
1

GCC Internals and System-Level Compilation for
Modern C++ on Linux (x86-64)

Prepared by Ayman Alheraki

simplifycpp.org

November 2025

Contents

Contents 2

Author’s Introduction 32

Preface 35

I THE GNU COMPILATION MODEL AND SYSTEM
CONTRACTS 38

1 The Compiler as the System's Formal Execution Specification 40
1.1 The Compiler Defines Semantics, Not the Source Language 40

1.1.1 Source Code is Not Executable Specification 41
1.1.2 Semantic Lowering and Transformation Phases 41
1.1.3 The Role of Undefined and Implementation-Defined Behavior . . . 42
1.1.4 The Compiler as the Formal Boundary of Program Reality 42
1.1.5 Consequence for System-Level C++ Engineering 43

1.2 The Toolchain as the System’s Deterministic Behavioral Model 44
1.2.1 Determinism Through Standardized Execution Contracts 44
1.2.2 Determinism at the Code Generation and Linking Boundary 45
1.2.3 Runtime Enforcement of Toolchain Semantics 46

2

3

1.2.4 Implications for System-Level C++ Engineering 46
1.2.5 Summary . 47

1.3 Visibility, Inspectability, and Reproducibility as Engineering Requirements 48
1.3.1 Visibility into the Compilation Pipeline 48
1.3.2 Inspectability at the Binary Interface Level 49
1.3.3 Reproducibility as a Deterministic Execution Property 49
1.3.4 Stability Under Optimization and Microarchitectural Change . . . 50
1.3.5 Engineering Outcome . 51

1.4 Stability Contracts Across CPU Generations and OS Versions 52
1.4.1 ABI as a Fixed External Contract 52
1.4.2 Microarchitectural Variation Without Semantic Change 53
1.4.3 Runtime Library and Kernel Interface Continuity 54
1.4.4 Compiler Evolution Under Stability Constraints 54
1.4.5 Practical Engineering Implication 55

1.5 Examples: ABI Continuity Analysis Across GCC Major Versions 56
1.5.1 Stable Class Layout and Virtual Dispatch Across Versions 56
1.5.2 Name Mangling and Symbol Binding Stability 58
1.5.3 Exception Propagation Compatibility Across Toolchain Versions . . 59
1.5.4 Function Call Boundary Invariance Under Optimization Evolution . 60
1.5.5 Summary of Findings . 60

2 The Linux Execution Stack and Boundary Interfaces 62
2.1 CPU → Kernel → Loader → Runtime → Application Execution Path . . . 62

2.1.1 CPU Architectural Preconditions 63
2.1.2 Kernel: Process and Address Space Construction 63
2.1.3 Loader: Dynamic Linking and Relocation (ld.so) 64
2.1.4 Runtime: libgcc + glibc + C++ Initialization 65
2.1.5 Application Execution Under Compiler-Defined Semantics 65

4

2.1.6 Summary . 66
2.2 System Call ABI Calling Convention and Register Assignments 68

2.2.1 Register Assignment for System Calls 68
2.2.2 The syscall Instruction and Privilege Transition Sequence 69
2.2.3 System Call ABI vs. User-Space ABI 70
2.2.4 Consequences for Compiler Lowering and Optimization 70
2.2.5 Engineering Implications . 71

2.3 The syscall Instruction and VDSO Acceleration Layer 72
2.3.1 Execution Semantics of the syscall Instruction 72
2.3.2 Performance Characteristics on Post-2020 x86-64 CPUs 73
2.3.3 VDSO: User-Space Execution of Kernel-Managed Functions 73
2.3.4 Loader and Runtime Binding Behavior 74
2.3.5 Implications for System-Level C++ Execution 75

2.4 Userspace Loader (ld.so) as a Policy Engine 76
2.4.1 Loader Responsibilities as Defined by ELF Semantics 76
2.4.2 The Loader as the Enforcement Point for Symbol Resolution Policy 77
2.4.3 Loader as the Authority for PIE and ASLR Execution Layout . . . 77
2.4.4 TLS Model Selection and Enforcement 78
2.4.5 Loader as the Gatekeeper for Runtime Feature Dispatch 78
2.4.6 Summary . 79

2.5 Examples: Disassembling _start → __libc_start_call_main 80
2.5.1 _start: Entry Point Defined by the Linker 80
2.5.2 __libc_start_main: Runtime Coordinator 81
2.5.3 __libc_start_call_main: Invocation of C++ Static Initializers . 82
2.5.4 Validation of Constructor Execution Ordering 83
2.5.5 Summary of Verified Invariants . 83

5

3 Toolchain Component Topology and Internal Data Flow 85
3.1 GCC → as → ld → ld.so → glibc → Application 85

3.1.1 GCC: Language Semantics → Machine-Oriented IR → Assembly . 86
3.1.2 as: Assembly Encoding into ELF Relocatable Objects 87
3.1.3 ld: Symbol Resolution, Address Assignment, and Relocation

Planning . 87
3.1.4 ld.so: Runtime Relocation and Execution Environment Realization 88
3.1.5 glibc: Runtime Subsystem Activation and C++ Static Object

Initialization . 88
3.1.6 Application: Execution Under Compiler-Defined Semantics 89
3.1.7 Summary . 89

3.2 Where Optimization Happens and Where It Cannot 91
3.2.1 Optimization in the High-Level SSA Domain (GIMPLE) 91
3.2.2 Optimization in the Machine-Constraint Domain (RTL) 92
3.2.3 Where Optimization Cannot Occur: Assembler and Linker Phases . 93
3.2.4 Where Optimization Is Explicitly Prohibited 94
3.2.5 Engineering Consequence . 94

3.3 How Debug Symbols Propagate Through the Pipeline 96
3.3.1 GCC: Generation of DWARF Symbol Information 96
3.3.2 as: Preservation Without Semantic Modification 97
3.3.3 ld: Relocation, Folding, and Consolidation of Debug Sections . . . 97
3.3.4 Handling of Unwind Metadata . 98
3.3.5 Separate Debug Information Model 99
3.3.6 Debug Symbol Visibility in Final Execution State 100

3.4 How the Loader Chooses and Resolves Libraries 101
3.4.1 Library Selection Process . 101
3.4.2 DT_NEEDED and Dependency Graph Construction 102

6

3.4.3 Symbol Lookup Scope and Resolution Rules 102
3.4.4 Lazy vs. Immediate Resolution . 103
3.4.5 Versioned Symbols and Compatibility Stability 104
3.4.6 Summary . 104

3.5 Examples: Full Symbol Resolution Trace for a Shared C++ Binary 106
3.5.1 Source: Shared Library and Executable 106
3.5.2 Inspecting Dynamic Dependency Graph 107
3.5.3 Symbol Resolution Trace Using LD_DEBUG 107
3.5.4 PLT/GOT Binding Inspection . 108
3.5.5 Versioned glibc Symbol Resolution 109
3.5.6 Summary of Verified Resolution Behavior 109

II GCC FRONTEND: C++ LANGUAGE LOWERING
ENGINE 111

4 C++ Name Semantics, Lookup, and Instantiation Model 113
4.1 Unqualified, ADL, and Two-Phase Name Lookup 113

4.1.1 Unqualified Name Lookup . 114
4.1.2 Argument-Dependent Lookup (ADL) 114
4.1.3 Two-Phase Name Lookup in Template Contexts 115
4.1.4 Failure Modes and GCC Diagnostic Behavior 116
4.1.5 Practical Implications for System-Level C++ Development 116
4.1.6 Summary . 117

4.2 Template Pattern Matching and Partial Specialization Ordering 118
4.2.1 Primary Templates and Explicit Specializations 118
4.2.2 Partial Specializations and Pattern Matching 119
4.2.3 Partial Ordering: Determining the Most Specialized Match 119

7

4.2.4 Interaction with Function Template Partial Specialization 120
4.2.5 Constraint-Based Ordering (C++20 Concepts) 121
4.2.6 Failure Modes and GCC Diagnostic Context 121
4.2.7 Summary . 122

4.3 Constraint Subsumption Rules in Concepts 124
4.3.1 Constraint Normalization . 124
4.3.2 Constraint Implication and Subsumption 124
4.3.3 Example: Ordered Constraints . 125
4.3.4 Example: Incomparable Constraints 126
4.3.5 Interaction with Function Overload Resolution 126
4.3.6 Replacement of SFINAE-based Partial Ordering 127
4.3.7 Summary . 127

4.4 Pure Compile-Time Execution in constexpr Interpreter 129
4.4.1 Execution Model: Abstract Machine for Constant Evaluation . . . 129
4.4.2 Eligibility Rules for constexpr Evaluation 130
4.4.3 Persistent Object Representation at Compile Time 131
4.4.4 Distinction Between constexpr and consteval 131
4.4.5 Interaction with Template Instantiation 132
4.4.6 Engineering Significance . 132
4.4.7 Summary . 133

4.5 Examples: GCC AST Graph Analysis with -fdump-tree-original-raw . 134
4.5.1 Example Source . 134
4.5.2 Relevant Dump Segments (Simplified for Presentation) 135
4.5.3 Observations on Name Resolution and Semantic Binding 136
4.5.4 Using AST Dumps for Diagnostic Analysis 136
4.5.5 Limitations and Interpretation Boundaries 137
4.5.6 Summary . 137

8

5 Semantic Graph to GIMPLE Transformation Pipeline 139
5.1 Canonicalization of Expressions and Control Flow 139

5.1.1 Expression Canonicalization . 139
5.1.2 Control-Flow Canonicalization . 140
5.1.3 Side-Effect Isolation . 141
5.1.4 Exception Flow and the EH Graph 142
5.1.5 Canonical Form Guarantees . 143
5.1.6 Summary . 143

5.2 Temporary Lifetime Folding and Value Category Lowering 145
5.2.1 Value Category Normalization . 145
5.2.2 Materialization Points and Temporary Storage Creation 146
5.2.3 Lifetime Folding and Elision . 147
5.2.4 Destructor Scheduling and Region Boundaries 147
5.2.5 Move/Copy Lowering and Value Propagation 148
5.2.6 Result of Lifetime Folding Before SSA Form 149
5.2.7 Summary . 149

5.3 Lambda Closures, Captures, and Object Lifetime IR Representation 151
5.3.1 Closure Type Synthesis . 151
5.3.2 Capture Lowering and Storage Identity 152
5.3.3 Construction and Destruction of Closure Objects 152
5.3.4 Lowering operator() and Call Sites 153
5.3.5 Escaped Closures and Heap Promotion 153
5.3.6 Interaction with SSA and Optimization 154
5.3.7 Summary . 155

5.4 Inline and Devirtualization Decision Models at GIMPLE Level 156
5.4.1 Inlining Candidate Identification 156
5.4.2 Visibility and Interposition Constraints 157

9

5.4.3 Devirtualization Pre-Conditions . 157
5.4.4 GIMPLE-Level Transformation Form 158
5.4.5 Profile-Guided and Cost-Driven Inline Decisions 159
5.4.6 When Inlining and Devirtualization Are Prohibited 159
5.4.7 Summary . 160

5.5 Examples: GIMPLE CFG Dissection with Dominator Tree Reconstruction 162
5.5.1 Example Source . 162
5.5.2 CFG Block Structure . 163
5.5.3 Dominator Tree Construction . 164
5.5.4 Post-Dominator Relationships . 165
5.5.5 Dominance Relevance to Optimization 166
5.5.6 CFG and Dominator Diagnostics 166
5.5.7 Summary . 167

III GIMPLE/SSA MIDEND AND OPTIMIZATION
THEORY 168

6 SSA Form Construction and Value Flow Algorithms 170
6.1 Phi-Node Insertion Rules and SSA Dominance Frontier 170

6.1.1 Reaching Definition Conflicts . 170
6.1.2 Dominance Frontier Definition . 171
6.1.3 Algorithm for Minimal �-Node Insertion 171
6.1.4 Example Control Structure . 172
6.1.5 SSA Name Binding and Use-Chain Maintenance 173
6.1.6 Cases Where � Insertion Is Suppressed 173
6.1.7 Summary . 174

6.2 Sparse Conditional Constant Propagation (SCCP) 175

10

6.2.1 Value Lattice for SSA Names . 175
6.2.2 Control-Flow Feasibility Tracking 176
6.2.3 SCCP over �-Nodes . 177
6.2.4 Instruction Folding Rules . 177
6.2.5 Elimination of Dead Branches and Blocks 178
6.2.6 Resulting IR Guarantees . 178
6.2.7 Summary . 179

6.3 Range Propagation and Provenance Tracking 180
6.3.1 Value Range Lattice . 180
6.3.2 Sources of Range Information . 181
6.3.3 Branch-Sensitive Propagation . 181
6.3.4 Provenance Tracking . 182
6.3.5 Loop-Carried Range Refinement 183
6.3.6 Integration with Optimization Stages 183
6.3.7 Summary . 184

6.4 Escape, Escape-Not-Escape, and Escape Set Inference 185
6.4.1 Object and Reference Escape Classification 185
6.4.2 Escape Source Identification . 186
6.4.3 Escape Set Construction . 187
6.4.4 Escape-Not-Escape Refinement . 187
6.4.5 Relationship with Alias and Memory SSA 188
6.4.6 Practical Outcomes of Escape Inference 189
6.4.7 Summary . 189

6.5 Examples: SSA Rewrites Under Aggressive Inlining Constraints 191
6.5.1 Example Source . 191
6.5.2 Inlining Transformation Result (Conceptual GIMPLE Before SSA

Fixup) . 192

11

6.5.3 SSA Rewrite with �-Node Placement 192
6.5.4 Value Propagation and Constant Folding Interaction 193
6.5.5 Interaction with Escape and Alias Constraints 194
6.5.6 Loop-Carried SSA Transformation Under Inlining 194
6.5.7 Summary . 195

7 Control Flow Optimization, Loop Analysis, and Polyhedral Modeling 196
7.1 Loop Induction Variable Classification . 196

7.1.1 Detection of Basic Induction Variables (BIVs) 197
7.1.2 Derived Induction Variables (DIVs) 197
7.1.3 Invariants vs. Induction Variables 198
7.1.4 Induction Variable Normalization 198
7.1.5 Induction Variables in Nested Loops 199
7.1.6 Relation to Dependence Testing and Vectorization 199
7.1.7 Summary . 200

7.2 Loop Invariant Code Motion and Peeling vs Unrolling 201
7.2.1 Loop Invariance Detection . 201
7.2.2 Correctness Requirements for LICM 202
7.2.3 Loop Peeling . 203
7.2.4 Loop Unrolling . 203
7.2.5 Peeling vs. Unrolling: Distinct Goals 204
7.2.6 Interaction with Scalar Evolution (SCEV) 205
7.2.7 Summary . 205

7.3 Alias Analysis and Dependence Graph Construction 207
7.3.1 Memory Reference Classification in GIMPLE 207
7.3.2 Points-to Set Inference . 208
7.3.3 Memory SSA Region Graph . 209
7.3.4 Dependence Classification in Loops 209

12

7.3.5 Dependence Graph Construction 210
7.3.6 Application to Loop Interchange, Fusion, and Vectorization 210
7.3.7 Summary . 211

7.4 Introduction to Graphite / isl Polyhedral Optimizer 213
7.4.1 Polyhedral Representation Model 213
7.4.2 Extraction from GIMPLE to Polyhedral IR 214
7.4.3 Dependence Testing and Legality 214
7.4.4 Transformation Classes Performed by Graphite 215
7.4.5 Integration with the Mid-End Optimization Pipeline 215
7.4.6 Practical Constraints in Real-World Codebases 216
7.4.7 Summary . 216

7.5 Examples: Loop Vectorization Feasibility Prediction Diagnostics 218
7.5.1 Example Loop . 218
7.5.2 Dependence-Inhibited Case . 219
7.5.3 Non-Affine Access Inhibition . 220
7.5.4 Masked Vectorization Consideration (Post-GCC 11) 220
7.5.5 Failures Due to Floating-Point Semantics 221
7.5.6 Summary . 222

IV RTL BACKEND AND TARGET
MICROARCHITECTURE 223

8 RTL Instruction IR and Machine Description Language 225
8.1 RTL Expression Trees and Operand Constraints 225

8.1.1 RTL Expression Structure . 225
8.1.2 Operand Categories . 226
8.1.3 Constraint Language for Instruction Operands 227

13

8.1.4 RTL and Machine Modes . 228
8.1.5 RTL after GIMPLE Lowering and Before Register Allocation . . . 229
8.1.6 Summary . 230

8.2 Constraints (M, r, i, s, g, m, …): Register vs Memory Operand Legality . . 231
8.2.1 Constraint Classes and Operand Roles 231
8.2.2 Register Operand Constraints (r and Register Classes) 232
8.2.3 Memory Operand Constraints (m and Sub-Forms) 233
8.2.4 Immediate Operand Constraints (i, n, I, J, …) 234
8.2.5 General Operand Constraint (g) 234
8.2.6 Symbol Constraints (s) . 235
8.2.7 Summary . 235

8.3 Machine Pattern Matching and Macro-Op Fusion Candidates 237
8.3.1 MD Pattern Identification . 237
8.3.2 Fusion-Friendly Canonical Forms 238
8.3.3 Pattern Matching for Fusable RTL Sequences 239
8.3.4 MD Pattern Encoding for Fusion-Aware Selection 240
8.3.5 Practical Fusion Limitations . 241
8.3.6 Summary . 241

8.4 RTL Verification Passes and Semantic Equivalence Rules 243
8.4.1 Structural Well-Formedness Checks 243
8.4.2 Data-Dependence and Liveness Preservation 244
8.4.3 Address Legality and Alignment Rules 244
8.4.4 Semantic Equivalence Constraints 245
8.4.5 RTL Graph Normalization . 246
8.4.6 Summary . 246

8.5 Examples: Live RTL → Final x86-64 Assembly Correlation 248
8.5.1 Example Source . 248

14

8.5.2 Relevant Live RTL (Post-Expand, Pre-RA Simplified) 248
8.5.3 Register Allocation Assignments (Typical) 249
8.5.4 Final x86-64 Assembly (Representative Output) 249
8.5.5 Example With Alias Inhibition vs restrict 250
8.5.6 Example With Loop-Carried Induction 251
8.5.7 Summary . 252

9 Register Allocation, Spill Minimization, and Scheduling 253
9.1 Graph Coloring Allocation and Coalescing 253

9.1.1 Interference Graph Construction 253
9.1.2 Register Classes and Architectural Constraints 254
9.1.3 Graph Coloring Heuristic . 255
9.1.4 Copy Coalescing . 255
9.1.5 Conservative vs Aggressive Coalescing 256
9.1.6 Interaction with SSA Form . 256
9.1.7 Summary . 257

9.2 PBQP Allocation and Hybrid Region Spilling 258
9.2.1 PBQP Formulation Overview . 258
9.2.2 Constrained Allocation Scenarios Requiring PBQP 259
9.2.3 Hybrid Region-Based Spilling . 259
9.2.4 Live-Range Splitting under PBQP 260
9.2.5 Interaction with Scheduling and Rematerialization 260
9.2.6 Summary . 261

9.3 Scheduler: Port Pressure, Latency, Throughput Tables 263
9.3.1 Instruction Latency Constraints . 263
9.3.2 Execution Port Pressure and Resource Contention 264
9.3.3 Throughput-Based Instruction Arrangement 265
9.3.4 Scheduling Boundary Constraints 265

15

9.3.5 Example: Scheduling a Hot Loop Body 266
9.3.6 Summary . 266

9.4 Skylake-Class µArch Execution Ports (0,1,2,3,4,5,6) 268
9.4.1 Execution Port Summary . 268
9.4.2 ALU and FP Arithmetic Distribution (Ports 0 and 1) 269
9.4.3 Load and Store Pipelines (Ports 2, 3, 4, 6) 269
9.4.4 Branching and Control Dependencies (Port 5) 270
9.4.5 Performance Implications in Loop Kernels 271
9.4.6 Summary . 272

9.5 Examples: Stall Origin Detection via Annotated Disassembly 273
9.5.1 Example Hot Loop . 273
9.5.2 Annotated Disassembly with Port Maps and Latency 274
9.5.3 Stall Source Classification . 275
9.5.4 Annotated Analysis with Throughput Model 275
9.5.5 Vectorized Case Contrast (AVX2 / AVX-512) 276
9.5.6 Summary . 277

10 x86-64 SIMD Vectorization and Data Layout 278
10.1 Vector Instruction Selection (SSE → AVX → AVX2) 278

10.1.1 SSE (Streaming SIMD Extensions) 279
10.1.2 AVX (Advanced Vector Extensions) 280
10.1.3 AVX2 (Integer Vectorization Extension) 280
10.1.4 Vector Width and Microarchitectural Throughput 281
10.1.5 ISA Transition and Domain Penalties 282
10.1.6 Summary . 282

10.2 Load/Store Alignment Constraints and Gather/Scatter Costs 284
10.2.1 Alignment Constraints for SIMD Loads and Stores 284
10.2.2 Stride and Interleave Effects on Access Form 285

16

10.2.3 Gather and Scatter Instructions (AVX2) 286
10.2.4 Vectorizer Decision Rules for Gather/Scatter Emission 286
10.2.5 Hybrid Approaches: Load + Shuffle vs. Gather 287
10.2.6 Summary . 287

10.3 Data Structure Layout for Cache-Optimized Iteration 289
10.3.1 AoS vs. SoA Transformations . 289
10.3.2 Padding, Alignment, and Page-Locality Considerations 290
10.3.3 Loop Nest and Tile Layout for Cache Blocking 291
10.3.4 Struct Reordering and False-Sharing Avoidance 292
10.3.5 Alignment Propagation Through the Compiler 293
10.3.6 Summary . 293

10.4 ABI Implications of Vector Calling Conventions 295
10.4.1 Vector Registers in the x86-64 System V ABI 295
10.4.2 Register Save / Restore Semantics 296
10.4.3 ABI and State Transition Costs (SSE � AVX) 297
10.4.4 Struct and Aggregate Passing Rules 297
10.4.5 Cross-Module Optimization Boundary 298
10.4.6 Summary . 299

10.5 Examples: Loop Rewritten into Full AVX2 Pipeline 300
10.5.1 Original Scalar Code . 300
10.5.2 GCC Vectorization Conditions . 300
10.5.3 Representative Vectorized Assembly (Simplified) 301
10.5.4 Pipeline Characteristics on Skylake-Class Cores 302
10.5.5 Comparison to Scalar Performance 303
10.5.6 Observations from Annotated Disassembly 303
10.5.7 Summary . 304

17

V C++ OBJECT MODEL AND RUNTIME ABI 305

11 Itanium ABI Deep Structure for C++ 307
11.1 Symbol Mangling Encoding Structures . 307

11.1.1 Top-Level Mangling Prefix . 308
11.1.2 Name Scoping Encoding . 309
11.1.3 Type Encoding and Qualifiers . 309
11.1.4 Template Argument Encoding . 310
11.1.5 Operator and Special Function Mangling 311
11.1.6 Summary . 312

11.2 VTable Encoding, Virtual Base Pointer Offsets, and Thunks 313
11.2.1 VTable Structural Layout . 313
11.2.2 Virtual Base Pointer Offsets (vbpointers) 314
11.2.3 Thunks and this Pointer Adjustment 315
11.2.4 VTable Reuse and Subobject-Specific VTables 315
11.2.5 Summary of Runtime Dispatch Flow 316
11.2.6 Summary . 316

11.3 Exception Table Encoding, DWARF CFI, and LSDA 318
11.3.1 Zero-Cost Exception Handling Model 318
11.3.2 DWARF CFI and .eh_frame . 319
11.3.3 LSDA: Language-Specific Data Area 319
11.3.4 Action and Call-Site Tables . 320
11.3.5 Interaction with typeinfo and RTTI Objects 321
11.3.6 Landing Pads and Control Transfer 321
11.3.7 Summary . 322

11.4 RTTI and Dynamic Type Resolution Through Typeinfo Graph 323
11.4.1 Typeinfo Object Structure . 323
11.4.2 Canonical Uniqueness and Linkage Consistency 324

