error: Cannot modify a const vector

2. Creating a New Vector for Modifications:

• Instead of modifying the existing vector, create a new vector with the desired
changes.

• Example:

std::vector<int> addElement(const std::vector<int>& vec, int element) {
std::vector<int> newVec = vec;
newVec.push_back(element);
return newVec;

119

}

int main() {
const std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> newNumbers = addElement(numbers, 5);

for (int x : newNumbers) {
std::cout << x << ” ”; // Output: 1 2 3 4 5

}
}

Immutable Class

1. Immutable Class with const Members:

• Use const members to ensure that the class's state cannot be modified after
construction.

• Example:

class ImmutablePoint {
public:

ImmutablePoint(int x, int y) : x(x), y(y) {}

int getX() const { return x; }
int getY() const { return y; }

private:
const int x;
const int y;

};

120

int main() {
ImmutablePoint point(3, 4);
// point.getX() = 5; // Error: Cannot modify a const member
std::cout << ”X: ” << point.getX() << ”, Y: ” << point.getY() << ”\n”; // Output:

X: 3, Y: 4↪→

}

2. Returning New Instances for Modifications:

• Instead of modifying the existing instance, return a new instance with the
desired changes.

• Example:

class ImmutablePoint {
public:

ImmutablePoint(int x, int y) : x(x), y(y) {}

int getX() const { return x; }
int getY() const { return y; }

ImmutablePoint withX(int newX) const {
return ImmutablePoint(newX, y);

}

ImmutablePoint withY(int newY) const {
return ImmutablePoint(x, newY);

}

private:
const int x;

121

const int y;
};

int main() {
ImmutablePoint point(3, 4);
ImmutablePoint newPoint = point.withX(5);

std::cout << ”X: ” << newPoint.getX() << ”, Y: ” << newPoint.getY() << ”\n”; //
Output: X: 5, Y: 4↪→

}

Immutable Linked List

1. Immutable Linked List Implementation:

• Implement a linked list where each operation returns a new list instead of
modifying the existing one.

• Example:

#include <iostream>
#include <memory>

template <typename T>
class ImmutableList {
public:

ImmutableList() : head(nullptr) {}

ImmutableList(T value, std::shared_ptr<ImmutableList<T>> tail)
: head(std::make_shared<Node>(value, tail)) {}

122

bool isEmpty() const {
return head == nullptr;

}

T front() const {
if (isEmpty()) {

throw std::runtime_error(”List is empty”);
}
return head->value;

}

std::shared_ptr<ImmutableList<T>> popFront() const {
if (isEmpty()) {

throw std::runtime_error(”List is empty”);
}
return head->next;

}

std::shared_ptr<ImmutableList<T>> pushFront(T value) const {
return std::make_shared<ImmutableList<T>>(value, head);

}

private:
struct Node {

T value;
std::shared_ptr<ImmutableList<T>> next;

Node(T value, std::shared_ptr<ImmutableList<T>> next)
: value(value), next(next) {}

};

std::shared_ptr<Node> head;

123

};

int main() {
auto list = std::make_shared<ImmutableList<int>>();
list = list->pushFront(3);
list = list->pushFront(2);
list = list->pushFront(1);

while (!list->isEmpty()) {
std::cout << list->front() << ” ”; // Output: 1 2 3
list = list->popFront();

}
}

5.2.4 Practical Applications of Immutable Data Structures

1. Functional Transformations:

• Use immutable data structures for functional transformations, such as
mapping and filtering.

• Example:

std::vector<int> map(const std::vector<int>& input, int (*func)(int)) {
std::vector<int> result;
for (int x : input) {

result.push_back(func(x));
}
return result;

}

124

int square(int x) {
return x * x;

}

int main() {
const std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

2. Concurrent Programming:

• Immutable data structures simplify concurrent programming by eliminating
the need for locks and synchronization.

• Example:

#include <vector>
#include <thread>
#include <iostream>

void printVector(const std::vector<int>& vec) {
for (int x : vec) {

std::cout << x << ” ”;
}
std::cout << ”\n”;

}

int main() {

125

const std::vector<int> numbers = {1, 2, 3, 4};

std::thread t1(printVector, numbers);
std::thread t2(printVector, numbers);

t1.join();
t2.join();

}

5.2.5 Summary

Immutable data structures are a powerful tool in functional programming, ensuring that
data remains consistent and predictable throughout its lifetime. By using const and
designing data structures that return new instances instead of modifying existing ones,
you can write more robust, maintainable, and concurrent-safe C++ code.
Key Takeaways:

• Immutable Data Structures: Ensure data cannot be modified after creation.

• Benefits: Predictability, concurrency safety, easier debugging, and functional
purity.

• Implementation: Use const and return new instances for modifications.

By embracing immutable data structures, you can write functional-style C++ code that
is easier to reason about, test, and maintain.

Chapter 6

First-Class Functions

6.1 Using Functions as Values

In functional programming, functions are first-class citizens, meaning they can be
treated like any other value. This includes passing functions as arguments to other
functions, returning functions from functions, and storing functions in data structures.
This section explores how to use functions as values in C++, leveraging modern features
like lambda expressions, std::function, and higher-order functions.

6.1.1What Are First-Class Functions?

First-class functions are functions that can be:

• Assigned to variables.

• Passed as arguments to other functions.

• Returned from functions.

126

127

• Stored in data structures (e.g., vectors, maps).

This concept is central to functional programming and enables powerful abstractions like
higher-order functions and function composition.

6.1.2 Lambda Expressions in C++

Lambda expressions are a concise way to define anonymous functions in C++. They are
a key tool for using functions as values.

Syntax of Lambda Expressions
A lambda expression has the following syntax:

[capture](parameters) -> return_type { body }

• Capture: Specifies which variables from the surrounding scope are accessible inside
the lambda.

• Parameters: The input parameters of the lambda.

• Return Type: The type of the value returned by the lambda (can often be omitted
for the compiler to deduce).

• Body: The code executed when the lambda is called.

Example: Assigning a Lambda to a Variable

auto square = [](int x) { return x * x; };
int result = square(5); // result = 25

• Explanation:

128

– The lambda [](int x) { return x * x; } is assigned to the variable square.

– The lambda can then be called like a regular function.

Example: Passing a Lambda as an Argument

#include <iostream>
#include <vector>
#include <algorithm>

void printVector(const std::vector<int>& vec, void (*func)(int)) {
for (int x : vec) {

func(x);
}

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
printVector(numbers, [](int x) { std::cout << x << ” ”; }); // Output: 1 2 3 4

}

• Explanation:

– The lambda [](int x) { std::cout << x << ” ”; } is passed as an argument to
the printVector function.

– The lambda is used to print each element of the vector.

6.1.3 Using std::function for Type Safety

The std::function template provides a type-safe way to store and pass functions as
values. It can hold any callable object (e.g., lambdas, function pointers, functors).

129

Example: Storing a Lambda in std::function

#include <iostream>
#include <functional>

int main() {
std::function<int(int)> square = [](int x) { return x * x; };
int result = square(5); // result = 25
std::cout << result << ”\n”;

}

• Explanation:

– The lambda [](int x) { return x * x; } is stored in a std::function<int(int)>
object.

– The std::function object can be called like a regular function.

Example: Passing std::function as an Argument

#include <iostream>
#include <functional>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, [](int x) { return x * x; }); // Output: 25

}

• Explanation:

130

– The applyFunction function takes a std::function<int(int)> as an argument.

– A lambda is passed to applyFunction and applied to the input value.

6.1.4 Higher-Order Functions

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are a powerful abstraction in functional programming.

Example: A Higher-Order Function

#include <iostream>
#include <functional>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, [](int x) { return x * x; }); // Output: 25

}

• Explanation:

– The createMultiplier function returns a lambda that multiplies its input by a
given factor.

– The returned lambda is stored in doubleValue and tripleValue and used to
multiply values.

Example: Using std::transform with a Lambda

131

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers(numbers.size());

std::transform(numbers.begin(), numbers.end(), squaredNumbers.begin(),
[](int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

– The std::transform function applies a lambda to each element of the numbers
vector.

– The result is stored in the squaredNumbers vector.

6.1.5 Storing Functions in Data Structures

Functions can be stored in data structures like vectors, maps, or custom containers,
enabling dynamic behavior and flexibility.

Example: Storing Lambdas in a Vector

132

#include <iostream>
#include <vector>
#include <functional>

int main() {
std::vector<std::function<int(int)>> functions;

functions.push_back([](int x) { return x * x; });
functions.push_back([](int x) { return x + x; });
functions.push_back([](int x) { return x * 2; });

for (const auto& func : functions) {
std::cout << func(5) << ”\n”; // Output: 25, 10, 10

}
}

• Explanation:

– A vector of std::function<int(int)> objects is created.

– Lambdas are added to the vector and called dynamically.

Example: Using a Map to Store Functions

#include <iostream>
#include <map>
#include <functional>
#include <string>

int main() {
std::map<std::string, std::function<int(int, int)>> operations;

133

operations[”add”] = [](int a, int b) { return a + b; };
operations[”multiply”] = [](int a, int b) { return a * b; };

std::cout << operations[”add”](2, 3) << ”\n”; // Output: 5
std::cout << operations[”multiply”](2, 3) << ”\n”; // Output: 6

}

• Explanation:

– A map is used to associate strings (e.g., ”add”, ”multiply”) with functions.

– The functions are called dynamically based on the input string.

6.1.6 Summary

Using functions as values is a powerful feature of functional programming that enables
higher-order functions, dynamic behavior, and flexible abstractions. In C++, this is
achieved through:

• Lambda Expressions: Concise syntax for defining anonymous functions.

• std::function: Type-safe storage and passing of callable objects.

• Higher-Order Functions: Functions that take or return other functions.

• Storing Functions in Data Structures: Enables dynamic and flexible behavior.

By leveraging these features, you can write expressive, modular, and reusable C++ code
that aligns with functional programming principles.

134

6.2 Storing Functions in Variables and Passing Them as
Arguments

In functional programming, functions are first-class citizens, meaning they can be
treated like any other value. This includes storing functions in variables and passing
them as arguments to other functions. This section explores how to achieve this in C++
using lambda expressions, std::function, and function pointers.

6.2.1 Storing Functions in Variables

Storing functions in variables allows you to treat functions as data, enabling dynamic
behavior and flexibility in your programs.

Using Lambda Expressions
Lambda expressions are a concise way to define anonymous functions that can be stored
in variables.

1. Example: Storing a Lambda in a Variable

auto square = [](int x) { return x * x; };
int result = square(5); // result = 25

• Explanation:

– The lambda [](int x) { return x * x; } is assigned to the variable square.

– The lambda can then be called like a regular function.

2. Example: Storing a Lambda in std::function

135

#include <iostream>
#include <functional>

int main() {
std::function<int(int)> square = [](int x) { return x * x; };
int result = square(5); // result = 25
std::cout << result << ”\n”;

}

• Explanation:

– The lambda is stored in a std::function<int(int)> object, which provides
type safety and flexibility.

– The std::function object can be called like a regular function.

Using Function Pointers
Function pointers are a traditional way to store and call functions in C++.

1. Example: Storing a Function Pointer

#include <iostream>

int square(int x) {
return x * x;

}

int main() {
int (*funcPtr)(int) = square;
int result = funcPtr(5); // result = 25
std::cout << result << ”\n”;

}

136

• Explanation:

– The function square is assigned to the function pointer funcPtr.
– The function pointer can be called like a regular function.

6.2.2 Passing Functions as Arguments

Passing functions as arguments to other functions enables higher-order functions, which
are a key concept in functional programming.

Using Lambda Expressions

1. Example: Passing a Lambda as an Argument

#include <iostream>
#include <vector>
#include <algorithm>

void applyFunction(const std::vector<int>& vec, const std::function<void(int)>& func) {
for (int x : vec) {

func(x);
}

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
applyFunction(numbers, [](int x) { std::cout << x << ” ”; }); // Output: 1 2 3 4

}

• Explanation:

– The lambda [](int x) { std::cout << x << ” ”; } is passed as an
argument to the applyFunction function.

137

– The lambda is used to print each element of the vector.

Using std::function

1. Example: Passing a std::function as an Argument

#include <iostream>
#include <functional>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, [](int x) { return x * x; }); // Output: 25

}

• Explanation:

– The applyFunction function takes a std::function<int(int)> as an
argument.

– A lambda is passed to applyFunction and applied to the input value.

Using Function Pointers

1. Example: Passing a Function Pointer as an Argument

#include <iostream>

int square(int x) {

138

return x * x;
}

void applyFunction(int x, int (*func)(int)) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, square); // Output: 25

}

• Explanation:

– The function square is passed as a function pointer to applyFunction.

– The function pointer is called within applyFunction.

6.2.3 Practical Applications

Custom Sorting with Lambdas

1. Example: Sorting a Vector with a Custom Comparator

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
std::sort(numbers.begin(), numbers.end(), [](int a, int b) {

return a > b; // Sort in descending order

139

});

for (int x : numbers) {
std::cout << x << ” ”; // Output: 4 3 2 1

}
}

• Explanation:

– A lambda is used as a custom comparator to sort the vector in
descending order.

Event Handling with std::function

1. Example: Simulating an Event Handler

#include <iostream>
#include <functional>
#include <vector>

class EventHandler {
public:

void registerCallback(const std::function<void()>& callback) {
callbacks.push_back(callback);

}

void triggerEvent() {
for (const auto& callback : callbacks) {

callback();
}

}

140

private:
std::vector<std::function<void()>> callbacks;

};

int main() {
EventHandler handler;

handler.registerCallback([]() { std::cout << ”Callback 1\n”; });
handler.registerCallback([]() { std::cout << ”Callback 2\n”; });

handler.triggerEvent(); // Output: Callback 1, Callback 2
}

• Explanation:

– The EventHandler class stores callbacks in a vector of
std::function<void()>.

– Lambdas are registered as callbacks and triggered when an event occurs.

6.2.4 Summary

Storing functions in variables and passing them as arguments are powerful techniques in
functional programming that enable higher-order functions, dynamic behavior, and
flexible abstractions. In C++, this is achieved through:

• Lambda Expressions: Concise syntax for defining anonymous functions.

• std::function: Type-safe storage and passing of callable objects.

• Function Pointers: Traditional way to store and call functions.

141

By leveraging these features, you can write expressive, modular, and reusable C++ code
that aligns with functional programming principles. Here are the key takeaways:

• Storing Functions: Use lambdas, std::function, or function pointers to store
functions in variables.

• Passing Functions: Pass functions as arguments to enable higher-order functions
and dynamic behavior.

• Practical Applications: Custom sorting, event handling, and more.

These techniques will help you write more flexible and maintainable code, making your
programs easier to reason about and extend.

Chapter 7

Lambda Functions

7.1Writing Lambda Functions in C++

Lambda functions are a powerful feature in C++ that allow you to define anonymous
functions inline. They are particularly useful in functional programming for creating
concise and expressive code. This section explores the syntax, usage, and benefits of
lambda functions in C++.

7.1.1What Are Lambda Functions?

Lambda functions are anonymous functions that can be defined inline and used as
first-class citizens. They are particularly useful for short, throwaway functions that are
used only once or passed as arguments to higher-order functions.

7.1.2 Syntax of Lambda Functions

The general syntax of a lambda function in C++ is as follows:

142

143

[capture](parameters) -> return_type { body }

• Capture: Specifies which variables from the surrounding scope are accessible inside
the lambda.

• Parameters: The input parameters of the lambda.

• Return Type: The type of the value returned by the lambda (can often be omitted
for the compiler to deduce).

• Body: The code executed when the lambda is called.

7.1.3 Basic Examples of Lambda Functions

Simple Lambda Function

auto square = [](int x) { return x * x; };
int result = square(5); // result = 25

• Explanation:

– The lambda [](int x) { return x * x; } is assigned to the variable square.

– The lambda can then be called like a regular function.

Lambda Function with Multiple Parameters

auto add = [](int a, int b) { return a + b; };
int result = add(3, 4); // result = 7

144

• Explanation:

– The lambda [](int a, int b) { return a + b; } takes two parameters and
returns their sum.

Lambda Function with Explicit Return Type

auto divide = [](double a, double b) -> double { return a / b; };
double result = divide(10.0, 2.0); // result = 5.0

• Explanation:

– The lambda [](double a, double b) -> double { return a / b; } explicitly
specifies the return type as double.

7.1.4 Capturing Variables in Lambda Functions

Lambda functions can capture variables from their surrounding scope, allowing them to
use these variables within their body. There are several ways to capture variables:

Capture by Value

int x = 10;
auto lambda = [x]() { return x; };
int result = lambda(); // result = 10

• Explanation:

– The lambda captures the variable x by value, meaning it gets a copy of x at
the time the lambda is created.

145

Capture by Reference

int x = 10;
auto lambda = [&x]() { return x; };
x = 20;
int result = lambda(); // result = 20

• Explanation:

– The lambda captures the variable x by reference, meaning it accesses the
original x and any changes to x are reflected in the lambda.

Capture All by Value

int x = 10, y = 20;
auto lambda = [=]() { return x + y; };
int result = lambda(); // result = 30

• Explanation:

– The lambda captures all variables from the surrounding scope by value using
[=].

Capture All by Reference

int x = 10, y = 20;
auto lambda = [&]() { return x + y; };
x = 30;
int result = lambda(); // result = 50

146

• Explanation:

– The lambda captures all variables from the surrounding scope by reference
using [&].

Mixed Capture

int x = 10, y = 20;
auto lambda = [x, &y]() { return x + y; };
y = 30;
int result = lambda(); // result = 40

• Explanation:

– The lambda captures x by value and y by reference.

7.1.5 Using Lambda Functions with Standard Algorithms

Lambda functions are often used with Standard Library algorithms to provide custom
behavior.

Example: Using std::sort with a Lambda

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
std::sort(numbers.begin(), numbers.end(), [](int a, int b) {

return a > b; // Sort in descending order

147

});

for (int x : numbers) {
std::cout << x << ” ”; // Output: 4 3 2 1

}
}

• Explanation:

– A lambda is used as a custom comparator to sort the vector in descending
order.

Example: Using std::transform with a Lambda

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> squaredNumbers(numbers.size());

std::transform(numbers.begin(), numbers.end(), squaredNumbers.begin(),
[](int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

148

– The std::transform function applies a lambda to each element of the numbers
vector.

– The result is stored in the squaredNumbers vector.

7.1.6 Advanced Lambda Features

Generic Lambdas (C++14)
Generic lambdas allow you to use auto as a parameter type, making the lambda more
flexible.

auto add = [](auto a, auto b) { return a + b; };
int result1 = add(2, 3); // result1 = 5
double result2 = add(2.5, 3.5); // result2 = 6.0

• Explanation:

– The lambda [](auto a, auto b) { return a + b; } can accept parameters of any
type.

Mutable Lambdas
By default, lambda functions are immutable, meaning they cannot modify variables
captured by value. The mutable keyword allows you to modify these variables.

int x = 10;
auto lambda = [x]() mutable { x += 5; return x; };
int result = lambda(); // result = 15

• Explanation:

– The lambda captures x by value and modifies it using the mutable keyword.

149

7.1.7 Summary

Lambda functions are a powerful and flexible feature in C++ that enable you to write
concise and expressive code. They are particularly useful in functional programming for
creating anonymous functions that can be passed as arguments, stored in variables, and
used with Standard Library algorithms.
Key Takeaways:

• Syntax: [capture](parameters) -> return_type { body }

• Capturing Variables: By value ([x]), by reference ([&x]), or mixed ([x, &y]).

• Usage: With Standard Library algorithms, higher-order functions, and more.

• Advanced Features: Generic lambdas (C++14) and mutable lambdas.

By mastering lambda functions, you can write more expressive, modular, and reusable
C++ code that aligns with functional programming principles.

7.2 Capture Clauses and Their Use in Lambda Functions

Capture clauses in lambda functions allow you to specify how variables from the
surrounding scope are accessed within the lambda. They are a powerful feature that
enables lambdas to interact with their environment, making them more flexible and
expressive. This section explores the different types of capture clauses, their syntax, and
their practical applications.

7.2.1What Are Capture Clauses?

Capture clauses define how variables from the enclosing scope are captured by a lambda
function. They determine whether the lambda accesses these variables by value or by

150

reference, and whether it can modify them.

7.2.2 Syntax of Capture Clauses

Capture clauses are specified within the square brackets [] at the beginning of a lambda
expression. The general syntax is:

[capture-list](parameters) -> return_type { body }

• Capture List: Specifies which variables are captured and how (by value or by
reference).

7.2.3 Types of Capture Clauses

Capture by Value
Capture by value creates a copy of the variable at the time the lambda is defined. The
lambda cannot modify the original variable.

1. Example: Capture by Value

int x = 10;
auto lambda = [x]() { return x; };
int result = lambda(); // result = 10

• Explanation:

– The lambda captures x by value, meaning it gets a copy of x at the time
the lambda is created.

– Changes to x after the lambda is defined do not affect the captured value.

151

2. Example: Capture Multiple Variables by Value

int x = 10, y = 20;
auto lambda = [x, y]() { return x + y; };
int result = lambda(); // result = 30

• Explanation:

– The lambda captures both x and y by value.

Capture by Reference
Capture by reference allows the lambda to access and modify the original variable.

1. Example: Capture by Reference

int x = 10;
auto lambda = [&x]() { return x; };
x = 20;
int result = lambda(); // result = 20

• Explanation:

– The lambda captures x by reference, meaning it accesses the original x.
– Changes to x are reflected in the lambda.

2. Example: Capture Multiple Variables by Reference

int x = 10, y = 20;
auto lambda = [&x, &y]() { return x + y; };
x = 30;
int result = lambda(); // result = 50

152

• Explanation:

– The lambda captures both x and y by reference.

Capture All by Value
Capture all by value captures all variables from the surrounding scope by value using
[=].

1. Example: Capture All by Value

int x = 10, y = 20;
auto lambda = [=]() { return x + y; };
int result = lambda(); // result = 30

• Explanation:

– The lambda captures all variables from the surrounding scope by value.

Capture All by Reference
Capture all by reference captures all variables from the surrounding scope by reference
using [&].

1. Example: Capture All by Reference

int x = 10, y = 20;
auto lambda = [&]() { return x + y; };
x = 30;
int result = lambda(); // result = 50

• Explanation:

153

– The lambda captures all variables from the surrounding scope by
reference.

Mixed Capture
Mixed capture allows you to capture some variables by value and others by reference.

1. Example: Mixed Capture

int x = 10, y = 20;
auto lambda = [x, &y]() { return x + y; };
y = 30;
int result = lambda(); // result = 40

• Explanation:

– The lambda captures x by value and y by reference.

Capture this Pointer
In a class or struct, you can capture the this pointer to access member variables and
functions.

1. Example: Capture this Pointer

class MyClass {
public:

int value = 10;
auto getLambda() {

return [this]() { return value; };
}

};

154

int main() {
MyClass obj;
auto lambda = obj.getLambda();
int result = lambda(); // result = 10

}

• Explanation:

– The lambda captures the this pointer, allowing it to access the member
variable value.

Custom Sorting with Captured Variables

1. Example: Sorting with a Custom Comparator

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
int threshold = 2;
std::sort(numbers.begin(), numbers.end(), [threshold](int a, int b) {

return a > threshold && b <= threshold; // Custom sorting logic
});

for (int x : numbers) {
std::cout << x << ” ”; // Output depends on threshold

}
}

155

• Explanation:

– The lambda captures threshold by value and uses it in the custom
sorting logic.

Event Handling with Captured Variables

1. Example: Simulating an Event Handler

#include <iostream>
#include <functional>
#include <vector>

class EventHandler {
public:

void registerCallback(const std::function<void()>& callback) {
callbacks.push_back(callback);

}

void triggerEvent() {
for (const auto& callback : callbacks) {

callback();
}

}

private:
std::vector<std::function<void()>> callbacks;

};

int main() {
EventHandler handler;
int eventCount = 0;

156

handler.registerCallback([&eventCount]() {
eventCount++;
std::cout << ”Event triggered! Count: ” << eventCount << ”\n”;

});

handler.triggerEvent(); // Output: Event triggered! Count: 1
handler.triggerEvent(); // Output: Event triggered! Count: 2

}

• Explanation:

– The lambda captures eventCount by reference and modifies it each time
the event is triggered.

7.2.4 Summary

Capture clauses in lambda functions are a powerful feature that allows you to control
how variables from the surrounding scope are accessed and modified within the lambda.
By understanding and using capture clauses effectively, you can write more expressive,
flexible, and maintainable C++ code.
Key Takeaways:

• Capture by Value: [x] creates a copy of x.

• Capture by Reference: [&x] accesses the original x.

• Capture All by Value: [=] captures all variables by value.

• Capture All by Reference: [&] captures all variables by reference.

• Mixed Capture: [x, &y] captures x by value and y by reference.

157

• Capture this Pointer: [this] captures the this pointer in a class or struct.

By mastering capture clauses, you can leverage the full power of lambda functions in
your C++ programs, making your code more modular, reusable, and aligned with
functional programming principles.

Chapter 8

Function Composition

8.1 Composing Functions Using std::bind and std::function

Function composition is a fundamental concept in functional programming, where the
output of one function is used as the input to another. In C++, you can achieve
function composition using std::bind and std::function. This section explores how to use
these tools to compose functions effectively.

8.1.1What is Function Composition?

Function composition involves combining two or more functions to create a new function.
For example, if you have two functions f and g, composing them results in a new
function h such that h(x) = f(g(x)).

8.1.2 std::function: A Type-Safe Function Wrapper

std::function is a template class that can store any callable object (e.g., functions,
lambdas, function objects). It provides a type-safe way to pass and store functions.

158

159

Example: Storing a Lambda in std::function

#include <iostream>
#include <functional>

int main() {
std::function<int(int)> square = [](int x) { return x * x; };
int result = square(5); // result = 25
std::cout << result << ”\n”;

}

• Explanation:

– The lambda [](int x) { return x * x; } is stored in a std::function<int(int)>
object.

– The std::function object can be called like a regular function.

Example: Passing std::function as an Argument

#include <iostream>
#include <functional>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, [](int x) { return x * x; }); // Output: 25

}

• Explanation:

160

– The applyFunction function takes a std::function<int(int)> as an argument.

– A lambda is passed to applyFunction and applied to the input value.

8.1.3 std::bind: Binding Arguments to Functions

std::bind is a utility that allows you to bind arguments to a function, creating a new
callable object. This is useful for partial function application and function composition.

Example: Binding Arguments

#include <iostream>
#include <functional>

int add(int a, int b) {
return a + b;

}

int main() {
auto addFive = std::bind(add, 5, std::placeholders::_1);
int result = addFive(10); // result = 15
std::cout << result << ”\n”;

}

• Explanation:

– std::bind binds the first argument of add to 5 and leaves the second argument
as a placeholder (_1).

– The resulting callable object addFive takes one argument and adds it to 5.

Example: Binding with Multiple Placeholders

161

#include <iostream>
#include <functional>

int multiply(int a, int b, int c) {
return a * b * c;

}

int main() {
auto multiplyPartial = std::bind(multiply, std::placeholders::_1, 2, std::placeholders::_2);
int result = multiplyPartial(3, 4); // result = 24
std::cout << result << ”\n”;

}

• Explanation:

– std::bind binds the second argument of multiply to 2 and uses placeholders
for the first and third arguments.

– The resulting callable object multiplyPartial takes two arguments and
multiplies them with 2.

8.1.4 Composing Functions Using std::bind and std::function

Function composition can be achieved by combining std::bind and std::function to create
new functions from existing ones.

Example: Composing Two Functions

#include <iostream>
#include <functional>

162

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

int main() {
std::function<int(int)> squareThenAddOne = [](int x) {

return addOne(square(x));
};

int result = squareThenAddOne(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The lambda [](int x) { return addOne(square(x)); } composes square and
addOne.