18

11.4.3 Dynamic Type Resolution Algorithm (dynamic_cast) 324
11.4.4 Using RTTI in Exception Matching 325
11.4.5 Example: Multiple and Virtual Inheritance Type Resolution 326
11.4.6 Summary . 327

11.5 Examples: VTable Reverse Reconstruction from Binary 328
11.5.1 Sample Class Hierarchy (Source) 328
11.5.2 Identifying VTable Regions in the Binary 329
11.5.3 Detecting Virtual Base Inheritance 330
11.5.4 Recognizing Thunks in Reconstructed Dispatch Table 331
11.5.5 Reverse Inferring Class Relationship Structure 331
11.5.6 Summary . 332

12 glibc Runtime, Static Initialization, and TLS Models 333
12.1 Startup Code (crt1, crti, crtn) and _start Transition 333

12.1.1 Entry: Kernel to User Mode Transition 334
12.1.2 _start Symbol in crt1.o . 334
12.1.3 crti.o and crtn.o: Constructor Frame Wrappers 335
12.1.4 __libc_start_main() Coordination 336
12.1.5 Static vs. Dynamic Linking Behavior 336
12.1.6 Observing _start and CRT Symbols 337
12.1.7 Summary . 337

12.2 TLS Model Selection (local-exec, initial-exec, local-dynamic) 339
12.2.1 TLS Access Models in the Itanium ABI 339
12.2.2 Segment Register and TLS Memory Layout 340
12.2.3 Local-Exec Model . 340
12.2.4 Initial-Exec Model . 341
12.2.5 Local-Dynamic Model . 341
12.2.6 General-Dynamic Model . 342

19

12.2.7 Compiler and Linker Selection Rules 342
12.2.8 Summary . 343

12.3 Constructor Order Resolution and Guard Variable Semantics 345
12.3.1 Global and Namespace-Scope Static Initialization 345
12.3.2 Dynamic Initialization vs. Static Initialization 346
12.3.3 Local Static Initialization and Guard Variables 346
12.3.4 Interaction with TLS (thread_local Objects) 347
12.3.5 Destructor Ordering and Program Shutdown 348
12.3.6 Summary . 348

12.4 Shutdown Ordering and Finalization Guarantees 350
12.4.1 Global Object Finalization via __cxa_atexit 350
12.4.2 Shared Library Unloading and DSO Handles 351
12.4.3 Finalization Ordering Across Translation Units 351
12.4.4 Termination vs. Exit Path Semantics 352
12.4.5 Thread Exit and TLS Destructors 352
12.4.6 Shutdown Ordering Example . 353
12.4.7 Summary . 354

12.5 Examples: Instrumenting Global Initialization Graphs 355
12.5.1 Basic Instrumentation via Constructor Attributes 355
12.5.2 Instrumenting Individual Static Objects 356
12.5.3 Detecting Cross-Translation-Unit Initialization Dependencies 357
12.5.4 Visualizing .init_array Contents 358
12.5.5 Full Initialization Graph Extraction 358
12.5.6 Runtime Graph Representation . 359
12.5.7 Summary . 359

13 Memory Allocation Internals and Latency Control 361
13.1 ptmalloc Arena Design and Cache Locality 361

20

13.1.1 Arena Structure Overview . 361
13.1.2 Multi-Arena Behavior and Thread Locality 362
13.1.3 Cache Locality and Allocation Patterns 363
13.1.4 Binning and Coalescing Strategy 363
13.1.5 Impact on C++ Allocator Behavior 364
13.1.6 Practical Diagnosis . 364
13.1.7 Summary . 365

13.2 Multithreaded Allocator Contention and Arena Replication 366
13.2.1 Arena Acquisition and Thread Mapping 366
13.2.2 Arena Locking Granularity and Fast Path Behavior 367
13.2.3 Fragmentation from Cross-Arena Freeing 367
13.2.4 NUMA Effects and Core Affinity 368
13.2.5 Contention Diagnostics . 369
13.2.6 Summary . 369

13.3 Custom Allocators for STL Containers . 371
13.3.1 Allocator Model Requirements . 371
13.3.2 Motivations for Custom Allocators in High-Performance Systems . 372
13.3.3 Pool Allocators for Fixed-Size Objects 372
13.3.4 Monotonic and Region-Based Allocation 373
13.3.5 Thread-Local Allocators for Concurrency 374
13.3.6 Performance Considerations and Trade-offs 374
13.3.7 Summary . 375

13.4 Using ASan + Heaptrack to Diagnose Fragmentation 376
13.4.1 Why ASan and Heaptrack Are Complementary 376
13.4.2 Building and Running with ASan 377
13.4.3 Collecting Heaptrack Traces . 378
13.4.4 Diagnosing Fragmentation Patterns 378

21

13.4.5 Combining ASan and Heaptrack in Diagnostic Workflow 379
13.4.6 Summary . 380

13.5 Examples: Optimizing Allocator for std::vector Reuse Patterns 381
13.5.1 The Problem: Transient Vectors in Tight Loops 381
13.5.2 Using std::pmr::monotonic_buffer_resource 382
13.5.3 Pool Allocator for Stable Object Sizes 383
13.5.4 Reuse-Aware std::vector Wrapper 384
13.5.5 Performance Comparison . 384
13.5.6 Summary . 385

VI ELF, LINKER, LOADER, AND BINARY
EXECUTION 387

14 ELF Structural Mathematics 389
14.1 Segment Mapping into Virtual Address Space 389

14.1.1 ELF Segments vs. Sections . 389
14.1.2 Program Header Table (PHT) Structure 390
14.1.3 Mapping Behavior and Alignment Constraints 391
14.1.4 Address Space Layout and Randomization 392
14.1.5 Example: Inspecting Segment Mappings 392
14.1.6 Relevance to System-Level C++ Engineering 393
14.1.7 Summary . 394

14.2 Section Grouping, Alignment Models, and Relocation Records 395
14.2.1 Section Grouping and Logical Composition 395
14.2.2 Alignment Requirements . 396
14.2.3 Relocation Records: Type and Resolution Semantics 397
14.2.4 Interaction with Position-Independent Code (PIC) 398

22

14.2.5 Example: Inspecting Relocations 399
14.2.6 Summary . 399

14.3 Weak, Local, Hidden, Protected, and Global Symbol Rules 401
14.3.1 Symbol Binding Classes . 401
14.3.2 Visibility Attributes and Link-Time Export Control 402
14.3.3 Interaction with Position-Independent Code (PIC) 403
14.3.4 Weak Symbols in C++ Object Models 403
14.3.5 Symbol Interposition and Dynamic Linking Behavior 404
14.3.6 Summary . 405

14.4 DWARF Integration and Line Table Encoding 406
14.4.1 DWARF Section Structure . 406
14.4.2 Line Table Encoding Principles . 407
14.4.3 Address-to-Line State Machine Encoding 408
14.4.4 Debug Information Entries (DIEs) 408
14.4.5 Debug vs. Unwind Semantics . 409
14.4.6 Practical Inspection . 410
14.4.7 Summary . 410

14.5 Examples: Re-mapping ELF Segments via Custom Linker Script 412
14.5.1 Linker Script Core Structure . 412
14.5.2 Controlling Segment Formation . 413
14.5.3 Example: Large Page Alignment for Instruction Fetch Efficiency . . 414
14.5.4 Example: Isolating a Hot Data Region Near Executable Code . . . 415
14.5.5 Verifying Segment Mapping . 416
14.5.6 Summary . 416

15 Dynamic Loader Algorithm and GOT/PLT Behavior 418
15.1 Lazy vs Immediate Binding Resolution State Machine 418

15.1.1 PLT/GOT Indirection Overview 419

23

15.1.2 Lazy Binding State Transition . 419
15.1.3 Immediate Binding State Transition 420
15.1.4 Performance and Determinism Trade-offs 421
15.1.5 C++ Language-Level Effects . 422
15.1.6 Summary . 423

15.2 IFUNC, Symbol Interposition, and Auditing Interfaces 424
15.2.1 IFUNC (Indirection Functions) Resolution Mechanism 424
15.2.2 Symbol Interposition and Resolution Ordering Rules 425
15.2.3 Protected Visibility and IFUNC Interaction 427
15.2.4 LD_AUDIT and Dynamic Linking Auditing Interfaces 427
15.2.5 Performance and Security Considerations 428
15.2.6 Summary . 429

15.3 RELRO, BIND_NOW, PIE Hardening Behavior 431
15.3.1 RELRO: Read-Only Relocation Protection 431
15.3.2 BIND_NOW: Immediate Symbol Resolution Enforcement 432
15.3.3 PIE: Position Independent Executable and ASLR Enforcement . . 433
15.3.4 Combined Hardening Model . 434
15.3.5 Summary . 435

15.4 GOT/PLT Entry Address Calculation and Trampoline Jump Flow 437
15.4.1 Structural Relationship Between PLT and GOT 437
15.4.2 Initial GOT State and Lazy Binding Control Flow 438
15.4.3 Immediate Binding Behavior . 439
15.4.4 Code Generation Constraints: RIP-Relative GOT Access 439
15.4.5 PLT[0] and the Dynamic Resolver Interface 440
15.4.6 Summary of Trampoline Jump Flow 440
15.4.7 Summary . 441

15.5 Examples: Breakpointing PLT Resolver Inside ld.so 442

24

15.5.1 Identifying the Resolver Entry Symbol 442
15.5.2 Launching the Example Target . 442
15.5.3 Attaching a Breakpoint in GDB . 443
15.5.4 Inspecting Resolver Arguments . 444
15.5.5 Watching GOT Patching . 444
15.5.6 Verifying PLT → GOT → Function Flow 445
15.5.7 Interpretation . 446
15.5.8 Summary . 446

VII DEBUGGING, PROFILING, VERIFICATION, AND
PERFORMANCE ENGINEERING 448

16 GDB for C++ ABI State Analysis 450
16.1 Unwinding Optimized Frames Lacking Symbol Boundaries 450

16.1.1 FP and CFA: Distinct Logical Models 451
16.1.2 Inlining and Loss of Explicit Call-Site Boundaries 451
16.1.3 Tail-Call Elimination and Frame Collapsing 452
16.1.4 Register-Allocated Variables and Unwind State Instability 453
16.1.5 Recovery Strategies in GDB . 454
16.1.6 Summary . 454

16.2 On-the-fly Reconstruction of Object Layout 456
16.2.1 Object Model Stability vs. Optimization-Induced Fragmentation . . 456
16.2.2 DWARF Location Lists for Field-Level Resolution 457
16.2.3 Composite Object Reconstruction in GDB 458
16.2.4 Failure Modes and Non-Recoverability Conditions 459
16.2.5 Debug Builds for Reliable Object Reconstruction 459
16.2.6 Summary . 460

25

16.3 Reverse Debugging and Record–Replay Execution 461
16.3.1 Determinism Requirements and Sources of Non-Reproducibility . . 461
16.3.2 GDB Process Record / Replay Infrastructure 462
16.3.3 rr: Deterministic Record–Replay for Multi-Threaded C++ Systems 463
16.3.4 Memory Model Visibility and C++ Object State Recovery 464
16.3.5 Constraints Under Full Optimization 465
16.3.6 Summary . 465

16.4 Python-Driven Structural Introspection Automation 467
16.4.1 The Python/GDB Integration Model 467
16.4.2 Extracting C++ Class Layout from Debug Information 467
16.4.3 Resolving Runtime Object Instances 469
16.4.4 Walking VTables and Virtual Hierarchies 469
16.4.5 Automating Structural Checks Across Call Frames 470
16.4.6 Application: Stable Forensic Snapshots Under Reverse Debugging . 471
16.4.7 Summary . 472

16.5 Examples: Pretty-printing C++ Polymorphic Hierarchies Automatically . 473
16.5.1 Dynamic Type Resolution via the Itanium ABI 473
16.5.2 Python Pretty-Printer Registration 474
16.5.3 Hierarchy Expansion Through Base Class Traversal 474
16.5.4 Applying Pretty-Printers Automatically 475
16.5.5 Practical Example: Inspecting std::unique_ptr to Base 476
16.5.6 Summary . 477

17 Performance Profiling and Pipeline Diagnostics 478
17.1 perf Event Group Models and Event Attribution 478

17.1.1 Hardware Performance Counters and Event Domains 478
17.1.2 Event Grouping: Coordinated Measurement Guarantees 479
17.1.3 Stalled Cycle Attribution and Pipeline Accounting 480

26

17.1.4 Event Group Models for Pipeline Diagnostics 481
17.1.5 Attribution to C++ Source Constructs 482
17.1.6 Summary . 482

17.2 Branch Mispredict, ROB Stall, RS Full, Store Buffer Full, etc. 484
17.2.1 Branch Misprediction and Control-Flow Recovery 484
17.2.2 ROB Stall: Reorder Buffer Saturation 485
17.2.3 RS Full: Reservation Station Congestion 486
17.2.4 Store Buffer Full: Memory Store Commitment Stall 487
17.2.5 Integrating Stall Attribution: Top-Down Microarchitectural

Analysis . 488
17.2.6 Summary . 488

17.3 Flame Graph Construction and Cycle Attribution 490
17.3.1 Sampling Model and Statistical Accuracy 490
17.3.2 Collapsing Stacks into Aggregated Execution Paths 491
17.3.3 Flame Graph Rendering Model . 491
17.3.4 Mapping Optimized Code to High-Level Constructs 492
17.3.5 Cycle Attribution and Root-Cause Localization 492
17.3.6 Summary . 493

17.4 Performance Bound Classification: Compute vs Memory vs Control 495
17.4.1 Compute-Bound Execution . 495
17.4.2 Memory-Bound Execution . 497
17.4.3 Control-Bound Execution . 498
17.4.4 Determining Bound Class: Diagnostic Workflow 500
17.4.5 Summary . 500

17.5 Examples: Deriving Stall Source Percentages on Skylake 501
17.5.1 Required perf Event Groups for Skylake 502
17.5.2 Example Output from Real Execution 502

27

17.5.3 Computing Stall Domain Percentages 503
17.5.4 Final Stall Attribution Breakdown 504
17.5.5 Interpretation and Optimization Direction 505
17.5.6 Summary . 506

VIII SYSTEM ENGINEERING CASE STUDIES (FULL
STACK) 507

18 Linux Kernel Compilation, Boot, and Live Debugging 509
18.1 Kernel Toolchain Integration . 509

18.1.1 Kernel-Supported Compiler Feature Subset 510
18.1.2 Assembler and Linker Role in Kernel Layout 511
18.1.3 Kernel ABI and Syscall Interface Boundaries 511
18.1.4 Kernel Configuration and Build System (Kbuild) 512
18.1.5 Cross-Compilation and Toolchain Targeting 513
18.1.6 Summary . 513

18.2 QEMU + GDB Step-Controlled Boot Path Analysis 515
18.2.1 QEMU Execution Environment as a Deterministic CPU Model . . 515
18.2.2 Attaching GDB and Initial Execution Boundary 516
18.2.3 Stepping Through the Boot Decompression Phase 517
18.2.4 Transition to start_kernel() and Subsystem Bring-Up 518
18.2.5 Dissection of Paging Setup and Virtual Memory Transition 518
18.2.6 Summary . 519

18.3 System Call Return Path Disassembly . 521
18.3.1 Return Path Overview . 521
18.3.2 Tail Section: entry_SYSCALL_64_tail 521
18.3.3 Fast vs Slow Return Paths . 522

28

18.3.4 Stack and pt_regs Restoration . 523
18.3.5 Symbol Boundary Verification via Disassembly 524
18.3.6 Error Code Propagation and -errno Semantics 525
18.3.7 Summary . 525

18.4 Page Table + Virtual Memory Initialization Walkthrough 527
18.4.1 Architectural Memory Model Baseline 527
18.4.2 Initial Page Table Creation (Early Boot) 528
18.4.3 Kernel Virtual Mapping: Text, Data, and BSS 529
18.4.4 Direct Physical Memory Map Construction 530
18.4.5 Page Attribute Enforcement and Memory Protection Flags 530
18.4.6 Debugging Page Table Initialization with QEMU + GDB 531
18.4.7 Summary . 532

18.5 Examples: Stepping from startup_64 into Scheduler Initialization 533
18.5.1 Establishing Initial Debug Environment 533
18.5.2 Breakpoint at startup_64 . 534
18.5.3 Transition to start_kernel() . 534
18.5.4 Core Initialization Path into Scheduler Bring-Up 535
18.5.5 First Context Switch Activation . 536
18.5.6 Summary . 537

19 Bare-Metal C++ Runtime Construction 539
19.1 Manual CRT (crt0.s) and ABI-Conformant Startup 539

19.1.1 Architectural Requirements for Startup Code 540
19.1.2 Prototype Startup Assembly (crt0.s) 540
19.1.3 __crt_init: BSS Zeroing and Static Constructors 541
19.1.4 __crt_fini: Destructor Sequencing 542
19.1.5 ABI Conformance Rules That Must Be Preserved 543
19.1.6 Summary . 543

29

19.2 Eliminating glibc and Implementing Runtime Primitives 545
19.2.1 Hosted vs Freestanding: What the Compiler Expects 545
19.2.2 Required Runtime Symbols . 546
19.2.3 Implementing new and delete . 547
19.2.4 Avoiding glibc for System Interaction 548
19.2.5 Termination Semantics Without exit() 549
19.2.6 Summary . 549

19.3 Console Output + Interrupts + Minimal Heap 551
19.3.1 Console Output: Direct Hardware or MMIO Write Path 551
19.3.2 Interrupt Descriptor Table (IDT) and Interrupt Gate Setup 552
19.3.3 Interrupt Controller Initialization 553
19.3.4 Minimal Heap and Allocation Strategy 554
19.3.5 Summary . 555

19.4 Static Constructors Without Runtime Support 556
19.4.1 How GCC Represents Static Initialization 556
19.4.2 Constructing the .init_array Region Manually 557
19.4.3 Destruction Without a Runtime: .fini_array 557
19.4.4 Aligning Constructor Execution With Memory Model Constraints . 558
19.4.5 Common Failure Cases and Their Root Causes 558
19.4.6 Summary . 559

19.5 Examples: Booting a C++ ELF Directly Under QEMU 561
19.5.1 Minimal Linker Script for Bare-Metal ELF 561
19.5.2 Minimal Bootable C++ Program 563
19.5.3 Startup Assembly (crt0.s) . 563
19.5.4 Building the ELF . 564
19.5.5 Running the ELF Under QEMU 565
19.5.6 Debugging the Boot Sequence . 566

30

19.5.7 Summary . 566

20 High-Performance C++ Systems Optimization Project 568
20.1 Devirtualization → Inlining → Vectorization Pipeline 568

20.1.1 Precondition: Alias, Escape, and Type Visibility 569
20.1.2 Devirtualization: From Virtual Call to Direct Call 569
20.1.3 Inlining: Eliminating Call Boundaries 570
20.1.4 Vectorization: SIMD Lowering After Structural Simplification . . . 571
20.1.5 Practical Optimization Implications 572
20.1.6 Summary . 573

20.2 Memory Layout Re-Factoring for Cache Residency 574
20.2.1 Architectural Background: Latency and Bandwidth Constraints . . 574
20.2.2 Array-of-Structs (AoS) vs Struct-of-Arrays (SoA) 575
20.2.3 Aligning Data for SIMD and Line Size 576
20.2.4 Minimizing Working Set Size Through Compaction 577
20.2.5 Traversal Strategy and Prefetch-Favoring Order 578
20.2.6 Summary . 578

20.3 PGO + LTO Combined Execution Optimization 580
20.3.1 Rationale: Static Heuristics vs Profiled Behavior 580
20.3.2 The Two-Phase PGO Workflow . 581
20.3.3 Internal Optimization Effects . 581
20.3.4 Example: Virtual Dispatch Collapse Under PGO 582
20.3.5 Example: Cross TU Inlining Through LTO 583
20.3.6 Combined PGO + LTO Optimization Model 584
20.3.7 Summary . 584

20.4 ABI Stability Under Optimized Transformations 586
20.4.1 ABI Elements That Must Not Change 586
20.4.2 Transformations That Are ABI-Neutral 587

31

20.4.3 Transformations That Are ABI-Sensitive 588
20.4.4 Compiler and Linker Coordination Under LTO 589
20.4.5 Example: ABI-Preserving Devirtualization in Hot Contexts 590
20.4.6 Summary . 590

20.5 Examples: Before/After Disassembly + perf Comparison Trace 592
20.5.1 Baseline Code (Unprofiled, No LTO) 592
20.5.2 Optimized Build (PGO + LTO + Vectorization) 593
20.5.3 Performance Result . 594
20.5.4 Microarchitectural Reasoning . 595
20.5.5 Symbol and ABI Boundary Stability 595
20.5.6 Summary . 596

Appedices 597
Appendix A - System V AMD64 ABI Reference 597
Appendix B - GCC Diagnostic and Dump Infrastructure 606
Appendix C - GDB, objdump, readelf, and perf Integration 612
Appendix D - Linker Scripts and ELF Structural Control 618
Appendix E - Bare-Metal C++ Runtime Templates 625
Appendix F - Performance and Microarchitectural Reference 631
Appendix G - Verified Object Model Layouts 639
Appendix H - Full Compilation and Optimization Case Study 649
Appendix I - Experimental and Research Extensions 658

References 664
20.6 Purpose of Reference Structure . 667

Author’s Introduction

The motivation for this work arises from a recurring observation across industry and
research: C++ developers routinely rely on compilers as opaque translation engines
rather than as deterministic systems with well-defined internal structure and stable
behavioral rules. This gap—between the surface practice of writing C++ and the
underlying mechanics that give it operational meaning—limits the ability to design
efficient data layouts, reason about performance, control binary interfaces, debug
complex behavior, or build software that interacts predictably with operating systems
and hardware architectures.
My professional work has long existed at the boundary between high-level system
architecture and low-level program execution. That boundary is where abstractions
meet constraints—where a language’s expressive power is tested against real
microarchitectural characteristics, memory hierarchies, calling conventions, concurrency
models, and the behavior of dynamic loaders and runtime libraries. At this boundary,
C++ is not merely a programming language: it is a contract between intent, compiler,
processor, operating system, and binary interfaces. Understanding this contract grants
precision and confidence; ignoring it introduces fragility and accidental complexity.
GCC plays a critical role in this landscape. It is not only an implementation of C++,
but a formal interpreter of C++’s execution semantics. It determines name resolution,
lowering rules, exception propagation, object layout, calling convention adherence,
symbol visibility, and every performance-relevant transformation applied to code.

32

33

GCC translates high-level C++ into the structured intermediate representations
that eventually become machine instructions executed on modern x86-64 processors.
To understand the behavior of a program, one must understand how GCC reasons,
transforms, schedules, and emits that behavior.
This book was written to make that understanding accessible, structured, and
technically rigorous. It is not a reference catalogue, nor a survey of compiler engineering
history. It is a systematic walk through the compilation pipeline as it applies
specifically to Modern C++ in real production environments on Linux x86-64 systems.
It connects:

• Language semantics to GIMPLE/SSA form.

• Optimization theory to register allocation and scheduling.

• Binary format mechanics to dynamic linking behavior.

• Performance models to measured pipeline utilization.

• ABI rules to reliable, long-lived system integration.

Every transformation in the compiler has a justification, cost model, structural
invariant, and measurable runtime effect. Each chapter in this text exposes those
relationships directly, with annotated IR, object dumps, pipeline counters, and ABI
audits guiding the analysis. The emphasis remains consistent throughout: clarity,
correctness, predictability, and verifiable understanding.
This work is intended for experienced software engineers, systems programmers,
compiler learners, and architects who build and maintain high-performance or long-
lived C++ systems. It does not assume prior compiler implementation experience,
but it does assume discipline, patience, and a desire to understand the execution
environment deeply rather than heuristically.

34

C++ remains a language of precise intent. GCC remains one of the most mature and
systematically reasoned compilers in active industrial use. Bridging them in a way that
is accessible, rigorous, and actionable is the purpose of this book. My hope is that this
work enables readers not only to write correct software, but to write software that
is structurally aligned with the machine that will execute it—software that is stable,
performant, maintainable, and engineered with awareness rather than assumption.

— Ayman Alheraki

Preface

This book examines the GNU Compiler Collection (GCC) and its role as the formal
execution specification for Modern C++ on Linux x86-64 systems. Its central premise is
that the compiler is not an implementation detail but the authoritative mechanism that
gives operational meaning to source code. The behavior, performance characteristics,
binary interfaces, and observable execution of a program emerge from the compiler’s
translation pipeline, the runtime ABI, and the underlying microarchitectural model. To
work effectively at the systems level, a C++ engineer must understand these translation
boundaries and the invariants they enforce.
Modern C++ emphasizes explicit semantics, well-defined memory models, and
strong guarantees around type behavior and concurrency. These guarantees are only
realized through a coordinated stack: source-level constructs lowered into structured
intermediate representation (GIMPLE/SSA), optimized through target-aware
transformations, expressed in RTL, and finally materialized as executable machine
code. GCC implements this pipeline with precise invariants about calling conventions,
exception handling, object layout, alignment, and symbol visibility. These invariants
constitute a contract that defines binary compatibility and execution correctness across
kernels, shared libraries, CPUs, and compiler versions.
This text approaches GCC as a multi-layered system:

• The Frontend resolves C++ semantics—name lookup, instantiation, overload

35

36

resolution, concepts, constant evaluation—and constructs a canonical semantic
graph.

• The Midend applies machine-independent transformations over GIMPLE and
SSA, performing scalar optimization, alias analysis, value propagation, loop
transformation, vectorization, and inlining under a cost model.

• The Backend lowers optimized IR to RTL and schedules instructions according
to microarchitectural constraints, register availability, execution port topology,
and memory hierarchy behavior.

• The Linker and Loader finalize symbol bindings, resolve dynamic dependencies,
assign memory protections, and construct the execution address space.

• The Runtime and ABI define object representation, exception unwinding,
RTTI structures, TLS models, and library integration rules that preserve system
interoperability.

This structure is presented not as static documentation, but as a basis for disciplined
engineering. Every chapter advances from a formal rule to its observable impact in
generated code, and from generated code to its performance implications on real
hardware. Wherever appropriate, examples include:

• GIMPLE and RTL dumps to trace compiler decisions,

• Disassembly annotated with pipeline scheduling considerations,

• perf-based execution metrics to validate optimization outcomes,

• ABI verification to ensure long-term binary stability.

37

The goal is not to modify GCC into a different compiler, but to develop the fluency
required to work alongside it: to anticipate transformations, to diagnose suboptimal
code generation, to design data layouts that align with vector execution, to produce
stable binary interfaces, and to reason about performance directly from the compiler’s
intermediate forms.
This book assumes the reader is comfortable with Modern C++ syntax, pointer model
semantics, and Unix systems programming. No previous compiler implementation
experience is required, but familiarity with ELF, paging, and x86-64 machine code is
beneficial. The presentation is precise and complete, but not abstracted away from
practice; each concept is tied to concrete output and measurable system behavior.
The objective is to equip advanced C++ practitioners, system software engineers, and
compiler-adjacent researchers with a practical and exact understanding of how GCC
translates intent into execution. With this understanding, one can write C++ that is
not only correct and portable, but structurally aligned with the machine that will run
it.

Part I

THE GNU COMPILATION
MODEL AND SYSTEM

CONTRACTS

38

Chapter 1

The Compiler as the System's
Formal Execution Specification

1.1 The Compiler Defines Semantics, Not the Source
Language

The C++ language specification describes program behavior in terms of an abstract
machine. However, execution does not occur in this abstract model; it occurs on a
specific hardware and operating system architecture. The responsibility of defining the
executable meaning of a C++ program therefore belongs not to the language text itself,
but to the compiler implementation. Under modern Linux on x86-64, GCC is the
component that translates the abstract semantics of C++ into a concrete, verifiable,
and executable form. The compiler is the mechanism that determines how language
constructs map to memory, control flow, calling conventions, binary interfaces, and
optimization constraints.
In effect, the compiler is the semantic authority. The programmer writes source

40

41

code, but the compiler determines what that program is when executed.

1.1.1 Source Code is Not Executable Specification

C++ source code contains high-level descriptions of computation, but it omits:

• Memory layout decisions

• Register allocation and operand movement rules

• Elision, merging, and reordering of computations

• Link-time symbol visibility constraints

• Instruction scheduling and microarchitectural placement

These omissions are intentional. The language standard relies on the compiler to resolve
these details. As a result, the run-time behavior of a program is defined not by the
written code, but by the compiler’s interpretation and transformation of that code.

1.1.2 Semantic Lowering and Transformation Phases

GCC establishes program meaning through a multi-phase reduction pipeline:

1. Parsing and Semantic Analysis
Template instantiation, overload resolution, constant evaluation, and type
deduction fix the high-level structure.

2. GIMPLE SSA Transformation
The program is reduced to a structured, side-effect-constrained representation.
This is the level at which most semantic-preserving optimizations occur.

42

3. RTL and Instruction Selection
Language semantics are translated into machine-specific effects: register-class
choices, memory addressing modes, and control-transfer forms.

4. Emission and Relocation
Symbolic references and binary interfaces are committed to the ELF object
representation. This finalizes observable calling conventions and linkage behavior.

At each lowering stage, semantic meaning is refined, not merely translated.

1.1.3 The Role of Undefined and Implementation-Defined
Behavior

C++ intentionally introduces cases where program behavior is not fully defined by the
language specification. GCC resolves these cases by mapping them to deterministic
machine-level effects, subject to optimization. For example:

• Pointer aliasing assumptions influence load/store reordering.

• Signed integer overflow is treated as undefined, enabling algebraic simplifications.

• Object lifetime boundaries determine whether constructors and destructors can be
eliminated.

The executable program therefore reflects compiler-governed semantics, not a naïve
reading of source text.

1.1.4 The Compiler as the Formal Boundary of Program Reality

The compiled binary expresses:

• The exact memory and register behavior of each instruction.

43

• The enforced calling convention across function boundaries.

• The structure of unwind tables, exception propagation, and stack discipline.

• Symbol linkage visibility and relocation behavior.

These properties define what the program is at execution.
No interpretation of the original source can override this definition.

1.1.5 Consequence for System-Level C++ Engineering

For performance-critical or correctness-critical systems, reasoning must occur at the
level of compiler-controlled behavior, not source representation. This requires:

• Inspection of GIMPLE and RTL to understand semantic reduction.

• Awareness of ABI-level constraints rather than informal calling assumptions.

• Analysis of generated machine code for actual execution behavior.

• Use of compiler flags and attributes to regulate optimization domains.

A program’s meaning is therefore defined by the compiler's lowering and
optimization decisions, which embody the true operational semantics of the
architecture.

44

1.2 The Toolchain as the System’s Deterministic
Behavioral Model

In a Linux x86-64 environment, a compiled C++ program does not execute in isolation.
It executes within a controlled and layered system composed of the compiler, assembler,
linker, dynamic loader, and runtime libraries. Together, these components define the
deterministic behavioral model under which the program operates. The toolchain
is therefore not a build utility; it is the mechanism by which program semantics are
instantiated, validated, and constrained at execution time.
The system’s behavior is determined by three forms of specification:

1. Language-level rules (C++ abstract machine and memory model)

2. ABI and binary interface constraints (System V AMD64 ABI, Itanium C++
ABI)

3. Toolchain lowering and runtime enforcement (GCC, binutils, glibc, ld.so)

The interaction of these layers defines the program’s real behavior.
Any correct analysis of execution must be performed across this full system, not solely
at the source level.

1.2.1Determinism Through Standardized Execution Contracts

The compiler enforces deterministic program behavior through standardized contracts
that remain unchanged across compilation units and library boundaries:

• Calling conventions define how parameters and return values are passed.

• Exception ABI defines how unwinding and stack frame recovery operate.

45

• Object layout rules define memory representation of class and polymorphic
types.

• Linkage visibility rules determine whether symbols may be substituted or
inlined.

These rules ensure that compiled components remain interoperable regardless of
optimization level, compilation order, or target microarchitecture.

1.2.2Determinism at the Code Generation and Linking
Boundary

Once the compiler lowers semantically reduced IR to machine-oriented RTL, observable
behavior becomes fixed in terms of:

• Instruction selection

• Register assignment

• Control-flow and branch layout

• Memory access patterns

The linker then determines the global symbol resolution topology and address space
layout.
As of post-2020 ELF and glibc evolution, this layout is fully reproducible when:

Compiler version + Flags + Input + Link order = constant

This is a strict determinism guarantee, enabling binary-level reproducibility and
distributed system deployment stability.

46

1.2.3 Runtime Enforcement of Toolchain Semantics

The dynamic loader (ld.so) enforces correct resolution of shared objects, relocation
entries, TLS regions, and PLT/GOT binding behavior. glibc enforces runtime invariants
such as:

• Thread-local storage consistency

• C++ constructor and destructor sequencing via .init_array and .fini_array

• Exception propagation compliance with unwind tables

• Standard memory model ordering semantics

The toolchain therefore defines how execution proceeds, not simply how code is built.

1.2.4 Implications for System-Level C++ Engineering

Because the toolchain defines the operational semantics of execution:

• Performance analysis must include compiler output inspection.

• Concurrency correctness must be validated against ABI and memory model
guarantees.

• Binary compatibility must be reasoned through symbol visibility and linkage
constraints.

• Real execution is defined at the granularity of the compiled binary, not the
source.

A system written in C++ is not defined by its source texts alone.
It is defined by the constraints and behaviors imposed by the compiler + linker +
loader + runtime composite system.

47

1.2.5 Summary

The GNU toolchain does not merely transform code; it defines the executable
meaning of C++ programs on Linux x86-64. It establishes deterministic execution
rules, constrains permissible program behavior, and ensures binary compatibility across
software boundaries and hardware generations. The observable semantics of a system
are therefore properties of the compiled artifact and toolchain model, not solely of
the source language.

48

1.3Visibility, Inspectability, and Reproducibility as
Engineering Requirements

For a compiled C++ program to be correct in a system-level environment, its behavior
must be observable, analyzable, and repeatable across builds and deployments.
Visibility into the compilation pipeline, inspectability of intermediate representations
and emitted binaries, and reproducibility of build outputs are not convenience features;
they are engineering requirements that ensure program correctness, diagnosability,
and long-term maintainability in GNU/Linux environments.

1.3.1Visibility into the Compilation Pipeline

The GNU toolchain is designed to expose each stage of program lowering:

• GIMPLE and SSA dumps show structural program representation.

• RTL dumps show machine-oriented transformation states.

• Assembly listings show the final scheduled instruction stream.

This transparency is required because semantic meaning is established by the
compiler, not by source code. Inspection allows engineers to verify:

• Whether optimizations preserved intended ordering constraints.

• Whether aliasing assumptions match real data access patterns.

• Whether control-flow transformations preserved required invariants.

Visibility ensures the ability to reason about the actual executable artifact, not a
conceptual or intended behavior.

49

1.3.2 Inspectability at the Binary Interface Level

Once compiled, program behavior is mediated by:

• ELF section layout

• Relocation records

• Symbol visibility attributes

• PLT/GOT dispatch paths

• Itanium C++ ABI type and vtable representations

Inspectability ensures that:

• External linkage boundaries remain stable.

• ABI correctness can be validated mechanically.

• Performance-critical indirect calls can be traced and analyzed.

• Exception and unwinding state structures can be reconstructed reliably.

Without inspectable binary artifacts, debugging and performance analysis become non-
deterministic.

1.3.3 Reproducibility as a Deterministic Execution Property

Reproducibility ensures that identical source, toolchain, flags, and inputs produce an
identical binary bitstream. This requirement is central to:

• Distributed deployment across heterogeneous environments.

50

• Rollback-capable update mechanisms.

• Verification of supply chain integrity.

• Performance regression analysis based on binary identity.

Post-2020 GCC, binutils, and glibc revisions incorporate measures to ensure
reproducibility by removing nondeterministic sources such as timestamp metadata and
unordered symbol table emission.
Reproducibility is not static artifact equivalence alone; it is the guarantee of semantic
identity across rebuilds.

1.3.4 Stability Under Optimization and Microarchitectural
Change

The toolchain must maintain stable observable semantics even when:

• Optimization heuristics evolve between compiler releases.

• Instruction scheduling changes due to updated cost models.

• Target generation changes (e.g., Skylake → Zen → Sapphire Rapids).

The boundary of stability is the ABI, not the generated instruction sequence.
Thus, reproducibility applies to:

• Control transfer behavior visible at symbol boundaries.

• Object layout and calling conventions.

• Exception and TLS state models.

Performance characteristics may vary; behavior may not.

51

1.3.5 Engineering Outcome

Visibility, inspectability, and reproducibility ensure that:

• Program semantics remain explainable.

• Execution behavior remains verifiable.

• Optimization decisions remain analyzable.

• Deployment behavior remains stable across time and hardware.

These properties allow system-level C++ software to be reasoned about, not merely
compiled and executed.

52

1.4 Stability Contracts Across CPU Generations and
OS Versions

A compiled C++ program must remain binary-correct and execution-consistent
across hardware revisions and operating system updates. These guarantees are not
provided by the source language but by the ABI contracts and the system’s runtime
execution environment. The GNU toolchain enforces these stability constraints so that
the meaning of a compiled program remains invariant even as compilers evolve and
microarchitectures differ.
The stability boundary is defined where compiler-controlled semantics intersect
with externally observable behavior: the ABI, the ELF format, exception frames,
calling conventions, and runtime initialization sequences.

1.4.1ABI as a Fixed External Contract

The System V AMD64 ABI and the Itanium C++ ABI define:

• Function calling conventions and register assignments.

• Parameter passing and return value placement.

• Stack layout and alignment constraints.

• Object representation, including vtable layouts and RTTI structures.

• Exception propagation and unwinding data formats.

These rules ensure that:

• Binaries produced by different compiler versions interoperate.

53

• Shared libraries and dynamically linked executables remain callable.

• The same object layout is used across CPU generations.

The ABI is therefore the non-negotiable stability surface of compiled C++ on
Linux.

1.4.2Microarchitectural Variation Without Semantic Change

Modern x86-64 CPUs differ in:

• Execution pipelines and reorder buffer width.

• Branch prediction and speculative execution heuristics.

• Instruction throughput and latency characteristics.

• Cache hierarchy and memory-level parallelism properties.

However, these differences cannot affect:

• The values stored in memory at defined sequence points.

• The calling convention-visible register state at function boundaries.

• The preservation of callee-saved registers.

• The binary identity of exported symbols and type layouts.

The compiler may generate specialized instruction sequences using -march and -mtune,
but semantic correctness remains invariant across all permitted target
microarchitectures that conform to the ABI.

54

1.4.3 Runtime Library and Kernel Interface Continuity

glibc and the Linux kernel present stable runtime interfaces that ensure:

• System call interface correctness across kernel releases.

• Thread-local storage layout consistency.

• Reliable exception propagation across shared library boundaries.

• Compatibility of dynamically loaded modules compiled at earlier toolchain
revisions.

Post-2020 glibc consolidations (notably the integration of system call stubs and
elimination of libpthread as a separately linked component) preserve ABI
surfaces while restructuring internal runtime paths for improved determinism and
reproducibility.
The stability contract is therefore semantic, not internal implementation–based.

1.4.4 Compiler Evolution Under Stability Constraints

GCC continues to evolve in:

• Optimization heuristics.

• Vectorization and auto-parallelization support.

• Alias and dependency analysis precision.

• Inlining cost modeling and profile-guided code layout.

However, these transformations cannot:

55

• Alter externally visible binary formats.

• Change calling conventions.

• Modify object layouts or vtable structures.

• Break compatibility with previously linked binaries.

The compiler is free to improve the internal execution efficiency, but not the
externally observable semantics.

1.4.5 Practical Engineering Implication

For long-lived C++ systems:

• Performance portability requires architecture-tuning flags, not code changes.

• Binary compatibility is ensured through adherence to ABI-visible constructs.

• Forward execution safety relies on stable runtime and loader interfaces.

• Verification and debugging require reasoning at the ABI and ELF boundary.

Therefore, stability across CPU and OS generations is not incidental; it is
engineered through fixed interface contracts that govern compilation, linking,
loading, and runtime execution.

56

1.5 Examples: ABI Continuity Analysis Across GCC
Major Versions

Application Binary Interface (ABI) continuity ensures that independently compiled
components remain interoperable across compiler versions. The GNU toolchain
maintains strict ABI stability on Linux x86-64 for externally visible constructs governed
by the System V AMD64 ABI and the Itanium C++ ABI. This section provides
structured examples demonstrating that binaries compiled with different GCC major
versions link and execute correctly when adhering to ABI-visible constructs.
The examples use post-2020 GCC releases (e.g., GCC 10, 12, 13, and 14 series) and
glibc 2.34 or later.

1.5.1 Stable Class Layout and Virtual Dispatch Across Versions

Library — compiled with GCC 10:

// lib.cpp
struct S {

int x;
virtual int f() const { return x + 1; }

};

extern "C" int dispatch(const S* p) {
return p->f();

}

Compile:

g++-10 -O2 -fPIC -shared lib.cpp -o libabi.so

Executable — compiled with GCC 14:

57

// main.cpp
#include <iostream>

struct S {
int x;
virtual int f() const { return x + 1; }

};

extern "C" int dispatch(const S*);

int main() {
S obj{29};
std::cout << dispatch(&obj) << "\n";

}

Compile and link:

g++-14 -O2 main.cpp libabi.so -o test

Expected Runtime Output:

30

Analysis:

• sizeof(S), vtable layout, and member offsets remain identical across GCC 10–14.

• The call to f() is performed through the Itanium ABI vtable dispatch contract.

• No recompilation of the shared library is required.

This confirms ABI-stable polymorphic type layout.

58

1.5.2Name Mangling and Symbol Binding Stability

For non-templated functions with external linkage:

// stable.cpp
namespace A { namespace B {

int add(int a, int b) { return a + b; }
} }

Compile with multiple GCC versions:

g++-10 -c stable.cpp -o stable10.o
g++-14 -c stable.cpp -o stable14.o

Inspect symbols:

nm -C stable10.o | grep add
nm -C stable14.o | grep add

Expected symbol in both:

int A::B::add(int, int)

Mangling (Itanium ABI):

_ZN1A1B3addEii

Name mangling remains stable because it is specified externally by the Itanium ABI,
not by GCC.

59

1.5.3 Exception Propagation Compatibility Across Toolchain
Versions

Throwing Library (compiled with GCC 11):

// thrower.cpp
#include <stdexcept>

extern "C" void trigger() {
throw std::runtime_error("failure");

}
g++-11 -O2 -fPIC -shared thrower.cpp -o libthrow.so

Catching Executable (compiled with GCC 14):

// catcher.cpp
#include <iostream>
#include <stdexcept>

extern "C" void trigger();

int main() {
try {

trigger();
} catch(const std::exception& e) {

std::cout << "caught: " << e.what() << "\n";
}

}
g++-14 catcher.cpp libthrow.so -o test

Expected Runtime Output:

caught: failure

60

Reason:

• Exception objects use a stable runtime type information (RTTI) encoding.

• Stack unwinding format is defined by DWARF .eh_frame and Itanium EH ABI.

• The compiler does not change exception layout across major versions.

This validates exception ABI continuity.

1.5.4 Function Call Boundary Invariance Under Optimization
Evolution

Examine call-site assembly differences while preserving boundary semantics:

g++-10 -O2 foo.cpp -S -o foo10.s
g++-14 -O2 foo.cpp -S -o foo14.s

Expected:

• Instruction sequences differ due to improved scheduling and vectorization.

• Call boundaries and register passing remain unchanged, reflecting ABI
stability.

1.5.5 Summary of Findings

61

Feature Stability Mechanism Confirmed
Across Versions

Class layout & vtable
structure

Itanium C++ ABI Yes

Name mangling ABI-mandated encodings Yes

Function calling convention System V AMD64 ABI Yes

Exception propagation
behavior

DWARF EH + Itanium EH
ABI

Yes

Compiler optimization
strategies

Vary across versions Does not affect
ABI

ABI surfaces are stable; optimization behavior is permitted to evolve.

Chapter 2

The Linux Execution Stack and
Boundary Interfaces

2.1 CPU → Kernel → Loader → Runtime →
Application Execution Path

Execution of a compiled C++ binary on Linux x86-64 proceeds through a structured
transition across processor privilege levels, memory initialization phases, and runtime
activation layers. The compiler and toolchain assume that these transitions occur in
a well-defined order. Therefore, understanding the execution path is necessary for
analyzing correctness, performance behavior, initialization ordering, and ABI-level
stability.
Execution proceeds through five deterministic stages:

(1) CPU Reset / Privileged Entry
(2) Kernel Process Image Construction
(3) Dynamic Loader Activation (ld.so)

62

63

(4) C and C++ Runtime Initialization
(5) Transfer of Control to main()

Each stage defines constraints that the compiler relies upon when lowering high-level
C++ semantics into machine code.

2.1.1 CPU Architectural Preconditions

When user-space execution begins, the CPU operates in long mode (64-bit), with the
System V AMD64 ABI register contract already in effect. At _start, the following
properties are guaranteed:

• %rsp is initialized to the top of the user stack.

• Function parameter registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9) have defined
calling semantics.

• Caller-saved and callee-saved register classes are stable.

• Memory protection and paging are enabled.

Compiler-generated code depends on these invariants. No C++ runtime logic is active
yet.

2.1.2Kernel: Process and Address Space Construction

When a process is launched through execve(), the Linux kernel performs:

1. Creation of a new virtual memory layout.

2. Loading of segments defined in the program’s ELF program headers.

64

3. Initialization of stack contents with argc, argv, envp, and the auxiliary vector
(auxv).

4. Selection of the dynamic loader entry point as the initial instruction pointer
for dynamically linked binaries.

Notably:

• No C++ constructors run at this stage.

• No dynamic relocations are yet applied.

• No user code executes directly from ELF entry unless the executable is statically
linked.

This stage defines the memory environment that the compiler assumes for correct
program layout and relocation resolution.

2.1.3 Loader: Dynamic Linking and Relocation (ld.so)

The dynamic loader (ld.so) is the first userspace instruction stream executed. It
performs:

• Mapping of required shared libraries.

• Application of relocations recorded in .rela.dyn and .rela.plt.

• Construction of the Global Offset Table (GOT) and Procedure Linkage Table
(PLT).

• Initialization of Thread-Local Storage (TLS) descriptors.

• Parsing of auxiliary vector entries for CPU feature dispatch and VDSO
enablement.

65

Position-Independent Executable (PIE) model, standard in post-2020 distributions,
ensures that the loader relocates both executables and libraries in a unified manner.
At completion, the loader transfers control to C runtime initialization.

2.1.4 Runtime: libgcc + glibc + C++ Initialization

The entry sequence typically follows:

_start → __libc_start_main → __libc_start_call_main → main

Before main() is invoked:

• The C standard library initializes locale, threading, and I/O subsystems.

• The C++ runtime executes .init_array to construct static storage-duration
objects.

• Destructor callbacks are registered through __cxa_atexit.

• Exception-unwinding metadata (.eh_frame) is registered with the runtime
system.

This phase establishes all invariants assumed by C++ language semantics,
including object lifetime, exception propagation guarantees, and TLS consistency.

2.1.5Application Execution Under Compiler-Defined Semantics

Only after the runtime completes initialization does control transfer to:

int main(int argc, char** argv)

At this point:

66

• ABI contracts are fully active.

• All dynamic symbol bindings are resolved (unless lazy PLT binding remains
configured).

• All static objects are in valid constructed state.

• Memory allocation, exception semantics, and thread behavior adhere to glibc and
libgcc runtime models.

Execution from this point onward is governed entirely by the machine code emitted
by the compiler, constrained by the ABI, and executed under the protection and
scheduling mechanisms of the kernel.