– The resulting function squareThenAddOne first squares the input and then
adds one.

Example: Composing Functions with std::bind

#include <iostream>
#include <functional>

int square(int x) {

163

return x * x;
}

int addOne(int x) {
return x + 1;

}

int main() {
auto squareThenAddOne = std::bind(addOne, std::bind(square, std::placeholders::_1));
int result = squareThenAddOne(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– std::bind is used to compose square and addOne.

– The inner std::bind binds square to the placeholder, and the outer std::bind
binds addOne to the result of square.

Example: Custom Data Processing Pipeline

#include <iostream>
#include <functional>
#include <vector>
#include <algorithm>

int square(int x) {
return x * x;

}

164

int addOne(int x) {
return x + 1;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
std::vector<int> processedNumbers(numbers.size());

auto squareThenAddOne = std::bind(addOne, std::bind(square, std::placeholders::_1));

std::transform(numbers.begin(), numbers.end(), processedNumbers.begin(), squareThenAddOne);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 2 5 10 17

}
}

• Explanation:

– The squareThenAddOne function is used in std::transform to process each
element of the numbers vector.

– The result is stored in the processedNumbers vector.

Example: Event Handling with Composed Callbacks

#include <iostream>
#include <functional>

void logMessage(const std::string& message) {
std::cout << ”Log: ” << message << ”\n”;

165

}

void processData(int data, const std::function<void(int)>& callback) {
int processedData = data * 2;
callback(processedData);

}

int main() {
auto logProcessedData = std::bind(logMessage, std::bind(std::to_string, std::placeholders::_1));

processData(5, logProcessedData); // Output: Log: 10
}

• Explanation:

– The logProcessedData function is composed using std::bind to convert the
processed data to a string and log it.

– The composed function is passed as a callback to processData.

8.1.5 Summary

Function composition is a powerful technique in functional programming that allows you
to create new functions by combining existing ones. In C++, you can achieve function
composition using std::bind and std::function.
Key Takeaways:

• std::function: A type-safe wrapper for storing and passing callable objects.

• std::bind: A utility for binding arguments to functions, enabling partial
application and composition.

166

• Function Composition: Combining functions to create new functions, such as h(x)
= f(g(x)).

By mastering std::bind and std::function, you can write more expressive, modular, and
reusable C++ code that aligns with functional programming principles. These tools
enable you to create flexible and powerful abstractions, making your programs easier to
reason about and extend.

8.2 Using Modern Libraries for Function Composition

Modern C++ libraries provide powerful tools for function composition, enabling you to
write expressive and concise code. These libraries often include utilities for composing
functions, manipulating ranges, and creating pipelines. This section explores how to use
modern libraries like Range-v3 and Boost.Hana for function composition.

8.2.1 Range-v3: A Modern Range Library

Range-v3 is a library that provides a set of composable range adaptors and algorithms,
making it easier to work with sequences of data in a functional style.

Installing Range-v3

1. Using Conan:

• Add Range-v3 to your conanfile.txt:

[requires]
range-v3/0.11.0

[generators]
cmake

167

• Install dependencies:

conan install ..

2. Using CMake:

• Include Range-v3 in your CMakeLists.txt:

find_package(range-v3 REQUIRED)
target_link_libraries(MyApp range-v3::range-v3)

Example: Composing Functions with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

auto processedNumbers = numbers
| ranges::views::transform(square)

168

| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 2 5 10 17

}
}

• Explanation:

– The ranges::views::transform adaptor is used to apply square and addOne to
each element of the numbers vector.

– The result is a composed pipeline that processes the data in a functional style.

Example: Filtering and Transforming with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {
return x * x;

}

bool isEven(int x) {
return x % 2 == 0;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

169

auto processedNumbers = numbers
| ranges::views::filter(isEven)
| ranges::views::transform(square);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 4 16 36

}
}

• Explanation:

– The ranges::views::filter adaptor is used to filter even numbers, and
ranges::views::transform is used to square them.

– The result is a composed pipeline that filters and transforms the data.

8.2.2 Boost.Hana: A Modern Metaprogramming Library

Boost.Hana is a library for metaprogramming and functional programming in C++. It
provides utilities for composing functions, manipulating types, and creating
compile-time computations.

Installing Boost.Hana

1. Using Conan:

• Add Boost.Hana to your conanfile.txt:

[requires]
boost/1.75.0

170

[generators]
cmake

• Install dependencies:

conan install ..

2. Using CMake:

• Include Boost.Hana in your CMakeLists.txt:

find_package(Boost REQUIRED COMPONENTS hana)
target_link_libraries(MyApp Boost::hana)

Example: Composing Functions with Boost.Hana

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

171

int main() {
auto composedFunction = hana::compose(addOne, square);
int result = composedFunction(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The hana::compose function is used to compose square and addOne.

– The resulting function composedFunction first squares the input and then
adds one.

Example: Compile-Time Function Composition with Boost.Hana

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {
return x * x;

}

constexpr int addOne(int x) {
return x + 1;

}

int main() {
constexpr auto composedFunction = hana::compose(addOne, square);
constexpr int result = composedFunction(4); // result = 17

172

std::cout << result << ”\n”;
}

• Explanation:

– The hana::compose function is used to compose square and addOne at
compile time.

– The resulting function composedFunction is evaluated at compile time.

8.2.3 Practical Applications of Modern Libraries for Function Composition

Example: Data Processing Pipeline with Range-v3
cpp
Copy

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

bool isEven(int x) {
return x % 2 == 0;

}

173

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto processedNumbers = numbers
| ranges::views::filter(isEven)
| ranges::views::transform(square)
| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 5 17 37

}
}

• Explanation:

– The ranges::views::filter adaptor is used to filter even numbers, and
ranges::views::transform is used to square them and add one.

– The result is a composed pipeline that processes the data in a functional style.

Example: Compile-Time Data Processing with Boost.Hana

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {
return x * x;

}

174

constexpr int addOne(int x) {
return x + 1;

}

constexpr bool isEven(int x) {
return x % 2 == 0;

}

int main() {
constexpr auto processNumber = hana::compose(addOne, square);
constexpr int result = processNumber(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The hana::compose function is used to compose square and addOne at
compile time.

– The resulting function processNumber is evaluated at compile time.

8.2.4 Summary

Modern libraries like Range-v3 and Boost.Hana provide powerful tools for function
composition, enabling you to write expressive and concise code. These libraries support
both runtime and compile-time function composition, making them suitable for a wide
range of applications.
Key Takeaways:

• Range-v3: Provides composable range adaptors and algorithms for functional-style
data processing.

175

• Boost.Hana: Offers utilities for metaprogramming and compile-time function
composition.

• Practical Applications: Data processing pipelines, compile-time computations, and
more.

By leveraging these modern libraries, you can write more expressive, modular, and
reusable C++ code that aligns with functional programming principles. These tools
enable you to create flexible and powerful abstractions, making your programs easier to
reason about and extend.

Chapter 9

Templates and Functional Programming

9.1 Using Templates to Create Generic Functions

Templates are a powerful feature in C++ that allow you to write generic functions and
classes. They enable you to define functions that can operate on any data type, making
your code more flexible and reusable. This section explores how to use templates to
create generic functions in the context of functional programming.

9.1.1What Are Templates?

Templates are a mechanism for generic programming in C++. They allow you to define
functions and classes that can work with any data type. Templates are particularly
useful in functional programming for creating reusable and type-safe abstractions.

9.1.2 Syntax of Function Templates

The syntax for defining a function template is as follows:

176

177

template <typename T>
return_type function_name(parameters) {

// Function body
}

• template <typename T>: Declares a template with a type parameter T.

• T: A placeholder for any data type.

• return_type: The return type of the function.

• function_name: The name of the function.

• parameters: The parameters of the function.

9.1.3 Example: A Simple Generic Function

#include <iostream>

template <typename T>
T add(T a, T b) {

return a + b;
}

int main() {
int result1 = add(2, 3); // result1 = 5
double result2 = add(2.5, 3.5); // result2 = 6.0

std::cout << result1 << ”\n”; // Output: 5
std::cout << result2 << ”\n”; // Output: 6.0

}

178

• Explanation:

– The add function template can operate on any data type that supports the +
operator.

– The function is instantiated with int and double types.

9.1.4 Example: Generic Function with Multiple Types

#include <iostream>

template <typename T, typename U>
auto add(T a, U b) -> decltype(a + b) {

return a + b;
}

int main() {
int result1 = add(2, 3); // result1 = 5
double result2 = add(2.5, 3); // result2 = 5.5

std::cout << result1 << ”\n”; // Output: 5
std::cout << result2 << ”\n”; // Output: 5.5

}

• Explanation:

– The add function template can operate on two different types T and U.

– The return type is deduced using decltype(a + b).

179

9.1.5 Example: Generic Higher-Order Function

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {

std::vector<T> result;
for (const auto& x : vec) {

result.push_back(func(x));
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto squaredNumbers = map(numbers, [](int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

– The map function template takes a vector and a function func as arguments.

– The function func is applied to each element of the vector, and the results are
stored in a new vector.

180

9.1.6 Example: Generic Function Composition

#include <iostream>
#include <functional>

template <typename T, typename Func1, typename Func2>
auto compose(Func1 f, Func2 g) {

return [f, g](T x) { return f(g(x)); };
}

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

int main() {
auto squareThenAddOne = compose<int>(addOne, square);
int result = squareThenAddOne(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The compose function template takes two functions f and g and returns a
new function that composes them.

– The resulting function squareThenAddOne first squares the input and then
adds one.

181

9.1.7 Example: Generic Filter Function

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {

std::vector<T> result;
for (const auto& x : vec) {

if (pred(x)) {
result.push_back(x);

}
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
auto evenNumbers = filter(numbers, [](int x) { return x % 2 == 0; });

for (int x : evenNumbers) {
std::cout << x << ” ”; // Output: 2 4 6

}
}

• Explanation:

– The filter function template takes a vector and a predicate pred as arguments.

– The predicate pred is applied to each element of the vector, and elements
that satisfy the predicate are stored in a new vector.

182

9.1.8 Example: Generic Reduce Function

#include <iostream>
#include <vector>
#include <numeric>

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {

T result = init;
for (const auto& x : vec) {

result = op(result, x);
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
int sum = reduce(numbers, 0, [](int a, int b) { return a + b; });

std::cout << sum << ”\n”; // Output: 10
}

• Explanation:

– The reduce function template takes a vector, an initial value init, and a
binary operation op as arguments.

– The binary operation op is applied to the elements of the vector,
accumulating the result.

183

9.1.9 Summary

Templates are a powerful tool for creating generic functions in C++. They enable you
to write flexible and reusable code that can operate on any data type. By using
templates, you can create higher-order functions, function composition, and other
functional programming abstractions.
Key Takeaways:

• Function Templates: Define functions that can operate on any data type.

• Generic Higher-Order Functions: Create functions that take other functions as
arguments.

• Function Composition: Combine functions to create new functions.

• Practical Applications: Mapping, filtering, reducing, and more.

By mastering templates, you can write more expressive, modular, and reusable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about
and extend.

9.2 Variadic Templates and Their Use in Functional Programming

Variadic templates are a powerful feature in C++ that allow you to define functions and
classes that can accept a variable number of template arguments. This capability is
particularly useful in functional programming for creating flexible and reusable
abstractions. This section explores how to use variadic templates to enhance functional
programming in C++.

184

9.2.1What Are Variadic Templates?

Variadic templates enable you to define templates that can accept an arbitrary number
of template arguments. They are particularly useful for creating functions and classes
that need to handle a variable number of parameters.

9.2.2 Syntax of Variadic Templates

The syntax for defining a variadic template is as follows:
cpp
Copy

template <typename... Args>
return_type function_name(Args... args) {

// Function body
}

• template <typename... Args>: Declares a variadic template with a parameter
pack Args.

• Args... args: A parameter pack that represents a variable number of arguments.

• return_type: The return type of the function.

• function_name: The name of the function.

9.2.3 Example: A Simple Variadic Function

185

#include <iostream>

template <typename... Args>
void print(Args... args) {

(std::cout << ... << args) << ”\n”;
}

int main() {
print(1, 2, 3, ”Hello”, 4.5); // Output: 123Hello4.5

}

• Explanation:

– The print function template can accept any number of arguments of any type.

– The fold expression (std::cout << ... << args) is used to print all arguments.

9.2.4 Example: Variadic Function Composition

#include <iostream>
#include <functional>

template <typename Func, typename... Funcs>
auto compose(Func f, Funcs... fs) {

return [f, fs...](auto x) {
return f(compose(fs...)(x));

};
}

template <typename Func>
auto compose(Func f) {

186

return f;
}

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

int main() {
auto composedFunction = compose(addOne, square);
int result = composedFunction(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The compose function template takes a variable number of functions and
composes them.

– The base case for the recursion is when there is only one function left to
compose.

9.2.5 Example: Variadic Map Function

#include <iostream>
#include <vector>
#include <algorithm>

187

template <typename Func, typename... Args>
auto map(Func func, Args... args) {

return std::vector{func(args)...};
}

int square(int x) {
return x * x;

}

int main() {
auto squaredNumbers = map(square, 1, 2, 3, 4);

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

– The map function template applies a function func to each argument in the
parameter pack args.

– The results are stored in a vector and returned.

9.2.6 Example: Variadic Filter Function

#include <iostream>
#include <vector>
#include <algorithm>

template <typename Predicate, typename... Args>

188

auto filter(Predicate pred, Args... args) {
std::vector<int> result;
(void)std::initializer_list<int>{(pred(args) ? (void)result.push_back(args) : (void)0)...};
return result;

}

bool isEven(int x) {
return x % 2 == 0;

}

int main() {
auto evenNumbers = filter(isEven, 1, 2, 3, 4, 5, 6);

for (int x : evenNumbers) {
std::cout << x << ” ”; // Output: 2 4 6

}
}

• Explanation:

– The filter function template applies a predicate pred to each argument in the
parameter pack args.

– Elements that satisfy the predicate are stored in a vector and returned.

9.2.7 Example: Variadic Reduce Function

#include <iostream>
#include <vector>
#include <numeric>

189

template <typename BinaryOp, typename T, typename... Args>
auto reduce(BinaryOp op, T init, Args... args) {

T result = init;
(void)std::initializer_list<int>{(result = op(result, args), 0)...};
return result;

}

int main() {
int sum = reduce([](int a, int b) { return a + b; }, 0, 1, 2, 3, 4);

std::cout << sum << ”\n”; // Output: 10
}

• Explanation:

– The reduce function template applies a binary operation op to the initial
value init and each argument in the parameter pack args.

– The result is accumulated and returned.

9.2.8 Example: Variadic Zip Function

#include <iostream>
#include <vector>
#include <tuple>

template <typename... Args>
auto zip(Args... args) {

return std::vector<std::tuple<Args...>>{std::make_tuple(args...)};
}

190

int main() {
auto zipped = zip(1, 2.5, ”Hello”);

for (const auto& item : zipped) {
std::cout << std::get<0>(item) << ” ”

<< std::get<1>(item) << ” ”
<< std::get<2>(item) << ”\n”; // Output: 1 2.5 Hello

}
}

• Explanation:

– The zip function template takes a variable number of arguments and returns
a vector of tuples.

– Each tuple contains the corresponding elements from the input arguments.

9.2.9 Summary

Variadic templates are a powerful tool for creating flexible and reusable abstractions in
C++. They enable you to define functions and classes that can accept a variable
number of arguments, making them particularly useful in functional programming.
Key Takeaways:

• Variadic Templates: Define templates that can accept an arbitrary number of
template arguments.

• Parameter Packs: Represent a variable number of arguments.

• Practical Applications: Function composition, mapping, filtering, reducing, and
more.

191

By mastering variadic templates, you can write more expressive, modular, and reusable
C++ code that aligns with functional programming principles. These tools enable you
to create flexible and powerful abstractions, making your programs easier to reason
about and extend.

Chapter 10

Expression Templates

10.1 Concept of Expression Templates and How to Use Them for
Performance Optimization

Expression templates are a powerful technique in C++ for optimizing performance in
numerical computations and other domains where intermediate results can be avoided.
This section explores the concept of expression templates, their benefits, and how to use
them to optimize performance in functional programming.

10.1.1What Are Expression Templates?

Expression templates are a metaprogramming technique that allows you to represent
complex expressions as types, enabling the compiler to optimize the evaluation of these
expressions. Instead of creating intermediate objects for each operation, expression
templates allow you to defer evaluation until the final result is needed, reducing
overhead and improving performance.

192

193

10.1.2 Benefits of Expression Templates

1. Performance Optimization:

• Avoids the creation of temporary objects, reducing memory allocation and
copying overhead.

• Enables the compiler to generate highly optimized code by fusing multiple
operations into a single loop.

2. Lazy Evaluation:

• Expressions are evaluated only when the final result is needed, allowing for
more efficient computation.

3. Code Reusability:

• Expression templates can be reused across different types of computations,
making the code more modular and maintainable.

10.1.3 Basic Example: Vector Addition Without Expression Templates

Consider a simple example of vector addition without using expression templates:

#include <iostream>
#include <vector>

class Vector {
public:

Vector(std::size_t size) : data(size) {}

double& operator[](std::size_t index) { return data[index]; }

194

const double& operator[](std::size_t index) const { return data[index]; }

std::size_t size() const { return data.size(); }

Vector operator+(const Vector& other) const {
Vector result(size());
for (std::size_t i = 0; i < size(); ++i) {

result[i] = data[i] + other[i];
}
return result;

}

private:
std::vector<double> data;

};

int main() {
Vector v1(3), v2(3), v3(3);
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;
v3[0] = 7.0; v3[1] = 8.0; v3[2] = 9.0;

Vector result = v1 + v2 + v3;

for (std::size_t i = 0; i < result.size(); ++i) {
std::cout << result[i] << ” ”; // Output: 12.0 15.0 18.0

}
}

• Explanation:

– The operator+ function creates a temporary Vector object for each addition,

195

leading to unnecessary memory allocations and copying.

10.1.4 Using Expression Templates for Vector Addition

To optimize the above example, we can use expression templates to represent the
addition operation without creating intermediate objects.

Defining the Expression Template

#include <iostream>
#include <vector>

template <typename E1, typename E2>
class VectorSum {
public:

VectorSum(const E1& e1, const E2& e2) : e1(e1), e2(e2) {}

double operator[](std::size_t index) const {
return e1[index] + e2[index];

}

std::size_t size() const {
return e1.size();

}

private:
const E1& e1;
const E2& e2;

};

class Vector {
public:

Vector(std::size_t size) : data(size) {}

196

double& operator[](std::size_t index) { return data[index]; }
const double& operator[](std::size_t index) const { return data[index]; }

std::size_t size() const { return data.size(); }

template <typename E>
Vector& operator=(const E& expr) {

for (std::size_t i = 0; i < size(); ++i) {
data[i] = expr[i];

}
return *this;

}

private:
std::vector<double> data;

};

template <typename E1, typename E2>
VectorSum<E1, E2> operator+(const E1& e1, const E2& e2) {

return VectorSum<E1, E2>(e1, e2);
}

int main() {
Vector v1(3), v2(3), v3(3), result(3);
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;
v3[0] = 7.0; v3[1] = 8.0; v3[2] = 9.0;

result = v1 + v2 + v3;

for (std::size_t i = 0; i < result.size(); ++i) {

197

std::cout << result[i] << ” ”; // Output: 12.0 15.0 18.0
}

}

• Explanation:

– The VectorSum class template represents the addition of two vectors without
creating an intermediate vector.

– The operator+ function returns a VectorSum object that encapsulates the
addition operation.

– The operator= function in the Vector class evaluates the expression and
assigns the result to the vector.

Benefits of Expression Templates in This Example

1. Avoids Intermediate Objects:

• The expression v1 + v2 + v3 is represented as a VectorSum object without
creating temporary vectors.

2. Lazy Evaluation:

• The addition operation is deferred until the result is assigned to the result
vector.

3. Optimized Computation:

• The compiler can generate efficient code by fusing the addition operations
into a single loop.

198

10.1.5 Advanced Example: Matrix Multiplication with Expression
Templates

Expression templates can also be used to optimize matrix multiplication by avoiding
intermediate matrices.

Defining the Expression Template for Matrix Multiplication

#include <iostream>
#include <vector>

template <typename E1, typename E2>
class MatrixProduct {
public:

MatrixProduct(const E1& e1, const E2& e2) : e1(e1), e2(e2) {}

double operator()(std::size_t i, std::size_t j) const {
double result = 0.0;
for (std::size_t k = 0; k < e1.cols(); ++k) {

result += e1(i, k) * e2(k, j);
}
return result;

}

std::size_t rows() const { return e1.rows(); }
std::size_t cols() const { return e2.cols(); }

private:
const E1& e1;
const E2& e2;

};

199

class Matrix {
public:

Matrix(std::size_t rows, std::size_t cols) : data(rows, std::vector<double>(cols)) {}

double& operator()(std::size_t i, std::size_t j) { return data[i][j]; }
const double& operator()(std::size_t i, std::size_t j) const { return data[i][j]; }

std::size_t rows() const { return data.size(); }
std::size_t cols() const { return data[0].size(); }

template <typename E>
Matrix& operator=(const E& expr) {

for (std::size_t i = 0; i < rows(); ++i) {
for (std::size_t j = 0; j < cols(); ++j) {

data[i][j] = expr(i, j);
}

}
return *this;

}

private:
std::vector<std::vector<double>> data;

};

template <typename E1, typename E2>
MatrixProduct<E1, E2> operator*(const E1& e1, const E2& e2) {

return MatrixProduct<E1, E2>(e1, e2);
}

int main() {
Matrix A(2, 3), B(3, 2), C(2, 2);
A(0, 0) = 1; A(0, 1) = 2; A(0, 2) = 3;

200

A(1, 0) = 4; A(1, 1) = 5; A(1, 2) = 6;

B(0, 0) = 7; B(0, 1) = 8;
B(1, 0) = 9; B(1, 1) = 10;
B(2, 0) = 11; B(2, 1) = 12;

C = A * B;

for (std::size_t i = 0; i < C.rows(); ++i) {
for (std::size_t j = 0; j < C.cols(); ++j) {

std::cout << C(i, j) << ” ”; // Output: 58 64, 139 154
}
std::cout << ”\n”;

}
}

• Explanation:

– The MatrixProduct class template represents the multiplication of two
matrices without creating an intermediate matrix.

– The operator* function returns a MatrixProduct object that encapsulates the
multiplication operation.

– The operator= function in the Matrix class evaluates the expression and
assigns the result to the matrix.

Benefits of Expression Templates in Matrix Multiplication

1. Avoids Intermediate Matrices:

• The expression A * B is represented as a MatrixProduct object without
creating temporary matrices.

201

2. Lazy Evaluation:

• The multiplication operation is deferred until the result is assigned to the C
matrix.

3. Optimized Computation:

• The compiler can generate efficient code by fusing the multiplication
operations into a single loop.

10.1.6 Summary

Expression templates are a powerful technique for optimizing performance in numerical
computations and other domains where intermediate results can be avoided. By
representing complex expressions as types and deferring evaluation until the final result
is needed, expression templates enable the compiler to generate highly optimized code.
Key Takeaways:

• Expression Templates: Represent complex expressions as types to avoid
intermediate objects.

• Lazy Evaluation: Defer evaluation until the final result is needed.

• Performance Optimization: Reduce memory allocation and copying overhead, and
enable efficient computation.

By mastering expression templates, you can write more efficient and maintainable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about
and extend.

202

10.2 Practical Examples of Expression Templates in C++

Expression templates are a powerful technique for optimizing performance in numerical
computations and other domains where intermediate results can be avoided. This
section provides practical examples of how to use expression templates in C++ to
optimize common operations such as vector addition, matrix multiplication, and
element-wise operations.

10.2.1 Example: Optimizing Vector Addition

Vector addition is a common operation in numerical computations. Using expression
templates, we can optimize this operation by avoiding the creation of intermediate
vectors.

Defining the Expression Template for Vector Addition

#include <iostream>
#include <vector>

template <typename E1, typename E2>
class VectorSum {
public:

VectorSum(const E1& e1, const E2& e2) : e1(e1), e2(e2) {}

double operator[](std::size_t index) const {
return e1[index] + e2[index];

}

std::size_t size() const {
return e1.size();

}

203

private:
const E1& e1;
const E2& e2;

};

class Vector {
public:

Vector(std::size_t size) : data(size) {}

double& operator[](std::size_t index) { return data[index]; }
const double& operator[](std::size_t index) const { return data[index]; }

std::size_t size() const { return data.size(); }

template <typename E>
Vector& operator=(const E& expr) {

for (std::size_t i = 0; i < size(); ++i) {
data[i] = expr[i];

}
return *this;

}

private:
std::vector<double> data;

};

template <typename E1, typename E2>
VectorSum<E1, E2> operator+(const E1& e1, const E2& e2) {

return VectorSum<E1, E2>(e1, e2);
}

204

int main() {
Vector v1(3), v2(3), v3(3), result(3);
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;
v3[0] = 7.0; v3[1] = 8.0; v3[2] = 9.0;

result = v1 + v2 + v3;

for (std::size_t i = 0; i < result.size(); ++i) {
std::cout << result[i] << ” ”; // Output: 12.0 15.0 18.0

}
}

• Explanation:

– The VectorSum class template represents the addition of two vectors without
creating an intermediate vector.

– The operator+ function returns a VectorSum object that encapsulates the
addition operation.

– The operator= function in the Vector class evaluates the expression and
assigns the result to the vector.

Benefits of Expression Templates in Vector Addition

1. Avoids Intermediate Objects:

• The expression v1 + v2 + v3 is represented as a VectorSum object without
creating temporary vectors.

2. Lazy Evaluation:

205

• The addition operation is deferred until the result is assigned to the result
vector.

3. Optimized Computation:

• The compiler can generate efficient code by fusing the addition operations
into a single loop.

10.2.2 Example: Optimizing Matrix Multiplication

Matrix multiplication is another common operation that can benefit from expression
templates. By avoiding intermediate matrices, we can optimize the performance of
matrix multiplication.

Defining the Expression Template for Matrix Multiplication

#include <iostream>
#include <vector>

template <typename E1, typename E2>
class MatrixProduct {
public:

MatrixProduct(const E1& e1, const E2& e2) : e1(e1), e2(e2) {}

double operator()(std::size_t i, std::size_t j) const {
double result = 0.0;
for (std::size_t k = 0; k < e1.cols(); ++k) {

result += e1(i, k) * e2(k, j);
}
return result;

}

206

std::size_t rows() const { return e1.rows(); }
std::size_t cols() const { return e2.cols(); }

private:
const E1& e1;
const E2& e2;

};

class Matrix {
public:

Matrix(std::size_t rows, std::size_t cols) : data(rows, std::vector<double>(cols)) {}

double& operator()(std::size_t i, std::size_t j) { return data[i][j]; }
const double& operator()(std::size_t i, std::size_t j) const { return data[i][j]; }

std::size_t rows() const { return data.size(); }
std::size_t cols() const { return data[0].size(); }

template <typename E>
Matrix& operator=(const E& expr) {

for (std::size_t i = 0; i < rows(); ++i) {
for (std::size_t j = 0; j < cols(); ++j) {

data[i][j] = expr(i, j);
}

}
return *this;

}

private:
std::vector<std::vector<double>> data;

};

207

template <typename E1, typename E2>
MatrixProduct<E1, E2> operator*(const E1& e1, const E2& e2) {

return MatrixProduct<E1, E2>(e1, e2);
}

int main() {
Matrix A(2, 3), B(3, 2), C(2, 2);
A(0, 0) = 1; A(0, 1) = 2; A(0, 2) = 3;
A(1, 0) = 4; A(1, 1) = 5; A(1, 2) = 6;

B(0, 0) = 7; B(0, 1) = 8;
B(1, 0) = 9; B(1, 1) = 10;
B(2, 0) = 11; B(2, 1) = 12;

C = A * B;

for (std::size_t i = 0; i < C.rows(); ++i) {
for (std::size_t j = 0; j < C.cols(); ++j) {

std::cout << C(i, j) << ” ”; // Output: 58 64, 139 154
}
std::cout << ”\n”;

}
}

• Explanation:

– The MatrixProduct class template represents the multiplication of two
matrices without creating an intermediate matrix.