2.1.6 Summary

The execution path enforcing correct program behavior is:

Stage Responsibility Guarantees Relevant to C++
Execution

CPU Architectural state and calling
convention

Register ABI and execution mode
correctness

Kernel Memory image creation and
stack initialization

Deterministic ELF segment
mapping

Loader
(ld.so)

Relocation and dynamic symbol
binding

GOT/PLT correctness and TLS
setup

glibc +
libgcc

Runtime and static object
initialization

Proper object lifetime, exception,
and memory model invariants

67

Stage Responsibility Guarantees Relevant to C++
Execution

Application Program logic execution Compiler-defined semantics

Correct reasoning about compiled C++ behavior requires analyzing execution across
these layers, not solely at the level of source code or generated assembly.

68

2.2 System Call ABI Calling Convention and
Register Assignments

The transition from user-space to kernel-space execution is not performed using the
standard function calling convention defined for C++ user-space code. Instead, Linux
on x86-64 defines a distinct System Call ABI, optimized for privilege transition
and kernel entry handling. GCC does not directly emit system call instructions in high-
level C++ code; instead, glibc wrapper functions marshal parameters according to the
System Call ABI. However, understanding the ABI is essential for analyzing system-
level behavior, performance, and register state during debugging.
This ABI is mandatory. Any deviation results in undefined behavior at the processor–
kernel boundary.

2.2.1 Register Assignment for System Calls

The System Call ABI defines the following calling convention:

Purpose Register

System call number %rax

Argument 1 %rdi

Argument 2 %rsi

Argument 3 %rdx

Argument 4 %r10

Argument 5 %r8

Argument 6 %r9

69

Purpose Register

Return value %rax

Notably:

• %rcx and %r11 are always clobbered by the syscall instruction.

• All other registers follow standard System V AMD64 ABI preservation rules
across the boundary.

• The stack pointer (%rsp) must be valid and 16-byte aligned at the call site.

This convention is chosen to avoid register conflict with the kernel’s internal state
during ring transition.

2.2.2 The syscall Instruction and Privilege Transition
Sequence

The syscall instruction performs:

1. Privilege level change from ring 3 to ring 0.

2. Instruction pointer override using the model-specific register IA32_LSTAR
(kernel entry point).

3. Masking of flags using IA32_FMASK.

4. Storage of return address and RFLAGS in %rcx and %r11.

This transition enforces serialization of speculative execution state, which
introduces non-trivial latency characteristics on post-Skylake microarchitectures.
The compiler must therefore treat system call boundaries as ordering fences. No
reordering of memory operations across the boundary is allowed.

70

2.2.3 System Call ABI vs. User-Space ABI

The System V AMD64 ABI used in C++ function calls differs from the System Call
ABI. Key distinctions:

Feature User-Space ABI System Call ABI

Parameter registers 1–4 %rdi, %rsi, %rdx, %rcx %rdi, %rsi, %rdx, %r10

%rcx usage Parameter and call-clobber
register

Reserved for return RIP
storage (clobbered)

Calling instruction call and ret syscall + kernel-managed
return

Stack frame state Managed by caller/callee Kernel constructs separate
privileged stack

Because %rcx is clobbered during a syscall, glibc must move user-space %rcx
into %r10 before invocation. Compilers rely on glibc to generate these move sequences
correctly.

2.2.4 Consequences for Compiler Lowering and Optimization

The compiler treats system calls as opaque side-effecting operations:

• The call cannot be inlined or memoized.

• No algebraic or control-flow simplification may cross the boundary.

• Memory ordering is implicitly sequentially consistent with respect to the kernel.

• Register allocation must preserve the ABI assignments exactly.

71

This makes system call sites optimization barriers.
From a code-generation standpoint:

mov $60, %rax ; SYS_exit
mov $0, %rdi
syscall

is not equivalent to:

return;

The former creates a mode transition; the latter terminates program execution
according to C++ semantics.

2.2.5 Engineering Implications

For system-level C++:

• Latency minimization requires reducing system call frequency.

• Concurrency correctness requires awareness of the enforced memory ordering
boundary.

• Debugging correctness requires distinguishing user register state from kernel-
override registers.

• Performance profiling must treat system call boundaries as pipeline flush
events.

Thus, the System Call ABI defines the precise execution boundary between
compiler-governed semantics and kernel-governed semantics.

72

2.3 The syscall Instruction and VDSO Acceleration
Layer

The syscall instruction defines the hardware-supported mechanism for transitioning
from user mode to kernel mode. The transition enforces a privilege change,
architectural state preservation, and register masking. While necessary for accessing
kernel services, syscall is latency-expensive due to pipeline serialization and
supervisor-mode setup. To mitigate these costs for frequently invoked kernel-adjacent
operations, Linux exposes a Virtual Dynamic Shared Object (VDSO) region that
allows certain kernel-maintained computations to be executed entirely in user space,
eliminating the privilege transition overhead.

2.3.1 Execution Semantics of the syscall Instruction

When executed, syscall performs:

1. Privilege level switch: ring 3 → ring 0.

2. Instruction pointer load from IA32_LSTAR.

3. RFLAGS masking through IA32_FMASK.

4. Saving of user return address and flags into %rcx and %r11.

Its effect is equivalent to a synchronous, ordered control transfer into the kernel
entry point. As a side effect:

• The speculation pipeline is partially or fully serialized.

• %rcx and %r11 are always overwritten.

73

• TLB, BTB, and RSB mitigation rules may introduce additional synchronization
cost.

Thus, the compiler and optimizer must treat syscall as a full ordering and
execution boundary.

2.3.2 Performance Characteristics on Post-2020 x86-64 CPUs

On recent server-class and workstation-class microarchitectures (e.g., Skylake-X, Zen
3, Sapphire Rapids), syscall latency typically falls in the 150–350 cycle range.
Variation depends on:

• Speculation barrier configuration.

• Kernel-level hardening (SMEP, IBRS, STIBP).

• TLB locality for kernel trampolines and thread stacks.

This cost is significant relative to typical user-level function call latency (�3–12 cycles).
Thus, system call frequency and granularity become critical design parameters for
performance-sensitive C++ applications.

2.3.3VDSO: User-Space Execution of Kernel-Managed
Functions

The VDSO (Virtual Dynamic Shared Object) is a memory-mapped
region populated by the kernel at process start. It contains non-privileged
implementations of specific timekeeping and CPU-topology-related functions, backed
by kernel-maintained state in shared memory.
Examples routinely dispatched through VDSO include:

74

• clock_gettime()

• gettimeofday()

• time()

• getcpu()

The VDSO implementation:

• Executes in user mode (no privilege transition).

• Reads kernel-updated data structures ensured coherent via cache synchronization
mechanisms.

• Uses load-acquire semantics and sequence counter validation to ensure reliability.

Typical call latency becomes tens of cycles, not hundreds.

2.3.4 Loader and Runtime Binding Behavior

The dynamic loader resolves VDSO symbols at runtime. The glibc implementation of
system call wrappers:

1. Attempts to resolve a corresponding __vdso_* symbol.

2. If available, dispatches directly into the VDSO function.

3. If unavailable (e.g., nonstandard kernel, restricted environment), falls back to the
syscall ABI.

The compiler is not aware of whether a given call will use VDSO or syscall; dispatch
selection occurs strictly at runtime via relocation binding.
Thus, VDSO does not modify compiler behavior—it modifies where the generated call
targets execute.

75

2.3.5 Implications for System-Level C++ Execution

Aspect syscall Path VDSO Path

Privilege mode switch Yes No

Register clobber
semantics

Enforced by kernel User-space call ABI only

Latency High (pipeline flush) Low (local memory access)

Determinism Fully deterministic Deterministic under page
mapping invariants

Compiler involvement None beyond ABI lowering None; resolution occurs at
runtime

For performance-critical C++ systems:

• Prefer operations offered through VDSO where available.

• Avoid manually emitting syscall unless implementing low-level OS interfaces.

• Treat system call execution boundaries as performance and scheduling inflection
points.

The syscall and VDSO layers together define the operational interface limit
between compiler-governed execution semantics and kernel-governed
execution semantics.

76

2.4Userspace Loader (ld.so) as a Policy Engine
The dynamic loader (ld.so) is not merely a relocation executor; it is a policy engine
that establishes the operational environment under which the compiled binary executes.
It determines dynamic symbol binding behavior, relocation strategy, address space
layout, thread-local storage configuration, and library dependency ordering. Its
decisions directly influence performance, correctness, and the interpretation of linking
constraints encoded during compilation.
The loader operates at the boundary where static compilation artifacts become
executing software. Therefore, its behavior defines part of the executable program
semantics.

2.4.1 Loader Responsibilities as Defined by ELF Semantics

Upon process start, ld.so is entered prior to any C++ runtime initialization. It
performs:

1. Mapping shared library dependencies via program header information and
DT_NEEDED entries.

2. Constructing the dynamic link map, establishing the load and lookup order
of shared objects.

3. Resolving relocations, including .rela.dyn and .rela.plt entries.

4. Constructing the Global Offset Table (GOT) and populating PLT stubs.

5. Configuring Thread-Local Storage (TLS) layout and per-thread initial state.

6. Activating VDSO routines by interpreting AT_SYSINFO_EHDR auxiliary vector
data.

77

These operations finalize symbol visibility and memory topology assumptions made by
GCC and the linker.

2.4.2 The Loader as the Enforcement Point for Symbol
Resolution Policy

Symbol lookup obeys a strict deterministic order:

Executable → Dependencies in link order → LD_PRELOAD entries → Global namespace

This ordering ensures:

• ABI-stable linking behavior across library versions.

• Predictable override semantics for interposable symbols.

• Avoidance of symbol collisions through deterministic resolution.

Loader ordering rules directly constrain what optimizations the compiler may apply.
If a function may be interposed at runtime, GCC must generate a PLT-based
indirect call, prohibiting inlining and constant propagation across the boundary. This
makes loader behavior an optimizer boundary.

2.4.3 Loader as the Authority for PIE and ASLR Execution
Layout

Post-2020 mainstream Linux distributions build executables as PIE by default. Under
PIE:

• Code segments have no fixed absolute address.

• All symbol references use RIP-relative addressing.

78

• The loader selects the actual load address at runtime.

This enables ASLR (Address Space Layout Randomization), but requires:

• The loader to apply full relocation on load.

• The compiler to emit position-independent code sequences.

Thus, the loader defines the final instruction pointer mapping under which the
compiled code executes.

2.4.4 TLS Model Selection and Enforcement

The loader allocates and initializes Thread-Local Storage regions based on the
TLS model selected at compile time (local-exec, initial-exec, local-dynamic,
global-dynamic). This has direct consequences on:

• Code generation for thread_local variables.

• Access method lowering (RIP-relative or TLS descriptor based).

• Performance characteristics of thread-local lookups.

The compiler assumes the loader’s TLS configuration is correct; if mismatched, behavior
fails at runtime, not compile time.

2.4.5 Loader as the Gatekeeper for Runtime Feature Dispatch

The loader interprets hardware capability descriptors (AT_HWCAP, AT_HWCAP2) and
configures glibc and auxiliary runtime routines to select optimized execution paths (e.g.,
vectorized memcpy, lock-free atomics fast-paths). These dispatches occur before user
code executes.
Thus, final performance characteristics are determined by loader-selected runtime
implementations, not solely by compiler optimization.

79

2.4.6 Summary

Responsibility Loader Role Compiler Dependency

Symbol binding Enforces global lookup and
interposition

Governs inlining and call
lowering

Relocation Finalizes address values
and GOT/PLT targets

Validates position-
independent code
assumptions

TLS initialization Establishes per-thread
storage model

Enables correct
thread_local access
semantics

Execution environment
selection

Applies VDSO and CPU
feature dispatch

Controls optimized runtime
routines

Memory layout Assigns load addresses
under ASLR/PIE

Guarantees RIP-relative
relocation correctness

ld.so is therefore a semantic enforcement layer, not a loader in a minimal sense.
It completes the compilation pipeline by translating link-time assumptions into
executable program invariants.

80

2.5 Examples: Disassembling _start →
__libc_start_call_main

To understand how execution transitions from the ELF entry point to user code,
we analyze the disassembly and call sequence between the program’s _start
symbol, the runtime entry routine __libc_start_main, and its internal wrapper
__libc_start_call_main. This path is present in all dynamically linked C++
executables produced by GCC on Linux x86-64, regardless of optimization level or
language features.
The example program is minimal to remove irrelevant noise:

// example.cpp
int main() { return 0; }

Compile with symbols and no frame omission:

g++ -O2 -fno-omit-frame-pointer -g example.cpp -o example

2.5.1 _start: Entry Point Defined by the Linker

Disassemble the entry:

objdump -d example | grep -A20 "<_start>"

Representative output (glibc 2.34+):

_start:
xor %rbp,%rbp
mov %rdx,%r9 ; r9 = auxiliary vector (envp tail boundary)
pop %rsi ; rsi = argv
mov %rsp,%rdx ; rdx = envp pointer (after argv)

81

and $~0xf,%rsp ; enforce stack alignment
call __libc_start_main@PLT

Key properties:

• %rsp is aligned to 16 bytes, as required by the ABI.

• Registers are arranged to conform to the calling convention expected by
__libc_start_main:

– %rdi implicitly holds main.

– %rsi holds argv.

– %rdx holds envp.

This routine performs no runtime initialization. It only forwards control.

2.5.2 __libc_start_main: Runtime Coordinator

Locate definition:

objdump -d /lib/x86_64-linux-gnu/libc.so.6 | grep -A40 "<__libc_start_main>"

Representative behavior:

__libc_start_main:
...
call __libc_init_first
...
call __libc_start_call_main

Responsibilities at this stage:

• Initialize glibc internal subsystems (threading, locale, memory allocator).

82

• Register process-wide atexit handlers.

• Prepare system interface fast-paths (VDSO dispatch, CPU feature path selection).

No C++ object construction occurs yet.

2.5.3 __libc_start_call_main: Invocation of C++ Static
Initializers

Disassembly:

objdump -d /lib/x86_64-linux-gnu/libc.so.6 | grep -A40 "<__libc_start_call_main>"

Representative logic:

call __libc_csu_init ; Execute .init_array constructors
call main ; Transfer control to user code
call __libc_csu_fini ; Registered for call at process exit

The important event is execution of .init_array. This array is generated by the
toolchain and contains pointers to static-storage-duration constructors defined across all
object files and linked libraries.
This confirms:

• C++ static objects are constructed before main().

• The order is determined by ELF link order and init_array sequencing, not
source order.

83

2.5.4Validation of Constructor Execution Ordering

For a program containing:

#include <iostream>
struct X { X() { std::cout << "init\n"; } } x;
int main() {}

Execution order:

1. _start runs (loader entry).

2. __libc_start_main configures runtime.

3. __libc_start_call_main calls __libc_csu_init.

4. X::X() executes.

5. main() executes.

Thus, constructor execution precedes any user logic.

2.5.5 Summary of Verified Invariants

Stage Symbol Purpose Visible Effect

Entry _start Establish ABI-
compliant execution
entry

Stack alignment
and parameter
forwarding

84

Stage Symbol Purpose Visible Effect

Runtime
Setup

__libc_start_main Load and initialize
runtime environment

Thread model,
allocator, signal
state

Static
Initialization

__libc_start_call_main
and .init_array

Construct static
objects, install
destructors

Enables C++ object
lifetime correctness

User Code main Program-defined
logic execution

Normal execution
semantics

The compiler generates code assuming these transitions are performed exactly in this
order.
Any debugging, profiling, or runtime analysis must begin before main() to observe
complete behavior.

Chapter 3

Toolchain Component Topology and
Internal Data Flow

3.1GCC → as → ld → ld.so → glibc → Application

The GNU compilation and execution pipeline is a staged transformation sequence,
where each component contributes a distinct and non-overlapping function. The
pipeline ensures that C++ source code is transformed into an executable binary that
conforms to ABI rules and runtime initialization contracts.
The system model is:

GCC (frontend + optimizer + backend)
↓

as (assembler)
↓

ld (static/dynamic linker)
↓

ld.so (runtime dynamic loader)

85

86

↓
glibc (runtime environment and C++ initialization)

↓
Application code execution

The boundaries between these components define the formal interfaces of program
construction and execution.

3.1.1GCC: Language Semantics → Machine-Oriented IR →
Assembly

GCC performs:

• Source parsing and semantic resolution (templates, overloads, concepts, constexpr
evaluation).

• Transformation to GIMPLE SSA and mid-end optimization passes.

• Lowering to RTL and instruction selection according to target microarchitecture
constraints.

• Register allocation and final scheduling.

Output is assembly with relocation directives, not a binary:

.text, .data, .bss sections + relocation records + symbolic references

GCC does not resolve external symbols or assign load addresses.

87

3.1.2 as: Assembly Encoding into ELF Relocatable Objects

The GNU assembler translates symbolic assembly to machine code and relocatable ELF
objects:

• Emits .text with encoded instructions.

• Emits .rela.text / .rel.text entries describing unresolved symbol references.

• Defines symbol table entries (.symtab, .dynsym) and section boundaries.

No optimization occurs here.
as is a deterministic encoder; it does not transform semantics.

3.1.3 ld: Symbol Resolution, Address Assignment, and
Relocation Planning

The linker (ld or gold/lld) constructs a complete ELF binary by:

• Resolving symbol definitions across object files and shared libraries.

• Constructing the Global Offset Table (GOT) for external data references.

• Emitting Procedure Linkage Table (PLT) stubs for deferred function
resolution.

• Assigning segment load addresses (or emitting relocation tables in PIE builds).

• Assembling .init_array and .fini_array for constructor/destructor execution
order.

If Link-Time Optimization (LTO) is enabled, GCC mid-end optimization may be re-
entered before final object emission.
Without LTO, ld performs no code optimization, only structural linking.

88

3.1.4 ld.so: Runtime Relocation and Execution Environment
Realization

For dynamically linked binaries, the kernel transfers control to ld.so at process start.
ld.so:

• Maps shared libraries and resolves DT_NEEDED dependencies.

• Applies relocations generated by ld via .rela.dyn and .rela.plt.

• Finalizes GOT/PLT pointers.

• Initializes Thread-Local Storage structures.

• Establishes VDSO access paths using auxiliary vector information.

Only after these operations is the runtime environment ready for C/C++ initialization.

3.1.5 glibc: Runtime Subsystem Activation and C++ Static
Object Initialization

glibc performs:

• Locale, malloc, and threading subsystem initialization.

• Registration of process-termination callbacks.

• Execution of constructors in .init_array (C++ static-storage-duration
initialization).

• Transfer of control to main.

This phase ensures:

89

• ABI-consistent exception handling.

• Valid TLS descriptors.

• Deterministic constructor ordering.

3.1.6Application: Execution Under Compiler-Defined
Semantics

When main() executes:

• Control flow, data movement, and memory ordering follow GCC’s lowered IR and
scheduling decisions.

• All symbol bindings and runtime invariants are already established.

• Execution behavior is now entirely governed by the generated machine code and
the C++ memory model.

3.1.7 Summary

Component Responsibility Defines

GCC Semantic reduction and code generation Program meaning

as Instruction encoding and relocatable ELF
formation

Binary representation

ld Symbol resolution and layout Link-time identity and
visibility

90

Component Responsibility Defines

ld.so Runtime relocation and environment
realization

Dynamic execution state

glibc Runtime and C++ initialization Execution invariants

Application Program logic execution Observable behavior

The system as a whole, not the source file alone, defines the executable semantics of
a C++ program.

91

3.2Where Optimization Happens and Where It
Cannot

Optimization in the GNU compilation pipeline is constrained by representation
boundaries. GCC performs semantic and structural optimizations while the program
is represented in compiler-owned intermediate forms. Once the program is lowered
to assembly and subsequently linked, only limited structural transformations remain
possible. Understanding these boundaries is essential for performance reasoning, binary
reproducibility, and ABI stability.
The optimization landscape is divided into three distinct levels:

High-Level Language Semantics (C++ → GIMPLE)
↓

Target-Aware Intermediate Representation (GIMPLE → RTL)
↓

Machine Encoding (Assembly → ELF Object → Linked Binary)

Only the first two levels permit transformation of program semantics.

3.2.1 Optimization in the High-Level SSA Domain (GIMPLE)

GCC represents program flow and data dependencies in GIMPLE in SSA form,
where:

• Side effects are isolated.

• Value propagation is explicit.

• Control paths are normalized.

Typical optimizations performed here include:

92

• Constant folding and propagation

• Dead code elimination

• Inlining based on cost modeling

• Loop interchange, unswitching, unrolling, and induction variable simplification

• Scalar replacement of aggregates

• Devirtualization when type identity is provable

• Forward substitution and redundant load elimination under alias constraints

These optimizations preserve abstract semantics. ABI-visible structure is not yet
committed.

3.2.2 Optimization in the Machine-Constraint Domain (RTL)

After lowering to RTL (Register Transfer Language), code generation decisions are
constrained by:

• Available instruction set architecture (ISA)

• Register allocation pressure

• Scheduling and port utilization characteristics

• Stack frame layout constraints

• Calling convention invariants

Optimizations here include:

• Instruction selection based on pattern matching

93

• Peephole folding and instruction substitution

• Register coalescing and allocation under interference constraints

• Basic block reordering for branch prediction and cache locality

• Scheduling for microarchitectural throughput and latency balance

At this stage, the compiler is limited to transformations that do not change
externally observable ABI properties.

3.2.3Where Optimization Cannot Occur: Assembler and Linker
Phases

Once GCC emits assembly:

• The assembler (as) does not optimize. It performs byte encoding and
relocation table construction only.

• The linker (ld) cannot rewrite instruction streams. It resolves symbol
addresses and lays out sections according to ELF rules.

Exceptions:

• Link-Time Optimization (LTO) re-enters the GIMPLE/RTL pipeline before
final linking, but only when explicitly enabled.

• --icf=safe and related identical code folding options operate on entire functions
and cannot modify control flow granularity.

• PLT/GOT resolution affects dynamic dispatch cost but does not alter machine
code sequencing.

Once an ELF binary is produced, semantic structure is fixed.

94

3.2.4Where Optimization Is Explicitly Prohibited

Certain boundaries are required to preserve correctness:

Boundary Type Reason Optimization Is Prohibited

External linkage call sites Interposition possibility; correctness requires
PLT calls

Functions exposed in shared
libraries

Inlining would break binary compatibility

volatile memory accesses Must be preserved in execution order

System call sites (syscall) Privilege boundary enforces strict ordering

Atomic and synchronization
primitives

Must comply with C++ memory model
guarantees

Exception-handling tables
(.eh_frame)

Structural stability required for unwinding

These boundaries are visible in the generated assembly. Performance analysis must
account for them explicitly.

3.2.5 Engineering Consequence

Correct performance reasoning requires:

• Examining GIMPLE and RTL for transformation opportunities.

• Recognizing ABI constraints that prohibit optimization.

• Understanding that assembly and linking do not improve code quality.

95

• Using explicit compiler directives (-fno-semantic-interposition,
-fvisibility=hidden, -march, -mtune) to control optimization availability.

The compiler is the only layer performing semantic optimization.
All subsequent toolchain stages preserve, rather than transform, the generated
behavior.

96

3.3How Debug Symbols Propagate Through the
Pipeline

Debug symbols represent a structured mapping between source-level program
entities and their corresponding machine-level representations in the final
binary. Their propagation through the compilation and linking pipeline is governed by
DWARF (Debugging With Arbitrary Record Formats) specifications and ELF section
semantics. The compiler, assembler, and linker preserve these symbols unless explicitly
removed, transformed, or stripped.
Debug information is metadata, not executable code; however, its correctness is
required for stack unwinding, exception diagnostics, symbol resolution, profiling, and
post-mortem analysis.

3.3.1GCC: Generation of DWARF Symbol Information

When invoked with -g, GCC emits DWARF information during code generation. The
emitted debug data describes:

• Compilation unit boundaries (.debug_info)

• Type definitions and C++ class layout metadata

• Source file and line correlation (.debug_line)

• Local and global variable scopes

• Inlined function expansion records

• Register and stack location expressions for variable reconstruction

97

This information is emitted into parallel ELF sections, not interleaved with
executable code.
Example sections:

.debug_info

.debug_abbrev

.debug_line

.debug_ranges

.debug_str

The compiler does not commit frame pointer policies at this stage; unwinding behavior
is described later.