– The operator* function returns a MatrixProduct object that encapsulates the
multiplication operation.

208

– The operator= function in the Matrix class evaluates the expression and
assigns the result to the matrix.

Benefits of Expression Templates in Matrix Multiplication

1. Avoids Intermediate Matrices:

• The expression A * B is represented as a MatrixProduct object without
creating temporary matrices.

2. Lazy Evaluation:

• The multiplication operation is deferred until the result is assigned to the C
matrix.

3. Optimized Computation:

• The compiler can generate efficient code by fusing the multiplication
operations into a single loop.

10.2.3 Example: Optimizing Element-Wise Operations

Element-wise operations, such as adding or multiplying corresponding elements of two
vectors, can also benefit from expression templates.

Defining the Expression Template for Element-Wise Operations

#include <iostream>
#include <vector>

template <typename E1, typename E2, typename Op>

209

class ElementWiseOperation {
public:

ElementWiseOperation(const E1& e1, const E2& e2, Op op) : e1(e1), e2(e2), op(op) {}

double operator[](std::size_t index) const {
return op(e1[index], e2[index]);

}

std::size_t size() const {
return e1.size();

}

private:
const E1& e1;
const E2& e2;
Op op;

};

class Vector {
public:

Vector(std::size_t size) : data(size) {}

double& operator[](std::size_t index) { return data[index]; }
const double& operator[](std::size_t index) const { return data[index]; }

std::size_t size() const { return data.size(); }

template <typename E>
Vector& operator=(const E& expr) {

for (std::size_t i = 0; i < size(); ++i) {
data[i] = expr[i];

}

210

return *this;
}

private:
std::vector<double> data;

};

template <typename E1, typename E2, typename Op>
ElementWiseOperation<E1, E2, Op> elementWiseOperation(const E1& e1, const E2& e2, Op op) {

return ElementWiseOperation<E1, E2, Op>(e1, e2, op);
}

int main() {
Vector v1(3), v2(3), result(3);
v1[0] = 1.0; v1[1] = 2.0; v1[2] = 3.0;
v2[0] = 4.0; v2[1] = 5.0; v2[2] = 6.0;

auto add = [](double a, double b) { return a + b; };
result = elementWiseOperation(v1, v2, add);

for (std::size_t i = 0; i < result.size(); ++i) {
std::cout << result[i] << ” ”; // Output: 5.0 7.0 9.0

}
}

• Explanation:

– The ElementWiseOperation class template represents an element-wise
operation between two vectors without creating an intermediate vector.

– The elementWiseOperation function returns an ElementWiseOperation
object that encapsulates the operation.

211

– The operator= function in the Vector class evaluates the expression and
assigns the result to the vector.

Benefits of Expression Templates in Element-Wise Operations

1. Avoids Intermediate Objects:

• The element-wise operation is represented as an ElementWiseOperation
object without creating temporary vectors.

2. Lazy Evaluation:

• The operation is deferred until the result is assigned to the result vector.

3. Optimized Computation:

• The compiler can generate efficient code by fusing the operations into a single
loop.

10.2.4 Summary

Expression templates are a powerful technique for optimizing performance in numerical
computations and other domains where intermediate results can be avoided. By
representing complex expressions as types and deferring evaluation until the final result
is needed, expression templates enable the compiler to generate highly optimized code.
Key Takeaways:

• Expression Templates: Represent complex expressions as types to avoid
intermediate objects.

• Lazy Evaluation: Defer evaluation until the final result is needed.

212

• Performance Optimization: Reduce memory allocation and copying overhead, and
enable efficient computation.

By mastering expression templates, you can write more efficient and maintainable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about
and extend.

Chapter 11

Higher-Order Functions

11.1 Defining and Using Higher-Order Functions in C++

Higher-order functions are a cornerstone of functional programming. They are functions
that take other functions as arguments or return functions as results. This section
explores how to define and use higher-order functions in C++, leveraging modern
features like lambda expressions, std::function, and templates.

11.1.1What Are Higher-Order Functions?

Higher-order functions are functions that:

• Take one or more functions as arguments.

• Return a function as a result.

They enable powerful abstractions and allow you to write more modular and reusable
code.

213

214

11.1.2 Defining Higher-Order Functions

In C++, higher-order functions can be defined using function pointers, lambda
expressions, std::function, and templates.

Using Function Pointers
Function pointers are a traditional way to pass functions as arguments.

1. Example: Higher-Order Function with Function Pointer

#include <iostream>

int square(int x) {
return x * x;

}

int cube(int x) {
return x * x * x;

}

void applyFunction(int x, int (*func)(int)) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, square); // Output: 25
applyFunction(5, cube); // Output: 125

}

• Explanation:

– The applyFunction function takes a function pointer func as an
argument.

215

– The function pointer is called within applyFunction.

Using Lambda Expressions
Lambda expressions provide a concise way to define anonymous functions that can be
passed as arguments.

1. Example: Higher-Order Function with Lambda

#include <iostream>

void applyFunction(int x, const std::function<int(int)>& func) {
std::cout << func(x) << ”\n”;

}

int main() {
applyFunction(5, [](int x) { return x * x; }); // Output: 25
applyFunction(5, [](int x) { return x * x * x; }); // Output: 125

}

• Explanation:

– The applyFunction function takes a std::function<int(int)> as an
argument.

– A lambda is passed to applyFunction and applied to the input value.

Using Templates
Templates allow you to define higher-order functions that can work with any callable
object.

1. Example: Higher-Order Function with Template

216

#include <iostream>

template <typename Func>
void applyFunction(int x, Func func) {

std::cout << func(x) << ”\n”;
}

int main() {
applyFunction(5, [](int x) { return x * x; }); // Output: 25
applyFunction(5, [](int x) { return x * x * x; }); // Output: 125

}

• Explanation:

– The applyFunction function template takes a callable object func as an
argument.

– The function template can work with any callable object, including
lambdas and function pointers.

11.1.3 Returning Functions from Higher-Order Functions

Higher-order functions can also return functions as results, enabling powerful
abstractions like function composition and currying.

Example: Returning a Lambda

#include <iostream>
#include <functional>

std::function<int(int)> createMultiplier(int factor) {
return [factor](int x) { return x * factor; };

217

}

int main() {
auto doubleValue = createMultiplier(2);
auto tripleValue = createMultiplier(3);

std::cout << doubleValue(5) << ”\n”; // Output: 10
std::cout << tripleValue(5) << ”\n”; // Output: 15

}

• Explanation:

– The createMultiplier function returns a lambda that multiplies its input by a
given factor.

– The returned lambda is stored in doubleValue and tripleValue and used to
multiply values.

Example: Function Composition

#include <iostream>
#include <functional>

template <typename Func1, typename Func2>
auto compose(Func1 f, Func2 g) {

return [f, g](int x) { return f(g(x)); };
}

int square(int x) {
return x * x;

}

218

int addOne(int x) {
return x + 1;

}

int main() {
auto squareThenAddOne = compose(addOne, square);
int result = squareThenAddOne(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The compose function takes two functions f and g and returns a new function
that composes them.

– The resulting function squareThenAddOne first squares the input and then
adds one.

11.1.4 Practical Applications of Higher-Order Functions

Example: Custom Sorting with Higher-Order Functions

#include <iostream>
#include <vector>
#include <algorithm>

template <typename Func>
void sortVector(std::vector<int>& vec, Func comp) {

std::sort(vec.begin(), vec.end(), comp);
}

219

int main() {
std::vector<int> numbers = {4, 2, 3, 1};
sortVector(numbers, [](int a, int b) { return a > b; }); // Sort in descending order

for (int x : numbers) {
std::cout << x << ” ”; // Output: 4 3 2 1

}
}

• Explanation:

– The sortVector function takes a vector and a comparator function comp as
arguments.

– The comparator function is used to sort the vector in a custom order.

Example: Event Handling with Higher-Order Functions

#include <iostream>
#include <functional>
#include <vector>

class EventHandler {
public:

void registerCallback(const std::function<void()>& callback) {
callbacks.push_back(callback);

}

void triggerEvent() {
for (const auto& callback : callbacks) {

220

callback();
}

}

private:
std::vector<std::function<void()>> callbacks;

};

int main() {
EventHandler handler;
int eventCount = 0;

handler.registerCallback([&eventCount]() {
eventCount++;
std::cout << ”Event triggered! Count: ” << eventCount << ”\n”;

});

handler.triggerEvent(); // Output: Event triggered! Count: 1
handler.triggerEvent(); // Output: Event triggered! Count: 2

}

• Explanation:

– The EventHandler class stores callbacks in a vector of std::function<void()>.

– A lambda is registered as a callback and triggered when an event occurs.

11.1.5 Summary

Higher-order functions are a powerful feature in functional programming that enable you
to write more modular, reusable, and expressive code. In C++, higher-order functions
can be defined using function pointers, lambda expressions, std::function, and templates.

221

Key Takeaways:

• Higher-Order Functions: Functions that take other functions as arguments or
return functions as results.

• Function Pointers: Traditional way to pass functions as arguments.

• Lambda Expressions: Concise syntax for defining anonymous functions.

• std::function: Type-safe wrapper for storing and passing callable objects.

• Templates: Enable generic higher-order functions that work with any callable
object.

By mastering higher-order functions, you can write more expressive and maintainable
C++ code that aligns with functional programming principles. These tools enable you
to create flexible and powerful abstractions, making your programs easier to reason
about and extend.

11.2 Examples of Functions Like map, filter, and reduce

The functions map, filter, and reduce are fundamental higher-order functions in
functional programming. They allow you to transform, filter, and aggregate data in a
declarative and expressive manner. This section provides detailed examples of how to
implement and use these functions in C++.

11.2.1 The map Function

The map function applies a given function to each element of a collection and returns a
new collection with the results.

222

Implementing map

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {

std::vector<T> result;
for (const auto& x : vec) {

result.push_back(func(x));
}
return result;

}

int square(int x) {
return x * x;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto squaredNumbers = map(numbers, square);

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

– The map function template takes a vector and a function func as arguments.

223

– The function func is applied to each element of the vector, and the results are
stored in a new vector.

Using map with Lambdas

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {

std::vector<T> result;
for (const auto& x : vec) {

result.push_back(func(x));
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
auto squaredNumbers = map(numbers, [](int x) { return x * x; });

for (int x : squaredNumbers) {
std::cout << x << ” ”; // Output: 1 4 9 16

}
}

• Explanation:

– The map function is used with a lambda to square each element of the vector.

224

11.2.2 The filter Function

The filter function selects elements from a collection that satisfy a given predicate and
returns a new collection with the selected elements.

Implementing filter

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {

std::vector<T> result;
for (const auto& x : vec) {

if (pred(x)) {
result.push_back(x);

}
}
return result;

}

bool isEven(int x) {
return x % 2 == 0;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
auto evenNumbers = filter(numbers, isEven);

for (int x : evenNumbers) {
std::cout << x << ” ”; // Output: 2 4 6

}

225

}

• Explanation:

– The filter function template takes a vector and a predicate pred as arguments.

– The predicate pred is applied to each element of the vector, and elements
that satisfy the predicate are stored in a new vector.

Using filter with Lambdas

#include <iostream>
#include <vector>
#include <algorithm>

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {

std::vector<T> result;
for (const auto& x : vec) {

if (pred(x)) {
result.push_back(x);

}
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
auto evenNumbers = filter(numbers, [](int x) { return x % 2 == 0; });

for (int x : evenNumbers) {

226

std::cout << x << ” ”; // Output: 2 4 6
}

}

• Explanation:

– The filter function is used with a lambda to select even numbers from the
vector.

11.2.3 The reduce Function

The reduce function aggregates the elements of a collection using a binary operation and
returns the accumulated result.

Implementing reduce

#include <iostream>
#include <vector>
#include <numeric>

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {

T result = init;
for (const auto& x : vec) {

result = op(result, x);
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

227

int sum = reduce(numbers, 0, [](int a, int b) { return a + b; });

std::cout << sum << ”\n”; // Output: 10
}

• Explanation:

– The reduce function template takes a vector, an initial value init, and a
binary operation op as arguments.

– The binary operation op is applied to the elements of the vector,
accumulating the result.

Using reduce with Lambdas

#include <iostream>
#include <vector>
#include <numeric>

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {

T result = init;
for (const auto& x : vec) {

result = op(result, x);
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};
int product = reduce(numbers, 1, [](int a, int b) { return a * b; });

228

std::cout << product << ”\n”; // Output: 24
}

• Explanation:

– The reduce function is used with a lambda to calculate the product of the
elements in the vector.

11.2.4 Practical Applications of map, filter, and reduce

Example: Data Processing Pipeline

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {

std::vector<T> result;
for (const auto& x : vec) {

result.push_back(func(x));
}
return result;

}

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {

std::vector<T> result;
for (const auto& x : vec) {

229

if (pred(x)) {
result.push_back(x);

}
}
return result;

}

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {

T result = init;
for (const auto& x : vec) {

result = op(result, x);
}
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto evenNumbers = filter(numbers, [](int x) { return x % 2 == 0; });
auto squaredNumbers = map(evenNumbers, [](int x) { return x * x; });
int sum = reduce(squaredNumbers, 0, [](int a, int b) { return a + b; });

std::cout << sum << ”\n”; // Output: 56
}

• Explanation:

– The filter function is used to select even numbers from the vector.

– The map function is used to square each even number.

– The reduce function is used to calculate the sum of the squared even numbers.

230

Example: Custom Sorting with map, filter, and reduce

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

template <typename T, typename Func>
std::vector<T> map(const std::vector<T>& vec, Func func) {

std::vector<T> result;
for (const auto& x : vec) {

result.push_back(func(x));
}
return result;

}

template <typename T, typename Predicate>
std::vector<T> filter(const std::vector<T>& vec, Predicate pred) {

std::vector<T> result;
for (const auto& x : vec) {

if (pred(x)) {
result.push_back(x);

}
}
return result;

}

template <typename T, typename BinaryOp>
T reduce(const std::vector<T>& vec, T init, BinaryOp op) {

T result = init;
for (const auto& x : vec) {

result = op(result, x);
}

231

return result;
}

int main() {
std::vector<int> numbers = {4, 2, 3, 1, 5, 6};

auto sortedNumbers = map(numbers, [](int x) { return x; });
std::sort(sortedNumbers.begin(), sortedNumbers.end());

auto evenNumbers = filter(sortedNumbers, [](int x) { return x % 2 == 0; });
int sum = reduce(evenNumbers, 0, [](int a, int b) { return a + b; });

for (int x : evenNumbers) {
std::cout << x << ” ”; // Output: 2 4 6

}
std::cout << ”\nSum: ” << sum << ”\n”; // Output: Sum: 12

}

• Explanation:

– The map function is used to create a copy of the vector.

– The std::sort function is used to sort the copied vector.

– The filter function is used to select even numbers from the sorted vector.

– The reduce function is used to calculate the sum of the even numbers.

11.2.5 Summary

The functions map, filter, and reduce are powerful tools in functional programming that
allow you to transform, filter, and aggregate data in a declarative and expressive

232

manner. By implementing and using these functions in C++, you can write more
modular, reusable, and maintainable code.
Key Takeaways:

• map: Applies a function to each element of a collection and returns a new
collection with the results.

• filter: Selects elements from a collection that satisfy a given predicate and returns
a new collection with the selected elements.

• reduce: Aggregates the elements of a collection using a binary operation and
returns the accumulated result.

By mastering map, filter, and reduce, you can write more expressive and maintainable
C++ code that aligns with functional programming principles. These tools enable you
to create flexible and powerful abstractions, making your programs easier to reason
about and extend.

Chapter 12

Modern Functional Libraries

12.1 Using Libraries Like *Range-v3* and *Boost.Hana* to
Support Functional Programming

Modern C++ libraries like Range-v3 and Boost.Hana provide powerful tools for
functional programming. These libraries offer a wide range of utilities for working with
ranges, composing functions, and performing compile-time computations. This section
explores how to use these libraries to enhance functional programming in C++.

12.1.1 Range-v3: A Modern Range Library

Range-v3 is a library that provides a set of composable range adaptors and algorithms,
making it easier to work with sequences of data in a functional style.

Installing Range-v3

1. Using Conan:

233

234

• Add Range-v3 to your conanfile.txt:

[requires]
range-v3/0.11.0

[generators]
cmake

• Install dependencies:

conan install ..

2. Using CMake:

• Include Range-v3 in your CMakeLists.txt:

find_package(range-v3 REQUIRED)
target_link_libraries(MyApp range-v3::range-v3)

Example: Composing Functions with Range-v3
cpp
Copy

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {
return x * x;

235

}

int addOne(int x) {
return x + 1;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4};

auto processedNumbers = numbers
| ranges::views::transform(square)
| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 2 5 10 17

}
}

• Explanation:

– The ranges::views::transform adaptor is used to apply square and addOne to
each element of the numbers vector.

– The result is a composed pipeline that processes the data in a functional style.

Example: Filtering and Transforming with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

236

int square(int x) {
return x * x;

}

bool isEven(int x) {
return x % 2 == 0;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto processedNumbers = numbers
| ranges::views::filter(isEven)
| ranges::views::transform(square);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 4 16 36

}
}

• Explanation:

– The ranges::views::filter adaptor is used to filter even numbers, and
ranges::views::transform is used to square them.

– The result is a composed pipeline that filters and transforms the data.

12.1.2 Boost.Hana: A Modern Metaprogramming Library

Boost.Hana is a library for metaprogramming and functional programming in C++. It
provides utilities for composing functions, manipulating types, and creating
compile-time computations.

237

Installing Boost.Hana

1. Using Conan:

• Add Boost.Hana to your conanfile.txt:

[requires]
boost/1.75.0

[generators]
cmake

• Install dependencies:

conan install ..

2. Using CMake:

• Include Boost.Hana in your CMakeLists.txt:

find_package(Boost REQUIRED COMPONENTS hana)
target_link_libraries(MyApp Boost::hana)

Example: Composing Functions with Boost.Hana

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

238

int square(int x) {
return x * x;

}

int addOne(int x) {
return x + 1;

}

int main() {
auto composedFunction = hana::compose(addOne, square);
int result = composedFunction(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The hana::compose function is used to compose square and addOne.

– The resulting function composedFunction first squares the input and then
adds one.

Example: Compile-Time Function Composition with Boost.Hana

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {
return x * x;

239

}

constexpr int addOne(int x) {
return x + 1;

}

int main() {
constexpr auto composedFunction = hana::compose(addOne, square);
constexpr int result = composedFunction(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The hana::compose function is used to compose square and addOne at
compile time.

– The resulting function composedFunction is evaluated at compile time.

12.1.3 Practical Applications of Modern Libraries for Functional
Programming

Example: Data Processing Pipeline with Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int square(int x) {
return x * x;

}

240

int addOne(int x) {
return x + 1;

}

bool isEven(int x) {
return x % 2 == 0;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto processedNumbers = numbers
| ranges::views::filter(isEven)
| ranges::views::transform(square)
| ranges::views::transform(addOne);

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 5 17 37

}
}

• Explanation:

– The ranges::views::filter adaptor is used to filter even numbers, and
ranges::views::transform is used to square them and add one.

– The result is a composed pipeline that processes the data in a functional style.

Example: Compile-Time Data Processing with Boost.Hana

241

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {
return x * x;

}

constexpr int addOne(int x) {
return x + 1;

}

constexpr bool isEven(int x) {
return x % 2 == 0;

}

int main() {
constexpr auto processNumber = hana::compose(addOne, square);
constexpr int result = processNumber(4); // result = 17
std::cout << result << ”\n”;

}

• Explanation:

– The hana::compose function is used to compose square and addOne at
compile time.

– The resulting function processNumber is evaluated at compile time.

242

12.1.4 Summary

Modern libraries like Range-v3 and Boost.Hana provide powerful tools for functional
programming, enabling you to write expressive and concise code. These libraries support
both runtime and compile-time function composition, making them suitable for a wide
range of applications.
Key Takeaways:

• Range-v3: Provides composable range adaptors and algorithms for functional-style
data processing.

• Boost.Hana: Offers utilities for metaprogramming and compile-time function
composition.

• Practical Applications: Data processing pipelines, compile-time computations, and
more.

By leveraging these modern libraries, you can write more expressive, modular, and
reusable C++ code that aligns with functional programming principles. These tools
enable you to create flexible and powerful abstractions, making your programs easier to
reason about and extend.

12.2 Practical Examples of Using These Libraries

Modern C++ libraries like Range-v3 and Boost.Hana provide powerful tools for
functional programming. This section provides practical examples of how to use these
libraries to solve real-world problems, demonstrating their capabilities and benefits.

243

12.2.1 Example: Data Processing Pipeline with Range-v3

Range-v3 is particularly well-suited for creating data processing pipelines. Let's consider
an example where we process a list of numbers by filtering, transforming, and
aggregating them.

Filtering, Transforming, and Aggregating Data

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Define a pipeline: filter even numbers, square them, and sum the results
auto result = numbers

| ranges::views::filter([](int x) { return x % 2 == 0; }) // Filter even numbers
| ranges::views::transform([](int x) { return x * x; }) // Square each number
| ranges::actions::sort // Sort the squared numbers
| ranges::accumulate(0, [](int acc, int x) { return acc + x; }); // Sum the squared numbers

std::cout << ”Sum of squared even numbers: ” << result << ”\n”; // Output: 220
}

• Explanation:

– Filtering: The ranges::views::filter adaptor is used to select even numbers
from the vector.

– Transforming: The ranges::views::transform adaptor is used to square each
even number.

244

– Sorting: The ranges::actions::sort action is used to sort the squared numbers.

– Aggregating: The ranges::accumulate function is used to sum the squared
numbers.

Benefits of Using Range-v3

1. Declarative Syntax: The pipeline is expressed in a declarative manner, making the
code easier to read and understand.

2. Lazy Evaluation: The operations are evaluated lazily, meaning that the
transformations are applied only when the result is needed.

3. Composability: The range adaptors can be easily composed to create complex
data processing pipelines.

12.2.2 Example: Compile-Time Computations with Boost.Hana

Boost.Hana is a metaprogramming library that allows you to perform compile-time
computations and manipulate types. Let's consider an example where we use
Boost.Hana to perform compile-time function composition.

Compile-Time Function Composition

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {
return x * x;

}

245

constexpr int addOne(int x) {
return x + 1;

}

int main() {
// Compose square and addOne at compile time
constexpr auto composedFunction = hana::compose(addOne, square);

// Evaluate the composed function at compile time
constexpr int result = composedFunction(4); // result = 17

std::cout << ”Result of composed function: ” << result << ”\n”; // Output: 17
}

• Explanation:

– Function Composition: The hana::compose function is used to compose
square and addOne at compile time.

– Compile-Time Evaluation: The composed function is evaluated at compile
time, and the result is stored in a constexpr variable.

Benefits of Using Boost.Hana

1. Compile-Time Computations: Boost.Hana enables you to perform computations
at compile time, improving runtime performance.

2. Type Manipulation: Boost.Hana provides utilities for manipulating types, making
it easier to write generic and reusable code.

3. Expressive Syntax: The library offers a clean and expressive syntax for
metaprogramming tasks.

246

12.2.3 Example: Combining Range-v3 and Boost.Hana

You can combine the capabilities of Range-v3 and Boost.Hana to create powerful and
expressive functional programming solutions. Let's consider an example where we use
both libraries to process data at compile time and runtime.

Compile-Time Data Processing with Boost.Hana and Range-v3

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>
#include <boost/hana.hpp>

namespace hana = boost::hana;

constexpr int square(int x) {
return x * x;

}

constexpr int addOne(int x) {
return x + 1;

}

int main() {
// Compile-time function composition
constexpr auto composedFunction = hana::compose(addOne, square);

// Runtime data processing with Range-v3
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto processedNumbers = numbers
| ranges::views::transform(composedFunction) // Apply the composed function
| ranges::to<std::vector>; // Convert the range to a vector

247

for (int x : processedNumbers) {
std::cout << x << ” ”; // Output: 2 5 10 17 26 37

}
}

• Explanation:

– Compile-Time Function Composition: The hana::compose function is used to
compose square and addOne at compile time.

– Runtime Data Processing: The composed function is applied to each element
of the vector using ranges::views::transform.

– Conversion to Vector: The ranges::to<std::vector> action is used to convert
the range to a vector.

Benefits of Combining Range-v3 and Boost.Hana

1. Flexibility: You can leverage the strengths of both libraries to perform
compile-time and runtime computations.

2. Expressiveness: The combination of Range-v3 and Boost.Hana allows you to write
expressive and concise code.

3. Performance: Compile-time computations with Boost.Hana can improve runtime
performance by reducing the need for runtime calculations.

12.2.4 Example: Advanced Data Processing with Range-v3

Let's consider a more advanced example where we use Range-v3 to process a dataset of
employees, filtering, transforming, and aggregating the data.

248

Processing Employee Data

#include <iostream>
#include <vector>
#include <string>
#include <range/v3/all.hpp>

struct Employee {
std::string name;
int age;
double salary;

};

int main() {
std::vector<Employee> employees = {

{”Alice”, 30, 50000},
{”Bob”, 25, 45000},
{”Charlie”, 35, 60000},
{”David”, 40, 70000},
{”Eve”, 22, 40000}

};

// Define a pipeline: filter employees older than 30, increase their salary by 10%, and calculate the
total salary↪→

auto totalSalary = employees
| ranges::views::filter([](const Employee& e) { return e.age > 30; }) // Filter employees older

than 30↪→

| ranges::views::transform([](const Employee& e) { return e.salary * 1.1; }) // Increase salary by
10%↪→

| ranges::accumulate(0.0, [](double acc, double salary) { return acc + salary; }); // Sum the
salaries↪→

std::cout << ”Total salary after increase: ” << totalSalary << ”\n”; // Output: 143000

249

}

• Explanation:

– Filtering: The ranges::views::filter adaptor is used to select employees older
than 30.

– Transforming: The ranges::views::transform adaptor is used to increase the
salary of each selected employee by 10%.

– Aggregating: The ranges::accumulate function is used to sum the increased
salaries.

Benefits of Using Range-v3 for Data Processing

1. Readability: The pipeline is expressed in a clear and concise manner, making the
code easier to understand.

2. Modularity: Each step in the pipeline is modular and can be easily modified or
extended.

3. Efficiency: The lazy evaluation of ranges ensures that the operations are
performed efficiently.

12.2.5 Summary

Modern libraries like Range-v3 and Boost.Hana provide powerful tools for functional
programming, enabling you to write expressive and efficient code. By using these
libraries, you can create complex data processing pipelines, perform compile-time
computations, and manipulate types in a flexible and reusable manner.
Key Takeaways:

250

• Range-v3: Provides composable range adaptors and algorithms for functional-style
data processing.

• Boost.Hana: Offers utilities for metaprogramming and compile-time function
composition.

• Practical Applications: Data processing pipelines, compile-time computations, and
more.

By mastering these libraries, you can write more expressive, modular, and reusable C++
code that aligns with functional programming principles. These tools enable you to
create flexible and powerful abstractions, making your programs easier to reason about
and extend.

Chapter 13

Memory Management in Functional
Programming

13.1 Using Smart Pointers (std::unique_ptr, std::shared_ptr) in
Functional Programming

In modern C++, memory management is a critical aspect of writing robust, efficient,
and maintainable code. Functional programming, with its emphasis on immutability,
pure functions, and declarative style, can benefit significantly from the use of smart
pointers. Smart pointers, such as std::unique_ptr and std::shared_ptr, provide
automatic memory management, ensuring that resources are properly deallocated when
they are no longer needed. This section explores how smart pointers can be effectively
integrated into functional programming paradigms in C++.

251

252

13.1.1 Overview of Smart Pointers

Smart pointers are objects that manage the lifetime of dynamically allocated memory.
They automatically deallocate the memory they manage when the smart pointer goes
out of scope, thus preventing memory leaks. The two most commonly used smart
pointers in C++ are:

• std::unique_ptr: A smart pointer that owns and manages a single object
exclusively. It cannot be copied, ensuring that only one std::unique_ptr owns the
resource at any given time.

• std::shared_ptr: A smart pointer that allows multiple pointers to share ownership
of the same object. The object is deallocated only when the last std::shared_ptr
that owns it is destroyed or reset.

13.1.2 Smart Pointers and Immutability

Functional programming emphasizes immutability, where data is not modified after it is
created. Smart pointers can help enforce this principle by managing the lifecycle of
immutable objects.

• std::unique_ptr and Immutability: Since std::unique_ptr enforces exclusive
ownership, it can be used to manage immutable objects that should not be shared
or copied. For example, a std::unique_ptr can be used to manage a dynamically
allocated immutable data structure, ensuring that the data structure is not
accidentally modified or shared.

• std::shared_ptr and Immutability: std::shared_ptr can be used to manage shared
immutable objects. Since the object is immutable, multiple std::shared_ptr
instances can safely point to the same object without the risk of data races or
unintended modifications.

253

13.1.3 Smart Pointers in Pure Functions

Pure functions are functions that do not have side effects and always produce the same
output for the same input. Smart pointers can be used to manage resources within pure
functions without introducing side effects.

• std::unique_ptr in Pure Functions: A pure function can return a std::unique_ptr
to a newly created object, transferring ownership to the caller. This ensures that
the function does not leak memory and that the caller is responsible for managing
the resource.

• std::shared_ptr in Pure Functions: When a pure function needs to return a shared
resource, it can return a std::shared_ptr. This allows multiple callers to share
ownership of the resource, while still ensuring that the resource is properly
deallocated when no longer needed.

13.1.4 Smart Pointers and Higher-Order Functions

Higher-order functions are functions that take other functions as arguments or return
functions as results. Smart pointers can be used to manage resources within
higher-order functions, ensuring that resources are properly managed even when
functions are passed around.

• std::unique_ptr in Higher-Order Functions: A higher-order function can accept a
std::unique_ptr as an argument, taking ownership of the resource. This allows the
function to manage the resource's lifecycle without worrying about ownership
issues.

• std::shared_ptr in Higher-Order Functions: When a higher-order function needs to
share a resource with other functions, it can pass a std::shared_ptr. This ensures
that the resource remains valid as long as any function holds a reference to it.

254

13.1.5 Smart Pointers and Functional Data Structures

Functional data structures, such as persistent data structures, often require careful
memory management. Smart pointers can be used to implement these data structures
efficiently.

• std::unique_ptr in Functional Data Structures: std::unique_ptr can be used to
manage nodes in a persistent data structure, ensuring that nodes are deallocated
when they are no longer part of the structure.

• std::shared_ptr in Functional Data Structures: std::shared_ptr can be used to
implement shared nodes in a persistent data structure, allowing multiple versions
of the structure to share common nodes without duplicating memory.

13.1.6 Example: Using Smart Pointers in a Functional Context

Consider a simple example where we implement a functional-style linked list using smart
pointers:

#include <memory>
#include <iostream>

template <typename T>
class FunctionalList {
public:

struct Node {
T value;
std::shared_ptr<Node> next;

Node(T val, std::shared_ptr<Node> nxt = nullptr)
: value(val), next(nxt) {}

255

};

FunctionalList() : head(nullptr) {}

FunctionalList(T val, FunctionalList tail)
: head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const {
return head == nullptr;

}

T front() const {
if (isEmpty()) throw std::runtime_error(”List is empty”);
return head->value;

}

FunctionalList pop_front() const {
if (isEmpty()) throw std::runtime_error(”List is empty”);
return FunctionalList(head->next);

}

private:
std::shared_ptr<Node> head;

FunctionalList(std::shared_ptr<Node> head) : head(head) {}
};

int main() {
FunctionalList<int> list1;
FunctionalList<int> list2(1, list1);
FunctionalList<int> list3(2, list2);

256

std::cout << ”Front of list3: ” << list3.front() << std::endl; // Output: 2
std::cout << ”Front of list2: ” << list2.front() << std::endl; // Output: 1

return 0;
}

In this example, std::shared_ptr is used to manage the nodes of the linked list, allowing
multiple lists to share common nodes. This approach ensures that memory is managed
correctly and that the list can be used in a functional style.

13.1.7 Conclusion

Smart pointers, particularly std::unique_ptr and std::shared_ptr, are powerful tools for
managing memory in functional programming. They help enforce immutability, manage
resources in pure functions, and facilitate the implementation of functional data
structures. By integrating smart pointers into functional programming practices,
developers can write safer, more efficient, and more maintainable C++ code.
In the next section, we will explore how to manage memory in functional programming
using custom allocators and memory pools, further enhancing the performance and
flexibility of functional C++ programs.

13.2 Avoiding Memory Leaks with Functional Programming

Memory leaks are a common issue in programs that rely on manual memory
management. They occur when dynamically allocated memory is not properly
deallocated, leading to a gradual increase in memory usage and, eventually, program
crashes or system instability. Functional programming, with its emphasis on
immutability, pure functions, and declarative style, offers several strategies to avoid
memory leaks. This section explores how functional programming principles can help

257

prevent memory leaks and how modern C++ features, such as smart pointers and RAII
(Resource Acquisition Is Initialization), can be leveraged to ensure robust memory
management.

13.2.1 Understanding Memory Leaks

A memory leak occurs when a program allocates memory dynamically (e.g., using new
or malloc) but fails to release it (e.g., using delete or free). Over time, these unreleased
memory blocks accumulate, consuming system resources and degrading performance.
Common causes of memory leaks include:

• Forgetting to deallocate memory.

• Losing track of pointers to allocated memory.

• Exception safety issues, where an exception prevents deallocation code from
executing.

Functional programming, with its focus on immutability and deterministic behavior,
provides tools and techniques to mitigate these issues.

13.2.2 Functional Programming Principles for Avoiding Memory Leaks

Functional programming promotes practices that inherently reduce the risk of memory
leaks:

1. Immutability:

• Immutable data structures cannot be modified after creation. This eliminates
the risk of accidentally overwriting or losing pointers to allocated memory.

258

• Immutability also simplifies reasoning about memory ownership, as data is
either owned by a single entity or shared without modification.

2. Pure Functions:

• Pure functions do not have side effects, meaning they do not modify external
state or allocate memory that persists beyond their scope.

• By avoiding side effects, pure functions reduce the likelihood of memory leaks
caused by unintended interactions between functions.

3. Deterministic Resource Management:

• Functional programming encourages deterministic behavior, where the
lifecycle of resources is predictable and tied to specific scopes or ownership
rules.

• This aligns well with C++'s RAII principle, where resources are
automatically released when objects go out of scope.

4. Higher-Order Functions and Composition:

• Higher-order functions allow for the creation of reusable abstractions for
memory management, such as smart pointers or custom allocators.

• Function composition ensures that resources are managed in a structured and
predictable manner.

13.2.3 Leveraging RAII and Smart Pointers

RAII is a cornerstone of C++ memory management. It ensures that resources are
automatically released when an object goes out of scope. Smart pointers, such as

259

std::unique_ptr and std::shared_ptr, are RAII-compliant tools that help prevent
memory leaks.

1. std::unique_ptr:

• A std::unique_ptr exclusively owns the memory it points to. When the
std::unique_ptr goes out of scope, the memory is automatically deallocated.

• This ensures that there is no ambiguity about ownership, reducing the risk of
memory leaks.

Example:

void processData() {
auto data = std::make_unique<int[]>(100); // Allocate memory
// Use data...
// Memory is automatically deallocated when 'data' goes out of scope

}

2. std::shared_ptr:

• A std::shared_ptr allows multiple pointers to share ownership of the same
memory. The memory is deallocated only when the last std::shared_ptr
referencing it is destroyed.

• This is useful for shared resources but should be used judiciously to avoid
cyclic references, which can lead to memory leaks.

Example:

260

void shareData() {
auto data = std::make_shared<int>(42);
auto data2 = data; // Share ownership
// Memory is deallocated when both 'data' and 'data2' go out of scope

}

3. Avoiding Cyclic References:

• Cyclic references occur when two or more std::shared_ptr instances reference
each other, preventing their reference counts from reaching zero.

• To avoid this, use std::weak_ptr for non-owning references.

Example:

struct Node {
std::shared_ptr<Node> next;
std::weak_ptr<Node> prev; // Use weak_ptr to break cyclic references

};

13.2.4 Functional Data Structures and Memory Safety

Functional programming often relies on persistent data structures, which preserve
previous versions of themselves when modified. These structures can be implemented in
C++ using smart pointers to ensure memory safety.

1. Persistent Linked List:

• A persistent linked list can be implemented using std::shared_ptr to share
nodes between versions of the list.

261

• Since nodes are immutable, multiple lists can safely share common nodes
without risking memory leaks.

Example:

template <typename T>
class PersistentList {
public:

struct Node {
T value;
std::shared_ptr<Node> next;
Node(T val, std::shared_ptr<Node> nxt = nullptr)

: value(val), next(nxt) {}
};

PersistentList() : head(nullptr) {}
PersistentList(T val, PersistentList tail)

: head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const { return head == nullptr; }
T front() const {

if (isEmpty()) throw std::runtime_error(”List is empty”);
return head->value;

}
PersistentList pop_front() const {

if (isEmpty()) throw std::runtime_error(”List is empty”);
return PersistentList(head->next);

}

private:
std::shared_ptr<Node> head;
PersistentList(std::shared_ptr<Node> head) : head(head) {}

};

262

2. Garbage Collection Analogy:

• Functional languages often rely on garbage collection to manage memory. In
C++, smart pointers provide a similar mechanism, ensuring that memory is
deallocated when no longer needed.

13.2.5 Exception Safety and Functional Programming

Exceptions can disrupt the normal flow of a program, potentially leading to memory
leaks if resources are not properly managed. Functional programming, combined with
RAII, ensures exception safety.

1. RAII Guarantees:

• When an exception is thrown, all local objects (including smart pointers) are
destroyed, ensuring that their associated resources are released.

2. No Raw Pointers:

• Avoid using raw pointers for dynamic memory allocation. Instead, use smart
pointers to ensure that memory is deallocated even if an exception occurs.

Example:

void safeFunction() {
auto resource = std::make_unique<Resource>();
// If an exception is thrown here, 'resource' will still be deallocated
riskyOperation();

}

263

13.2.6 Best Practices for Avoiding Memory Leaks

1. Prefer Smart Pointers Over Raw Pointers:

• Use std::unique_ptr for exclusive ownership and std::shared_ptr for shared
ownership.

• Avoid using new and delete directly.

2. Use Immutable Data Structures:

• Immutable data structures simplify memory management by eliminating the
need to track modifications.

3. Avoid Global State:

• Global variables can lead to memory leaks if they hold references to
dynamically allocated memory. Functional programming discourages global
state in favor of local, scoped variables.

4. Test for Memory Leaks:

• Use tools like Valgrind or AddressSanitizer to detect memory leaks in your
code.

13.2.7 Conclusion

Functional programming provides a robust framework for avoiding memory leaks by
promoting immutability, pure functions, and deterministic resource management. When
combined with modern C++ features like smart pointers and RAII, these principles
enable developers to write memory-safe, efficient, and maintainable code. By adhering

264

to functional programming practices and leveraging the power of C++, you can
eliminate memory leaks and build high-performance applications.
In the next section, we will explore advanced memory management techniques, including
custom allocators and memory pools, to further optimize memory usage in functional
C++ programs.

Chapter 14

Performance Optimization

14.1 Techniques for Optimizing Performance in Functional
Programming

Functional programming is often associated with elegant, declarative code and
immutable data structures. However, these characteristics can sometimes lead to
performance overhead if not managed carefully. This section explores techniques for
optimizing performance in functional programming, focusing on modern C++ features
and paradigms that balance functional purity with efficiency.

14.1.1 Understanding Performance Challenges in Functional Programming

Functional programming introduces certain performance challenges due to its core
principles:

1. Immutability:

265

266

• Immutable data structures ensure safety and predictability but can lead to
increased memory usage and copying overhead, especially when creating new
versions of data structures.

2. Pure Functions:

• Pure functions avoid side effects, making them easier to reason about, but
they may require additional computations or intermediate data structures.

3. Higher-Order Functions:

• Functions like map, filter, and reduce are powerful abstractions but can
introduce overhead due to function calls and temporary objects.

4. Recursion:

• Recursion is a natural fit for functional programming but can lead to stack
overflow or inefficiency if not optimized.

To address these challenges, we can employ a variety of techniques that leverage modern
C++ features and functional programming principles.

14.1.2 Leveraging Immutability Efficiently

Immutability is a cornerstone of functional programming, but it can be optimized to
reduce overhead:

1. Persistent Data Structures:

• Persistent data structures, such as immutable linked lists or trees, allow
sharing of common data between versions, minimizing memory usage.

267

• In C++, persistent data structures can be implemented using smart pointers
(std::shared_ptr) to manage shared nodes.

Example:

template <typename T>
class PersistentList {
public:

struct Node {
T value;
std::shared_ptr<Node> next;
Node(T val, std::shared_ptr<Node> nxt = nullptr)

: value(val), next(nxt) {}
};

PersistentList() : head(nullptr) {}
PersistentList(T val, PersistentList tail)

: head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const { return head == nullptr; }
T front() const {

if (isEmpty()) throw std::runtime_error(”List is empty”);
return head->value;

}
PersistentList pop_front() const {

if (isEmpty()) throw std::runtime_error(”List is empty”);
return PersistentList(head->next);

}

private:
std::shared_ptr<Node> head;
PersistentList(std::shared_ptr<Node> head) : head(head) {}

};

268

2. Structural Sharing:

• Structural sharing ensures that only the modified parts of a data structure
are copied, while the unchanged parts are shared between versions.

• This technique is commonly used in functional languages like Clojure and can
be implemented in C++ using smart pointers and custom data structures.

14.1.3 Optimizing Pure Functions

Pure functions are deterministic and side-effect-free, but they can be optimized for
performance:

1. Memoization:

• Memoization caches the results of expensive function calls, avoiding
redundant computations.

• In C++, memoization can be implemented using std::unordered_map or
custom caching mechanisms.

Example:

#include <unordered_map>
#include <functional>

template <typename Result, typename... Args>
auto memoize(std::function<Result(Args...)> func) {

std::unordered_map<std::tuple<Args...>, Result> cache;
return [=](Args... args) mutable {

auto key = std::make_tuple(args...);
if (cache.find(key) == cache.end()) {

cache[key] = func(args...);

269

}
return cache[key];

};
}

int fibonacci(int n) {
if (n <= 1) return n;
static auto memoized_fib = memoize<int, int>(fibonacci);
return memoized_fib(n - 1) + memoized_fib(n - 2);

}

2. Loop Fusion:

• Loop fusion combines multiple operations (e.g., map and filter) into a single
pass over the data, reducing intermediate allocations and improving cache
locality.

• In C++, loop fusion can be achieved by manually combining operations or
using libraries like Range-v3.

Example:

#include <vector>
#include <algorithm>
#include <iostream>

void fusedLoop(const std::vector<int>& input) {
for (int x : input) {

if (x % 2 == 0) { // Filter
std::cout << x * 2 << ” ”; // Map

}

270

}
}

14.1.4 Efficient Use of Higher-Order Functions

Higher-order functions like map, filter, and reduce are powerful but can introduce
overhead. Optimizing their use is key to improving performance:

1. Lazy Evaluation:

• Lazy evaluation delays computation until the result is needed, avoiding
unnecessary work.

• In C++, lazy evaluation can be implemented using iterators or custom lazy
data structures.

Example:

#include <ranges>
#include <vector>
#include <iostream>

void lazyEvaluation(const std::vector<int>& input) {
auto even = input | std::views::filter([](int x) { return x % 2 == 0; });
for (int x : even) {

std::cout << x << ” ”;
}

}

2. Batch Processing:

271

• Batch processing applies operations to chunks of data at once, reducing
function call overhead and improving cache efficiency.

• This technique is particularly useful for large datasets.

14.1.5 Optimizing Recursion

Recursion is a natural fit for functional programming but can be inefficient if not
optimized:

1. Tail Recursion Optimization:

• Tail recursion occurs when the recursive call is the last operation in a function.
Some compilers optimize tail-recursive functions to avoid stack overflow.

• In C++, tail recursion can be manually optimized using iterative loops.

Example:

int factorial(int n, int acc = 1) {
if (n <= 1) return acc;
return factorial(n - 1, n * acc); // Tail-recursive

}

2. Iterative Solutions:

• For deeply recursive algorithms, converting recursion to iteration can improve
performance and avoid stack overflow.

Example:

272

int factorialIterative(int n) {
int result = 1;
for (int i = 1; i <= n; ++i) {

result *= i;
}
return result;

}

14.1.6 Leveraging Modern C++ Features

Modern C++ provides several features that can enhance the performance of functional
programming:

1. Move Semantics:

• Move semantics allow resources to be transferred rather than copied,
reducing overhead for large objects.

• Use std::move to transfer ownership of resources in functional-style code.

Example:

std::vector<int> processData(std::vector<int> data) {
// Modify data...
return std::move(data); // Avoid copying

}

2. Parallel Algorithms:

• C++17 introduced parallel algorithms, which can be used to parallelize
functional-style operations like map and reduce.

273

Example:

#include <vector>
#include <algorithm>
#include <execution>

void parallelTransform(std::vector<int>& data) {
std::transform(std::execution::par, data.begin(), data.end(), data.begin(),

[](int x) { return x * 2; });
}

14.1.7 Conclusion

Optimizing performance in functional programming requires a balance between
functional purity and efficiency. By leveraging techniques like persistent data structures,
memoization, lazy evaluation, and modern C++ features, developers can write
high-performance functional code without sacrificing clarity or safety. In the next
section, we will explore advanced optimization strategies, including profiling,
benchmarking, and custom allocators, to further enhance the performance of functional
C++ programs.

14.2 Using constexpr and noexcept to Optimize Code

In modern C++, the keywords constexpr and noexcept are powerful tools for optimizing
code. They enable compile-time computation, improve runtime performance, and
provide guarantees that help the compiler generate more efficient code. This section
explores how these features can be used in functional programming to enhance
performance while maintaining the principles of immutability, purity, and safety.

274

14.2.1 Understanding constexpr

The constexpr keyword allows computations to be performed at compile time, reducing
runtime overhead. It can be applied to variables, functions, and even complex data
structures, enabling compile-time evaluation of expressions.

1. constexpr Variables:

• A constexpr variable is a constant whose value is computed at compile time.
This eliminates runtime computation and allows the value to be used in
contexts where a compile-time constant is required, such as array sizes or
template arguments.

Example:

constexpr int factorial(int n) {
return (n <= 1) ? 1 : n * factorial(n - 1);

}

constexpr int fact_5 = factorial(5); // Computed at compile time

2. constexpr Functions:

• A constexpr function can be evaluated at compile time if its arguments are
constant expressions. This is particularly useful for functional programming,
where pure functions are common.

• constexpr functions can be used to compute values, generate data structures,
or even implement algorithms at compile time.

Example:

275

constexpr int square(int x) {
return x * x;

}

constexpr int squared_value = square(10); // Computed at compile time

3. constexpr Data Structures:

• constexpr can be used with user-defined types to create compile-time data
structures. This is useful for functional programming, where immutable data
structures are often used.

Example:

struct Point {
int x, y;
constexpr Point(int x, int y) : x(x), y(y) {}
constexpr int magnitude() const { return x * x + y * y; }

};

constexpr Point p(3, 4);
constexpr int mag = p.magnitude(); // Computed at compile time

14.2.2 Benefits of constexpr in Functional Programming

1. Compile-Time Computation:

• By moving computations to compile time, constexpr reduces runtime
overhead, making programs faster and more efficient.

276

• This is particularly useful for functional programming, where many
computations are deterministic and pure.

2. Immutable Data:

• constexpr ensures that data is immutable and computed at compile time,
aligning with the principles of functional programming.

3. Optimization Opportunities:

• The compiler can optimize constexpr expressions more aggressively, leading
to smaller and faster binaries.

14.2.3 Understanding noexcept

The noexcept keyword indicates that a function does not throw exceptions. This
provides guarantees to the compiler, enabling optimizations and improving performance.

1. noexcept Functions:

• A noexcept function promises not to throw exceptions. If an exception is
thrown, the program will terminate, ensuring predictable behavior.

• This allows the compiler to generate more efficient code, as it does not need
to handle exception propagation.

Example:

void safeOperation() noexcept {
// This function guarantees no exceptions

}

277

2. noexcept Expressions:

• The noexcept operator can be used to check whether an expression is
noexcept. This is useful for conditional compilation or optimization.

Example:

template <typename T>
void callFunction(T func) noexcept(noexcept(func())) {

func();
}

14.2.4 Benefits of noexcept in Functional Programming

1. Performance Optimization:

• noexcept functions allow the compiler to omit exception-handling overhead,
resulting in faster and smaller code.

• This is particularly useful for functional programming, where many functions
are pure and do not throw exceptions.

2. Predictable Behavior:

• By guaranteeing that a function does not throw exceptions, noexcept ensures
predictable behavior, which is a key principle of functional programming.

3. Improved Code Safety:

• noexcept encourages developers to write exception-safe code, reducing the
risk of runtime errors and improving program reliability.

278

14.2.5 Combining constexpr and noexcept

Combining constexpr and noexcept can lead to highly optimized code that is both fast
and safe. This is particularly useful in functional programming, where immutability and
purity are emphasized.

1. Compile-Time Safe Functions:

• A constexpr function that is also noexcept guarantees both compile-time
evaluation and exception safety.

Example:

constexpr int safeAdd(int a, int b) noexcept {
return a + b;

}

constexpr int result = safeAdd(10, 20); // Computed at compile time, no exceptions

2. Optimized Data Structures:

• Combining constexpr and noexcept in data structures ensures that they can
be used in compile-time contexts without the risk of exceptions.

Example:

struct Vector {
int x, y;
constexpr Vector(int x, int y) noexcept : x(x), y(y) {}
constexpr int dot(const Vector& other) const noexcept {

return x * other.x + y * other.y;

279

}
};

constexpr Vector v1(1, 2);
constexpr Vector v2(3, 4);
constexpr int dot_product = v1.dot(v2); // Computed at compile time, no exceptions

14.2.6 Practical Applications in Functional Programming

1. Compile-Time Functional Algorithms:

• Functional algorithms like map, filter, and reduce can be implemented using
constexpr to enable compile-time evaluation.

Example:

template <typename Func, typename T, std::size_t N>
constexpr auto map(Func func, const std::array<T, N>& arr) noexcept {

std::array<decltype(func(std::declval<T>())), N> result{};
for (std::size_t i = 0; i < N; ++i) {

result[i] = func(arr[i]);
}
return result;

}

constexpr std::array<int, 3> input = {1, 2, 3};
constexpr auto squared = map([](int x) noexcept { return x * x; }, input);

2. Immutable Data Structures:

280

• Immutable data structures can be implemented using constexpr and noexcept
to ensure compile-time safety and performance.

Example:

template <typename T>
class ImmutableList {
public:

constexpr ImmutableList() noexcept : head(nullptr) {}
constexpr ImmutableList(T val, ImmutableList tail) noexcept

: head(std::make_shared<Node>(val, tail.head)) {}

constexpr bool isEmpty() const noexcept { return head == nullptr; }
constexpr T front() const noexcept {

return head->value;
}

private:
struct Node {

T value;
std::shared_ptr<Node> next;
constexpr Node(T val, std::shared_ptr<Node> nxt = nullptr) noexcept

: value(val), next(nxt) {}
};
std::shared_ptr<Node> head;

};

14.2.7 Conclusion

The constexpr and noexcept keywords are powerful tools for optimizing code in
functional programming. By enabling compile-time computation and providing

281

exception safety guarantees, they help developers write faster, safer, and more efficient
programs. When combined with functional programming principles like immutability
and purity, these features enable the creation of high-performance, modern C++
applications.
In the next section, we will explore advanced optimization techniques, including
profiling, benchmarking, and custom allocators, to further enhance the performance of
functional C++ programs.

Chapter 15

Concurrency and Functional Programming

15.1 Using Functional Programming in Concurrent Applications

Concurrency is a critical aspect of modern software development, enabling programs to
perform multiple tasks simultaneously and take full advantage of multi-core processors.
Functional programming, with its emphasis on immutability, pure functions, and
declarative style, provides a robust foundation for writing concurrent applications. This
section explores how functional programming principles can be applied to concurrent
programming in C++, leveraging modern language features and libraries to build
efficient, scalable, and maintainable concurrent systems.

15.1.1 The Challenges of Concurrency

Concurrent programming introduces several challenges, including:

1. Race Conditions:

• Race conditions occur when multiple threads access shared data concurrently,

282

283

leading to unpredictable behavior.

2. Deadlocks:

• Deadlocks arise when two or more threads are blocked forever, waiting for
each other to release resources.

3. Complexity:

• Managing threads, synchronization, and shared state can make concurrent
programs difficult to reason about and maintain.

Functional programming addresses these challenges by promoting immutability, avoiding
shared state, and using higher-level abstractions for concurrency.

15.1.2 Immutability and Concurrency

Immutability is a core principle of functional programming that ensures data cannot be
modified after creation. This property is particularly valuable in concurrent applications:

1. No Shared Mutable State:

• Immutable data structures eliminate the need for locks or synchronization
mechanisms, as they cannot be modified by multiple threads.

2. Thread Safety:

• Immutable objects are inherently thread-safe, as they can be safely shared
across threads without the risk of race conditions.

3. Predictable Behavior:

284

• Immutability simplifies reasoning about concurrent programs, as the state of
an object remains constant throughout its lifetime.

Example:

#include <string>
#include <vector>

class ImmutableMessage {
public:

ImmutableMessage(std::string sender, std::string content)
: sender(std::move(sender)), content(std::move(content)) {}

std::string getSender() const { return sender; }
std::string getContent() const { return content; }

private:
std::string sender;
std::string content;

};

void processMessage(const ImmutableMessage& msg) {
// Safe to use 'msg' in a concurrent context

}

15.1.3 Pure Functions and Concurrency

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for concurrent programming because:

1. No Side Effects:

285

• Pure functions do not modify shared state, eliminating the risk of race
conditions.

2. Deterministic Behavior:

• Pure functions are deterministic, making them easier to test and debug in
concurrent contexts.

3. Parallel Execution:

• Pure functions can be safely executed in parallel, as they do not depend on or
modify external state.

Example:

#include <vector>
#include <algorithm>
#include <execution>

int square(int x) {
return x * x;

}

void parallelTransform(const std::vector<int>& input, std::vector<int>& output) {
std::transform(std::execution::par, input.begin(), input.end(), output.begin(), square);

}

15.1.4 Higher-Order Functions and Concurrency

Higher-order functions, which take functions as arguments or return functions as results,
are a powerful tool for concurrent programming:

286

1. Abstraction:

• Higher-order functions abstract away the details of concurrency, allowing
developers to focus on the logic of their programs.