3.3.2 as: Preservation Without Semantic Modification

The assembler (as) copies the DWARF sections verbatim into the relocatable object
(.o) and generates the necessary relocation entries for debug symbols referring to
code or data addresses. as does not generate, transform, or optimize DWARF. Its role
is strictly:

• Encode instructions into .text

• Preserve debug metadata sections unchanged

• Emit relocation fixups linking debug records to symbol table entries

Thus, DWARF propagation through as is structurally transparent.

3.3.3 ld: Relocation, Folding, and Consolidation of Debug
Sections

The linker (ld) performs the first non-trivial modification to debug data:

98

1. Relocation resolution updates debug metadata to point to final symbol
addresses.

2. Section merging coalesces .debug_* sections across object files into unified
segments.

3. Dead-code elimination effects may cause referenced debug records to become
unreachable.

4. Function inlining and identical code folding (ICF) require remapping of
PC ranges to source locations.

The linker does not discard debug symbols unless:

• -s (strip all symbols) or

• --strip-debug (strip debug-only sections)

is specified, or the link is performed under separate debug info mode.

3.3.4Handling of Unwind Metadata

Unwind information is stored separately in:

• .eh_frame

• .eh_frame_hdr

Unlike general debug data, unwind metadata is always retained, even in stripped
binaries, because:

• It is required for C++ exception propagation.

99

• It is used by backtrace and diagnostic subsystems.

• Runtime correctness depends on its availability.

This distinction is critical:
.eh_frame is execution-relevant; .debug_* is not.

3.3.5 Separate Debug Information Model

Post-2020 distributions increasingly enable split debug info by default:

g++ -g -fdebug-prefix-map -gsplit-dwarf

This produces:

• Minimal debug metadata in the binary (compact representation).

• Full symbolic and type debugging information in .dwo or .debug files.

Dynamic debugging tools (gdb, perf, systemd-coredump) locate the external debug
store using:

• .gnu_debuglink

• .note.gnu.build-id

This model improves:

• Cache locality (smaller runtime pages)

• Distribution and packaging efficiency

• Reproducibility under build system path normalization

100

3.3.6Debug Symbol Visibility in Final Execution State

Stage Debug Data Status Notes

GCC Full DWARF generated Accurate source→IR mapping

as Preserved Relocation fixups applied

ld (normal link) Unified and relocated Unwind info retained
regardless

ld (with split
DWARF)

Debug data emitted into
separate files

Binary only contains minimal
tables

Stripped binary Only .eh_frame retained Still exception-safe but non-
debuggable

Debug information is therefore part of the compilation pipeline state, not the
executable semantics.
It must be treated as first-class diagnostic infrastructure in system-level C++
development.

101

3.4How the Loader Chooses and Resolves Libraries
Dynamic linking on Linux x86-64 is governed by the ELF dynamic linking model.
The loader (ld.so) resolves shared libraries required by the executable, establishes
their dependency graph, binds symbols across shared objects, and finalizes the address
and visibility of external references. This resolution process determines the effective
binary interface and therefore defines which implementations of functions, symbols,
and runtime facilities the application executes.
This makes the loader a policy authority for symbol binding, not a passive relocation
executor.

3.4.1 Library Selection Process

The loader receives the runtime environment from the kernel, including argument
vectors and the auxiliary vector (auxv). Resolution of shared libraries follows this
sequence:

1. DT_NEEDED dependency list embedded in the executable and shared
objects.

2. LD_LIBRARY_PATH search paths (if permitted and not restricted by
security policies).

3. Standard library directories (e.g., /lib, /usr/lib, multiarch paths).

4. Paths encoded using RUNPATH or RPATH ELF tags.

The actual lookup order is:

Executable
→ DT_NEEDED dependencies (in link order)

102

→ LD_PRELOAD overrides
→ Standard library paths (configurable via ld.so.cache)

Ordering is deterministic; the application cannot influence resolution at runtime
except through dlopen-based dynamic loading.

3.4.2DT_NEEDED and Dependency Graph Construction

Each shared object contains a DT_NEEDED entry listing libraries required to satisfy
undefined references. The loader constructs a directed dependency graph and
performs a topological traversal to ensure:

• Libraries are mapped exactly once.

• Their initialization routines run in correct dependency order.

• Circular references are resolved via lazy symbol binding rules.

This ensures consistency even in the presence of complex transitive link dependencies.

3.4.3 Symbol Lookup Scope and Resolution Rules

Symbol resolution follows strict ELF scoping semantics:

Scope Level Resolution Behavior

Executable Has highest priority for non-hidden symbols

Global Namespace Libraries loaded in dependency order contribute visible
symbols

Interposition Symbols can be replaced by earlier scope unless visibility
prevents it

103

Scope Level Resolution Behavior

Hidden Symbols Cannot be interposed; enforced at static link time

The compiler influences this through:

• -fvisibility=hidden (restrict interposition)

• -fno-semantic-interposition (allow inlining across DSOs)

• Linker scripts and symbol versioning blocks

The loader does not modify code generation; it enforces binding policy that
determines whether indirect calls become PLT lookups or direct calls.

3.4.4 Lazy vs. Immediate Resolution

Procedure Linkage Table (PLT) entries may be bound:

• Lazily on first call (LD_BIND_NOW not set)

• Immediately at load time (LD_BIND_NOW=1)

Lazy binding reduces startup time but introduces:

• Runtime trampolines

• Unpredictable first-call latency

• Additional indirect branch cost

Immediate binding yields:

• Deterministic startup overhead

104

• Fully resolved GOT/PLT tables prior to execution

• More stable performance under profiling and latency-sensitive workloads

Modern high-performance deployments typically enable immediate binding explicitly.

3.4.5Versioned Symbols and Compatibility Stability

glibc and other system libraries expose versioned symbols to ensure backward
compatibility across releases. A single function name may reference multiple symbol
versions:

memcpy@GLIBC_2.2.5
memcpy@GLIBC_2.14

The loader selects the version required by the executable’s symbol table. This allows:

• Forward evolution of libraries

• Binary compatibility preservation

• Runtime coexistence of multiple ABI revisions

The compiler emits versioned symbol references automatically based on the headers and
library versions detected at compile time.

3.4.6 Summary

105

Phase Loader Function Resulting Contract

Dependency
Mapping

Reads DT_NEEDED and search
paths

Establishes binary
composition

Symbol Resolution Applies ELF scoping and
interposition

Determines visible interfaces

Relocation Writes GOT/PLT and data
references

Fixes execution binding
topology

TLS and
Initialization

Applies dynamic runtime
configuration

Ensures ABI and memory
model correctness

The loader finalizes where and how externally visible program behavior is
implemented.
Its resolution rules therefore form part of the effective execution semantics of any
C++ program on Linux.

106

3.5 Examples: Full Symbol Resolution Trace for a
Shared C++ Binary

This section demonstrates the symbol resolution process for a dynamically linked
C++ binary, showing how the loader establishes the final binding of function references
across the executable, shared libraries, PLT/GOT dispatch points, and versioned glibc
symbols. The objective is to expose the runtime-visible dependency topology
generated during compilation and linking.
The example is intentionally simple but contains:

• A user-defined symbol with external linkage.

• A standard library symbol (std::cout).

• A glibc dependency resolved via the C++ runtime.

3.5.1 Source: Shared Library and Executable

Library (libcalc.cpp):

// libcalc.cpp
double add(double a, double b) { return a + b; }

Compile as shared library:

g++ -O2 -fPIC -shared libcalc.cpp -o libcalc.so

Executable (main.cpp):

#include <iostream>

extern double add(double, double);

107

int main() {
std::cout << add(3.0, 4.0) << "\n";

}

Compile and link dynamically:

g++ -O2 main.cpp -L. -lcalc -o app

3.5.2 Inspecting Dynamic Dependency Graph

ldd ./app

Representative output:

libcalc.so => ./libcalc.so (0x00007f...)
libstdc++.so.6 => /usr/lib/... (0x00007f...)
libm.so.6 => /usr/lib/... (0x00007f...)
libgcc_s.so.1 => /usr/lib/... (0x00007f...)
libc.so.6 => /usr/lib/... (0x00007f...)
ld-linux-x86-64.so.2 => /lib64/... (0x00007f...)

This defines the runtime search order used by ld.so.

3.5.3 Symbol Resolution Trace Using LD_DEBUG

LD_DEBUG=libs,bindings ./app 2>&1 | less

Representative log excerpts:

calling init: /lib64/ld-linux-x86-64.so.2
calling init: ./libcalc.so
symbol=add; lookup in ./app => not found
symbol=add; lookup in ./libcalc.so => found: 0x00007f...

108

symbol=_ZSt4cout; lookup in ./app => not found
symbol=_ZSt4cout; lookup in ./libcalc.so=> not found
symbol=_ZSt4cout; lookup in libstdc++.so.6 => found
symbol=__printf_chk; lookup in libc.so.6 => found

This confirms:

Symbol Resolved In Reason

add libcalc.so Exported by library with global
visibility

std::cout libstdc++.so.6 Standard library global symbol

printf-related internals libc.so.6 I/O formatting backend used by
stream output

The loader traverses dependencies in deterministic link-time order, not call-time
order.

3.5.4 PLT/GOT Binding Inspection

objdump -d app | grep plt -A3

Representative result:

0000000000001080 <add@plt>:
jmpq *0x200a(%rip) # GOT entry
pushq $0x0
jmpq 0x1030 # PLT resolver stub

This confirms:

109

• Calls to add are indirect through PLT when semantic interposition is
permitted.

• If compiled with -fno-semantic-interposition -fvisibility=hidden, the
call site may be converted to a direct relocation, enabling inlining and constant
propagation.

3.5.5Versioned glibc Symbol Resolution

objdump -T /usr/lib/libc.so.6 | grep memcpy

Representative symbol table:

00000000000xxxx T memcpy@GLIBC_2.2.5
00000000000yyyy T memcpy@GLIBC_2.14

To determine which version is linked:

readelf -s app | grep memcpy

The symbol version record determines which semantic contract is used at runtime.

3.5.6 Summary of Verified Resolution Behavior

Mechanism Responsible
Component

Result

Symbol lookup order ld.so Deterministic dependency-directed
traversal

110

Mechanism Responsible
Component

Result

Function indirection PLT/GOT Enables dynamic relocation and
interposition

Library versioning glibc symbol version
tables

Preserves backward ABI compatibility

Final symbol
binding

Loader relocation
pass

Defines runtime execution behavior

Therefore, the observable call graph of a C++ program is a composite of:

• Compiler inlining decisions

• Link-time dependency resolution

• Loader binding policy

• Library version availability

It cannot be inferred from source code alone.

Part II

GCC FRONTEND: C++
LANGUAGE LOWERING ENGINE

111

Chapter 4

C++ Name Semantics, Lookup, and
Instantiation Model

4.1Unqualified, ADL, and Two-Phase Name Lookup

Name lookup in C++ determines which entities are associated with identifiers
appearing in expressions. The correctness and meaning of a program depend on the
precise rules for name resolution, particularly when templates and overload resolution
interact. GCC implements the C++ lookup rules as defined by the standard's two-
phase name lookup model, where lookup is separated into:

1. Parsing and Template Definition Phase (dependent names unresolved)

2. Template Instantiation Phase (dependent names resolved with context)

The compiler must determine which declarations are visible at each stage, while
preserving the language’s rules regarding scopes, namespaces, and argument-dependent
lookup (ADL).

113

114

4.1.1Unqualified Name Lookup

Unqualified name lookup applies when a name is referenced without an explicit scope
qualifier. GCC resolves such names using a hierarchical search:

1. Current block scope (including local variables and parameters)

2. Enclosing lexical scopes

3. Class scope (for member function bodies)

4. Namespace scope

5. Global scope

Lookup stops at the first scope level where a match is found, regardless
of whether overload resolution will later discard some candidates. This ensures
deterministic resolution ordering independent of later semantic refinement.
Unqualified lookup does not consider function arguments. Functions introduced later in
the translation unit or by unrelated namespaces are not considered.

4.1.2Argument-Dependent Lookup (ADL)

ADL supplements unqualified lookup by adding additional candidate functions
based on the types of function call arguments. For each argument type:

• If the type belongs to a namespace, that namespace is added to the lookup set.

• If the type is a class, associated namespaces include:

– The namespace containing the class definition

– Namespaces of its base classes

115

– Namespaces of its member types used in operator overloads

Example:
namespace A { struct X {}; void f(X); }
void g() { A::X x; f(x); } // ADL finds A::f

Here, f is not found via unqualified lookup but is introduced through ADL.
ADL applies only to function calls and operator syntax, not variable or type
lookup.

4.1.3 Two-Phase Name Lookup in Template Contexts

Two-phase lookup ensures correct resolution of names appearing inside templates that
depend on template parameters.

1. Phase 1 (Template Definition Time)

• Non-dependent names are resolved immediately using standard lookup.

• Dependent names remain unresolved placeholders.

2. Phase 2 (Template Instantiation Time)

• Dependent names are resolved after substituting template arguments.

• ADL applies only at instantiation, based on concrete argument types.

Example:
template<typename T>
void h(T t) { f(t); } // f is dependent; not resolved yet

Only when h<int> is instantiated does GCC determine which f to invoke, and ADL
applies based on the type int.
This model prevents accidental binding of template bodies to unrelated declarations
visible only at definition time.

116

4.1.4 Failure Modes and GCC Diagnostic Behavior

Two categories of lookup failures exist:

Failure Type Occurs When Diagnostic Timing

Non-dependent name
not found

Not visible during template
definition

Error during parsing

Dependent name not
resolved at instantiation

No valid candidates after
substitution and ADL

Error during
instantiation

This distinction ensures program correctness is enforced declaratively and
incrementally, aligned with template specialization semantics.

4.1.5 Practical Implications for System-Level C++
Development

• Namespace partitioning must be intentional; accidental ADL effects can alter
overload resolution.

• Inline namespaces and library versioning require explicit visibility control to
prevent unintended lookup expansion.

• Generic code correctness depends on understanding when a name is dependent;
failure to do so results in silent ambiguity or late-stage instantiation errors.

• GCC’s template instantiation engine assumes two-phase lookup strictly;
optimizations and overload narrowing cannot occur before substitution.

117

4.1.6 Summary

Lookup
Mechanism

Trigger Condition Scope
Determination

Resolution
Timing

Unqualified
Lookup

Identifier without
qualifier

Lexical scope
hierarchy

Parse time

ADL Function call
expressions

Namespaces
associated with
argument types

Instantiation time
(if dependent)

Two-Phase
Lookup

Template contexts Combination of
above depending
on dependency

Split across
definition and
instantiation

Name resolution in GCC is therefore a semantic reduction process, not a lexical
matching algorithm.
Its correctness determines the structural meaning of expressions, and therefore the
generated machine code semantics.

118

4.2 Template Pattern Matching and Partial
Specialization Ordering

Template specialization resolution in C++ is a pattern matching and order
selection problem performed by the compiler during instantiation. GCC’s template
instantiation engine must identify which specialization, if any, matches the supplied
template arguments, and then select the most specialized viable declaration according
to a strict partial ordering relation defined by the standard.
This resolution mechanism is essential for generic programming, metaprogramming, and
the behavior of standard library components such as type traits, iterator adapters, and
allocator dispatch layers.

4.2.1 Primary Templates and Explicit Specializations

A primary template defines a general pattern:

template<class T>
struct S { /* generic case */ };

An explicit specialization replaces the primary template entirely for a specific
argument set:

template<>
struct S<int> { /* specialized case */ };

Explicit specializations bypass pattern matching and are selected by exact type identity
comparison.

119

4.2.2 Partial Specializations and Pattern Matching

A partial specialization constrains the primary template’s pattern:

template<class T>
struct S<T*> { /* pointer type case */ };

During instantiation, GCC matches the specialization pattern to the template argument
list, performing:

1. Type structure decomposition (matching structure, not just names).

2. Bidirectional type substitution checks to determine if the specialization is
applicable.

3. Deduction of template parameters based on pattern positions.

Matching fails if:

• Type shapes differ (e.g., pointer vs non-pointer).

• Required parameter deduction is ambiguous.

• Constraints (e.g., requires-clauses) evaluate to false.

4.2.3 Partial Ordering: Determining the Most Specialized
Match

When multiple partial specializations match, GCC determines which one is more
specialized.
The rule: A specialization A is more specialized than specialization B if A can be used to
instantiate B, but B cannot be used to instantiate A.
Example:

120

template<class T>
struct S<T*>; // (1) pointer specialization

template<class T>
struct S<T* const>; // (2) const pointer specialization

For an instantiation S<int* const>:

• Both (1) and (2) match.

• Substituting (2)’s pattern into (1) succeeds, but the reverse does not.

• Therefore, specialization (2) is more specialized.

The compiler’s partial ordering algorithm is structural, not textual or semantic.

4.2.4 Interaction with Function Template Partial Specialization

Function templates do not support partial specializations. Instead, they rely on:

• Overload resolution

• Template argument deduction

• Constraint-based selection (post-C++20 concepts)

Example:

template<class T>
void f(T);

template<class T>
requires std::is_integral_v<T>
void f(T);

121

Here, the constrained version is selected by constraint satisfaction, not pattern ordering.
This distinction becomes critical when reasoning about overload resolution in generic
code.

4.2.5 Constraint-Based Ordering (C++20 Concepts)

Post-C++20, GCC evaluates requires-clauses and concept constraints as part of
the ordering relation.
Given two viable function or class template overloads:

• The one with the more constrained requirement set is preferred.

• Constraint subsumption replaces earlier SFINAE-based partial ordering.

Example:

template<class T>
concept Iterable = /* detection logic */;

template<Iterable T>
void g(T); // selected for iterable types

template<class T>
void g(T); // fallback

The compiler selects g(T) with the Iterable constraint when satisfied, without
ambiguity.

4.2.6 Failure Modes and GCC Diagnostic Context

122

Failure Mode Cause Diagnostic Behavior

No matching specialization Pattern mismatch Reported at
instantiation

Multiple equally specialized
matches

Ambiguous partial ordering Hard error

Constraint evaluation
failure

requires evaluates to false Candidate removed prior
to overload resolution

Recursive template
selection loops

Indirect specialization
referencing

Diagnosed via
instantiation depth
limits

GCC reports instantiation traces with backreferences to template points of definition to
facilitate debugging of metaprogramming logic.

4.2.7 Summary

Mechanism Scope Solver Order Rule

Explicit
Specialization

Exact argument
match

Identity comparison No ordering
needed

Partial
Specialization

Template structural
pattern matching

Type decomposition
+ deduction

Most specialized
wins

Function Templates No partial
specialization;
overload instead

Standard overload
resolution

More constrained
signature wins

123

Mechanism Scope Solver Order Rule

Constraints/Concepts
(C++20+)

Semantic filtering of
candidates

Constraint
evaluation system

Constraint
subsumption
ordering

Template specialization resolution is therefore a formal selection and ordering
problem, not an ad-hoc name match.
Its correctness is foundational to generic C++ and standard library behavior.

124

4.3 Constraint Subsumption Rules in Concepts
Constraint subsumption defines the selection ordering between overloaded templates
whose viability is determined by concept constraints rather than structural
template argument matching. It replaces earlier SFINAE-based ordering logic with
a well-defined partial order over constraint expressions. This mechanism ensures
deterministic overload resolution in generic code that depends on semantic conditions
rather than syntactic pattern matches.

4.3.1 Constraint Normalization

Before evaluating subsumption, constraints are transformed into a normalized
canonical form.
Normalization includes:

• Expansion of composite constraints (&&, ||) into structured predicate sequences.

• Replacement of abbreviated function templates with explicit constraint
expressions.

• Evaluation of trivially true or syntactically redundant constraints.

GCC performs normalization at template definition time, allowing later instantiation to
rely solely on constraint evaluation rather than structural rewriting.

4.3.2 Constraint Implication and Subsumption

Given two viable constrained templates A and B, A is more constrained than B if:

For all template arguments where A is satisfied,
B is also satisfied,
and there exists at least one argument set where B is satisfied but A is not.

125

Symbolically:

A � B and B � A
→ A is more constrained than B

Subsumption establishes the ordering used by overload resolution:

• If one constraint implies the other, the more restrictive template is preferred.

• If implication is bidirectional (logical equivalence), ordering is ambiguous →
diagnostic error.

• If neither implies the other, the templates are incomparable → overload
ambiguity.

4.3.3 Example: Ordered Constraints

template<class T>
concept Integral = std::is_integral_v<T>;

template<class T>
concept SignedIntegral = Integral<T> && std::is_signed_v<T>;

void f(Integral auto); // (1)
void f(SignedIntegral auto); // (2)

Constraint implication:

SignedIntegral(T) � Integral(T)
Integral(T) � SignedIntegral(T)

Therefore (2) subsumes (1).
A call f(-1) selects (2).

126

4.3.4 Example: Incomparable Constraints

template<class T>
concept Floating = std::is_floating_point_v<T>;

template<class T>
concept Bounded = requires { typename T::bounds; };

void g(Floating auto); // (1)
void g(Bounded auto); // (2)

Here:

• Floating(T) does not imply Bounded(T)

• Bounded(T) does not imply Floating(T)

For a type satisfying both, overload resolution fails due to lack of subsumption
ordering.
GCC emits an ambiguity diagnostic at instantiation.

4.3.5 Interaction with Function Overload Resolution

Constraint subsumption is applied before parameter-dependent overload resolution:

1. Filter candidates by constraints (discard those failing).

2. Order remaining candidates by constraint subsumption.

3. Apply standard overload resolution among equally constrained candidates.

This ordering prevents accidental selection of weaker templates during overload
selection, eliminating patterns previously handled by fragile SFINAE idioms.

127

4.3.6 Replacement of SFINAE-based Partial Ordering

Pre-C++20 generic libraries used SFINAE to express substitution failure as exclusion.
Constraint subsumption provides:

Characteristic SFINAE Concepts (>=C++20)

Failure Mode Substitution collapse Logical constraint evaluation

Ordering Emergent, indirect Explicit through implication rules

Diagnostics Late, complex Early, explicit, context-rich

GCC
Implementation

Template substitution
engine

Constraint solver + semantic
lattice

Concepts remove the implicit reliance on overload failure as a selection mechanism.

4.3.7 Summary

Mechanism Purpose Ordering Rule

Constraint
Normalization

Establish canonical
evaluation form

Applied at template
definition

Subsumption Determine “more
constrained” overload

Logical implication A � B

Overload Selection
Integration

Replace SFINAE ordering Constraint order precedes
type-based overload rules

Constraint subsumption gives the compiler a declarative and deterministic method
for resolving overloaded templates governed by semantic requirements, ensuring

128

stability and clarity in modern C++ generic code.

129

4.4 Pure Compile-Time Execution in constexpr
Interpreter

constexpr evaluation establishes a semantic domain where expressions, functions, and
object construction can be executed entirely at compile time, producing values that
become part of the program image rather than runtime computation. GCC implements
this through an internal constant evaluation engine that simulates execution on an
abstract machine distinct from the actual target architecture. This interpreter enforces
compile-time rules that guarantee referential transparency, memory safety within the
evaluation domain, and deterministic behavior.

4.4.1 Execution Model: Abstract Machine for Constant
Evaluation

During constant evaluation, code is executed in a side-effect-restricted
environment:

• Only memory allocated in the interpreter's constant object arena may be
accessed.

• Pointers refer only to interpreter-managed memory locations; no interaction with
runtime storage is permitted.

• All control flow constructs are supported, but only operations that yield compile-
time-deterministic results are valid.

The interpreter maintains:

• A virtual stack and activation record structure

130

• A compile-time heap for objects with static extent

• A symbolic representation of objects and their lifetimes

No actual machine registers or hardware execution occur.