2. Composition:

• Higher-order functions enable the composition of concurrent operations, such
as mapping, filtering, and reducing data in parallel.

3. Reusability:

• Higher-order functions can be reused across different concurrent contexts,
reducing code duplication and improving maintainability.

Example:

#include <vector>
#include <future>
#include <algorithm>

template <typename Func, typename T>
std::vector<std::future<T>> asyncMap(Func func, const std::vector<T>& input) {

std::vector<std::future<T>> futures;
for (const auto& item : input) {

futures.push_back(std::async(std::launch::async, func, item));
}
return futures;

}

int main() {
std::vector<int> input = {1, 2, 3, 4, 5};

287

auto futures = asyncMap([](int x) { return x * x; }, input);

for (auto& fut : futures) {
std::cout << fut.get() << ” ”;

}
return 0;

}

15.1.5 Functional Concurrency Patterns

Functional programming encourages the use of patterns that simplify concurrent
programming:

1. Map-Reduce:

• The map-reduce pattern divides a task into smaller sub-tasks (map),
processes them in parallel, and combines the results (reduce).

• This pattern is well-suited for functional programming, as it aligns with the
principles of immutability and pure functions.

Example:

#include <vector>
#include <numeric>
#include <execution>

int main() {
std::vector<int> data = {1, 2, 3, 4, 5};
auto squared = std::transform_reduce(

std::execution::par, data.begin(), data.end(), 0, std::plus<>(),

288

[](int x) { return x * x; });
std::cout << ”Sum of squares: ” << squared << std::endl;
return 0;

}

2. Futures and Promises:

• Futures and promises provide a way to represent asynchronous computations
and their results.

• Functional programming can leverage futures to compose asynchronous
operations in a declarative manner.

Example:

#include <future>
#include <iostream>

int compute(int x) {
return x * x;

}

int main() {
std::future<int> fut = std::async(std::launch::async, compute, 10);
std::cout << ”Result: ” << fut.get() << std::endl;
return 0;

}

3. Actors:

289

• The actor model is a concurrency pattern where independent entities (actors)
communicate by sending messages.

• Functional programming can be used to implement actors with immutable
messages and pure message handlers.

Example:

#include <iostream>
#include <thread>
#include <queue>
#include <mutex>
#include <condition_variable>

class Actor {
public:

void send(int message) {
std::lock_guard<std::mutex> lock(mtx);
queue.push(message);
cv.notify_one();

}

void run() {
while (true) {

std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [this] { return !queue.empty(); });
int message = queue.front();
queue.pop();
lock.unlock();

if (message == -1) break; // Termination signal
process(message);

}

290

}

private:
void process(int message) {

std::cout << ”Processing: ” << message << std::endl;
}

std::queue<int> queue;
std::mutex mtx;
std::condition_variable cv;

};

int main() {
Actor actor;
std::thread t([&actor] { actor.run(); });

for (int i = 1; i <= 5; ++i) {
actor.send(i);

}
actor.send(-1); // Signal termination

t.join();
return 0;

}

15.1.6 Conclusion

Functional programming provides a strong foundation for writing concurrent
applications by promoting immutability, pure functions, and higher-level abstractions.
By leveraging these principles, developers can build concurrent systems that are efficient,
scalable, and easy to reason about. Modern C++ features, such as parallel algorithms,

291

futures, and immutable data structures, further enhance the ability to write
high-performance concurrent code in a functional style.
In the next section, we will explore advanced concurrency techniques, including lock-free
programming, thread pools, and task-based parallelism, to further optimize concurrent
applications in C++.

15.2 Examples of Using std::async and std::future

Concurrency is a cornerstone of modern software development, and C++ provides
powerful tools like std::async and std::future to simplify asynchronous programming.
These tools align well with functional programming principles, enabling developers to
write concurrent code that is both efficient and easy to reason about. This section
explores practical examples of using std::async and std::future in functional
programming, demonstrating how they can be used to perform asynchronous
computations, compose parallel tasks, and manage concurrency in a declarative manner.

15.2.1 Overview of std::async and std::future

1. std::async:

• std::async is a high-level abstraction for launching asynchronous tasks. It
returns a std::future object that represents the result of the computation.

• It can be configured to run tasks either asynchronously (std::launch::async)
or deferred (std::launch::deferred).

2. std::future:

• A std::future represents the result of an asynchronous computation. It allows
you to retrieve the result of a task once it is completed.

292

• The get() method blocks until the result is available, while wait() blocks until
the task is completed without retrieving the result.

3. Functional Programming Synergy:

• std::async and std::future work well with functional programming principles,
as they enable pure, side-effect-free computations to be executed
asynchronously.

• They also support composition, allowing multiple asynchronous tasks to be
combined into larger workflows.

15.2.2 Basic Example: Asynchronous Computation

The simplest use case for std::async is to perform an asynchronous computation and
retrieve the result using std::future.
Example:

#include <iostream>
#include <future>
#include <chrono>

int compute(int x) {
std::this_thread::sleep_for(std::chrono::seconds(2)); // Simulate work
return x * x;

}

int main() {
// Launch an asynchronous task
std::future<int> fut = std::async(std::launch::async, compute, 10);

// Do other work while the task is running

293

std::cout << ”Waiting for the result...” << std::endl;

// Retrieve the result (blocks until the task is complete)
int result = fut.get();
std::cout << ”Result: ” << result << std::endl;

return 0;
}

Explanation:

• The compute function simulates a time-consuming computation.

• std::async launches the task asynchronously, and std::future is used to retrieve the
result.

• The main thread can perform other work while the task is running.

15.2.3 Example: Parallel Map with std::async

Functional programming often uses higher-order functions like map to transform data.
Using std::async, we can implement a parallel version of map that processes elements
concurrently.
Example:

#include <iostream>
#include <vector>
#include <future>
#include <algorithm>

// Pure function to square a number
int square(int x) {

294

return x * x;
}

// Parallel map using std::async
template <typename Func, typename T>
std::vector<T> parallelMap(Func func, const std::vector<T>& input) {

std::vector<std::future<T>> futures;
for (const auto& item : input) {

futures.push_back(std::async(std::launch::async, func, item));
}

std::vector<T> result;
for (auto& fut : futures) {

result.push_back(fut.get());
}
return result;

}

int main() {
std::vector<int> input = {1, 2, 3, 4, 5};
auto output = parallelMap(square, input);

for (const auto& val : output) {
std::cout << val << ” ”;

}
return 0;

}

Explanation:

• The square function is a pure function that squares its input.

• parallelMap uses std::async to apply the function to each element of the input

295

vector concurrently.

• The results are collected into a new vector and returned.

15.2.4 Example: Composing Asynchronous Tasks

std::future can be used to compose multiple asynchronous tasks into a larger workflow.
This is particularly useful in functional programming, where tasks can be chained
together declaratively.
Example:

#include <iostream>
#include <future>

int add(int a, int b) {
return a + b;

}

int multiply(int a, int b) {
return a * b;

}

int main() {
// Launch asynchronous tasks
std::future<int> fut1 = std::async(std::launch::async, add, 10, 20);
std::future<int> fut2 = std::async(std::launch::async, multiply, 5, 6);

// Wait for both tasks to complete and combine their results
int result = fut1.get() + fut2.get();
std::cout << ”Combined result: ” << result << std::endl;

return 0;

296

}

Explanation:

• Two asynchronous tasks are launched using std::async: one for addition and one
for multiplication.

• The results of the tasks are retrieved using std::future::get and combined.

15.2.5 Example: Asynchronous Pipeline

Functional programming often uses pipelines to process data through a series of
transformations. Using std::async and std::future, we can create an asynchronous
pipeline.
Example:

#include <iostream>
#include <future>
#include <vector>

int square(int x) {
return x * x;

}

int sum(const std::vector<int>& input) {
int result = 0;
for (int x : input) {

result += x;
}
return result;

}

297

int main() {
std::vector<int> input = {1, 2, 3, 4, 5};

// Stage 1: Square all elements (parallel)
std::vector<std::future<int>> futures;
for (int x : input) {

futures.push_back(std::async(std::launch::async, square, x));
}

// Collect results from Stage 1
std::vector<int> squared;
for (auto& fut : futures) {

squared.push_back(fut.get());
}

// Stage 2: Sum the squared elements (sequential)
std::future<int> fut = std::async(std::launch::async, sum, squared);
int result = fut.get();

std::cout << ”Sum of squares: ” << result << std::endl;
return 0;

}

Explanation:

• The input data is processed in two stages: squaring the elements (parallel) and
summing the results (sequential).

• std::async is used to parallelize the squaring stage, and std::future is used to
synchronize the results.

298

15.2.6 Example: Exception Handling in Asynchronous Tasks

Functional programming emphasizes robustness and predictability. When using
std::async and std::future, it is important to handle exceptions that may occur in
asynchronous tasks.
Example:

#include <iostream>
#include <future>
#include <stdexcept>

int compute(int x) {
if (x < 0) {

throw std::invalid_argument(”Input must be non-negative”);
}
return x * x;

}

int main() {
std::future<int> fut = std::async(std::launch::async, compute, -10);

try {
int result = fut.get();
std::cout << ”Result: ” << result << std::endl;

} catch (const std::exception& e) {
std::cerr << ”Error: ” << e.what() << std::endl;

}

return 0;
}

Explanation:

299

• The compute function throws an exception if the input is invalid.

• The exception is propagated to the main thread when fut.get() is called, allowing
it to be handled gracefully.

15.2.7 Example: Using std::future with Functional Composition

Functional programming encourages the composition of functions to build complex
workflows. std::future can be used to compose asynchronous tasks in a functional style.
Example:

#include <iostream>
#include <future>

int add(int a, int b) {
return a + b;

}

int multiply(int a, int b) {
return a * b;

}

int main() {
auto fut1 = std::async(std::launch::async, add, 10, 20);
auto fut2 = std::async(std::launch::async, multiply, 5, 6);

// Compose the results of the two tasks
auto result = [](std::future<int> f1, std::future<int> f2) {

return f1.get() + f2.get();
};

std::cout << ”Combined result: ” << result(std::move(fut1), std::move(fut2)) << std::endl;

300

return 0;
}

Explanation:

• Two asynchronous tasks are launched, and their results are composed using a
lambda function.

• This demonstrates how std::future can be used to build functional workflows.

15.2.8 Conclusion

std::async and std::future are powerful tools for writing concurrent applications in a
functional style. They enable asynchronous computations, parallel processing, and
functional composition while maintaining the principles of immutability and purity. By
leveraging these tools, developers can build efficient, scalable, and maintainable
concurrent systems in modern C++.
In the next section, we will explore advanced concurrency techniques, including thread
pools, task-based parallelism, and lock-free programming, to further enhance the
performance and scalability of functional C++ applications.

Chapter 16

Building Functional Libraries

16.1 How to Design Libraries That Support Functional
Programming

Designing libraries that support functional programming requires a deep understanding
of the principles and practices that define the paradigm. Functional programming
emphasizes immutability, pure functions, higher-order functions, and declarative style.
When designing libraries, these principles must be carefully integrated to ensure that
the library is both functional in nature and practical for real-world use. This section
explores the key considerations and strategies for designing functional programming
libraries in modern C++.

16.1.1 Core Principles of Functional Programming

Before diving into library design, it is essential to understand the core principles of
functional programming:

301

302

1. Immutability:

• Data is immutable, meaning it cannot be modified after creation. This
ensures thread safety and predictability.

2. Pure Functions:

• Functions are pure, meaning they do not have side effects and always
produce the same output for the same input.

3. Higher-Order Functions:

• Functions can take other functions as arguments or return functions as
results, enabling powerful abstractions.

4. Declarative Style:

• Code is written in a declarative manner, focusing on what to do rather than
how to do it.

5. Composition:

• Functions and data structures are designed to be composable, allowing
complex behaviors to be built from simple components.

16.1.2 Designing for Immutability

Immutability is a cornerstone of functional programming. When designing libraries,
immutability should be enforced wherever possible.

1. Immutable Data Structures:

303

• Provide immutable versions of common data structures, such as lists, maps,
and sets.

• Use const and constexpr to enforce immutability at compile time.

Example:

class ImmutableList {
public:

ImmutableList(int head, ImmutableList tail) : head(head), tail(tail) {}
int getHead() const { return head; }
ImmutableList getTail() const { return tail; }

private:
int head;
ImmutableList tail;

};

2. Copy-on-Write Semantics:

• Implement copy-on-write semantics to optimize performance while
maintaining immutability.

• Use smart pointers (std::shared_ptr) to manage shared data efficiently.

Example:

class ImmutableVector {
public:

ImmutableVector(std::vector<int> data) :
data(std::make_shared<std::vector<int>>(std::move(data))) {}↪→

304

ImmutableVector set(int index, int value) const {
auto newData = std::make_shared<std::vector<int>>(*data);
(*newData)[index] = value;
return ImmutableVector(newData);

}

private:
std::shared_ptr<std::vector<int>> data;

};

16.1.3 Supporting Pure Functions

Pure functions are a key aspect of functional programming. Libraries should encourage
and facilitate the use of pure functions.

1. Avoid Side Effects:

• Design functions to be side-effect-free, ensuring they do not modify external
state.

2. Functional Interfaces:

• Provide interfaces that accept pure functions as arguments, enabling
higher-order functions.

Example:

template <typename Func, typename T>
std::vector<T> map(Func func, const std::vector<T>& input) {

std::vector<T> result;

305

for (const auto& item : input) {
result.push_back(func(item));

}
return result;

}

3. Const-Correctness:

• Use const to ensure that functions do not modify their inputs.

Example:

int sum(const std::vector<int>& numbers) {
return std::accumulate(numbers.begin(), numbers.end(), 0);

}

16.1.4 Leveraging Higher-Order Functions

Higher-order functions are a powerful tool in functional programming. Libraries should
provide utilities that enable the use of higher-order functions.

1. Function Composition:

• Provide utilities for composing functions, allowing complex behaviors to be
built from simple functions.

Example:

306

template <typename Func1, typename Func2>
auto compose(Func1 f1, Func2 f2) {

return [=](auto x) { return f1(f2(x)); };
}

auto square = [](int x) { return x * x; };
auto increment = [](int x) { return x + 1; };
auto squareThenIncrement = compose(increment, square);

2. Currying:

• Support currying, where a function that takes multiple arguments is
transformed into a sequence of functions that each take a single argument.

Example:

template <typename Func, typename Arg1>
auto curry(Func func, Arg1 arg1) {

return [=](auto arg2) { return func(arg1, arg2); };
}

auto add = [](int a, int b) { return a + b; };
auto addFive = curry(add, 5);

16.1.5 Providing Declarative Abstractions

Functional programming emphasizes declarative style, where code describes what to do
rather than how to do it. Libraries should provide abstractions that enable declarative
programming.

307

1. Range-Based Abstractions:

• Provide range-based utilities for working with collections in a declarative
manner.

Example:

template <typename Func, typename Range>
auto transformRange(Func func, Range range) {

std::vector<decltype(func(*range.begin()))> result;
for (const auto& item : range) {

result.push_back(func(item));
}
return result;

}

2. Monadic Abstractions:

• Provide monadic abstractions, such as std::optional or std::expected, to
handle computations that may fail or produce optional results.

Example:

template <typename T>
std::optional<T> safeDivide(T a, T b) {

if (b == 0) return std::nullopt;
return a / b;

}

308

16.1.6 Ensuring Composability

Composability is a key principle of functional programming. Libraries should be
designed to enable the composition of functions and data structures.

1. Interoperable Interfaces:

• Ensure that functions and data structures have interoperable interfaces,
allowing them to be easily combined.

2. Pipeline Operators:

• Provide utilities for creating pipelines, where the output of one function is
passed as the input to the next.

Example:

template <typename Func, typename T>
auto operator|(T value, Func func) {

return func(value);
}

auto result = 5 | square | increment;

16.1.7 Example: Designing a Functional Library

Let’s design a simple functional library that supports immutability, pure functions, and
higher-order functions.
Example:

309

#include <iostream>
#include <vector>
#include <functional>
#include <numeric>

// Immutable List
template <typename T>
class ImmutableList {
public:

ImmutableList() : head(nullptr) {}
ImmutableList(T val, ImmutableList tail) : head(std::make_shared<Node>(val, tail.head)) {}

bool isEmpty() const { return head == nullptr; }
T front() const {

if (isEmpty()) throw std::runtime_error(”List is empty”);
return head->value;

}
ImmutableList pop_front() const {

if (isEmpty()) throw std::runtime_error(”List is empty”);
return ImmutableList(head->next);

}

private:
struct Node {

T value;
std::shared_ptr<Node> next;
Node(T val, std::shared_ptr<Node> nxt = nullptr) : value(val), next(nxt) {}

};
std::shared_ptr<Node> head;
ImmutableList(std::shared_ptr<Node> head) : head(head) {}

};

310

// Higher-Order Functions
template <typename Func, typename T>
ImmutableList<T> map(Func func, const ImmutableList<T>& list) {

if (list.isEmpty()) return ImmutableList<T>();
return ImmutableList<T>(func(list.front()), map(func, list.pop_front()));

}

template <typename Func, typename T>
T reduce(Func func, T init, const ImmutableList<T>& list) {

if (list.isEmpty()) return init;
return reduce(func, func(init, list.front()), list.pop_front());

}

int main() {
ImmutableList<int> list;
list = ImmutableList<int>(1, list);
list = ImmutableList<int>(2, list);
list = ImmutableList<int>(3, list);

auto squared = map([](int x) { return x * x; }, list);
auto sum = reduce([](int a, int b) { return a + b; }, 0, squared);

std::cout << ”Sum of squares: ” << sum << std::endl;
return 0;

}

Explanation:

• The library provides an immutable list and higher-order functions like map and
reduce.

• These functions are pure and composable, enabling declarative programming.

311

16.1.8 Conclusion

Designing libraries that support functional programming requires careful consideration
of immutability, pure functions, higher-order functions, and composability. By adhering
to these principles and leveraging modern C++ features, developers can create libraries
that are both functional in nature and practical for real-world use. In the next section,
we will explore advanced techniques for building functional libraries, including lazy
evaluation, monads, and concurrency support.

16.2 Examples of Functional Libraries Written in C++

Functional programming in C++ has gained significant traction in recent years, thanks
to the language's evolving features and the growing interest in functional paradigms.
Several libraries have been developed to bring functional programming concepts to
C++, making it easier for developers to write expressive, declarative, and efficient code.
This section explores some of the most prominent functional libraries written in C++,
highlighting their features, use cases, and examples.

16.2.1 Range-v3

Overview:
Range-v3 is a modern library that provides composable range-based abstractions for
working with collections. It is the foundation for the C++20 Ranges library and is
heavily inspired by functional programming concepts like lazy evaluation, higher-order
functions, and declarative style.
Key Features:

• Lazy Evaluation: Operations are evaluated only when needed, improving
performance.

312

• Composable Pipelines: Ranges can be transformed, filtered, and reduced using a
pipeline operator (|).

• Interoperability: Works seamlessly with STL containers and algorithms.

Example:

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};

// Create a pipeline: filter even numbers, square them, and sum the results
auto result = numbers

| ranges::views::filter([](int x) { return x % 2 == 0; })
| ranges::views::transform([](int x) { return x * x; })
| ranges::accumulate(0);

std::cout << ”Sum of squares of even numbers: ” << result << std::endl;
return 0;

}

Explanation:

• The pipeline filters even numbers, squares them, and sums the results.

• The operations are composable and evaluated lazily.

16.2.2 FunctionalPlus

Overview:

313

FunctionalPlus is a header-only library that brings functional programming to C++ by
providing a rich set of higher-order functions and utilities. It emphasizes immutability,
pure functions, and declarative programming.
Key Features:

• Higher-Order Functions: Includes map, filter, fold, and more.

• Immutable Data Structures: Encourages immutability and avoids side effects.

• Interoperability: Works with STL containers and algorithms.

Example:

#include <iostream>
#include <vector>
#include <fplus/fplus.hpp>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};

// Use FunctionalPlus to filter, transform, and sum
auto result = fplus::sum(fplus::transform(

[](int x) { return x * x; },
fplus::filter([](int x) { return x % 2 == 0; }, numbers)

));

std::cout << ”Sum of squares of even numbers: ” << result << std::endl;
return 0;

}

Explanation:

• The code filters even numbers, squares them, and sums the results using
FunctionalPlus.

314

• The library provides a functional and declarative API.

16.2.3 Hana

Overview:
Hana is a modern C++ metaprogramming library that provides functional
programming constructs for compile-time computations. It is part of the Boost library
and is designed to work seamlessly with C++14 and later.
Key Features:

• Compile-Time Computations: Enables functional programming at compile time.

• Type-Level Programming: Provides tools for working with types as first-class
citizens.

• Interoperability: Works with runtime computations and STL containers.

Example:

#include <iostream>
#include <boost/hana.hpp>

namespace hana = boost::hana;

int main() {
// Create a compile-time list of integers
constexpr auto numbers = hana::make_tuple(1, 2, 3, 4, 5);

// Use Hana to filter, transform, and sum at compile time
constexpr auto result = hana::sum(

hana::transform(
hana::filter(numbers, [](auto x) { return x % 2 == 0; }),

315

[](auto x) { return x * x; }
)

);

std::cout << ”Sum of squares of even numbers: ” << result << std::endl;
return 0;

}

Explanation:

• The code performs filtering, transformation, and summation at compile time using
Hana.

• Hana is particularly useful for metaprogramming and type-level computations.

16.2.4 CppMonad

Overview:
CppMonad is a library that brings monadic programming to C++. It provides
implementations of common monads like Maybe, Either, and IO, enabling functional
programming patterns such as error handling and effect management.
Key Features:

• Monadic Types: Includes Maybe, Either, IO, and more.

• Do Notation: Provides a macro-based do notation for chaining monadic
operations.

• Interoperability: Works with STL containers and algorithms.

Example:

316

#include <iostream>
#include <cpp_monad/maybe.h>

using namespace cpp_monad;

int main() {
// Create a Maybe monad representing a value
auto maybeValue = Just(10);

// Use monadic operations to transform and chain computations
auto result = maybeValue

>>= [](int x) { return Just(x * 2); }
>>= [](int x) { return x > 15 ? Just(x) : Nothing<int>(); };

// Check the result
if (result.isJust()) {

std::cout << ”Result: ” << result.fromJust() << std::endl;
} else {

std::cout << ”No result” << std::endl;
}

return 0;
}

Explanation:

• The code uses the Maybe monad to perform chained computations.

• The >>= operator is used to sequence monadic operations.

16.2.5 ETL (Embedded Template Library)

Overview:

317

ETL is a library designed for embedded systems but is also useful for general-purpose
functional programming. It provides a range of functional programming utilities,
including immutable data structures and higher-order functions.
Key Features:

• Immutable Data Structures: Includes vectors, lists, and maps.

• Higher-Order Functions: Provides map, filter, reduce, and more.

• Lightweight: Designed for resource-constrained environments.

Example:

#include <iostream>
#include <etl/vector.h>
#include <etl/algorithm.h>

int main() {
etl::vector<int, 5> numbers = {1, 2, 3, 4, 5};

// Use ETL to filter, transform, and sum
etl::vector<int, 5> evenNumbers;
etl::copy_if(numbers.begin(), numbers.end(), evenNumbers.begin(), [](int x) { return x % 2 == 0;

});↪→

etl::vector<int, 5> squaredNumbers;
etl::transform(evenNumbers.begin(), evenNumbers.end(), squaredNumbers.begin(), [](int x) {

return x * x; });↪→

int result = etl::accumulate(squaredNumbers.begin(), squaredNumbers.end(), 0);

std::cout << ”Sum of squares of even numbers: ” << result << std::endl;

318

return 0;
}

Explanation:

• The code uses ETL to filter even numbers, square them, and sum the results.

• ETL is particularly useful for embedded systems and resource-constrained
environments.

16.2.6 Mach7

Overview:
Mach7 is a library that brings pattern matching to C++. Pattern matching is a core
feature of many functional programming languages and enables expressive and
declarative code.
Key Features:

• Pattern Matching: Provides powerful pattern matching capabilities.

• Functional Style: Encourages a functional programming style.

• Interoperability: Works with STL containers and algorithms.

Example:

#include <iostream>
#include <mach7/type_switchN.hpp>

struct Circle { double radius; };
struct Rectangle { double width, height; };

319

void printArea(const auto& shape) {
using namespace mch;

Match(shape) {
Case(Circle{ radius }) std::cout << ”Circle area: ” << 3.14 * radius * radius << std::endl;

break;↪→

Case(Rectangle{ w, h }) std::cout << ”Rectangle area: ” << w * h << std::endl; break;
Otherwise() std::cout << ”Unknown shape” << std::endl; break;

}
EndMatch

}

int main() {
Circle c{ 5.0 };
Rectangle r{ 4.0, 6.0 };

printArea(c);
printArea(r);

return 0;
}

Explanation:

• The code uses Mach7 to perform pattern matching on shapes and calculate their
areas.

• Pattern matching enables expressive and declarative code.

16.2.7 Conclusion

Functional libraries in C++ provide powerful tools for writing expressive, declarative,
and efficient code. Libraries like Range-v3, FunctionalPlus, Hana, CppMonad, ETL, and

320

Mach7 bring functional programming concepts to C++, enabling developers to leverage
immutability, higher-order functions, and composability. By using these libraries,
developers can write modern C++ code that is both functional in nature and practical
for real-world applications.
In the next section, we will explore advanced techniques for building custom functional
libraries, including lazy evaluation, monads, and concurrency support.

Chapter 17

Case Studies

17.1 Practical Applications of Functional Programming in
Real-World Projects

Functional programming (FP) is not just an academic exercise; it has practical
applications in real-world projects across various domains. By leveraging the principles
of immutability, pure functions, higher-order functions, and declarative programming,
developers can build robust, maintainable, and scalable systems. This section explores
how functional programming is applied in real-world projects, focusing on modern C++
and its evolving features.

17.1.1 Financial Systems

Overview:
Financial systems require high levels of correctness, predictability, and performance.
Functional programming is well-suited for this domain due to its emphasis on
immutability and pure functions, which reduce the risk of errors and side effects.

321

322

Applications:

1. Risk Management:

• FP is used to model complex financial instruments and calculate risk metrics.

• Immutable data structures ensure that historical data remains unchanged,
enabling accurate risk analysis.

Example:

struct RiskParameters {
double volatility;
double correlation;

};

double calculateRisk(const RiskParameters& params, const std::vector<double>& portfolio) {
// Pure function to calculate risk
double risk = 0.0;
for (double value : portfolio) {

risk += value * params.volatility;
}
return risk;

}

2. Algorithmic Trading:

• FP is used to implement trading algorithms that are deterministic and free of
side effects.

• Higher-order functions enable the composition of trading strategies.

Example:

323

using TradingStrategy = std::function<double(const std::vector<double>&)>;

TradingStrategy createStrategy(double threshold) {
return [threshold](const std::vector<double>& prices) {

double average = std::accumulate(prices.begin(), prices.end(), 0.0) / prices.size();
return (prices.back() > average * threshold) ? 1.0 : -1.0;

};
}

17.1.2 Data Processing and Analytics

Overview:
Data processing pipelines often involve transforming, filtering, and aggregating large
datasets. Functional programming provides a declarative and composable approach to
building these pipelines.
Applications:

1. ETL (Extract, Transform, Load):

• FP is used to implement ETL pipelines that are easy to reason about and
maintain.

• Lazy evaluation and immutable data structures optimize performance.

Example:

#include <range/v3/all.hpp>

std::vector<int> processData(const std::vector<int>& rawData) {
return rawData

324

| ranges::views::filter([](int x) { return x % 2 == 0; })
| ranges::views::transform([](int x) { return x * x; })
| ranges::to<std::vector>;

}

2. Real-Time Analytics:

• FP is used to implement real-time analytics systems that process streams of
data.

• Pure functions ensure that the system is predictable and free of side effects.

Example:

double calculateMovingAverage(const std::vector<double>& data, int windowSize) {
double sum = 0.0;
for (int i = 0; i < windowSize; ++i) {

sum += data[i];
}
return sum / windowSize;

}

17.1.3 Game Development

Overview:
Game development involves complex state management and real-time performance
requirements. Functional programming can help manage state in a predictable and
maintainable way.
Applications:

325

1. Game State Management:

• FP is used to manage game state using immutable data structures, ensuring
that state changes are predictable and traceable.

Example:

struct GameState {
int playerHealth;
int enemyHealth;
std::vector<std::string> inventory;

};

GameState applyDamage(const GameState& state, int damage) {
return { state.playerHealth - damage, state.enemyHealth, state.inventory };

}

2. AI and Behavior Trees:

• FP is used to implement AI behavior trees, where each node is a pure
function that determines the next action.

Example:

using BehaviorNode = std::function<bool(const GameState&)>;

BehaviorNode createAttackNode(int damage) {
return [damage](const GameState& state) {

return state.enemyHealth > 0 && state.playerHealth > damage;
};

}

326

17.1.4Web Development

Overview:
Web development involves handling HTTP requests, managing state, and rendering
views. Functional programming can simplify these tasks by promoting immutability and
declarative programming.
Applications:

1. Server-Side Logic:

• FP is used to implement server-side logic that is free of side effects and easy
to test.

Example:

struct HttpRequest {
std::string method;
std::string path;
std::map<std::string, std::string> headers;

};

struct HttpResponse {
int statusCode;
std::string body;

};

HttpResponse handleRequest(const HttpRequest& request) {
if (request.path == ”/hello”) {

return { 200, ”Hello, World!” };
}
return { 404, ”Not Found” };

}

327

2. Front-End Development:

• FP is used to implement front-end logic using declarative frameworks like
React (via C++ bindings).

Example:

#include <reactcpp.h>

auto App = []() {
return React::createElement(”div”, nullptr,

React::createElement(”h1”, nullptr, ”Hello, World!”)
);

};

17.1.5 Embedded Systems

Overview:
Embedded systems often have strict resource constraints and require deterministic
behavior. Functional programming can help manage complexity and ensure correctness.
Applications:

1. Sensor Data Processing:

• FP is used to process sensor data streams using pure functions and
immutable data structures.

Example:

328

double calculateAverage(const std::vector<double>& sensorData) {
return std::accumulate(sensorData.begin(), sensorData.end(), 0.0) / sensorData.size();

}

2. Control Systems:

• FP is used to implement control systems that are predictable and free of side
effects.

Example:

double controlLoop(double setpoint, double currentValue) {
double error = setpoint - currentValue;
return error * 0.5; // Simple proportional control

}

17.1.6 Case Study: Functional Programming in a Real-World Project

Project: Real-Time Trading System
Overview:
A real-time trading system processes market data, executes trades, and manages risk.
Functional programming is used to ensure correctness, performance, and maintainability.
Key Features:

1. Immutable Market Data:

• Market data is represented as immutable data structures, ensuring that
historical data remains unchanged.

329

Example:

struct MarketData {
double price;
double volume;
std::chrono::system_clock::time_point timestamp;

};

2. Pure Trading Strategies:

• Trading strategies are implemented as pure functions, ensuring that they are
deterministic and free of side effects.

Example:

using TradingStrategy = std::function<bool(const MarketData&)>;

TradingStrategy createStrategy(double threshold) {
return [threshold](const MarketData& data) {

return data.price > threshold;
};

}

3. Composable Pipelines:

• Data processing pipelines are built using higher-order functions, enabling the
composition of complex workflows.

Example:

330

auto pipeline = [](const std::vector<MarketData>& data, TradingStrategy strategy) {
return data

| ranges::views::filter(strategy)
| ranges::views::transform([](const MarketData& data) { return data.price; })
| ranges::to<std::vector>;

};

17.1.7 Conclusion

Functional programming has practical applications in a wide range of real-world projects,
from financial systems and data processing to game development and embedded systems.
By leveraging the principles of immutability, pure functions, and declarative
programming, developers can build systems that are robust, maintainable, and scalable.
Modern C++ provides the tools and features needed to apply functional programming
effectively, making it a valuable paradigm for real-world software development.
In the next section, we will explore additional case studies, focusing on how functional
programming is used in large-scale systems and open-source projects.

17.2 Analysis of Functional Code Written in C++

Functional programming in C++ is gaining traction as developers recognize its benefits
in terms of code clarity, maintainability, and robustness. However, writing functional
code in C++ requires a deep understanding of both functional programming principles
and the language's features. This section provides a detailed analysis of functional code
written in C++, highlighting best practices, common patterns, and potential pitfalls.

331

17.2.1 Key Characteristics of Functional Code in C++

Functional code in C++ is characterized by the following principles:

1. Immutability:

• Data is immutable, meaning it cannot be modified after creation. This is
achieved using const and immutable data structures.

2. Pure Functions:

• Functions are pure, meaning they do not have side effects and always
produce the same output for the same input.

3. Higher-Order Functions:

• Functions can take other functions as arguments or return functions as
results, enabling powerful abstractions.

4. Declarative Style:

• Code is written in a declarative manner, focusing on what to do rather than
how to do it.

5. Composition:

• Functions and data structures are designed to be composable, allowing
complex behaviors to be built from simple components.

332

17.2.2 Example: Functional Code for Data Processing

Let’s analyze a piece of functional C++ code that processes a list of numbers by
filtering even numbers, squaring them, and summing the results.
Code:

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

// Pure function to filter even numbers
std::vector<int> filterEven(const std::vector<int>& numbers) {

std::vector<int> result;
std::copy_if(numbers.begin(), numbers.end(), std::back_inserter(result),

[](int x) { return x % 2 == 0; });
return result;

}

// Pure function to square numbers
std::vector<int> squareNumbers(const std::vector<int>& numbers) {

std::vector<int> result;
std::transform(numbers.begin(), numbers.end(), std::back_inserter(result),

[](int x) { return x * x; });
return result;

}

// Pure function to sum numbers
int sumNumbers(const std::vector<int>& numbers) {

return std::accumulate(numbers.begin(), numbers.end(), 0);
}

333

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};

// Compose the functions to process the data
auto evenNumbers = filterEven(numbers);
auto squaredNumbers = squareNumbers(evenNumbers);
int result = sumNumbers(squaredNumbers);

std::cout << ”Sum of squares of even numbers: ” << result << std::endl;
return 0;

}

Analysis:

1. Immutability:

• The input vector numbers is passed by const reference, ensuring it is not
modified.

• Each function (filterEven, squareNumbers, sumNumbers) returns a new
vector or value, preserving immutability.

2. Pure Functions:

• Each function is pure, as it does not modify external state and always
produces the same output for the same input.

• The use of lambda functions ([](int x) { return x % 2 == 0; }) ensures that
the logic is encapsulated and side-effect-free.

3. Higher-Order Functions:

• The std::copy_if and std::transform algorithms are higher-order functions
that take a predicate or transformation function as an argument.

334

4. Declarative Style:

• The code is written in a declarative style, focusing on what to do (filter,
square, sum) rather than how to do it (loops, conditionals).

5. Composition:

• The functions are composed in a pipeline-like manner, where the output of
one function is passed as the input to the next.

17.2.3 Example: Functional Code for Recursive Algorithms

Functional programming often uses recursion to solve problems. Let’s analyze a
recursive implementation of the factorial function.
Code:

#include <iostream>

// Pure recursive function to calculate factorial
constexpr int factorial(int n) {

return (n <= 1) ? 1 : n * factorial(n - 1);
}

int main() {
constexpr int result = factorial(5);
std::cout << ”Factorial of 5: ” << result << std::endl;
return 0;

}

Analysis:

1. Immutability:

335

• The function factorial is constexpr, meaning it is evaluated at compile time
and produces an immutable result.

2. Pure Functions:

• The function is pure, as it does not modify external state and always
produces the same output for the same input.

3. Recursion:

• The function uses recursion to solve the problem, which is a common pattern
in functional programming.

4. Compile-Time Computation:

• The use of constexpr ensures that the computation is performed at compile
time, improving runtime performance.

17.2.4 Example: Functional Code with Higher-Order Functions

Higher-order functions are a key feature of functional programming. Let’s analyze a
piece of code that uses higher-order functions to implement a generic map function.
Code:

#include <iostream>
#include <vector>
#include <algorithm>

// Higher-order function to apply a function to each element of a vector
template <typename Func, typename T>
std::vector<T> map(Func func, const std::vector<T>& input) {

336

std::vector<T> result;
std::transform(input.begin(), input.end(), std::back_inserter(result), func);
return result;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};

// Use the map function to square each number
auto squaredNumbers = map([](int x) { return x * x; }, numbers);

for (int x : squaredNumbers) {
std::cout << x << ” ”;

}
return 0;

}

Analysis:

1. Higher-Order Functions:

• The map function takes a function func as an argument and applies it to each
element of the input vector.

2. Genericity:

• The map function is generic, meaning it can work with any type T and any
function Func.

3. Immutability:

• The input vector is passed by const reference, ensuring it is not modified.

337

• The map function returns a new vector, preserving immutability.

4. Declarative Style:

• The code is written in a declarative style, focusing on what to do (apply a
function to each element) rather than how to do it (loops, conditionals).

17.2.5 Common Pitfalls and Best Practices

1. Avoiding Side Effects:

• Ensure that functions are pure and do not modify external state.

• Use const and immutable data structures to enforce immutability.

2. Managing Recursion:

• Be cautious with deep recursion, as it can lead to stack overflow.

• Consider using tail recursion or iterative solutions for performance-critical
code.

3. Optimizing Performance:

• Use constexpr for compile-time computations where possible.

• Leverage lazy evaluation and range-based abstractions to optimize data
processing pipelines.

4. Composing Functions:

• Design functions to be composable, enabling the creation of complex
workflows from simple components.

• Use higher-order functions to abstract common patterns.

338

17.2.6 Conclusion

Functional programming in C++ offers a powerful paradigm for writing clear,
maintainable, and robust code. By adhering to principles like immutability, pure
functions, and higher-order functions, developers can leverage the full potential of
functional programming in real-world projects. The examples and analysis provided in
this section demonstrate how functional code can be written and optimized in C++,
highlighting best practices and common patterns.
In the next section, we will explore advanced topics in functional programming,
including monads, lazy evaluation, and concurrency, to further enhance the capabilities
of functional C++ code.

Chapter 18

Functional Programming in Games and
Graphics

18.1 Using Functional Programming in Game and Graphics
Development

Game and graphics development are domains that demand high performance, real-time
responsiveness, and complex state management. Functional programming (FP) offers a
unique set of tools and principles that can help address these challenges. By leveraging
immutability, pure functions, and declarative programming, developers can create more
maintainable, scalable, and robust game and graphics systems. This section explores
how functional programming can be applied in game and graphics development using
modern C++.

339

340

18.1.1 Key Challenges in Game and Graphics Development

1. State Management:

• Games and graphics applications often involve complex state transitions,
which can be difficult to manage and debug.

2. Performance:

• Real-time rendering and physics simulations require high performance and
low latency.

3. Concurrency:

• Modern games and graphics applications often leverage multi-core processors,
requiring effective concurrency management.

4. Complexity:

• The interplay between graphics rendering, physics, AI, and user input can
lead to highly complex codebases.

Functional programming can help address these challenges by promoting immutability,
reducing side effects, and enabling declarative programming.

18.1.2 Immutability in Game State Management

Immutability is a core principle of functional programming that ensures data cannot be
modified after creation. In game development, immutability can simplify state
management and make the code more predictable.
Example: Immutable Game State

341

struct GameState {
int playerHealth;
int enemyHealth;
std::vector<std::string> inventory;

};

GameState applyDamage(const GameState& state, int damage) {
return { state.playerHealth - damage, state.enemyHealth, state.inventory };

}

GameState addToInventory(const GameState& state, const std::string& item) {
auto newInventory = state.inventory;
newInventory.push_back(item);
return { state.playerHealth, state.enemyHealth, newInventory };

}

Analysis:

• The GameState struct is immutable; any modification results in a new GameState
instance.

• Functions like applyDamage and addToInventory return new instances of
GameState, ensuring that the original state remains unchanged.

18.1.3 Pure Functions for Game Logic

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for implementing game logic, as they are easy
to test and reason about.
Example: Pure Function for Damage Calculation

342

int calculateDamage(int baseDamage, int playerAttack, int enemyDefense) {
return std::max(0, baseDamage + playerAttack - enemyDefense);

}

Analysis:

• The calculateDamage function is pure, as it does not modify external state and
always produces the same output for the same input.

• This makes it easy to test and reuse in different parts of the game.

18.1.4 Higher-Order Functions for AI and Behavior Trees

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are useful for implementing AI and behavior trees in games.
Example: Behavior Tree Node

using BehaviorNode = std::function<bool(const GameState&)>;

BehaviorNode createAttackNode(int damage) {
return [damage](const GameState& state) {

return state.enemyHealth > 0 && state.playerHealth > damage;
};

}

BehaviorNode createHealNode(int health) {
return [health](const GameState& state) {

return state.playerHealth < 100;
};

}

Analysis:

343

• The createAttackNode and createHealNode functions return behavior nodes that
can be used in a behavior tree.

• This approach allows for flexible and composable AI logic.

18.1.5 Declarative Rendering Pipelines

Functional programming encourages a declarative style, where code describes what to do
rather than how to do it. This is particularly useful for rendering pipelines in graphics
development.
Example: Declarative Rendering Pipeline

struct Vertex {
float x, y, z;

};

std::vector<Vertex> transformVertices(const std::vector<Vertex>& vertices, const
std::function<Vertex(Vertex)>& transform) {↪→

std::vector<Vertex> result;
std::transform(vertices.begin(), vertices.end(), std::back_inserter(result), transform);
return result;

}

Vertex scaleVertex(const Vertex& v, float scale) {
return { v.x * scale, v.y * scale, v.z * scale };

}

int main() {
std::vector<Vertex> vertices = { {1, 2, 3}, {4, 5, 6} };
auto scaledVertices = transformVertices(vertices, [](Vertex v) { return scaleVertex(v, 2.0f); });

for (const auto& v : scaledVertices) {

344

std::cout << ”(” << v.x << ”, ” << v.y << ”, ” << v.z << ”)\n”;
}
return 0;

}

Analysis:

• The transformVertices function applies a transformation to each vertex in a
declarative manner.

• The scaleVertex function is a pure function that scales a vertex by a given factor.

18.1.6 Concurrency and Parallelism

Modern games and graphics applications often leverage multi-core processors to achieve
high performance. Functional programming can help manage concurrency and
parallelism by avoiding shared mutable state.
Example: Parallel Processing of Game Entities

#include <vector>
#include <algorithm>
#include <execution>

struct Entity {
int id;
float position;

};

void updateEntity(Entity& entity) {
entity.position += 1.0f;

}

345

int main() {
std::vector<Entity> entities = { {1, 0.0f}, {2, 0.0f}, {3, 0.0f} };

std::for_each(std::execution::par, entities.begin(), entities.end(), [](Entity& entity) {
updateEntity(entity);

});

for (const auto& entity : entities) {
std::cout << ”Entity ” << entity.id << ” position: ” << entity.position << ”\n”;

}
return 0;

}

Analysis:

• The std::for_each algorithm is used with std::execution::par to update entities in
parallel.

• The updateEntity function modifies the state of each entity, but since each entity
is independent, there are no race conditions.

18.1.7 Functional Reactive Programming (FRP) for User Input

Functional Reactive Programming (FRP) is a paradigm that combines functional
programming with reactive programming. It is particularly useful for handling user
input and events in games.
Example: FRP for User Input

#include <iostream>
#include <functional>
#include <vector>

346

class EventStream {
public:

void subscribe(const std::function<void(int)>& callback) {
callbacks.push_back(callback);

}

void emit(int value) {
for (const auto& callback : callbacks) {

callback(value);
}

}

private:
std::vector<std::function<void(int)>> callbacks;

};

int main() {
EventStream mouseClicks;

mouseClicks.subscribe([](int x) {
std::cout << ”Mouse clicked at position: ” << x << ”\n”;

});

mouseClicks.emit(100); // Simulate a mouse click at position 100
return 0;

}

Analysis:

• The EventStream class allows for the subscription of callbacks to handle events.

• This approach enables a declarative and composable way to handle user input.

347

18.1.8 Conclusion

Functional programming offers a powerful set of tools and principles for game and
graphics development. By leveraging immutability, pure functions, higher-order
functions, and declarative programming, developers can create more maintainable,
scalable, and robust systems. Modern C++ provides the features needed to apply
functional programming effectively, making it a valuable paradigm for real-time and
performance-critical applications.
In the next section, we will explore advanced topics in functional programming for
games and graphics, including shader programming, physics simulations, and procedural
generation.

18.2 Examples of Using Functional Programming with Libraries
Like OpenGL and Vulkan

Functional programming (FP) can be effectively integrated with graphics libraries like
OpenGL and Vulkan to create more maintainable, scalable, and robust graphics
applications. By leveraging FP principles such as immutability, pure functions, and
higher-order functions, developers can simplify complex graphics pipelines, manage state
more effectively, and write cleaner, more declarative code. This section provides detailed
examples of how functional programming can be used with OpenGL and Vulkan in
modern C++.

18.2.1 Functional Programming with OpenGL

OpenGL is a widely-used graphics API for rendering 2D and 3D vector graphics. While
OpenGL is inherently stateful, functional programming can help manage this state more
effectively and create more modular and reusable code.

348

Example: Functional Shader Compilation
Shader compilation in OpenGL involves several steps, including loading shader source
code, compiling shaders, and linking them into a program. These steps can be
encapsulated in pure functions for better modularity.

#include <GL/glew.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>

// Pure function to load shader source code from a file
std::string loadShaderSource(const std::string& filePath) {

std::ifstream file(filePath);
std::stringstream buffer;
buffer << file.rdbuf();
return buffer.str();

}

// Pure function to compile a shader
GLuint compileShader(GLenum type, const std::string& source) {

GLuint shader = glCreateShader(type);
const char* src = source.c_str();
glShaderSource(shader, 1, &src, nullptr);
glCompileShader(shader);

// Check for compilation errors
GLint success;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success) {

char infoLog[512];
glGetShaderInfoLog(shader, 512, nullptr, infoLog);

349

std::cerr << ”Shader compilation error: ” << infoLog << std::endl;
}

return shader;
}

// Pure function to link shaders into a program
GLuint createShaderProgram(GLuint vertexShader, GLuint fragmentShader) {

GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram(program);

// Check for linking errors
GLint success;
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (!success) {

char infoLog[512];
glGetProgramInfoLog(program, 512, nullptr, infoLog);
std::cerr << ”Shader program linking error: ” << infoLog << std::endl;

}

return program;
}

int main() {
// Initialize OpenGL context (not shown)

// Load and compile shaders
auto vertexSource = loadShaderSource(”vertex_shader.glsl”);
auto fragmentSource = loadShaderSource(”fragment_shader.glsl”);

350

auto vertexShader = compileShader(GL_VERTEX_SHADER, vertexSource);
auto fragmentShader = compileShader(GL_FRAGMENT_SHADER, fragmentSource);

// Link shaders into a program
auto shaderProgram = createShaderProgram(vertexShader, fragmentShader);

// Use the shader program
glUseProgram(shaderProgram);

// Clean up
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);

return 0;
}

Analysis:

• The loadShaderSource, compileShader, and createShaderProgram functions are
pure and modular, making the code easier to test and reuse.

• This approach encapsulates the stateful OpenGL API calls within pure functions,
reducing the risk of errors and improving code clarity.

18.2.2 Functional Programming with Vulkan

Vulkan is a modern graphics API that provides fine-grained control over GPU
operations. Vulkan's explicit nature and low-level API can benefit from functional
programming principles to manage complexity and improve maintainability.
Example: Functional Pipeline Creation

351

Creating a graphics pipeline in Vulkan involves several steps, including shader module
creation, pipeline layout creation, and pipeline assembly. These steps can be
encapsulated in pure functions.

#include <vulkan/vulkan.h>
#include <iostream>
#include <vector>

// Pure function to create a shader module
VkShaderModule createShaderModule(VkDevice device, const std::vector<char>& code) {

VkShaderModuleCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.codeSize = code.size();
createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

VkShaderModule shaderModule;
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {

throw std::runtime_error(”Failed to create shader module”);
}

return shaderModule;
}

// Pure function to create a pipeline layout
VkPipelineLayout createPipelineLayout(VkDevice device) {

VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType =

VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;↪→

pipelineLayoutInfo.setLayoutCount = 0;
pipelineLayoutInfo.pushConstantRangeCount = 0;

VkPipelineLayout pipelineLayout;

352

if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) !=
VK_SUCCESS) {↪→

throw std::runtime_error(”Failed to create pipeline layout”);
}

return pipelineLayout;
}

// Pure function to create a graphics pipeline
VkPipeline createGraphicsPipeline(VkDevice device, VkPipelineLayout pipelineLayout,

VkShaderModule vertShaderModule, VkShaderModule fragShaderModule) {↪→

VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
vertShaderStageInfo.sType =

VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;↪→

vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
vertShaderStageInfo.module = vertShaderModule;
vertShaderStageInfo.pName = ”main”;

VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
fragShaderStageInfo.sType =

VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;↪→

fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragShaderStageInfo.module = fragShaderModule;
fragShaderStageInfo.pName = ”main”;

VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};

VkGraphicsPipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.layout = pipelineLayout;

353

VkPipeline graphicsPipeline;
if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr,

&graphicsPipeline) != VK_SUCCESS) {↪→

throw std::runtime_error(”Failed to create graphics pipeline”);
}

return graphicsPipeline;
}

int main() {
// Initialize Vulkan instance, device, etc. (not shown)

// Load shader code (not shown)
std::vector<char> vertShaderCode = ...;
std::vector<char> fragShaderCode = ...;

// Create shader modules
auto vertShaderModule = createShaderModule(device, vertShaderCode);
auto fragShaderModule = createShaderModule(device, fragShaderCode);

// Create pipeline layout
auto pipelineLayout = createPipelineLayout(device);

// Create graphics pipeline
auto graphicsPipeline = createGraphicsPipeline(device, pipelineLayout, vertShaderModule,

fragShaderModule);↪→

// Clean up
vkDestroyShaderModule(device, vertShaderModule, nullptr);
vkDestroyShaderModule(device, fragShaderModule, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);

354

vkDestroyPipeline(device, graphicsPipeline, nullptr);

return 0;
}

Analysis:

• The createShaderModule, createPipelineLayout, and createGraphicsPipeline
functions are pure and modular, encapsulating the stateful Vulkan API calls.

• This approach simplifies the creation of graphics pipelines and makes the code
more maintainable and reusable.

18.2.3 Functional Reactive Programming (FRP) for Event Handling

Functional Reactive Programming (FRP) can be used to handle input events and state
changes in a declarative manner, making it easier to manage complex interactions in
graphics applications.
Example: FRP for Mouse Input Handling

#include <iostream>
#include <functional>
#include <vector>

class EventStream {
public:

void subscribe(const std::function<void(int, int)>& callback) {
callbacks.push_back(callback);

}

void emit(int x, int y) {

355

for (const auto& callback : callbacks) {
callback(x, y);

}
}

private:
std::vector<std::function<void(int, int)>> callbacks;

};

int main() {
EventStream mouseMoves;

mouseMoves.subscribe([](int x, int y) {
std::cout << ”Mouse moved to: (” << x << ”, ” << y << ”)\n”;

});

// Simulate mouse moves
mouseMoves.emit(100, 200);
mouseMoves.emit(150, 250);

return 0;
}

Analysis:

• The EventStream class allows for the subscription of callbacks to handle mouse
move events.

• This approach enables a declarative and composable way to handle user input,
making the code easier to manage and extend.

356

18.2.4 Conclusion

Functional programming can be effectively integrated with graphics libraries like
OpenGL and Vulkan to create more maintainable, scalable, and robust graphics
applications. By leveraging FP principles such as immutability, pure functions, and
higher-order functions, developers can simplify complex graphics pipelines, manage state
more effectively, and write cleaner, more declarative code. The examples provided in
this section demonstrate how functional programming can be applied to real-world
graphics development tasks, highlighting the benefits of this approach.
In the next section, we will explore advanced topics in functional programming for
games and graphics, including shader programming, physics simulations, and procedural
generation.

Chapter 19

Functional Programming in Operating
Systems and Embedded Systems

19.1 Applications of Functional Programming in Operating
Systems and Embedded Systems

Functional programming (FP) is increasingly being recognized for its potential in
operating systems (OS) and embedded systems development. These domains often
require high reliability, predictability, and performance, which align well with the
principles of FP. By leveraging immutability, pure functions, and declarative
programming, developers can create more robust, maintainable, and efficient systems.
This section explores the applications of functional programming in operating systems
and embedded systems, providing detailed examples and analysis.

357

358

19.1.1 Key Challenges in Operating Systems and Embedded Systems

1. Reliability:

• Operating systems and embedded systems must operate reliably under
various conditions, often with minimal human intervention.

2. Predictability:

• These systems often require deterministic behavior, especially in real-time
applications.

3. Performance:

• Resource constraints in embedded systems and the need for high performance
in operating systems demand efficient code.

4. Complexity:

• Managing the complexity of low-level hardware interactions and system
states can be challenging.

Functional programming can help address these challenges by promoting immutability,
reducing side effects, and enabling declarative programming.

19.1.2 Immutability in System State Management

Immutability ensures that data cannot be modified after creation, which simplifies state
management and reduces the risk of errors.
Example: Immutable System Configuration

359

struct SystemConfig {
int cpuFrequency;
int memorySize;
std::vector<std::string> peripherals;

};

SystemConfig updateConfig(const SystemConfig& config, int newCpuFrequency) {
return { newCpuFrequency, config.memorySize, config.peripherals };

}

int main() {
SystemConfig config = { 1000, 512, {”UART”, ”SPI”} };
auto newConfig = updateConfig(config, 1200);

std::cout << ”New CPU Frequency: ” << newConfig.cpuFrequency << std::endl;
return 0;

}

Analysis:

• The SystemConfig struct is immutable; any modification results in a new
SystemConfig instance.

• Functions like updateConfig return new instances of SystemConfig, ensuring that
the original state remains unchanged.

19.1.3 Pure Functions for System Logic

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for implementing system logic, as they are
easy to test and reason about.
Example: Pure Function for Task Scheduling

360

#include <vector>
#include <algorithm>

struct Task {
int id;
int priority;

};

std::vector<Task> scheduleTasks(const std::vector<Task>& tasks) {
auto sortedTasks = tasks;
std::sort(sortedTasks.begin(), sortedTasks.end(), [](const Task& a, const Task& b) {

return a.priority > b.priority;
});
return sortedTasks;

}

int main() {
std::vector<Task> tasks = { {1, 3}, {2, 1}, {3, 2} };
auto scheduledTasks = scheduleTasks(tasks);

for (const auto& task : scheduledTasks) {
std::cout << ”Task ID: ” << task.id << ”, Priority: ” << task.priority << std::endl;

}
return 0;

}

Analysis:

• The scheduleTasks function is pure, as it does not modify external state and
always produces the same output for the same input.

• This makes it easy to test and reuse in different parts of the system.