4.4.2 Eligibility Rules for constexpr Evaluation

An expression is evaluated at compile time if:

1. The expression is required in a context that mandates a constant expression (e.g.,
array bound, template argument).

2. The function invoked is declared constexpr or consteval.

3. All operations within the expression are valid within the constant evaluation
domain.

Violating operations include:

Operation Type Disallowed Reason

Dynamic allocation (new, malloc) Requires runtime-managed heap

I/O or OS interaction Has external side effects

Non-literal type manipulation without
constexpr constructors

Cannot form stable compile-time
object graphs

Undefined behavior triggers Compile-time interpreter enforces
strict diagnostics

The interpreter performs hard rejection of invalid operations at compile time.

131

4.4.3 Persistent Object Representation at Compile Time

Objects created during constant evaluation fall into two classes:

1. Immediate Constants
Represented directly in the expression graph; lowered to compile-time literals.

2. Extended Object Graphs
Structured memory layouts representing class instances, arrays, and nested
aggregates stored in the interpreter-managed arena.

When used in a context requiring actual code emission, GCC emits static storage
objects into .rodata or into constant-propagated immediate operands.
Example:

constexpr int f() { return 6 * 7; }
static_assert(f() == 42); // computed in compile-time domain
constexpr int x = f(); // stored as integer literal

No runtime call to f() appears in the linked binary.

4.4.4Distinction Between constexpr and consteval

Keyword Timing Enforcement Runtime
Availability

constexpr Compile-time preferred,
runtime permitted

Conditional execution
allowed

Yes

consteval Must execute at compile
time

Runtime execution
forbidden

No

132

Example:

consteval int make() { return 5; }
constexpr int v = make(); // OK
int r = make(); // Compile-time error

consteval produces compile-time-only functions; GCC emits no callable runtime
code.

4.4.5 Interaction with Template Instantiation

Constant evaluation may occur before, during, or after template instantiation
depending on dependency:

• Non-dependent expressions are executed during template definition.

• Dependent expressions defer evaluation to instantiation.

• If the result becomes constant, GCC propagates it into subsequent optimization
passes (constant folding, dead branch elimination, loop unrolling).

Constant evaluation therefore directly feeds mid-end optimization.

4.4.6 Engineering Significance

Compile-time evaluation provides:

• Reduced runtime cost (eliminating repeated computation).

• Deterministic initialization of static objects.

133

• Ability to construct complex lookup tables, state machines, or precomputed
transforms.

• Increased guarantees of defined behavior (interpreter rejects UB at compile time).

However:

• Code intended for compile-time must avoid dependency on runtime resources.

• Excessive interpreter complexity increases compile-time cost.

4.4.7 Summary

Property Meaning Enforced By

Execution Domain Abstract evaluator, not CPU GCC constexpr interpreter

Side-Effect
Restriction

Only pure, deterministic
operations permitted

Compile-time semantic
validation

Object Placement Values lowered into .rodata
or literals

Constant propagation and
data emission

Language
Interaction

Fully integrated with
templates and overload
resolution

Definition-time and
instantiation-time evaluation

constexpr evaluation is therefore a formal semantic execution environment
embedded within the compiler, not an optimization heuristic.

134

4.5 Examples: GCC AST Graph Analysis with
-fdump-tree-original-raw

The GCC C++ frontend constructs an Abstract Syntax Tree (AST) representation
before lowering to GIMPLE. The raw AST form retains complete syntactic structure,
scope nesting, template argument bindings, unqualified name lookup results, and
semantic annotations necessary for later phases. Using the dump facility:

g++ -fdump-tree-original-raw -c file.cpp

produces a textual AST graph before any semantic lowering or canonicalization steps.
This provides direct visibility into how name lookup, template binding, and overload
relationships are interpreted by the compiler at the earliest resolvable stage.

4.5.1 Example Source

#include <iostream>

template<class T>
T sqr(T x) { return x * x; }

int main() {
int a = 7;
std::cout << sqr(a) << "\n";

}

Compile:

g++ -O2 -fdump-tree-original-raw -c example.cpp

This generates:

example.cpp.003t.original

135

4.5.2 Relevant Dump Segments (Simplified for Presentation)

Excerpt:

@1 function_decl name: sqr
type <@2>
arguments: (x @3)

@2 function_type returns: T type@4
@3 parm_decl name: x type: T type@4

@4 template_type_parm index: 0 level: 0

@10 function_decl name: main
body:

{
@11 var_decl name: a type: int
@12 modify_expr

lhs: a
rhs: integer_cst 7

@13 call_expr
fn: @14
args: @15

}

@14 addr_expr of function_decl name: sqr <-- template specialization resolved

@15 call_expr
fn: overloaded_operator<<
args: (cout, call_expr sqr(a))

This reveals:

• The template parameter T (@4) remains symbolic until instantiation.

136

• The call sqr(a) instantiates T=int during semantic checking, reflected at @14.

• Stream insertion uses overloaded operator resolution via namespace-scope lookup.

4.5.3 Observations on Name Resolution and Semantic Binding

Construct AST Evidence Interpretation

sqr(a) addr_expr referencing
sqr

Unqualified lookup resolved;
template instantiation performed

Template
parameter

template_type_parm
index: 0

T is a deduced dependent
parameter until instantiation

std::cout
handling

Resolved through
namespace std

Lookup occurred before GIMPLE
transformation

Operator overload call_expr
overloaded_operator<<

ADL and overload resolution
applied in AST phase

This verifies that name lookup and overload binding occur prior to lowering to
GIMPLE SSA form.

4.5.4Using AST Dumps for Diagnostic Analysis

Raw AST inspection is used to:

• Confirm that lookup resolves to the intended declaration.

• Detect unintended ADL visibility expansion.

• Validate template parameter deduction paths.

137

• Analyze overload resolution priority selection.

• Identify incorrect namespace qualification assumptions.

Especially in generic code, AST inspection reveals whether the compiler matched
the author’s conceptual model of name binding.

4.5.5 Limitations and Interpretation Boundaries

The raw AST is not executable and does not represent control-flow or data-flow.
It precedes:

• Early constant folding

• Template code canonicalization

• Inline function expansion

• SSA form generation

To analyze flow-sensitive behavior, one must inspect later dumps:

-fdump-tree-gimple
-fdump-tree-optimized

However, binding correctness must always be verified at the AST level.

4.5.6 Summary

138

Stage Artifact Purpose

AST (raw) .003t.original Name binding, template binding,
overload selection

GIMPLE SSA .optimized dumps Control-flow and data-flow
transformation domain

RTL / Scheduling .rtl dumps Target-specific instruction selection
and allocation

-fdump-tree-original-raw is the primary inspection point for ensuring the
correctness of name lookup, template specialization selection, and overload resolution
semantics in GCC’s C++ frontend.

Chapter 5

Semantic Graph to GIMPLE
Transformation Pipeline

5.1 Canonicalization of Expressions and Control Flow

After parsing and semantic resolution, GCC lowers the C++ Abstract Syntax Tree
(AST) to GIMPLE, an explicitly structured intermediate representation. The lowering
process discards syntactic sugar and normalizes program structure into a form suitable
for static single assignment (SSA) construction, control-flow optimization, and data-
flow analysis. Canonicalization ensures that the IR expresses computation in simple,
explicit, and analyzable operations with no implicit sequencing or context-
dependent interpretation.

5.1.1 Expression Canonicalization

The C++ expression grammar allows compound constructs with operator overloading,
implicit conversions, and sequencing rules. GIMPLE canonicalization eliminates these

139

140

forms by:

1. Breaking complex expressions into three-address operations, each with at
most one operator.

2. Materializing all intermediate values into temporaries, ensuring explicit
data dependencies.

3. Lowering overloaded operators to function calls or intrinsic sequences,
based on semantic resolution.

4. Eliminating implicit conversions, replacing them with explicit cast operations
where required.

Example transformation:
Source:

int y = (a + b) * f(x);

Canonical GIMPLE form (conceptual):

t1 = a + b;
t2 = f(x);
y = t1 * t2;

Every data dependency becomes explicit, enabling data-flow reasoning and SSA
transformation.

5.1.2 Control-Flow Canonicalization

C++ control constructs (e.g., for, while, if, exception propagation) are normalized
into a minimal set of primitive control-flow structures:

141

• Conditional and unconditional jumps

• Basic blocks forming a directed control-flow graph (CFG)

• Structured exception-handling edges represented via landing pads and unwind
paths

High-level loops are converted into:

1. A loop header block (entry and iteration test point)

2. A body block

3. A backedge block returning to the header

4. A loop exit block

This canonical structure is necessary for:

• Loop-invariant code motion

• Induction variable analysis

• Bounds inference and vectorization preparation

5.1.3 Side-Effect Isolation

To enable formal reasoning and optimization, canonicalization separates effects from
evaluation:

• Function calls are represented as call statements with explicit parameter
evaluation order.

142

• Stores to memory are expressed as explicit store operations with typed
destination regions.

• Volatile and atomic accesses are represented as non-reorderable statements with
explicit ordering constraints.

Side-effect isolation is essential for determining:

• Alias relationships

• Expression reordering legality

• Dead-store and redundant-load elimination

• Memory-model-consistent parallel transformation

5.1.4 Exception Flow and the EH Graph

Exception semantics cannot be represented purely through CFG edges because they
propagate non-locally. GCC introduces an exception-handling graph (EH graph):

• Each potentially throwing instruction carries metadata describing its unwind
target.

• The CFG and EH graph together define full program control flow.

• Cleanup regions and catch handlers become first-class dispatch nodes in the
combined graph.

This separation enables:

• Precise modeling of destructors and RAII cleanup paths.

• Region-based elimination of unused exception edges when optimization proves
non-throwing behavior.

143

5.1.5 Canonical Form Guarantees

The canonical GIMPLE form satisfies:

Property Guarantee Required For

Single-operation
expressions

One operator per statement SSA construction and value
propagation

Explicit control
edges

No implicit fallthrough
semantics

CFG optimization and
scheduling

Deterministic
evaluation order

Sequence points resolved
early

Side-effect analysis

Uniform loop
representation

Canonical header-body-
backedge-exit form

Loop optimization pipelines

Isolated exception
regions

EH and CFG separation Correct destructor and
unwinding semantics

Canonicalization therefore converts syntactic structure into formal execution
structure, enabling deterministic and analyzable transformation.

5.1.6 Summary

GIMPLE canonicalization:

• Removes syntactic complexity and implicit sequencing.

• Converts expressions and control flow into normalized, analyzable forms.

• Establishes the structural foundation required for SSA, constant propagation,
alias analysis, loop optimization, vectorization, and instruction scheduling.

144

This transformation is the semantic bridge between high-level C++ constructs and
the lower-level IR on which optimization and code generation operate.

145

5.2 Temporary Lifetime Folding and Value Category
Lowering

C++ defines a rich value category model (lvalue, xvalue, prvalue), along with complex
temporary object lifetime rules governing construction, destruction, and elision. Before
optimization and SSA construction, GCC lowers these high-level semantics into
explicit object materialization and destruction operations in GIMPLE. The
objective is to remove implicit lifetime boundaries and ensure that all temporaries are
represented as storage-backed entities or pure values depending on their usage
context. This transformation is referred to as temporary lifetime folding.

5.2.1Value Category Normalization

The C++ expression model distinguishes:

Category Meaning Lowered Representation

prvalue Pure value, no
identity

Scalars: SSA values; Classes: forced
materialization into temporary storage

xvalue Expiring object Lvalue reference to a known storage region
with move semantics

lvalue Named or
addressable object

Direct reference to an allocated region

During lowering:

1. Scalar prvalues become SSA values (no storage allocated).

146

2. Class-type prvalues become temporary objects with storage in a compiler-
managed stack slot.

3. xvalues are treated as lvalues with explicit move operations inserted if needed.

This step establishes the storage identity of every non-scalar temporary.

5.2.2Materialization Points and Temporary Storage Creation

C++ requires object materialization when a prvalue is used in a context requiring
storage identity, including:

• Binding to a reference

• Passing as function arguments to parameters of reference type

• Producing subobjects via member access or operator selection

Example:

X make();
X y = make();

Lowered conceptual GIMPLE form:

t0 = make(); // materialize X object
y = t0; // copy or move as permitted

If elision applies, the temporary slot becomes identical to the storage of y, folding the
lifetime boundary.

147

5.2.3 Lifetime Folding and Elision

Under guaranteed copy elision (C++17 onward), temporary lifetimes may be collapsed
into the lifetime of the destination object, eliminating intermediate construction:

return X(); // no temporary; directly constructs return object storage

GCC performs this during GIMPLE construction by:

• Unifying object allocation sites

• Eliminating intermediate storage objects

• Rewriting constructor calls to use final target memory

This yields a single storage region, reducing destructor scheduling and eliminating
copies.

5.2.4Destructor Scheduling and Region Boundaries

Temporary objects that remain materialized must have explicit lifetimes. GCC emits:

• __builtin_lifetime_start markers at allocation

• __builtin_lifetime_end markers at destruction

• Explicit destructor calls inserted at well-defined scope exit points

Example conceptual lowering:

{ X t = make(); use(t); } // block scope

becomes:

148

t = _materialize_X();
call X::X(&t, make());
use(t);
call X::~X(&t);

These boundaries are necessary for:

• Exception-safe unwinding tables

• Precise RAII cleanup sequencing

• Correct alias and escape analysis

5.2.5Move/Copy Lowering and Value Propagation

During lowering, GCC distinguishes between:

• Move-eligible transfers: implemented via X(X&&) constructor

• Copy-required transfers: implemented via X(const X&)

The decision depends on value category normalization:

Expression Form Lowered Operation

prvalue used to initialize object Move or elide

xvalue passed to parameter Move

lvalue passed to parameter Copy

These choices affect aliasing and optimization viability downstream in GIMPLE SSA.

149

5.2.6 Result of Lifetime Folding Before SSA Form

After canonicalization:

• All temporary objects are either elided or explicitly represented.

• All construction and destruction operations are structurally visible.

• Value propagation flows between explicit SSA names or identifiable memory
regions.

• There are no implicit lifetime boundaries remaining in the IR.

This explicit representation is mandatory before:

• SSA �-node insertion

• Alias classification

• Escape and points-to analysis

• Loop and region-based optimizations

5.2.7 Summary

Transformation Purpose Resulting IR Property

Value category lowering Remove abstract
prvalue/xvalue distinctions

Explicit memory vs value
representation

Temporary lifetime
folding

Collapse storage where
elision is permitted

Reduced allocations and
destructor calls

150

Transformation Purpose Resulting IR Property

Materialization of class-
type prvalues

Give identity to objects
requiring storage

Clear alias and ownership
semantics

Destructor scheduling
insertion

Make object lifetime
explicit

Correct RAII and
unwinding semantics

Temporary lifetime folding ensures that object identity, lifetime, ownership, and
movement are explicit in GIMPLE, enabling precise and correct optimization.

151

5.3 Lambda Closures, Captures, and Object Lifetime
IR Representation

Lambda expressions in C++ are lowered into closure objects whose structure and
semantics are fully determined during frontend AST canonicalization. GCC generates
a class type representing the closure, synthesizes its data members corresponding to
captured entities, and emits an overload for operator() implementing the lambda
body. This transformation ensures that the callable entity is represented explicitly in
GIMPLE, allowing standard object lifetime, aliasing, and optimization rules to apply.

5.3.1 Closure Type Synthesis

For each lambda expression, GCC constructs a unique, unnamed class type:

struct <lambda closure> {
// data members for captures
auto operator()(parameter-list) const;

};

Properties:

• The closure type has no user-visible identifier, but is fully represented in the AST.

• Closure types are non-aggregate unless all captures are public, trivial, and non-
static (post-C++20 changes allow constexpr closures under expanded rules).

• If the lambda is marked mutable, the generated operator() is non-const.

This closure type is the unit of representation for capturing semantics in IR.

152

5.3.2 Capture Lowering and Storage Identity

Capture categories map directly to member field layout:

Capture Form Representation Notes

Capture by value
([x])

Member field storing copy
of x

Copy or move semantics applied
during closure construction

Capture by reference
([&x])

Member field holding
pointer/reference to
original x

No copy; lifetime dependency
must be preserved

Capture of this Member storing pointer to
current object

Treated identically to [this]
capture

Default captures
([=], [&])

For each referenced entity,
apply default mode

Resolved at semantic analysis
time

These captured members are treated as ordinary data members in the closure type;
GIMPLE has no special-case representation for captured variables beyond standard
memory fields.

5.3.3 Construction and Destruction of Closure Objects

Closure creation is lowered into explicit constructor-like initialization:
Example:

auto f = [x](int y) { return x + y; };

Lowered conceptual GIMPLE:

closure.temp = _closure_type(x); // materialize closure object

153

For value captures, the closure stores a copy of the captured variable.
For reference captures, the closure stores an address, requiring no object duplication.
Destruction follows standard automatic storage lifetime rules; no special destructor is
emitted unless captured types require destruction.

5.3.4 Lowering operator() and Call Sites

The lambda body is compiled as:

return closure.operator()(arguments);

In GIMPLE:

• operator() becomes a normal function with an implicit this pointer.

• References to captured entities become MEM_REFs to closure fields.

• Inline propagation applies when optimization is enabled, allowing closure
elimination if storage does not escape.

Captured values are propagated like regular SSA variables unless address-taking
prevents forwarding.

5.3.5 Escaped Closures and Heap Promotion

If the closure is returned, stored globally, or passed to another function, GCC
determines that:

• The closure must be assigned stable storage (stack or heap).

• Captured references must preserve extended lifetime correctness.

• Alias and escape analysis are updated to reflect possible external use.

154

If escape is detected, closure fields become observable state and cannot be elided.
Example of lifetime escape:

return [x]() { return x; }; // closure escapes caller frame

Here, x capture must follow copy semantics; reference capture would produce a dangling
pointer.

5.3.6 Interaction with SSA and Optimization

Once lowered:

• Closure fields participate in SSA value propagation.

• Constant-captured values may be folded into immediate operands.

• Unused captures are removed by dead-field elimination.

• If the closure is inlinable and non-escaping, GCC may eliminate both the closure
object and its operator() function entirely (closure flattening).

Optimization condition summary:

Closure Property Optimization Result

Non-escaping + trivial captures Closure elimination and call-site inlining

Escapes via return or storage Closure persists as a first-class object

Captures references Lifetime constraints prevent elimination

155

5.3.7 Summary

Transformation Stage Closure Representation Outcome

AST Lowering Closure type definition + operator() synthesis

Capture Analysis Captured entities mapped to closure fields

Materialization Closure objects constructed explicitly in GIMPLE

SSA/Optimization Closures propagated, folded, or eliminated depending
on escape and alias conditions

Lambda closure lowering ensures that capturing semantics, object identity, and
lifetime boundaries are explicit and analyzable at the IR level.
Once represented in GIMPLE, closures behave uniformly with other objects, enabling
full optimization under standard data-flow and aliasing models.

156

5.4 Inline and Devirtualization Decision Models at
GIMPLE Level

Inlining and devirtualization are performed during GIMPLE-stage optimization. Both
transformations replace indirect or out-of-line call sites with more direct call forms to
improve instruction locality, remove call overhead, expose scalarization and constant
propagation opportunities, and unlock further mid-end optimizations. Since these
transformations change the shape of the control-flow graph and value propagation
domain, they occur after canonicalization but before SSA-based optimizations
are finalized.

5.4.1 Inlining Candidate Identification

A call is eligible for inlining if:

1. The callee body is available in the compilation unit (or via Link-Time
Optimization).

2. The callee is not externally interposable (subject to symbol visibility and semantic
interposition rules).

3. The callee’s size and control complexity fall within inlining thresholds.

GCC determines eligibility using a cost model that evaluates:

• Instruction count

• Basic block count and loop depth

• Expected register pressure due to inlining

157

• Potential constant propagation benefits due to visible arguments

• Hotness feedback from -fprofile-generate/-fprofile-use or -fauto-profile

Inlining is performed to enable optimization visibility, not merely to remove call
overhead.

5.4.2Visibility and Interposition Constraints

Inlining may be legally blocked if a function is interposable through the dynamic
linker. The compiler assumes a function is interposable unless:

• The function is declared static, or

• The symbol has hidden visibility (-fvisibility=hidden), or

• The binary is compiled with -fno-semantic-interposition.

Without these constraints, GCC cannot assume that the function definition visible at
compile time is the one executed at runtime. In that case:

Call remains indirect through PLT → no inlining permitted.

Thus, symbol visibility configuration directly influences optimization capability.

5.4.3Devirtualization Pre-Conditions

A virtual call:

obj->vfunc(args)

may be rewritten as a direct call if the compiler can prove that:

1. The dynamic type of obj is known, and

158

2. That type's vtable entry for vfunc is statically determined.

Proof sources include:

• Whole-object construction analysis

• Final class detection (final keyword or no derived class seen in linkage graph)

• Type propagation in SSA

• Devirtualization hints from profile data

If devirtualization succeeds:

obj->vfunc(args)
↓
(&ClassName::vfunc)(obj, args)
↓
direct call to function body

This eliminates vtable lookup and typically enables inlining.

5.4.4GIMPLE-Level Transformation Form

Before inlining or devirtualization:

call obj->vfunc(args)

After devirtualization:

call ClassName::vfunc(obj, args)

After inlining:

<inlined function body inserted at call site>

159

Post-inlining, further optimizations apply:

• Constant folding of captured or propagated parameters

• Dead branch elimination inside inlined control flow

• Scalar replacement of aggregates

Inlining therefore expands optimization visibility scope.

5.4.5 Profile-Guided and Cost-Driven Inline Decisions

With PGO (-fprofile-use):

• Call frequency and basic block hotness weight the inliner’s cost model.

• Hot functions and hot call edges in the call graph are inlined more aggressively.

• Cold call paths are left uninlined to reduce code growth.

Without profile data:

• Heuristics use instruction count thresholds, call depth limits, and structural
scoring.

This makes inlining a performance-critical and architecture-dependent decision
layer.

5.4.6When Inlining and Devirtualization Are Prohibited

160

Condition Prohibition Reason

Function address taken Must preserve callable identity; prevent
inlining that changes observable linkage

Interposable symbol Loader may substitute implementation at
runtime

Unresolved dynamic type Cannot guarantee correct vtable dispatch
elimination

Excessive code growth detected Inliner cost model rejects to preserve I-cache
locality

Volatile or atomic synchronization
boundaries

Prevent transformations that reorder required
semantics

These prohibitions ensure semantic correctness and prevent pathological performance
outcomes.

5.4.7 Summary

Transformation Input Condition Output Form Optimization
Effect

Inlining Body visible and
not interposable

Call replaced by
body copy

Expands
optimization domain

Devirtualization Dynamic type
proven

Virtual call →
direct call

Enables inlining and
call elimination

161

Transformation Input Condition Output Form Optimization
Effect

No-Op (fallback) Visibility or
dynamic type
unknown

Call preserved Preserves correctness
but limits
optimization

Inlining and devirtualization are semantic exposure mechanisms.
They allow GIMPLE to express call targets explicitly, enabling propagation, folding,
SSA simplification, alias refinement, and loop/vectorization pipelines.
Their correctness depends directly on visibility, escape analysis, type inference,
and profile data results.

162

5.5 Examples: GIMPLE CFG Dissection with
Dominator Tree Reconstruction

Control-Flow Graph (CFG) construction is performed after GIMPLE canonicalization
and before SSA form construction. The CFG expresses basic blocks and edges
representing possible execution paths. The dominator tree is derived from the CFG
and is fundamental to optimization passes involving dead code elimination, loop
detection, induction variable analysis, and value propagation.
This section presents a minimal example and reconstructs:

1. Basic block structure

2. CFG edge relationships

3. Dominator tree structure

4. Post-dominator relationships relevant to cleanup and exception edges

5.5.1 Example Source

int f(int x) {
int r = 1;
if (x > 0)

r = x * 2;
else

r = 0;
return r + 1;

}

Compile with IR dumps:

g++ -O0 -fdump-tree-cfg -c example.cpp

163

Relevant GIMPLE (simplified, comments added):

f (int x)
{
int r;
<bb 2>:

r = 1;
if (x > 0)
goto <bb 3>;

else
goto <bb 4>;

<bb 3>:
r = x * 2;
goto <bb 5>;

<bb 4>:
r = 0;

<bb 5>:
return r + 1;

}

5.5.2 CFG Block Structure

Block Role Successors

BB2 Entry and branch decision BB3, BB4

BB3 True branch body BB5

BB4 False branch body BB5

164

Block Role Successors

BB5 Merge and function exit Return

CFG Graph (textual):

BB2
/ \

BB3 BB4
\ /
BB5

This is a canonical diamond-shaped conditional region.