361

19.1.4 Higher-Order Functions for Device Drivers

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are useful for implementing device drivers and hardware
abstractions.
Example: Higher-Order Function for GPIO Control

#include <iostream>
#include <functional>

using GpioCallback = std::function<void(int)>;

void setGpioCallback(const GpioCallback& callback, int pinState) {
callback(pinState);

}

void handleGpioEvent(int pinState) {
std::cout << ”GPIO Pin State: ” << pinState << std::endl;

}

int main() {
setGpioCallback(handleGpioEvent, 1); // Simulate GPIO pin high
return 0;

}

Analysis:

• The setGpioCallback function takes a callback function as an argument, allowing
for flexible and reusable GPIO control logic.

• This approach enables a declarative and composable way to handle hardware
events.

362

19.1.5 Declarative System Configuration

Functional programming encourages a declarative style, where code describes what to do
rather than how to do it. This is particularly useful for system configuration and
initialization.
Example: Declarative System Initialization

#include <iostream>
#include <vector>
#include <functional>

using InitFunction = std::function<void()>;

void initializeSystem(const std::vector<InitFunction>& initFunctions) {
for (const auto& init : initFunctions) {

init();
}

}

void initUart() {
std::cout << ”UART Initialized” << std::endl;

}

void initSpi() {
std::cout << ”SPI Initialized” << std::endl;

}

int main() {
std::vector<InitFunction> initFunctions = { initUart, initSpi };
initializeSystem(initFunctions);
return 0;

}

363

Analysis:

• The initializeSystem function takes a list of initialization functions and executes
them in sequence.

• This approach allows for a declarative and modular system initialization process.

19.1.6 Concurrency and Parallelism

Modern operating systems and embedded systems often leverage multi-core processors
to achieve high performance. Functional programming can help manage concurrency
and parallelism by avoiding shared mutable state.
Example: Parallel Processing of Sensor Data

#include <vector>
#include <algorithm>
#include <execution>

struct SensorData {
int id;
float value;

};

void processSensorData(SensorData& data) {
data.value *= 2.0f; // Simulate data processing

}

int main() {
std::vector<SensorData> sensorData = { {1, 1.0f}, {2, 2.0f}, {3, 3.0f} };

std::for_each(std::execution::par, sensorData.begin(), sensorData.end(), [](SensorData& data) {
processSensorData(data);

364

});

for (const auto& data : sensorData) {
std::cout << ”Sensor ID: ” << data.id << ”, Processed Value: ” << data.value << std::endl;

}
return 0;

}

Analysis:

• The std::for_each algorithm is used with std::execution::par to process sensor data
in parallel.

• The processSensorData function modifies the state of each sensor data point, but
since each data point is independent, there are no race conditions.

19.1.7 Functional Reactive Programming (FRP) for Event Handling

Functional Reactive Programming (FRP) is a paradigm that combines functional
programming with reactive programming. It is particularly useful for handling events
and state changes in operating systems and embedded systems.
Example: FRP for Interrupt Handling

#include <iostream>
#include <functional>
#include <vector>

class InterruptStream {
public:

void subscribe(const std::function<void(int)>& callback) {
callbacks.push_back(callback);

365

}

void emit(int interruptCode) {
for (const auto& callback : callbacks) {

callback(interruptCode);
}

}

private:
std::vector<std::function<void(int)>> callbacks;

};

int main() {
InterruptStream interrupts;

interrupts.subscribe([](int code) {
std::cout << ”Interrupt handled: ” << code << std::endl;

});

// Simulate interrupts
interrupts.emit(1);
interrupts.emit(2);

return 0;
}

Analysis:

• The InterruptStream class allows for the subscription of callbacks to handle
interrupt events.

• This approach enables a declarative and composable way to handle hardware
interrupts.

366

19.1.8 Conclusion

Functional programming offers a powerful set of tools and principles for operating
systems and embedded systems development. By leveraging immutability, pure
functions, higher-order functions, and declarative programming, developers can create
more robust, maintainable, and efficient systems. The examples provided in this section
demonstrate how functional programming can be applied to real-world tasks in these
domains, highlighting the benefits of this approach.
In the next section, we will explore advanced topics in functional programming for
operating systems and embedded systems, including real-time scheduling, memory
management, and low-level hardware interactions.

19.2 Examples of Using Functional Programming in Firmware
Development

Firmware development is a critical aspect of embedded systems, where software
interacts directly with hardware to control devices and systems. Functional
programming (FP) can bring significant benefits to firmware development by promoting
immutability, pure functions, and declarative programming. These principles help
manage complexity, improve reliability, and enhance maintainability. This section
provides detailed examples of how functional programming can be applied in firmware
development using modern C++.

19.2.1 Key Challenges in Firmware Development

1. Reliability:

• Firmware must operate reliably under various conditions, often with minimal

367

human intervention.

2. Predictability:

• Firmware often requires deterministic behavior, especially in real-time
applications.

3. Performance:

• Resource constraints in embedded systems demand efficient code.

4. Complexity:

• Managing low-level hardware interactions and system states can be
challenging.

Functional programming can help address these challenges by promoting immutability,
reducing side effects, and enabling declarative programming.

19.2.2 Immutability in Firmware State Management

Immutability ensures that data cannot be modified after creation, which simplifies state
management and reduces the risk of errors.
Example: Immutable System Configuration

struct FirmwareConfig {
int clockSpeed;
int memorySize;
std::vector<std::string> peripherals;

};

FirmwareConfig updateConfig(const FirmwareConfig& config, int newClockSpeed) {

368

return { newClockSpeed, config.memorySize, config.peripherals };
}

int main() {
FirmwareConfig config = { 16, 512, {”UART”, ”SPI”} };
auto newConfig = updateConfig(config, 32);

std::cout << ”New Clock Speed: ” << newConfig.clockSpeed << std::endl;
return 0;

}

Analysis:

• The FirmwareConfig struct is immutable; any modification results in a new
FirmwareConfig instance.

• Functions like updateConfig return new instances of FirmwareConfig, ensuring
that the original state remains unchanged.

19.2.3 Pure Functions for Firmware Logic

Pure functions are functions that do not have side effects and always produce the same
output for the same input. They are ideal for implementing firmware logic, as they are
easy to test and reason about.
Example: Pure Function for Sensor Data Processing

#include <vector>
#include <algorithm>

struct SensorData {
int id;

369

float value;
};

std::vector<SensorData> processSensorData(const std::vector<SensorData>& data) {
std::vector<SensorData> processedData;
std::transform(data.begin(), data.end(), std::back_inserter(processedData),

[](const SensorData& d) { return SensorData{ d.id, d.value * 2.0f }; });
return processedData;

}

int main() {
std::vector<SensorData> sensorData = { {1, 1.0f}, {2, 2.0f}, {3, 3.0f} };
auto processedData = processSensorData(sensorData);

for (const auto& data : processedData) {
std::cout << ”Sensor ID: ” << data.id << ”, Processed Value: ” << data.value << std::endl;

}
return 0;

}

Analysis:

• The processSensorData function is pure, as it does not modify external state and
always produces the same output for the same input.

• This makes it easy to test and reuse in different parts of the firmware.

19.2.4 Higher-Order Functions for Hardware Abstraction

Higher-order functions are functions that take other functions as arguments or return
functions as results. They are useful for implementing hardware abstractions and device
drivers.

370

Example: Higher-Order Function for GPIO Control

#include <iostream>
#include <functional>

using GpioCallback = std::function<void(int)>;

void setGpioCallback(const GpioCallback& callback, int pinState) {
callback(pinState);

}

void handleGpioEvent(int pinState) {
std::cout << ”GPIO Pin State: ” << pinState << std::endl;

}

int main() {
setGpioCallback(handleGpioEvent, 1); // Simulate GPIO pin high
return 0;

}

Analysis:

• The setGpioCallback function takes a callback function as an argument, allowing
for flexible and reusable GPIO control logic.

• This approach enables a declarative and composable way to handle hardware
events.

19.2.5 Declarative Firmware Initialization

Functional programming encourages a declarative style, where code describes what to do
rather than how to do it. This is particularly useful for firmware initialization and
configuration.

371

Example: Declarative Firmware Initialization

#include <iostream>
#include <vector>
#include <functional>

using InitFunction = std::function<void()>;

void initializeFirmware(const std::vector<InitFunction>& initFunctions) {
for (const auto& init : initFunctions) {

init();
}

}

void initUart() {
std::cout << ”UART Initialized” << std::endl;

}

void initSpi() {
std::cout << ”SPI Initialized” << std::endl;

}

int main() {
std::vector<InitFunction> initFunctions = { initUart, initSpi };
initializeFirmware(initFunctions);
return 0;

}

Analysis:

• The initializeFirmware function takes a list of initialization functions and executes
them in sequence.

• This approach allows for a declarative and modular firmware initialization process.

372

19.2.6 Concurrency and Parallelism in Firmware

Modern firmware often leverages multi-core processors to achieve high performance.
Functional programming can help manage concurrency and parallelism by avoiding
shared mutable state.
Example: Parallel Processing of Sensor Data

#include <vector>
#include <algorithm>
#include <execution>

struct SensorData {
int id;
float value;

};

void processSensorData(SensorData& data) {
data.value *= 2.0f; // Simulate data processing

}

int main() {
std::vector<SensorData> sensorData = { {1, 1.0f}, {2, 2.0f}, {3, 3.0f} };

std::for_each(std::execution::par, sensorData.begin(), sensorData.end(), [](SensorData& data) {
processSensorData(data);

});

for (const auto& data : sensorData) {
std::cout << ”Sensor ID: ” << data.id << ”, Processed Value: ” << data.value << std::endl;

}
return 0;

}

373

Analysis:

• The std::for_each algorithm is used with std::execution::par to process sensor data
in parallel.

• The processSensorData function modifies the state of each sensor data point, but
since each data point is independent, there are no race conditions.

19.2.7 Functional Reactive Programming (FRP) for Event Handling

Functional Reactive Programming (FRP) is a paradigm that combines functional
programming with reactive programming. It is particularly useful for handling events
and state changes in firmware.
Example: FRP for Interrupt Handling

#include <iostream>
#include <functional>
#include <vector>

class InterruptStream {
public:

void subscribe(const std::function<void(int)>& callback) {
callbacks.push_back(callback);

}

void emit(int interruptCode) {
for (const auto& callback : callbacks) {

callback(interruptCode);
}

}

private:

374

std::vector<std::function<void(int)>> callbacks;
};

int main() {
InterruptStream interrupts;

interrupts.subscribe([](int code) {
std::cout << ”Interrupt handled: ” << code << std::endl;

});

// Simulate interrupts
interrupts.emit(1);
interrupts.emit(2);

return 0;
}

Analysis:

• The InterruptStream class allows for the subscription of callbacks to handle
interrupt events.

• This approach enables a declarative and composable way to handle hardware
interrupts.

19.2.8 Example: Functional Programming in a Real-World Firmware
Project

Project: Smart Thermostat Firmware
Overview:

375

A smart thermostat firmware controls heating and cooling systems based on sensor data
and user settings. Functional programming is used to ensure reliability, predictability,
and maintainability.
Key Features:

1. Immutable System State:

• System state is represented as immutable data structures, ensuring that
historical data remains unchanged.

Example:

struct ThermostatState {
float currentTemperature;
float targetTemperature;
bool heatingOn;

};

ThermostatState updateTemperature(const ThermostatState& state, float newTemperature) {
return { newTemperature, state.targetTemperature, state.heatingOn };

}

2. Pure Functions for Control Logic:

• Control logic is implemented as pure functions, ensuring that it is
deterministic and free of side effects.

Example:

376

bool shouldTurnOnHeating(const ThermostatState& state) {
return state.currentTemperature < state.targetTemperature;

}

3. Higher-Order Functions for Event Handling:

• Higher-order functions are used to handle sensor events and user inputs.

Example:

using EventCallback = std::function<void(const ThermostatState&)>;

void handleSensorEvent(const EventCallback& callback, const ThermostatState& state) {
callback(state);

}

4. Declarative System Initialization:

• System initialization is done in a declarative manner, making the code easier
to understand and maintain.

Example:

void initializeThermostat(const std::vector<InitFunction>& initFunctions) {
for (const auto& init : initFunctions) {

init();
}

}

377

19.2.9 Conclusion

Functional programming offers a powerful set of tools and principles for firmware
development. By leveraging immutability, pure functions, higher-order functions, and
declarative programming, developers can create more robust, maintainable, and efficient
firmware. The examples provided in this section demonstrate how functional
programming can be applied to real-world firmware development tasks, highlighting the
benefits of this approach.
In the next section, we will explore advanced topics in functional programming for
firmware development, including real-time scheduling, memory management, and
low-level hardware interactions.

Chapter 20

Appendices

20.1 Appendix: C++20 and Beyond Features

20.1.1 Detailed Explanation of New Features in C++20 That Support
Functional Programming

C++20 introduces several new features and enhancements that significantly support
functional programming (FP) paradigms. These features enable developers to write
more expressive, concise, and efficient functional-style code. This section provides a
detailed explanation of the key C++20 features that align with functional programming
principles, including concepts, ranges, coroutines, and more.

20.1.2 Concepts

Overview:
Concepts are a major addition to C++20 that allow developers to specify constraints on
template parameters. They enable more expressive and readable generic programming,

378

379

which is a cornerstone of functional programming.
Key Features:

• Type Constraints: Concepts allow you to define constraints on template
parameters, ensuring that only types meeting certain criteria can be used.

• Improved Error Messages: Concepts provide clearer error messages when template
constraints are not met.

• Enhanced Readability: Concepts make template code more readable by explicitly
stating requirements.

Example:

#include <concepts>
#include <iostream>

// Define a concept for printable types
template<typename T>
concept Printable = requires(T t) {

{ std::cout << t } -> std::same_as<std::ostream&>;
};

// Function template constrained by the Printable concept
template<Printable T>
void print(const T& value) {

std::cout << value << std::endl;
}

int main() {
print(42); // Works: int is printable
print(”Hello”); // Works: const char* is printable
// print(std::vector<int>{1, 2, 3}); // Error: std::vector<int> is not printable

380

return 0;
}

Analysis:

• The Printable concept ensures that only types that can be printed to std::cout are
allowed.

• The print function template is constrained by the Printable concept, making the
code more expressive and safer.

20.1.3 Ranges

Overview:
The Ranges library, introduced in C++20, provides a modern and functional approach
to working with sequences of elements. It includes range adaptors and algorithms that
support lazy evaluation and composability.
Key Features:

• Range Adaptors: Allow for the composition of operations on ranges, such as
filtering and transforming.

• Lazy Evaluation: Operations are evaluated only when needed, improving
performance.

• Interoperability: Works seamlessly with STL containers and algorithms.

Example:

381

#include <iostream>
#include <ranges>
#include <vector>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};

// Create a pipeline: filter even numbers, square them, and sum the results
auto result = numbers

| std::views::filter([](int x) { return x % 2 == 0; })
| std::views::transform([](int x) { return x * x; })
| std::ranges::accumulate(0);

std::cout << ”Sum of squares of even numbers: ” << result << std::endl;
return 0;

}

Analysis:

• The pipeline filters even numbers, squares them, and sums the results.

• The operations are composable and evaluated lazily, making the code more
efficient and expressive.

20.1.4 Coroutines

Overview:
Coroutines are a new feature in C++20 that enable asynchronous programming and
lazy computation. They allow functions to be suspended and resumed, making it easier
to write asynchronous and generator-like code.
Key Features:

382

• Asynchronous Programming: Coroutines simplify the implementation of
asynchronous operations.

• Lazy Computation: Coroutines can be used to create generators that produce
values on demand.

• Improved Readability: Coroutines make asynchronous code more readable and
maintainable.

Example:
cpp
Copy

#include <iostream>
#include <coroutine>
#include <optional>

// Generator class for producing a sequence of values
template<typename T>
class Generator {
public:

struct promise_type {
T value;
std::suspend_always yield_value(T v) {

value = v;
return {};

}
std::suspend_always initial_suspend() { return {}; }
std::suspend_always final_suspend() noexcept { return {}; }
Generator get_return_object() { return Generator{this}; }
void return_void() {}
void unhandled_exception() { std::terminate(); }

383

};

using handle_type = std::coroutine_handle<promise_type>;

explicit Generator(promise_type* p) : coro(handle_type::from_promise(*p)) {}
~Generator() { if (coro) coro.destroy(); }

std::optional<T> next() {
if (!coro.done()) {

coro.resume();
return coro.promise().value;

}
return std::nullopt;

}

private:
handle_type coro;

};

// Coroutine that generates a sequence of numbers
Generator<int> generateNumbers(int start, int end) {

for (int i = start; i <= end; ++i) {
co_yield i;

}
}

int main() {
auto gen = generateNumbers(1, 5);
while (auto num = gen.next()) {

std::cout << *num << std::endl;
}
return 0;

384

}

Analysis:

• The Generator class implements a coroutine that produces a sequence of numbers.

• The generateNumbers coroutine yields values on demand, making it a lazy
generator.

• Coroutines simplify the implementation of asynchronous and generator-like code.

20.1.5 std::span

Overview:
std::span is a new feature in C++20 that provides a non-owning view over a contiguous
sequence of elements. It is useful for passing arrays or ranges to functions without
copying the data.
Key Features:

• Non-Owning: std::span does not own the data it refers to, making it lightweight
and efficient.

• Bounds Checking: std::span can perform bounds checking, improving safety.

• Interoperability: Works seamlessly with arrays, STL containers, and other
contiguous sequences.

Example:

385

#include <iostream>
#include

void printSpan(std::span<int> s) {
for (int i : s) {

std::cout << i << ” ”;
}
std::cout << std::endl;

}

int main() {
int arr[] = {1, 2, 3, 4, 5};
std::vector<int> vec = {6, 7, 8, 9, 10};

printSpan(arr); // Works with arrays
printSpan(vec); // Works with vectors
return 0;

}

Analysis:

• std::span provides a non-owning view over the array and vector.

• The printSpan function can accept both arrays and vectors, making the code more
flexible and reusable.

20.1.6 std::format

Overview:
std::format is a new feature in C++20 that provides a type-safe and extensible way to
format strings. It is inspired by Python's str.format and is more expressive and safer
than traditional C-style formatting.

386

Key Features:

• Type-Safe: std::format ensures that the format string and arguments match,
reducing the risk of errors.

• Extensible: std::format can be extended to support user-defined types.

• Readable: The syntax is more readable and expressive than traditional formatting.

Example:

#include <iostream>
#include <format>

int main() {
int x = 42;
double y = 3.14;
std::string message = std::format(”x = {}, y = {:.2f}”, x, y);
std::cout << message << std::endl;
return 0;

}

Analysis:

• std::format provides a type-safe and readable way to format strings.

• The format string ”x = {}, y = {:.2f}” is more expressive and safer than
traditional C-style formatting.

20.1.7 std::jthread

Overview:

387

std::jthread is a new feature in C++20 that provides a safer and more convenient way to
manage threads. It automatically joins the thread on destruction, reducing the risk of
resource leaks.
Key Features:

• Automatic Joining: std::jthread automatically joins the thread on destruction,
ensuring that resources are properly cleaned up.

• Interruptible: std::jthread supports interruption, allowing for more controlled
thread termination.

• Simplified Thread Management: std::jthread simplifies thread management,
making the code safer and more maintainable.

Example:

#include <iostream>
#include <thread>
#include <chrono>

void threadFunction() {
for (int i = 0; i < 5; ++i) {

std::cout << ”Thread running: ” << i << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));

}
}

int main() {
std::jthread t(threadFunction);
// The thread will automatically join when t goes out of scope
return 0;

}

388

Analysis:

• std::jthread automatically joins the thread on destruction, ensuring that resources
are properly cleaned up.

• This simplifies thread management and reduces the risk of resource leaks.

20.1.8 Conclusion

C++20 introduces several new features and enhancements that significantly support
functional programming paradigms. Concepts, ranges, coroutines, std::span, std::format,
and std::jthread enable developers to write more expressive, concise, and efficient
functional-style code. These features align with the principles of immutability, pure
functions, and declarative programming, making C++ a more powerful language for
functional programming.
In the next section, we will explore additional C++20 features and their impact on
functional programming, including modules, constexpr enhancements, and more.

20.2 Examples of Using std::ranges, std::span, and std::format

C++20 introduces several powerful features that align well with functional
programming principles. Among these, std::ranges, std::span, and std::format stand out
for their ability to simplify code, improve safety, and enhance expressiveness. This
section provides detailed examples of how these features can be used in functional
programming contexts, demonstrating their benefits and practical applications.

20.2.1 Using std::ranges for Functional-Style Data Processing

Overview:

389

The std::ranges library provides a modern and functional approach to working with
sequences of elements. It includes range adaptors and algorithms that support lazy
evaluation and composability, making it ideal for functional programming.
Example: Filtering and Transforming a Range

#include <iostream>
#include <ranges>
#include <vector>

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Create a pipeline: filter even numbers, square them, and collect the results
auto result = numbers

| std::views::filter([](int x) { return x % 2 == 0; }) // Filter even numbers
| std::views::transform([](int x) { return x * x; }) // Square each number
| std::ranges::to<std::vector>(); // Collect results into a vector

// Print the results
for (int x : result) {

std::cout << x << ” ”;
}
std::cout << std::endl;

return 0;
}

Analysis:

• The pipeline filters even numbers, squares them, and collects the results into a
vector.

• The operations are composable and evaluated lazily, making the code more

390

efficient and expressive.

• The use of std::views::filter and std::views::transform aligns with functional
programming principles of immutability and declarative style.

20.2.2 Using std::span for Safe and Efficient Data Access

Overview:
std::span is a non-owning view over a contiguous sequence of elements. It is useful for
passing arrays or ranges to functions without copying the data, improving both safety
and performance.
Example: Processing a Subrange with std::span

#include <iostream>
#include
#include <vector>

// Function to print a span of integers
void printSpan(std::span<int> s) {

for (int i : s) {
std::cout << i << ” ”;

}
std::cout << std::endl;

}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Create a span over a subrange of the vector
std::span<int> subrange(numbers.begin() + 2, 5); // Elements 3, 4, 5, 6, 7

// Print the subrange

391

printSpan(subrange);

return 0;
}

Analysis:

• std::span provides a non-owning view over a subrange of the vector, avoiding
unnecessary copying.

• The printSpan function can accept any contiguous sequence, making the code
more flexible and reusable.

• std::span ensures bounds safety, reducing the risk of out-of-range access.

20.2.3 Using std::format for Type-Safe String Formatting

Overview:
std::format provides a type-safe and extensible way to format strings. It is more
expressive and safer than traditional C-style formatting, making it ideal for functional
programming.
Example: Formatting Strings with std::format

#include <iostream>
#include <format>

int main() {
int x = 42;
double y = 3.14159;
std::string name = ”Alice”;

392

// Format a string with placeholders
std::string message = std::format(”Hello, {}! The answer is {}, and pi is {:.2f}.”, name, x, y);

// Print the formatted string
std::cout << message << std::endl;

return 0;
}

Analysis:

• std::format provides a type-safe and readable way to format strings.

• The format string ”Hello, {}! The answer is {}, and pi is {:.2f}.” is more expressive
and safer than traditional C-style formatting.

• The placeholders {} and format specifiers like {:.2f} make the code more concise
and maintainable.

20.2.4 Combining std::ranges, std::span, and std::format

Example: Processing and Formatting Data

#include <iostream>
#include <ranges>
#include
#include <vector>
#include <format>

// Function to process a span of integers and return a formatted string
std::string processAndFormat(std::span<int> s) {

auto result = s

393

| std::views::filter([](int x) { return x % 2 == 0; }) // Filter even numbers
| std::views::transform([](int x) { return x * x; }) // Square each number
| std::ranges::to<std::vector>(); // Collect results into a vector

// Format the results into a string
std::string formattedResult;
for (int x : result) {

formattedResult += std::format(”{}, ”, x);
}
if (!formattedResult.empty()) {

formattedResult.pop_back(); // Remove the trailing comma and space
formattedResult.pop_back();

}

return std::format(”Processed results: [{}]”, formattedResult);
}

int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Create a span over the entire vector
std::span<int> span(numbers);

// Process and format the data
std::string output = processAndFormat(span);

// Print the formatted output
std::cout << output << std::endl;

return 0;
}

Analysis:

394

• The processAndFormat function processes a span of integers by filtering even
numbers and squaring them.

• The results are collected into a vector and formatted into a string using
std::format.

• The combination of std::ranges, std::span, and std::format demonstrates how these
features can be used together to write expressive, safe, and efficient
functional-style code.

20.2.5 Conclusion

The C++20 features std::ranges, std::span, and std::format provide powerful tools for
functional programming. std::ranges enables composable and lazy evaluation of
sequences, std::span offers safe and efficient access to contiguous data, and std::format
provides type-safe and expressive string formatting. By leveraging these features,
developers can write more maintainable, efficient, and expressive functional-style code in
modern C++.
In the next section, we will explore additional C++20 features and their impact on
functional programming, including modules, constexpr enhancements, and more.

Chapter 21

References and Additional Resources

21.1 Recommended Books and References for Deepening
Understanding of Functional Programming

Functional programming (FP) is a rich and evolving paradigm that has gained
significant traction in recent years. To deepen your understanding of functional
programming, especially in the context of modern C++, it is essential to explore a
variety of resources, including books, academic papers, and online references. This
section provides a curated list of recommended books and references that cover both the
theoretical foundations and practical applications of functional programming.

21.1.1 Books on Functional Programming

1. ”Functional Programming in C++” by Ivan Čukić

• Overview: This book is a comprehensive guide to applying functional
programming techniques in C++. It covers modern C++ features, such as

395

396

lambdas, ranges, and monads, and demonstrates how to use them to write
functional-style code.

• Key Topics:

– Functional programming principles in C++

– Using modern C++ features for FP

– Practical examples and case studies

• Why Read It: Ideal for C++ developers looking to integrate functional
programming into their projects.

2. ”Programming: Principles and Practice Using C++” by Bjarne Stroustrup

• Overview: Written by the creator of C++, this book provides a broad
introduction to programming with a focus on C++. It includes discussions
on functional programming concepts and how they can be applied in C++.

• Key Topics:

– Basics of programming and C++

– Functional programming concepts

– Practical applications and exercises

• Why Read It: A great resource for understanding the foundational principles
of programming, including functional programming, from the perspective of
C++.

3. ”Functional Programming in Scala” by Paul Chiusano and Rúnar Bjarnason

• Overview: Although focused on Scala, this book provides a deep dive into
functional programming concepts that are applicable across languages,
including C++.

397

• Key Topics:

– Functional programming principles

– Monads, functors, and applicatives

– Functional design patterns

• Why Read It: Offers a thorough understanding of functional programming
concepts that can be translated to C++.

4. ”Real World Haskell” by Bryan O'Sullivan, John Goerzen, and Donald Bruce
Stewart

• Overview: This book provides a practical introduction to Haskell, a purely
functional programming language. It covers a wide range of topics, from
basic syntax to advanced concepts.

• Key Topics:

– Haskell syntax and semantics

– Functional programming techniques

– Real-world applications and case studies

• Why Read It: Understanding Haskell can provide insights into functional
programming paradigms that can be applied in C++.

5. ”Structure and Interpretation of Computer Programs” (SICP) by Harold Abelson
and Gerald Jay Sussman

• Overview: A classic textbook that uses Scheme (a dialect of Lisp) to teach
fundamental concepts of computer programming, including functional
programming.

• Key Topics:

398

– Abstraction and modularity

– Functional programming techniques

– Metalinguistic abstraction

• Why Read It: Provides a deep understanding of the principles underlying
functional programming, which can be applied to any language, including
C++.

21.1.2 Books on Modern C++ and Functional Programming

1. ”Effective Modern C++” by Scott Meyers

• Overview: This book covers best practices for using modern C++ features,
including those that support functional programming, such as lambdas,
smart pointers, and concurrency.

• Key Topics:

– Modern C++ features and best practices

– Functional programming techniques in C++

– Performance and efficiency considerations

• Why Read It: Essential for C++ developers looking to leverage modern
language features for functional programming.

2. ”C++ High Performance” by Björn Andrist and Viktor Sehr

• Overview: This book focuses on writing high-performance C++ code,
including the use of functional programming techniques to achieve efficiency
and maintainability.

• Key Topics:

399

– Performance optimization in C++

– Functional programming and concurrency

– Practical examples and case studies

• Why Read It: Combines performance considerations with functional
programming, making it a valuable resource for C++ developers.

3. ”Functional Programming in C#” by Oliver Sturm

• Overview: While focused on C#, this book provides a comprehensive
introduction to functional programming concepts that are applicable to C++.

• Key Topics:

– Functional programming principles

– Immutability and pure functions

– Functional design patterns

• Why Read It: Offers insights into functional programming techniques that
can be adapted to C++.

21.1.3 Academic Papers and Articles

1. ”Why Functional Programming Matters” by John Hughes

• Overview: This seminal paper argues for the importance of functional
programming in software development, highlighting its benefits in terms of
modularity, maintainability, and correctness.

• Key Topics:

– Modularity and code reuse

– Higher-order functions and lazy evaluation

400

– Case studies and examples

• Why Read It: Provides a strong theoretical foundation for understanding the
benefits of functional programming.

2. ”Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire” by
Erik Meijer, Maarten Fokkinga, and Ross Paterson

• Overview: This paper introduces advanced functional programming concepts,
such as recursion schemes and catamorphisms, using a mathematical
approach.

• Key Topics:

– Recursion schemes

– Functional programming patterns

– Theoretical foundations

• Why Read It: For those interested in the deeper theoretical aspects of
functional programming.

21.1.4 Online Resources and Tutorials

1. C++ Reference (cppreference.com)

• Overview: An extensive online reference for the C++ programming language,
including documentation on modern C++ features that support functional
programming.

• Key Topics:

– C++ standard library

– Modern C++ features (e.g., lambdas, ranges, coroutines)

401

– Functional programming techniques

• Why Use It: A reliable and comprehensive resource for C++ developers.

2. Functional Programming in C++ (Blogs and Articles)

• Overview: Various blogs and articles by C++ experts that explore functional
programming techniques and their application in C++.

• Key Topics:

– Practical examples and tutorials

– Modern C++ features and best practices

– Case studies and real-world applications

• Why Use It: Provides practical insights and examples that complement
theoretical knowledge.

3. Haskell Wiki (wiki.haskell.org)

• Overview: The official wiki for Haskell, a purely functional programming
language. It includes tutorials, articles, and references on functional
programming concepts.

• Key Topics:

– Haskell syntax and semantics

– Functional programming techniques

– Advanced topics and research

• Why Use It: A valuable resource for understanding functional programming
concepts that can be applied to C++.

402

21.1.5 Conclusion

Deepening your understanding of functional programming requires a combination of
theoretical knowledge and practical experience. The recommended books, academic
papers, and online resources listed in this section provide a comprehensive foundation
for mastering functional programming concepts and applying them in modern C++. By
exploring these resources, you can enhance your skills, write more expressive and
maintainable code, and leverage the full potential of functional programming in your
projects.
In the next section, we will explore additional resources, including online courses,
communities, and tools, to further support your journey in functional programming with
modern C++.

21.2Websites and Online Courses

In addition to books and academic papers, websites and online courses are invaluable
resources for deepening your understanding of functional programming (FP) and its
application in modern C++. These platforms offer interactive learning experiences,
practical examples, and community support, making them ideal for both beginners and
experienced developers. This section provides a curated list of websites and online
courses that cover functional programming concepts and their implementation in C++.

21.2.1Websites for Learning Functional Programming

1. C++ Reference (cppreference.com)

• Overview: An extensive online reference for the C++ programming language,
including documentation on modern C++ features that support functional
programming.

403

• Key Features:

– Comprehensive documentation on C++ standard library and language
features.

– Examples and explanations of modern C++ features like lambdas,
ranges, and coroutines.

– Regularly updated to reflect the latest C++ standards.

• Why Use It: A reliable and comprehensive resource for C++ developers
looking to understand and apply functional programming techniques.

2. Haskell Wiki (wiki.haskell.org)

• Overview: The official wiki for Haskell, a purely functional programming
language. It includes tutorials, articles, and references on functional
programming concepts.

• Key Features:

– Tutorials and guides on Haskell syntax and semantics.

– Articles on advanced functional programming techniques.

– Community-contributed content and research papers.

• Why Use It: A valuable resource for understanding functional programming
concepts that can be applied to C++.

3. Functional Programming in C++ (Blogs and Articles)

• Overview: Various blogs and articles by C++ experts that explore functional
programming techniques and their application in C++.

• Key Features:

– Practical examples and tutorials.

404

– Modern C++ features and best practices.

– Case studies and real-world applications.

• Why Use It: Provides practical insights and examples that complement
theoretical knowledge.

4. Learn You a Haskell for Great Good! (learnyouahaskell.com)

• Overview: An online book that provides a beginner-friendly introduction to
Haskell, a purely functional programming language.

• Key Features:

– Easy-to-follow tutorials and examples.

– Covers basic to advanced functional programming concepts.

– Interactive exercises and quizzes.

• Why Use It: A great starting point for understanding functional
programming concepts that can be translated to C++.

5. Functional Programming in JavaScript (mostly-adequate.gitbooks.io)

• Overview: An online book that teaches functional programming concepts
using JavaScript, which can be easily adapted to C++.

• Key Features:

– Practical examples and exercises.

– Covers functional programming principles and techniques.

– Focus on real-world applications.

• Why Use It: Offers a practical approach to learning functional programming
concepts that can be applied to C++.

405

21.2.2 Online Courses for Learning Functional Programming

1. Functional Programming in C++ (Pluralsight)

• Overview: A course on Pluralsight that focuses on applying functional
programming techniques in C++.

• Key Topics:

– Modern C++ features supporting FP.

– Practical examples and case studies.

– Best practices for writing functional-style C++ code.

• Why Take It: Ideal for C++ developers looking to integrate functional
programming into their projects.

2. Functional Programming Principles in Scala (Coursera)

• Overview: A Coursera course offered by École Polytechnique Fédérale de
Lausanne (EPFL) that teaches functional programming principles using
Scala.

• Key Topics:

– Functional programming basics.

– Higher-order functions, immutability, and recursion.

– Functional design patterns.

• Why Take It: Provides a deep understanding of functional programming
concepts that can be applied to C++.

3. Programming Languages, Part A (Coursera)

406

• Overview: A Coursera course offered by the University of Washington that
covers functional programming concepts using Standard ML.

• Key Topics:

– Functional programming fundamentals.

– Type systems and polymorphism.

– Functional design and abstraction.

• Why Take It: Offers a strong theoretical foundation in functional
programming that is applicable to C++.

4. Functional Programming in Haskell (edX)

• Overview: An edX course offered by the University of Glasgow that provides
an introduction to functional programming using Haskell.

• Key Topics:

– Haskell syntax and semantics.

– Functional programming techniques.

– Real-world applications and case studies.

• Why Take It: A comprehensive course for understanding functional
programming concepts that can be translated to C++.

5. Advanced C++ Programming (Udemy)

• Overview: A Udemy course that covers advanced C++ topics, including
functional programming techniques.

• Key Topics:

– Modern C++ features and best practices.

407

– Functional programming in C++.

– Performance and efficiency considerations.

• Why Take It: Combines advanced C++ programming with functional
programming, making it a valuable resource for C++ developers.

21.2.3 Interactive Learning Platforms

1. LeetCode (leetcode.com)

• Overview: An online platform that offers coding challenges and competitions,
many of which can be solved using functional programming techniques.

• Key Features:

– A wide range of coding problems.

– Support for multiple programming languages, including C++.

– Community discussions and solutions.

• Why Use It: Provides practical experience in applying functional
programming techniques to solve real-world problems.

2. Exercism (exercism.io)

• Overview: An online platform that offers coding exercises and mentorship in
various programming languages, including C++.

• Key Features:

– Functional programming exercises.

– Feedback from mentors and the community.

– Support for multiple programming languages.

408

• Why Use It: Offers a structured way to practice and improve your functional
programming skills in C++.

3. HackerRank (hackerrank.com)

• Overview: An online platform that offers coding challenges and competitions,
with a focus on functional programming and algorithms.

• Key Features:

– Functional programming challenges.

– Competitions and hackathons.

– Community discussions and solutions.

• Why Use It: Provides a competitive environment to practice and hone your
functional programming skills.

21.2.4 Conclusion

Websites and online courses are invaluable resources for deepening your understanding
of functional programming and its application in modern C++. The platforms listed in
this section offer a range of learning experiences, from interactive tutorials and coding
challenges to comprehensive courses and community support. By leveraging these
resources, you can enhance your skills, gain practical experience, and stay up-to-date
with the latest developments in functional programming and C++.
In the next section, we will explore additional resources, including communities, forums,
and tools, to further support your journey in functional programming with modern
C++.

Chapter 22

Glossary

22.1 Explanation of Technical Terms Used in the Book

Understanding the technical terms and concepts used in functional programming (FP) is
crucial for mastering the paradigm and applying it effectively in modern C++. This
section provides a detailed glossary of key terms and concepts used throughout the book,
offering clear definitions and explanations to help readers navigate the material with
confidence.

22.1.1 Functional Programming Terms

1. Functional Programming (FP):

• Definition: A programming paradigm that treats computation as the
evaluation of mathematical functions and avoids changing state and mutable
data.

• Explanation: FP emphasizes immutability, pure functions, and declarative

409

410

programming, making programs easier to reason about and test.

2. Pure Function:

• Definition: A function that, given the same input, will always return the
same output and does not cause any side effects.

• Explanation: Pure functions do not modify external state or rely on mutable
data, making them predictable and easier to test.

3. Immutability:

• Definition: The property of data that cannot be modified after it is created.

• Explanation: Immutable data structures ensure that once a value is set, it
cannot be changed, which simplifies reasoning about program state and
enhances thread safety.

4. Higher-Order Function:

• Definition: A function that takes one or more functions as arguments or
returns a function as its result.

• Explanation: Higher-order functions enable powerful abstractions and
composability, allowing for concise and expressive code.

5. Lambda Expression:

• Definition: An anonymous function that can be defined inline and passed as
an argument to other functions.

• Explanation: Lambda expressions in C++ provide a concise way to define
small, reusable functions, often used in functional programming for
operations like mapping and filtering.

411

6. Monad:

• Definition: A design pattern in functional programming that allows for
chaining operations while encapsulating side effects.

• Explanation: Monads provide a way to sequence computations in a context,
such as handling optional values (std::optional) or asynchronous
computations (std::future).

7. Functor:

• Definition: A type that implements a mapping operation, allowing functions
to be applied to values within a context.

• Explanation: In C++, functors can be thought of as objects that can be used
as functions, often implemented using operator overloading.

8. Applicative:

• Definition: A type that allows for applying functions wrapped in a context to
values wrapped in the same context.

• Explanation: Applicatives generalize the concept of functors by enabling the
application of functions to multiple arguments within a context.

9. Currying:

• Definition: The technique of transforming a function that takes multiple
arguments into a sequence of functions that each take a single argument.

• Explanation: Currying allows for partial application of functions, enabling
more flexible and reusable code.

10. Recursion:

412

• Definition: A programming technique where a function calls itself to solve a
problem by breaking it down into smaller instances of the same problem.

• Explanation: Recursion is a fundamental concept in FP, often used in place
of iterative loops for tasks like traversing data structures.

22.1.2 C++-Specific Terms

1. Lambda Expression:

• Definition: An anonymous function that can be defined inline and passed as
an argument to other functions.

• Explanation: Lambda expressions in C++ provide a concise way to define
small, reusable functions, often used in functional programming for
operations like mapping and filtering.

2. std::function:

• Definition: A general-purpose polymorphic function wrapper that can store,
copy, and invoke any callable target.

• Explanation: std::function allows for the storage and invocation of functions,
lambdas, and other callable objects, making it useful for higher-order
functions.

3. std::optional:

• Definition: A template class that represents an optional value, which may or
may not be present.

• Explanation: std::optional is used to handle cases where a value might be
absent, providing a safer alternative to using null pointers.

413

4. std::variant:

• Definition: A type-safe union that can hold one of several types.

• Explanation: std::variant allows for type-safe storage and retrieval of different
types, useful in scenarios where a value can be one of multiple types.

5. std::any:

• Definition: A type-safe container for single values of any type.

• Explanation: std::any provides a way to store and retrieve values of any type,
with type safety ensured at runtime.

6. std::ranges:

• Definition: A library that provides a modern and functional approach to
working with sequences of elements.

• Explanation: std::ranges includes range adaptors and algorithms that
support lazy evaluation and composability, making it ideal for functional
programming.

7. std::span:

• Definition: A non-owning view over a contiguous sequence of elements.

• Explanation: std::span provides a safe and efficient way to work with arrays
and other contiguous data structures without copying the data.

8. std::format:

• Definition: A type-safe and extensible way to format strings.

414

• Explanation: std::format provides a modern alternative to C-style formatting,
with support for placeholders and format specifiers.

9. std::jthread:

• Definition: A thread class that automatically joins the thread on destruction.

• Explanation: std::jthread simplifies thread management by ensuring that
resources are properly cleaned up, reducing the risk of resource leaks.

10. constexpr:

• Definition: A keyword that indicates that a function or variable can be
evaluated at compile time.

• Explanation: constexpr enables compile-time computation, improving
performance and allowing for more expressive and efficient code.

22.1.3 General Programming Terms

1. Declarative Programming:

• Definition: A programming paradigm that expresses the logic of a
computation without describing its control flow.

• Explanation: Declarative programming focuses on what to do rather than
how to do it, making code more readable and maintainable.

2. Imperative Programming:

• Definition: A programming paradigm that uses statements to change a
program's state.

415

• Explanation: Imperative programming focuses on how to achieve a result
through a sequence of commands, often involving loops and conditionals.

3. Side Effect:

• Definition: Any change in the state of a program that is observable outside
the function being executed.

• Explanation: Side effects include modifying global variables, performing I/O
operations, or changing mutable data structures.

4. Referential Transparency:

• Definition: A property of expressions that can be replaced with their values
without changing the program's behavior.

• Explanation: Referential transparency ensures that functions are pure and
their behavior is predictable, making programs easier to reason about.

5. Lazy Evaluation:

• Definition: An evaluation strategy that delays the evaluation of an expression
until its value is needed.

• Explanation: Lazy evaluation can improve performance by avoiding
unnecessary computations and enabling the creation of infinite data
structures.

6. Pattern Matching:

• Definition: A technique for decomposing data structures and matching them
against patterns to extract values.

416

• Explanation: Pattern matching is commonly used in functional programming
languages to simplify data manipulation and control flow.

7. Tail Recursion:

• Definition: A form of recursion where the recursive call is the last operation
in the function.

• Explanation: Tail recursion allows for efficient recursion by enabling compiler
optimizations that avoid stack overflow.

8. Closure:

• Definition: A function that captures and retains references to variables from
its enclosing scope.

• Explanation: Closures allow for the creation of functions with persistent
state, useful in functional programming for creating higher-order functions.

22.1.4 Conclusion

This glossary provides a comprehensive overview of the key terms and concepts used in
functional programming and modern C++. By understanding these terms, readers can
better grasp the material presented in the book and apply functional programming
techniques effectively in their projects. The explanations and definitions offered here
serve as a valuable reference for navigating the complexities of functional programming
in C++.
In the next section, we will explore additional resources, including communities, forums,
and tools, to further support your journey in functional programming with modern
C++.

	Contents
	Author's Preface
	Introduction to Functional Programming
	What is Functional Programming?
	Core Concepts of Functional Programming
	Benefits of Functional Programming
	Functional Programming in Modern C++
	Example: Functional Programming in C++
	Summary

	Principles of Functional Programming: Pure Functions, Immutability, Function Composition
	Pure Functions
	Immutability
	Function Composition
	Combining Principles in Practice
	Summary

	Benefits of Functional Programming in Software Development
	Predictability and Readability
	Easier Testing and Debugging
	Concurrency and Parallelism
	Modularity and Reusability
	Maintainability and Scalability
	Real-World Applications
	Summary

	Why Modern C++?
	The Evolution of C++ and Its Support for Functional Programming
	Early Days of C++: Procedural and Object-Oriented Focus
	C++11: A Paradigm Shift
	C++14: Refining Functional Programming Features
	C++17: Expanding Functional Capabilities
	C++20: A Functional Programming Powerhouse
	Summary

	Modern C++ Features Supporting Functional Programming (C++11 to C++20 and Beyond)
	C++11: Laying the Foundation
	C++14: Refining Functional Programming Features
	C++17: Expanding Functional Capabilities
	C++20: A Functional Programming Powerhouse
	Beyond C++20: The Future of Functional Programming in C++
	Summary

	Comparison Between Functional Programming and Object-Oriented Programming (OOP) in C++
	Core Concepts
	Comparison of Key Features
	Example: FP vs. OOP in C++
	Strengths and Weaknesses
	When to Use FP vs. OOP in C++
	Combining FP and OOP in Modern C++
	Summary

	Development Tools
	Setting Up a Modern C++ Development Environment (e.g., CMake, Conan, Modern C++ Tools)
	Why a Modern Development Environment Matters
	Essential Tools for Modern C++ Development
	Example: Setting Up a Functional C++ Project
	Summary

	Using Modern Compilers (GCC, Clang, MSVC) with C++20 Support
	Why Use Modern Compilers?
	GCC (GNU Compiler Collection)
	Clang
	MSVC (Microsoft Visual C++)
	Cross-Compiler Tips
	Summary

	Static Analysis Tools and Functional Testing
	Static Analysis Tools
	Clang-Tidy
	Cppcheck
	Functional Testing
	Google Test
	Catch2
	Integrating Static Analysis and Testing into CI/CD
	Summary

	Pure Functions
	Concept of Pure Functions and How to Implement Them in C++
	What is a Pure Function?
	Benefits of Pure Functions
	Implementing Pure Functions in C++
	Example of an Impure Function
	Common Pitfalls and How to Avoid Them
	Summary

	Benefits of Pure Functions in Avoiding Side Effects
	What Are Side Effects?
	Why Are Side Effects Problematic?
	How Pure Functions Avoid Side Effects
	Benefits of Avoiding Side Effects
	Real-World Applications of Pure Functions
	Summary

	Immutability
	Using const and constexpr to Ensure Immutability
	What is Immutability?
	The const Keyword
	The constexpr Keyword
	Practical Examples
	Benefits of Using const and constexpr
	Summary

	Immutable Data Structures in C++
	What Are Immutable Data Structures?
	Benefits of Immutable Data Structures
	Implementing Immutable Data Structures in C++
	Practical Applications of Immutable Data Structures
	Summary

	First-Class Functions
	Using Functions as Values
	What Are First-Class Functions?
	Lambda Expressions in C++
	Using std::function for Type Safety
	Higher-Order Functions
	Storing Functions in Data Structures
	Summary

	Storing Functions in Variables and Passing Them as Arguments
	Storing Functions in Variables
	Passing Functions as Arguments
	Practical Applications
	Summary

	Lambda Functions
	Writing Lambda Functions in C++
	What Are Lambda Functions?
	Syntax of Lambda Functions
	Basic Examples of Lambda Functions
	Capturing Variables in Lambda Functions
	Using Lambda Functions with Standard Algorithms
	Advanced Lambda Features
	Summary

	Capture Clauses and Their Use in Lambda Functions
	What Are Capture Clauses?
	Syntax of Capture Clauses
	Types of Capture Clauses
	Summary

	Function Composition
	Composing Functions Using std::bind and std::function
	What is Function Composition?
	std::function: A Type-Safe Function Wrapper
	std::bind: Binding Arguments to Functions
	Composing Functions Using std::bind and std::function
	Summary

	Using Modern Libraries for Function Composition
	Range-v3: A Modern Range Library
	Boost.Hana: A Modern Metaprogramming Library
	Practical Applications of Modern Libraries for Function Composition
	Summary

	Templates and Functional Programming
	Using Templates to Create Generic Functions
	What Are Templates?
	Syntax of Function Templates
	Example: A Simple Generic Function
	Example: Generic Function with Multiple Types
	Example: Generic Higher-Order Function
	Example: Generic Function Composition
	Example: Generic Filter Function
	Example: Generic Reduce Function
	Summary

	Variadic Templates and Their Use in Functional Programming
	What Are Variadic Templates?
	Syntax of Variadic Templates
	Example: A Simple Variadic Function
	Example: Variadic Function Composition
	Example: Variadic Map Function
	Example: Variadic Filter Function
	Example: Variadic Reduce Function
	Example: Variadic Zip Function
	Summary

	Expression Templates
	Concept of Expression Templates and How to Use Them for Performance Optimization
	What Are Expression Templates?
	Benefits of Expression Templates
	Basic Example: Vector Addition Without Expression Templates
	Using Expression Templates for Vector Addition
	Advanced Example: Matrix Multiplication with Expression Templates
	Summary

	Practical Examples of Expression Templates in C++
	Example: Optimizing Vector Addition
	Example: Optimizing Matrix Multiplication
	Example: Optimizing Element-Wise Operations
	Summary

	Higher-Order Functions
	Defining and Using Higher-Order Functions in C++
	What Are Higher-Order Functions?
	Defining Higher-Order Functions
	Returning Functions from Higher-Order Functions
	Practical Applications of Higher-Order Functions
	Summary

	Examples of Functions Like map, filter, and reduce
	The map Function
	The filter Function
	The reduce Function
	Practical Applications of map, filter, and reduce
	Summary

	Modern Functional Libraries
	Using Libraries Like *Range-v3* and *Boost.Hana* to Support Functional Programming
	Range-v3: A Modern Range Library
	Boost.Hana: A Modern Metaprogramming Library
	Practical Applications of Modern Libraries for Functional Programming
	Summary

	Practical Examples of Using These Libraries
	Example: Data Processing Pipeline with Range-v3
	Example: Compile-Time Computations with Boost.Hana
	Example: Combining Range-v3 and Boost.Hana
	Example: Advanced Data Processing with Range-v3
	Summary

	Memory Management in Functional Programming
	Using Smart Pointers (std::unique_ptr, std::shared_ptr) in Functional Programming
	Overview of Smart Pointers
	Smart Pointers and Immutability
	Smart Pointers in Pure Functions
	Smart Pointers and Higher-Order Functions
	Smart Pointers and Functional Data Structures
	Example: Using Smart Pointers in a Functional Context
	Conclusion

	Avoiding Memory Leaks with Functional Programming
	Understanding Memory Leaks
	Functional Programming Principles for Avoiding Memory Leaks
	Leveraging RAII and Smart Pointers
	Functional Data Structures and Memory Safety
	Exception Safety and Functional Programming
	Best Practices for Avoiding Memory Leaks
	Conclusion

	Performance Optimization
	Techniques for Optimizing Performance in Functional Programming
	Understanding Performance Challenges in Functional Programming
	Leveraging Immutability Efficiently
	Optimizing Pure Functions
	Efficient Use of Higher-Order Functions
	Optimizing Recursion
	Leveraging Modern C++ Features
	Conclusion

	Using constexpr and noexcept to Optimize Code
	Understanding constexpr
	Benefits of constexpr in Functional Programming
	Understanding noexcept
	Benefits of noexcept in Functional Programming
	Combining constexpr and noexcept
	Practical Applications in Functional Programming
	Conclusion

	Concurrency and Functional Programming
	Using Functional Programming in Concurrent Applications
	The Challenges of Concurrency
	Immutability and Concurrency
	Pure Functions and Concurrency
	Higher-Order Functions and Concurrency
	Functional Concurrency Patterns
	Conclusion

	Examples of Using std::async and std::future
	Overview of std::async and std::future
	Basic Example: Asynchronous Computation
	Example: Parallel Map with std::async
	Example: Composing Asynchronous Tasks
	Example: Asynchronous Pipeline
	Example: Exception Handling in Asynchronous Tasks
	Example: Using std::future with Functional Composition
	Conclusion

	Building Functional Libraries
	How to Design Libraries That Support Functional Programming
	Core Principles of Functional Programming
	Designing for Immutability
	Supporting Pure Functions
	Leveraging Higher-Order Functions
	Providing Declarative Abstractions
	Ensuring Composability
	Example: Designing a Functional Library
	Conclusion

	Examples of Functional Libraries Written in C++
	Range-v3
	FunctionalPlus
	Hana
	CppMonad
	ETL (Embedded Template Library)
	Mach7
	Conclusion

	Case Studies
	Practical Applications of Functional Programming in Real-World Projects
	Financial Systems
	Data Processing and Analytics
	Game Development
	Web Development
	Embedded Systems
	Case Study: Functional Programming in a Real-World Project
	Conclusion

	Analysis of Functional Code Written in C++
	Key Characteristics of Functional Code in C++
	Example: Functional Code for Data Processing
	Example: Functional Code for Recursive Algorithms
	Example: Functional Code with Higher-Order Functions
	Common Pitfalls and Best Practices
	Conclusion

	Functional Programming in Games and Graphics
	Using Functional Programming in Game and Graphics Development
	Key Challenges in Game and Graphics Development
	Immutability in Game State Management
	Pure Functions for Game Logic
	Higher-Order Functions for AI and Behavior Trees
	Declarative Rendering Pipelines
	Concurrency and Parallelism
	Functional Reactive Programming (FRP) for User Input
	Conclusion

	Examples of Using Functional Programming with Libraries Like OpenGL and Vulkan
	Functional Programming with OpenGL
	Functional Programming with Vulkan
	Functional Reactive Programming (FRP) for Event Handling
	Conclusion

	Functional Programming in Operating Systems and Embedded Systems
	Applications of Functional Programming in Operating Systems and Embedded Systems
	Key Challenges in Operating Systems and Embedded Systems
	Immutability in System State Management
	Pure Functions for System Logic
	Higher-Order Functions for Device Drivers
	Declarative System Configuration
	Concurrency and Parallelism
	Functional Reactive Programming (FRP) for Event Handling
	Conclusion

	Examples of Using Functional Programming in Firmware Development
	Key Challenges in Firmware Development
	Immutability in Firmware State Management
	Pure Functions for Firmware Logic
	Higher-Order Functions for Hardware Abstraction
	Declarative Firmware Initialization
	Concurrency and Parallelism in Firmware
	Functional Reactive Programming (FRP) for Event Handling
	Example: Functional Programming in a Real-World Firmware Project
	Conclusion

	Appendices
	Appendix: C++20 and Beyond Features
	Detailed Explanation of New Features in C++20 That Support Functional Programming
	Concepts
	Ranges
	Coroutines
	std::span
	std::format
	std::jthread
	Conclusion

	Examples of Using std::ranges, std::span, and std::format
	Using std::ranges for Functional-Style Data Processing
	Using std::span for Safe and Efficient Data Access
	Using std::format for Type-Safe String Formatting
	Combining std::ranges, std::span, and std::format
	Conclusion

	References and Additional Resources
	Recommended Books and References for Deepening Understanding of Functional Programming
	Books on Functional Programming
	Books on Modern C++ and Functional Programming
	Academic Papers and Articles
	Online Resources and Tutorials
	Conclusion

	Websites and Online Courses
	Websites for Learning Functional Programming
	Online Courses for Learning Functional Programming
	Interactive Learning Platforms
	Conclusion

	Glossary
	Explanation of Technical Terms Used in the Book
	Functional Programming Terms
	C++-Specific Terms
	General Programming Terms
	Conclusion