5.5.3Dominator Tree Construction

A block D dominates B if every path from the entry to B passes through D.
Dominance relationships:

Block Immediate Dominator (IDOM)

BB2 (entry) None

BB3 BB2

BB4 BB2

BB5 BB2

Dominator tree:

BB2
��� BB3
��� BB4
��� BB5

165

Observations:

• BB2 dominates both branches and the merge.

• BB3 and BB4 do not dominate BB5 individually; BB5 is reachable through both.

5.5.4 Post-Dominator Relationships

A block P post-dominates B if every path from B to exit passes through P.
Post-dominators:

Block Immediate Post-Dominator

BB2 BB5

BB3 BB5

BB4 BB5

BB5 None (exit)

Post-dominator tree:

BB5
��� BB3
��� BB4
��� BB2

This ordering is used for:

• Tail merging

• Guarded expression hoisting

• Region failure cleanup paths

166

5.5.5Dominance Relevance to Optimization

Correct dominator tree formation directly impacts:

Optimization Stage Dominance Dependency

Dead Code Elimination Identify unreachable blocks

Loop Recognition Detect backedges where a block dominates its
successor

Induction Variable Analysis Identify loop header blocks

Scalar Replacement of Aggregates Ensure uniqueness of reaching definitions

Constant Propagation Requires dominance to prove stable reaching
values

Example: If r remains unmodified along all dominated paths, return r + 1 can be
constant-folded once the variable stabilizes.

5.5.6 CFG and Dominator Diagnostics

Useful inspection flags:

-fdump-tree-cfg
-fdump-tree-dom
-fdump-tree-ssa

Interpretation:

• cfg → control-flow and basic block boundaries

• dom → dominator and post-dominator sets

167

• ssa → �-function placement dependent on dominance frontier

Dominator frontier computation defines where �-functions must be placed for SSA
correctness.
In the example, � insertion is not required because r is uniquely assigned per control
region and merged explicitly in BB5.

5.5.7 Summary

Representation Purpose Output Structure

CFG Encodes legal execution paths Directed block graph

Dominator Tree Defines structurally mandatory
path prefixes

Parent-child dominance
relationships

Post-Dominator
Tree

Defines mandatory return-path
convergence

Reverse direction tree
formation

Dominance Frontier Determines �-node placement in
SSA

Structural merge boundary
set

CFG structural analysis and dominator tree derivation are prerequisites for SSA
formation, loop normalization, scalar propagation, and high-level optimizations that
rely on execution path invariants.

Part III

GIMPLE/SSA MIDEND AND
OPTIMIZATION THEORY

168

Chapter 6

SSA Form Construction and Value
Flow Algorithms

6.1 Phi-Node Insertion Rules and SSA Dominance
Frontier

Static Single Assignment (SSA) form requires that every variable have a unique
definition site. When control flow merges, multiple reaching definitions may converge at
a block. �-functions are inserted at merge points to unify these alternative definitions
into a single SSA name. GCC constructs SSA form after CFG and dominator tree
formation, using the dominance frontier to identify minimal �-placement locations.

6.1.1 Reaching Definition Conflicts

Consider a variable v defined in multiple control-flow regions:

if (cond)

170

171

v = a;
else

v = b;
return v;

In SSA, both assignments must produce distinct names:

v1 = a;
v2 = b;
v3 = �(v1, v2);
return v3;

The �-node models control-dependent value selection, not runtime branching logic.

6.1.2Dominance Frontier Definition

For a basic block B, the dominance frontier DF(B) is the set of successor blocks S
such that:

• B dominates a predecessor of S,

• but B does not strictly dominate S.

This indicates where execution paths merge after diverging at B. SSA �-placement
occurs at dominance frontiers of variable definition blocks.

6.1.3Algorithm for Minimal �-Node Insertion

For each variable v:

1. Collect all blocks Def[v] where definitions of v occur.

2. For each block B in Def[v], traverse dominance frontier sets.

172

3. Insert �-nodes in each block in DF(B) for v.

4. If �-nodes introduce new definitions (new SSA names), iterate until fixpoint.

This ensures minimal SSA form (no redundant �-functions).

6.1.4 Example Control Structure

Source:

int f(int x) {
int r = 0;
if (x > 0)

r = x;
else

r = -x;
return r;

}

CFG:

BB2
/ \

BB3 BB4
\ /
BB5

Dominance Frontier:

• DF(BB3) = {BB5}

• DF(BB4) = {BB5}

Thus, �-placement:

173

BB3: r1 = x;
BB4: r2 = -x;
BB5: r3 = �(r1, r2);
return r3;

BB5 does not dominate BB3 or BB4; therefore, the �-node is needed.

6.1.5 SSA Name Binding and Use-Chain Maintenance

After �-insertion:

• Each assignment to v now becomes a unique SSA name.

• Each use of v is replaced with the closest dominating SSA name based on CFG
dominance.

• �-functions introduce new SSA names that may themselves propagate to uses.

GCC maintains:

• def-use chains (DU chains)

• use-def chains (UD chains)

These allow constant propagation, dead code elimination, and alias reduction to operate
on graph relationships rather than symbolic variable identifiers.

6.1.6 Cases Where � Insertion Is Suppressed

�-nodes are not inserted when:

174

Case Reason

Only one reaching definition No selection needed

Reaching definitions are provably equivalent Constant folding collapses ϕ

Variable stored in memory, not SSA-promotable Memory SSA handles separately

Memory-resident objects require load/store SSA, not register SSA.

6.1.7 Summary

Concept Definition Purpose

Dominance Frontier Boundary where control-flow
paths reconverge

Determines minimal �-
placement

SSA �-node Merge of multiple reaching
values

Ensures single assignment
naming discipline

Def-Use Chains Graph mapping between
definitions and uses

Enables global propagation
and elimination

Minimal SSA Form SSA with no redundant �-
functions

Reduces IR noise and
improves analysis efficiency

The construction of SSA using dominance frontier placement ensures a structurally
minimal and semantically correct value-flow representation. This
representation is the required substrate for all mid-end optimizations including constant
propagation, loop induction inference, scalar replacement, and alias analysis.

175

6.2 Sparse Conditional Constant Propagation
(SCCP)

Sparse Conditional Constant Propagation (SCCP) is a hybrid propagation and
pruning algorithm that simultaneously performs constant propagation and dead code
elimination in SSA form. Unlike classical dense propagation, SCCP limits analysis to
the subset of the control-flow graph proven to be executable and the subset of SSA
values proven to influence reachable computation. This yields a more precise and
computationally efficient propagation model.
SCCP operates on three parallel state lattices:

1. Value Lattice — constant, non-constant, or undefined state for each SSA name.

2. Execution Lattice — reachable or unreachable state for each basic block.

3. Edge Lattice — feasible or infeasible state for control-flow edges.

This tri-lattice framework allows SCCP to remove unreachable control paths and fold
run-time decisions into compile-time deterministically.

6.2.1Value Lattice for SSA Names

Each SSA value v is assigned a state:

State Meaning Optimization Implication

Undefined No known assignments yet Candidate for constant
propagation

Constant(c) Expression evaluates to literal c Replace uses with literal, fold
operations

176

State Meaning Optimization Implication

Overdefined Multiple non-equal values reach v No constant folding possible

Transitions:

Undefined → Constant(c)
Constant(c) → Overdefined (if conflicting assignment found)

This monotonic lattice guarantees convergence.

6.2.2 Control-Flow Feasibility Tracking

Rather than assuming all execution paths are possible, SCCP propagates reachability:

Block State Meaning

Executable Proven to be reachable

Not Executable No feasible entry path established

Branch propagation uses SSA-known values:

if (cond) goto A else goto B

• If cond is Constant(true) → edge to A is feasible, edge to B is infeasible.

• If cond is Constant(false) → A is infeasible, B is feasible.

• If cond is Overdefined → both edges tentatively feasible.

This directly eliminates unreachable blocks.

177

6.2.3 SCCP over �-Nodes

For �-functions:

x3 = �(x1 from BB3, x2 from BB4)

Only values from executable incoming edges contribute. If only one live
predecessor remains, the � collapses:

x3 = x1

If multiple constant inputs exist and differ → x3 becomes Overdefined.

6.2.4 Instruction Folding Rules

SCCP folds any operation where operands are Constant:
Example GIMPLE:

t1 = 6
t2 = 7
t3 = t1 * t2 → folded to 42

After SCCP:

• t3 is Constant(42).

• All uses of t3 are replaced with literal 42.

• Algebraic simplification is deferred to subsequent passes.

178

6.2.5 Elimination of Dead Branches and Blocks

Once block reachability converges:

• Blocks marked Not Executable are removed.

• Edges marked infeasible are pruned from CFG.

• Associated �-arguments from eliminated edges are dropped.

Example:

if (0) { ... } else { ... }

transforms to:

goto else-block (true branch removed entirely)

This reduces CFG complexity and supports subsequent loop and scalar optimizations.

6.2.6 Resulting IR Guarantees

After SCCP:

Property Result

All foldable expressions
replaced with constants

Strength reduction of arithmetic and comparisons

All unreachable control-flow
removed

CFG simplification and reduced �-placement

�-functions minimized Eliminated where merging is no longer needed

179

Property Result

SSA uses now stabilized Enables stronger global value numbering and alias
pruning

SCCP thus forms a critical early optimization stage that stabilizes the SSA graph
and maximizes later optimization potential.

6.2.7 Summary

Component Purpose

Value Lattice Tracks constant propagation through SSA values

Execution Lattice Removes unreachable control paths

� Simplification Resolves merge nodes under reduced path sets

Folding and DCE Produces simplified and smaller CFG and value graph

Sparse Conditional Constant Propagation is a reachability-aware constant
propagation algorithm that directly improves SSA precision, reduces the size of the
IR, and exposes optimization opportunities for loop inference, alias analysis, register
promotion, and vectorization.

180

6.3Range Propagation and Provenance Tracking
Range propagation is the process of assigning value interval constraints to SSA
names based on control-flow conditions, arithmetic operations, and semantic context.
Provenance tracking extends this by recording origin relationships between values,
enabling elimination of contradictory conditions and refinement of data-flow ranges
across the SSA graph. These analyses allow GCC to reason about numeric bounds,
eliminate redundant checks, simplify branches, and improve vectorization safety.
GCC implements range reasoning through the Ranger framework, which performs
demand-driven, path-sensitive interval inference over SSA form. The propagated
constraints are integrated into conditional fold logic and loop analysis.

6.3.1Value Range Lattice

Each SSA name v is assigned an interval:

Range(v) = [lower_bound, upper_bound]

Additionally, value ranges may be:

State Meaning

Full Unconstrained domain (no useful restriction)

Constant(c) Singleton interval [c, c]

Semi-Bounded One-sided interval, e.g., [0, +∞)

Empty Discovered contradiction → block infeasible

This lattice is monotonic under refinement:

Full → Semi-Bounded → Constant → Empty

No expansion of ranges occurs once a bound has been established.

181

6.3.2 Sources of Range Information

Range constraints arise from:

1. Comparisons in conditional branches
Example:

if (x > 5) → Range(x) becomes [6, +∞) along true edge

2. Arithmetic operations with known operand bounds
Example:

y = x + 3 → Range(y) = Range(x) shifted by +3

3. Standard library functions, when recognized intrinsic
Example:

abs(x) → Range(abs(x)) = [0, max(|Range(x)|)]

4. Loop induction variables derived from canonical loop form

Ranger evaluates range queries lazily, expanding dependencies only when needed.

6.3.3 Branch-Sensitive Propagation

Range constraints are path-specific:

if (x < 10)
...

else
...

182

CFG is updated with edge conditions:

Edge Propagated Range

True branch Range(x) � (-∞, 9]

False branch Range(x) � [10, +∞)

These refined ranges propagate forward through SSA use-def chains.
Infeasible branches occur if a condition contradicts existing ranges.
When detected, the block is marked unreachable and removed in cleanup passes.

6.3.4 Provenance Tracking

Provenance records origin dependencies between SSA values:

v2 originates from v1 via operation O

Tracking provenance enables:

• Reverse flow reasoning for alias classification

• Elimination of redundant comparisons (e.g., x > 5 repeated after its guard)

• Correlation inference across differently derived SSA names

Example:

y = x + 1
if (y > 10) → implies x > 9

This protects propagation from losing precision when values are represented indirectly.

183

6.3.5 Loop-Carried Range Refinement

Loop analysis establishes induction variable patterns:

for (i = 0; i < n; i++)

Ranger derives:

Range(i) = [0, n-1] across the loop body

This allows:

• Loop bound tightening

• Vectorization legality checks

• Removal of redundant array bounds checks (when proven safe)

Range inference across loop iterations is performed using widening, ensuring
guaranteed termination.

6.3.6 Integration with Optimization Stages

Range and provenance data directly feed:

Optimization Stage Use

Conditional Constant Propagation
(CCP/SCCP)

Refined branch pruning

Dead Code Elimination Removal of infeasible blocks

Store/Load Reassociation Proof of non-overlapping access regions

184

Optimization Stage Use

Loop Strength Reduction Safe rewrite of induction variable steps

Vectorization Planning Alignment and bounds safety inference

The correctness of vectorization often depends on successful range proof.

6.3.7 Summary

Component Purpose Result

Range Propagation Compute numeric bounds
for SSA values

Determines feasible
execution conditions

Provenance Tracking Track derivation
relationships

Enables reverse inference
and condition elimination

Path-Sensitive
Refinement

Assign ranges per control-
flow edge

Eliminates infeasible
branches

Loop Range Analysis Infer induction variable
intervals

Enables safe and profitable
loop optimizations

Range propagation and provenance tracking provide GCC with a numerically
constrained SSA graph, establishing provable correctness boundaries necessary for
branch elimination, vectorization, and alias reduction.

185

6.4 Escape, Escape-Not-Escape, and Escape Set
Inference

Escape analysis in GCC determines whether an object, pointer, or reference value may
become visible outside its defining scope or function. This determines eligibility for
stack allocation, scalar replacement, and alias pruning. The inference engine builds
escape sets describing which memory regions or SSA names are reachable from
external or unknown contexts.
An SSA name or memory object is said to escape if:

1. Its address is stored into memory accessible by another function.

2. It is returned by the current function.

3. It is passed as a pointer or reference to a call with unknown side effects.

4. It is captured in a closure or stored into global/static storage.

Escape inference is executed after early GIMPLE canonicalization and before alias
classification to minimize unnecessary heap or global assumptions.

6.4.1 Object and Reference Escape Classification

Each SSA name or object allocation is classified into one of three categories:

Category Definition Optimization Eligibility

Escape Object potentially visible
outside defining context

Must assume global alias;
cannot scalarize

186

Category Definition Optimization Eligibility

Escape-Not-Escape
(Partial Escape)

Escapes conditionally or
through limited alias

May remain stack-allocated
under guarded constraints

Non-Escape Object provably local to
function or lexical block

Eligible for scalar
replacement and stack
promotion

Partial escape analysis refines conservative results where address-taken conditions
depend on control flow or constrained parameter passing.

6.4.2 Escape Source Identification

Escape sources are detected by pattern matching over GIMPLE instructions and SSA
use-def chains. Typical triggers:

• ADDR_EXPR or &object stored in memory or assigned to global.

• MEM_REF to an address escaping through a function call argument.

• Calls marked with unknown or non-pure side effects.

• Assignments across function boundaries.

Example (simplified GIMPLE):

p_1 = &x;
call foo(p_1); // Escape through parameter
q_2 = &y;
use(q_2); // Non-escape if 'use' is local and pure

GCC annotates x as escaping, y as non-escaping.

187

6.4.3 Escape Set Construction

An escape set is a data-flow abstraction defining which objects or SSA names may
reference escaping storage.
Algorithmic steps:

1. Initialize EscapeSet with all global and heap-allocated objects.

2. Propagate escape relationships:

• If p points to an escaping object, mark all aliases of p as escaping.

• If q = p, propagate escape state from p to q.

3. Iterate until fixed point (no new members added).

The resulting escape lattice is monotonic:

Non-Escape → Escape-Not-Escape → Escape

This ensures convergence under iterative data-flow analysis.

6.4.4 Escape-Not-Escape Refinement

Certain cases require intermediate state assignment:

• Temporaries returned by value but not by reference.

• Captures in lambdas where closure is non-escaping.

• Pointers to stack-local arrays used only in inline-expanded callees.

Example:

188

int* f() {
int x;
return &x; // Escape

}

int g() {
int y;
return y + 1; // Non-escape

}

In GCC IR, x’s address is marked escaping; y’s address never materializes.
Conditional escapes are recorded with edge predicates in the control-flow graph.
Only the paths that satisfy the escape condition mark propagation into the escape set.

6.4.5 Relationship with Alias and Memory SSA

Escape information is a precondition for Memory SSA construction.
Memory SSA groups load/store operations into equivalence classes based on memory
region identity.
Escape analysis ensures that only truly global or escaping objects participate in alias
relationships.

Memory Operation Escape Status Optimization Impact

Load from non-escaping
object

Non-aliasing; promotable Can be replaced by scalar
register value

Store to escaping object Global side effect Cannot eliminate or reorder

Load/store from partial-
escape region

Guarded alias Requires conditional
dependence tracking

189

This classification improves precision of store motion, dead store elimination, and
pure-call optimization.

6.4.6 Practical Outcomes of Escape Inference

Escape inference affects several compiler stages:

Stage Effect

Stack Allocation Objects marked non-escaping promoted
from heap to stack

Scalar Replacement Structs or arrays replaced with
independent SSA scalars

Interprocedural Constant Propagation Values of non-escaping pointers propagated
interprocedurally

Code Motion Movements restricted for escaping memory
references

Parallelization Escape-free loops eligible for private
variable promotion

The correctness of escape inference directly influences register pressure and memory
bandwidth utilization in optimized code.

6.4.7 Summary

190

Concept Definition Impact

Escape Value or object reachable from
external scope

Disables alias collapsing

Escape-Not-Escape Partially escaping under path
or call conditions

Conditional optimization
permitted

Escape Set Collection of values sharing
external visibility

Drives alias and Memory
SSA construction

Escape and non-escape inference provide the compiler with semantic visibility
boundaries.
Accurate escape classification is essential for safe scalarization, precise alias modeling,
and high-level optimizations in the GCC mid-end.

191

6.5 Examples: SSA Rewrites Under Aggressive
Inlining Constraints

When inlining is applied aggressively, SSA form must be reconstructed to maintain
single-definition semantics across expanded control-flow regions. Inlining replaces a
call site with the body of the callee, introducing new variables, merge points, and
potential alias interactions. GCC resolves this by performing SSA renaming, �-node
re-evaluation, and value propagation across the combined call graph fragment.
This section illustrates the resulting transformations using a minimal example that
exposes both scalar propagation and �-node normalization under inlining.

6.5.1 Example Source

static inline int g(int v) {
if (v > 5)

return v + 1;
return v - 1;

}

int f(int x) {
int a = g(x);
return a * 2;

}

Compile at -O3 -fdump-tree-ssa:

g++ -O3 -fdump-tree-ssa -c example.cpp

192

6.5.2 Inlining Transformation Result (Conceptual GIMPLE
Before SSA Fixup)

Without SSA renaming:

f(int x)
{
int a;
if (x > 5)

a = x + 1;
else

a = x - 1;
return a * 2;

}

This introduces multiple reaching definitions for a.
SSA rewriting must disambiguate them.

6.5.3 SSA Rewrite with �-Node Placement

After SSA renaming:

f(int x_1)
{
if (x_1 > 5)

a_2 = x_1 + 1;
else

a_3 = x_1 - 1;

a_4 = �(a_2, a_3);
t_5 = a_4 * 2;
return t_5;

}

193

Key observations:

• The inline expansion did not require separate handling for g—it becomes a
control-flow region inside f.

• The dominance frontier places �(a_2, a_3) at the merge block.

• Multiplication sees a single canonical SSA value a_4.

6.5.4Value Propagation and Constant Folding Interaction

If the call site provides additional semantic context, propagation may eliminate branch
structure.
Example modified source:

int h() {
return f(10);

}

Inlining of both h() and f():

x_1 = 10;
if (10 > 5) // condition is constant true
a_2 = 11;

else
(dead)

a_4 = a_2;
t_5 = a_4 * 2; // 11 * 2 = 22
return 22;

Further SCCP and DCE remove the unreachable branch and �-node:

return 22;

This demonstrates multi-phase cross-function constant propagation enabled by
SSA merging.

194

6.5.5 Interaction with Escape and Alias Constraints

If a captured or referenced object is introduced during inlining, SSA must differentiate
storage identity:
Example:

static inline void k(int& r) { r = r + 1; }
int m(int y) {

k(y);
return y;

}

After inlining:

y_2 = y_1 + 1;
return y_2;

y remains a single SSA variable because its storage does not escape; no �-node is
required.
If k had stored &r globally, the variable would instead be classified as escaping,
preventing scalarization and forcing memory-based SSA.

6.5.6 Loop-Carried SSA Transformation Under Inlining

Inlining into a loop may introduce new induction variables requiring canonical
restructuring:

for (i = 0; i < n; ++i)
s += g(i);

After inlining and SSA:

195

i_1 = 0;
s_1 = 0;
loop:
if (i_1 > 5) tmp_1 = i_1 + 1; else tmp_1 = i_1 - 1;
s_2 = s_1 + tmp_1;
i_2 = i_1 + 1;
if (i_2 < n) goto loop;

return s_2;

SSA induction recognition may rewrite (i_1, i_2) into canonical loop-carried form.
This establishes the basis for loop vectorization and strength reduction.

6.5.7 Summary

Optimization
Interaction

SSA Effect Resulting Opportunity

Inlining Introduces new SSA name
regions

�-node placement and
renaming required

Constant propagation Simplifies branch structure Dead branch and �
elimination

Escape analysis Determines scalarization
viability

Affects memory SSA region
count

Loop integration Normalizes induction
variables

Enables vectorization and
strength reduction

Aggressive inlining expands visibility of value flow, and SSA rewriting ensures that the
merged region remains structurally analyzable, enabling the compiler to perform
higher-order transformations correctly and efficiently.

Chapter 7

Control Flow Optimization, Loop
Analysis, and Polyhedral Modeling

7.1 Loop Induction Variable Classification

Induction variable (IV) classification is the process of identifying variables whose values
evolve linearly across loop iterations. GCC performs IV analysis on GIMPLE SSA form
to enable loop normalization, strength reduction, dependence testing, vectorization,
unrolling, and cost modeling. The classification is based on data-flow relationships and
dominance structure, not syntactic loop syntax.
An induction variable is defined as an SSA name v_k that satisfies:

v_{k+1} = v_k � C

where � is an associative arithmetic operator (typically addition or subtraction) and C is
a loop-invariant constant. The induction update must be dominated by the loop header
and form a cycle in SSA use-def relations.

196

197

7.1.1Detection of Basic Induction Variables (BIVs)

A basic induction variable is introduced at loop entry and incremented once per
iteration along the loop backedge.
Canonical detection pattern in GIMPLE SSA:

Loop Header:
i_1 = PHI(i_entry, i_2)

Loop Body:
i_2 = i_1 + C (C is loop-invariant)

Backedge:
goto Loop Header

Conditions:

• The �-function defining i_1 must have one incoming value from outside the loop
and one from inside.

• The increment expression must be dominated by the loop latch.

• The loop-carried dependency must be unique.

BIVs define loop iteration count and enable structural loop reasoning.

7.1.2Derived Induction Variables (DIVs)

A derived induction variable is a function of a BIV and loop-invariant parameters:

d = a * i + b

where a and b are loop-invariant.
DIV detection is performed using symbolic substitution on SSA expressions. Ranger’s
interval propagation further bounds DIV ranges to support alias disambiguation and
array bounds reasoning.

198

This transformation allows index expressions to be simplified even when expressed
indirectly.

7.1.3 Invariants vs. Induction Variables

A variable v is considered loop-invariant if:

• All definitions of v occur outside the loop, or

• All operands of expressions computing v resolve to loop-invariant SSA names.

Invariant recognition is critical because:

Classification Optimization Result

Loop-invariant Hoist outside loop (LICM)

Basic induction Normalize to canonical iteration form

Derived induction Expand to affine index expressions for vectorizer

This separation establishes a strict algebraic foundation for loop optimization.

7.1.4 Induction Variable Normalization

To support vectorization and polyhedral transformation, GCC rewrites induction
updates into canonical increment-by-constant form:
i_next = i + 1

If the original loop step differs, scalar evolution analysis rewrites the expression
accordingly:
i_next = i + stride

Normalization requires that stride is provably loop-invariant.
If normalization fails, high-level vectorization opportunities are reduced or disabled.

199

7.1.5 Induction Variables in Nested Loops

For nested loops, IV classification is hierarchical:

Outer Loop: i
Inner Loop: j

Independence conditions:

• j is an IV relative to the inner loop only.

• i is invariant relative to the inner loop.

• Combined affine expressions of the form A*i + B*j + C are processed by the
scalar evolution (SCEV) engine.

Correct hierarchical IV classification is required for legality checks in:

• Loop interchange

• Strip-mining

• Fusion and fission scheduling

• Polyhedral model extraction

7.1.6 Relation to Dependence Testing and Vectorization

Induction variable classification feeds into dependence tests:

• Scalar evolution provides closed-form expressions of access patterns.

• Bounds analysis uses IV ranges to verify memory safety.

• Vectorizer uses normalized IVs to map iteration space to vector lanes.

200

If induction classification proves:

A[i] and A[i + k] do not overlap

then vectorization is enabled under memory independence guarantees.

7.1.7 Summary

Component Role Optimization Impact

Basic Induction
Variable (BIV)

Defines iteration count and
loop progression

Enables normalization and
scalar evolution

Derived Induction
Variable (DIV)

Index or offset expression
derived from BIV

Allows array indexing
simplification

Loop-Invariant
Value

Does not depend on iteration
state

Enables code motion and
hoisting

Scalar Evolution
(SCEV)

Computes closed-form
iteration expressions

Required for vectorization
and polyhedral analysis

Induction variable classification provides the algebraic foundation for all loop-centric
optimizations.
Without precise IV structure inference, the mid-end cannot legally transform loops for
speed, memory efficiency, or parallel execution.

201

7.2 Loop Invariant Code Motion and Peeling vs
Unrolling

Loop optimization in GCC distinguishes computations that depend on loop iteration
state from computations that do not. Loop Invariant Code Motion (LICM) moves
invariant computations outside the loop to reduce the dynamic instruction count. Loop
peeling and loop unrolling restructure loop iteration boundaries to enable further
optimizations such as vectorization, constant propagation, and induction variable
simplification. Selection of these transformations depends on cost models and legality
conditions derived from SSA form and alias analysis.

7.2.1 Loop Invariance Detection

A value v is considered loop-invariant if:

1. All SSA definitions reaching v occur outside the loop, or

2. All operands in the computation of v are loop-invariant and side-effect free.

GCC identifies invariants using:

• Dominator analysis on SSA definitions,

• Ranger-based range and bounds inference,

• Memory SSA alias classification to ensure non-interference on referenced storage.

Example (conceptual transformation):
Source:

for (int i = 0; i < n; ++i)
y += a * x[i];

202

Lowered GIMPLE (before LICM):

t1 = a; // a is invariant
loop:
t2 = x[i];
t3 = t1 * t2; // multiplication repeated every iteration
y += t3;

After LICM:

t1 = a; // moved before loop
loop:
t2 = x[i];
y += t1 * t2;

If a is a compile-time constant, constant propagation may fold its uses further.

7.2.2 Correctness Requirements for LICM

To move an instruction out of a loop:

Condition Requirement

Memory safety The operation does not access loop-variant memory
locations

No side effects The instruction must not participate in I/O, volatile
memory access, or synchronization

Single reaching definition All operands must be invariant under loop iteration

If alias classification cannot separate memory regions, LICM is conservatively disabled.

203

7.2.3 Loop Peeling

Peeling executes one or more iterations of the loop header before entering the main
loop body.
Peeling is applied to:

• Simplify conditional checks that are iteration-dependent,

• Eliminate induction variable edge cases,

• Align memory accesses for vectorization.

Example case enabling vector alignment:

while (i < n && (uintptr_t)&x[i] % 32 != 0)
peel iteration;

Once alignment constraints are achieved, the main loop body becomes vectorizable.
Peeling does not change iteration count; it adjusts entry boundary semantics.

7.2.4 Loop Unrolling

Unrolling replicates the loop body multiple times per iteration to reduce control
overhead and expose ILP (Instruction-Level Parallelism):
Example unrolling by 4:

for (i = 0; i < n; i += 4) {
body(i);
body(i+1);
body(i+2);
body(i+3);

}

204

Benefits:

• Fewer branch evaluations.

• Increased availability of independent operations for scheduling.

• Improved pipeline utilization.

Costs:

• Increased code size.

• Higher register pressure, potentially causing spill code.

GCC applies unrolling selectively based on block hotness (profile data) and available
registers (target machine model).

7.2.5 Peeling vs. Unrolling: Distinct Goals

TransformationPurpose Driven By Typical Impact

Peeling Restructure
entry/exit
conditions

Alignment,
boundary checks

Enables vectorization
and simplifies flow

Unrolling Replicate work
within loop

ILP and branch
reduction

Improves throughput
at cost of code size

Peeling changes initial execution behavior to regularize structure.
Unrolling changes loop granularity to exploit hardware parallelism.
They are often applied in sequence: peel → vectorize → unroll.

205

7.2.6 Interaction with Scalar Evolution (SCEV)

Scalar Evolution provides closed-form recurrence expressions for induction variables,
which allows:

• Detecting that invariants are safe to hoist.

• Determining peel counts to eliminate conditional guards.

• Choosing unroll factors that preserve correctness.

Example:
If loop bounds are known:

for (i = 0; i < n; ++i)

and alignment requires:

(p + i) mod 8 == 0

Peel count k = ((-p) mod 8) follows directly from the SCEV representation.

7.2.7 Summary

Component Role Optimization Enabled

Loop Invariant Code
Motion

Remove redundant intra-
loop computation

Reduces dynamic execution cost

Loop Peeling Normalize loop-entry
conditions

Enables vectorization and
simplifies iteration bounds

206

Component Role Optimization Enabled

Loop Unrolling Expand operations per
iteration

Increases ILP and reduces
branch overhead

Scalar Evolution Provides recurrence proof
and index modeling

Guides legality and cost
decisions

LICM, peeling, and unrolling form the transformation foundation for modern loop
optimization.
Their correctness and profitability depend on SSA value analysis, alias classification,
and iteration space modeling.

207

7.3Alias Analysis and Dependence Graph
Construction

Alias analysis determines whether different memory references may refer to the
same storage location. Dependence graph construction extends this by modeling
ordering constraints between memory accesses within and across loop iterations. These
analyses are prerequisites for loop transformations including interchange, fusion, fission,
vectorization, and parallelization. In GCC, alias reasoning integrates Memory SSA,
points-to propagation, and range/provenance inference to produce a unified
dependence model.

7.3.1Memory Reference Classification in GIMPLE

Each memory reference is categorized according to its storage identity:

Reference Type Typical Examples Alias Behavior

Local scalar
promoted to SSA

Stack or temporary values Guaranteed non-aliasing;
no memory reference
remains

Object-specific
memory

Local arrays, closure fields,
new allocations

Alias restricted to
originating region

Global or externally
visible storage

Globals, static variables,
captured pointers

Conservative alias
assumptions

Unknown pointer-
derived access

Indirect loads/stores via
pointers

Requires points-to and
escape analysis

Only references remaining in memory space participate in alias modeling.

208

7.3.2 Points-to Set Inference

Each pointer-typed SSA name p is associated with a points-to set representing
possible pointee locations:

Pts(p) = {Memory Regions R1, R2, ...}

Inference steps:

1. Initialization:

• Direct address expressions form singleton sets (&x → {x}).

2. Propagation through assignments:

• q = p implies Pts(q) � Pts(p).

3. Propagation through loads/stores:

• *p = ... associates region-level side effects to each region in Pts(p).

4. Constraint-based narrowing:

• If loops or branches restrict pointer evolution, Ranger supplies tightened
value bounds.

When Pts(p) contains a single region, alias relations simplify substantially.

209

7.3.3Memory SSA Region Graph

Memory SSA represents memory state changes as distinct versioned SSA names:

mem_1
mem_2 = store(mem_1, x)
y = load(mem_2)

Memory �-functions are inserted at control-flow merge points:

mem_4 = �(mem_2, mem_3)

This produces a def-use chain for memory, enabling:

• Dead store elimination when stores do not influence surviving loads.

• Hoisting and sinking of memory operations when proven safe.

• Loop dependence detection because memory flow is explicit.

7.3.4Dependence Classification in Loops

A memory dependence exists between two accesses A and B if:

1. They reference overlapping memory regions, and

2. At least one of them writes.

Dependence types:

Type Meaning Effect on Transformation

Flow (true) Write → Read ordering Constraints loop-carried parallelism

210

Type Meaning Effect on Transformation

Anti Read → Write ordering Potential reordering only with care

Output Write → Write ordering Must preserve write ordering

Input Read → Read No effect on reordering

If ranges prove non-overlap (e.g., disjoint array segments), dependence collapses to
Input, enabling vectorization and parallel execution.

7.3.5Dependence Graph Construction

The loop dependence graph (LDG) is constructed as follows:

1. Enumerate memory references within the loop body.

2. Determine alias compatibility using points-to results and region-level
classification.

3. Determine access ordering using SSA dominance and loop-carried �-values.

4. Insert directed edges representing dependence type and strength.

Edges annotated with stride and range bounds allow the vectorizer and polyhedral
engine to infer affine access patterns.

7.3.6Application to Loop Interchange, Fusion, and
Vectorization

211

Transformation Dependence
Requirement

Enforcement Mechanism

Interchange No carried dependences
across loop levels

LDG must remain acyclic under
level swap

Fusion Accesses must be compatible
in iteration order

LDG must not introduce new
carried dependences

Vectorization No loop-carried true
dependencies

LDG edges must be proven non-
carried via range/SCEV analysis

Failure to satisfy dependence constraints disables the transformation; GCC does not
speculate correctness.

7.3.7 Summary

Component Purpose Output

Points-to Analysis Determine possible referent
objects of pointers

Memory region identity sets

Memory SSA Represent memory state
evolution explicitly

Versioned memory values
and �-nodes

Dependence Graph Represent ordering constraints
among accesses

Directed graph informing
transformation legality

Scalar Evolution +
Range Analysis

Prove disjoint access intervals Enables safe reordering and
parallel execution

Alias analysis and dependence graph construction provide the semantic safety

212

guarantees required for loop restructuring, vectorization, and high-performance code
generation. The accuracy of these analyses directly determines whether the optimizer
can legally and profitably transform computational kernels.

213

7.4 Introduction to Graphite / isl Polyhedral
Optimizer

The Graphite framework in GCC performs high-level loop and data-flow
transformations using the polyhedral model, with the isl (Integer Set Library)
providing symbolic set and relation manipulation. Graphite operates on loop nests
represented in GIMPLE SSA form after normalization, extracting their iteration spaces
and memory access functions into an abstract representation suitable for dependence
testing, restructuring, and scheduling optimization. Polyhedral transformations allow
systematic and provably correct reordering of iteration spaces, enabling locality
improvement, parallel execution, and vectorization alignment.

7.4.1 Polyhedral Representation Model

A loop nest is represented as:

1. Iteration Domain D
The set of all integer tuples (i�, i�, …, i�) describing legal loop iterations.

2. Access Relations A
Mappings from iteration tuples to memory locations.

3. Scheduling Function S
A mapping assigning execution timestamps or orderings to iteration space points.

For a loop of form:

for (i = L1; i < U1; i++)
for (j = L2; j < U2; j++)

S[i][j] = ...

214

The iteration domain:

D = { (i, j) � �² | L1 � i < U1 � L2 � j < U2 }

Access patterns, such as A[i][j] = X[i][j+1], are represented as affine maps.

7.4.2 Extraction from GIMPLE to Polyhedral IR

Graphite requires:

• Canonical loop form (single index, affine bounds).

• Loop-invariant increment stride.

• Absence of irreducible control flow in the loop region.

• Memory references expressible as affine functions of loop indices.

These constraints are checked by the SCEV and range analysis subsystem before
polyhedral extraction. Non-conforming loops bypass Graphite.

7.4.3Dependence Testing and Legality

Graphite constructs dependence relations R from access relations:

R = { (x, y) | x precedes y � A(x) = A(y) � at least one access is a write }

Legality condition:

S(new) must preserve the partial order induced by R.

This guarantees semantic equivalence of the transformed loop schedule.
isl performs dependence discovery and schedule search using integer set constraint
solving.
If dependence constraints are violated, the transformation is rejected, not
approximated.

215

7.4.4 Transformation Classes Performed by Graphite

Transformation Objective Example Effect

Loop Interchange Improve stride-1 locality Swap nesting of i and j loops

Loop Tiling
(Blocking)

Improve cache reuse Split iteration space into
rectangular tiles

Strip Mining Prepare for vectorization or
GPU mapping

Convert a loop into chunks of
fixed size

Loop Fusion /
Fission

Reduce overhead or
increase parallel granularity

Merge or separate adjacent loop
nests

Affine Scheduling Reorder entire iteration
lattice

Minimize distance across
dependence edges

All transformations are global to the loop nest, not performed heuristically per-
statement.

7.4.5 Integration with the Mid-End Optimization Pipeline

Graphite operates between SSA canonical optimization and late loop/vector optimizers:
Pipeline position (simplified):

GIMPLE SSA → Loop Canonicalization → Scalar Evolution → Graphite (polyhedral) →
Vectorizer / Unroller → RTL Lowering↪→

After Graphite emits a transformed SCoP (Static Control Part), loops are reconstructed
back into GIMPLE with modified loop structures and access patterns.

216

7.4.6 Practical Constraints in Real-World Codebases

Graphite is effective when:

• Loops have regular affine bounds.

• Memory access functions depend linearly on index variables.

Graphite is less effective or bypassed when:

• Complex pointer arithmetic prevents affine recognition.

• Data-dependent control flow exists inside the loop.

• Memory access patterns require non-affine indexing.

In practice, scientific kernels, DSP pipelines, and tensor algebra benefit most
from polyhedral restructuring.

7.4.7 Summary

Component Role Output

isl Integer Set
Library

Solves affine constraints and
dependence systems

Legal iteration schedules

Graphite Extractor Converts GIMPLE loops to
polyhedral representation

Iteration domains and
access relations

Schedule Optimizer Searches for improved execution
ordering

Transformed loop nests
respecting dependencies

217

Component Role Output

Loop Rebuilder Re-generates GIMPLE from
transformed schedule

Optimized control-flow
ready for vectorization

The polyhedral optimizer provides the compiler with the ability to apply
mathematically proven-correct loop restructuring, enabling large, global
performance shifts in well-structured numerical code.

218

7.5 Examples: Loop Vectorization Feasibility
Prediction Diagnostics

Vectorization feasibility in GCC is determined by a sequence of legality and
profitability checks. These checks analyze memory access patterns, induction structure,
aliasing guarantees, scalar evolution constraints, and control-flow uniformity. When
vectorization is disabled, GCC emits diagnostic reasoning when enabled with
-fopt-info-vec or -fopt-info-vec-missed.
This section demonstrates representative feasibility outcomes and the corresponding
GIMPLE/SSA reasoning steps.

7.5.1 Example Loop

void f(float* __restrict x, float* __restrict y, int n) {
for (int i = 0; i < n; ++i)

y[i] = 3.0f * x[i];
}

Compile:

g++ -O3 -fopt-info-vec -c example.cpp

Typical diagnostic:

example.cpp:3: note: loop vectorized

Reason:

• Affine memory accesses (x[i], y[i])

• Basic induction variable recognized (i)

219

• No loop-carried dependencies

• Multiplication is vectorizable for target ISA (SSE/AVX)

• Pointer arguments marked with __restrict prevent alias uncertainty

The vectorizer confirms legality before profitability analysis.

7.5.2Dependence-Inhibited Case

void g(float* a, float* b, int n) {
for (int i = 0; i < n; ++i)

a[i] = a[i] + b[i];
}

With no restrict qualifiers:

g++ -O3 -fopt-info-vec-missed -c example.cpp

Diagnostic:

example.cpp:4: note: not vectorized: potential aliasing prevents memory disambiguation

Internal reasoning:
Pts(a) and Pts(b) may overlap → alias classification cannot prove independence.
Dependence graph includes possible flow dependence, inhibiting vectorization.
Marking pointers __restrict or using -fno-semantic-interposition or LTO often
resolves this.

220

7.5.3Non-Affine Access Inhibition

void h(float* x, int* idx, int n) {
for (int i = 0; i < n; ++i)

x[i] *= x[idx[i]];
}

Diagnostic:

note: not vectorized: non-affine memory index pattern

Reason:
Memory access x[idx[i]] is indexed by a non-affine function of induction i.
Dependence analysis cannot compute guaranteed independence → unsafe to vectorize.
Graphite/isl cannot extract affine access relations → loop excluded from vector
pipeline.

7.5.4Masked Vectorization Consideration (Post-GCC 11)

Certain non-uniform control flows may still be vectorizable via masking, if hardware
ISA supports predication (AVX-512):

void k(float* x, int n) {
for (int i = 0; i < n; ++i)

if (x[i] > 0)
x[i] = -x[i];

}

Diagnostics:

note: loop vectorized using masked operations

Condition:

221

• The branch is uniform per element and does not introduce loop-carried
dependence.

• Target architecture supports masked execution (AVX-512 or SVE).

• Profitability model indicates acceptable masked execution cost.

If mask cost > predicted throughput benefit → vectorization is declined.

7.5.5 Failures Due to Floating-Point Semantics

Example:

void m(float* x, int n) {
for (int i = 0; i < n; ++i)

x[i] = x[i] / (x[i] - 1.0f);
}

Diagnostic (default):

note: not vectorized: floating-point semantics prevent reassociation

Reason:

• Vectorization may change rounding order or exception signaling.

• Requires explicit permission for relaxed IEEE semantics:

g++ -O3 -ffast-math -fopt-info-vec

Enables reassociation and vectorization if allowed by user semantics.

222

7.5.6 Summary

Inhibition Cause Vectorizer Reason Possible Resolution

Alias uncertainty Unsafe memory overlap Add restrict, enable LTO,
refine alias analysis

Non-affine indexing Cannot construct affine
access functions

Rewrite access, apply data-
layout transformation

Control divergence Branch divergence blocks
SIMD

Masked vectorization if ISA
supports it

FP semantic
precision

Strict IEEE ordering
prevents reassociation

Use -ffast-math or targeted
pragmas

Unrecognized
induction form

Loop cannot be normalized Normalize loop or transform
structure

Vectorization feasibility diagnostics are evidence-based, derived from SSA and
dependence graphs.
The compiler does not guess or speculate correctness; transformations are enabled only
when proven safe and profitable.

Part IV

RTL BACKEND AND TARGET
MICROARCHITECTURE

223

Chapter 8

RTL Instruction IR and Machine
Description Language

8.1RTL Expression Trees and Operand Constraints

The Register Transfer Language (RTL) is GCC’s low-level intermediate
representation used after GIMPLE lowering and before instruction selection and
register allocation. RTL models computation in a form that resembles abstract
assembly, where each expression represents a transformation of machine-level operands.
RTL is both data-flow explicit (operands and results are visible) and target-
sensitive, since it interfaces directly with the machine description (MD) language that
defines instruction encodings and operand legality.

8.1.1 RTL Expression Structure

Each RTL node is an S-expression encoded as a typed operator with operands. A
generic RTL form:

225

226

(code operand� operand� ... operand�)

Example:

(set (reg:SI 5) (plus:SI (reg:SI 5) (const_int 4)))

Meaning:

• Assign to register 5 (32-bit SI mode)

• The result of adding register 5 and the constant 4.

Key components:

Component Meaning

code Operation (e.g., set, plus, mult, compare)

mode Data width and type (e.g., QI, HI, SI, DI, SF, DF)

operands Registers, memory references, immediates, or subexpressions

RTL is strictly typed with respect to machine mode. Mismatched modes invalidate
patterns during instruction matching.

8.1.2 Operand Categories

Operands in RTL expressions fall into distinct classes:

Operand Type Example Form Description

Register (reg:SI 5) Virtual or physical register

227

Operand Type Example Form Description

Memory reference (mem:SI (reg:DI 2)) Indirection through address
registers

Immediate constant (const_int 7) Literal integer encodable at
instruction level

Address constant (symbol_ref:DI "label") Pointer to symbol or global

Complex addressing
mode

(plus:DI (reg:DI 1)
(const_int 32))

Address computation
represented as RTL expression

These operand classes map directly to addressing and operand rules in the
architecture’s ABI.

8.1.3 Constraint Language for Instruction Operands

Machine descriptions specify instructions using operand constraints, which control
what kinds of operands are legal for each operand position. Constraints enforce:

• Register class eligibility

• Immediate encoding restrictions

• Addressing mode capabilities

• Required reloads before allocation

Common constraint classes on x86-64:

228

Constraint Meaning

"r" Any general-purpose register

"m" Memory operand allowed

"i" Integer immediate that fits encoding limits

"o" Memory operand with direct addressing only

"A" Accumulator register operand (architecture-specific)

For example, an MD instruction pattern may specify:

(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r")

(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "immediate_operand" "i")))]

...
)

This enforces:

• Operand 0 must be assigned a register (=r means writable).

• Operand 1 must be a register.

• Operand 2 must be an immediate that satisfies machine encoding.

Incorrect constraints prevent valid match patterns during code generation.

8.1.4 RTL and Machine Modes

Modes encode both width and semantics:

229

Mode Meaning

SI 32-bit integer

DI 64-bit integer

SF 32-bit IEEE float

DF 64-bit IEEE float

V4SI Vector of 4× 32-bit integers

The backend uses modes to:

• Select appropriate instructions (addsi3 vs adddi3)

• Enforce SIMD width alignment for vectorization

• Control register allocation to correct register classes (e.g., integer vs SIMD).

Incorrect mode inference stalls instruction selection or forces unnecessary data
movement.

8.1.5 RTL after GIMPLE Lowering and Before Register
Allocation

At the point RTL is constructed:

• SSA properties have been removed or lowered to assignment form.

• Temporaries and addressing expressions have not yet been lowered into physical
registers.

• RTL still contains pseudo registers, which will later be mapped to hardware
registers or spilled.

230

Example RTL before register allocation:

(set (reg:DI 72) (plus:DI (reg:DI 70) (reg:DI 71)))

After register allocation:

(set (reg:DI rax) (plus:DI (reg:DI rdx) (reg:DI rcx)))

8.1.6 Summary

Component Role Impact

RTL Expressions Abstract machine-
level data-flow

Foundation for instruction selection

Operand Constraints Legality rules for
operands

Ensures target-correct encodings

Machine Modes Encodes width and
type

Drives register assignment and
instruction variants

Pseudo Registers Pre-RA value
placeholders

Enable register allocation optimization

RTL provides the bridge between IR-level semantics and target architecture
execution requirements. Operand constraints and mode typing ensure that
instruction selection produces architecturally valid and optimally encodable
machine-level output.

231

8.2 Constraints (M, r, i, s, g, m, …): Register vs
Memory Operand Legality

Instruction selection in GCC depends on operand constraints, which define the set
of operand forms that a machine instruction pattern may accept. Constraints appear
in define_insn rules and apply to each operand independently. Their interpretation
determines whether the compiler may use a register, immediate constant, or memory
reference for a particular operand during instruction matching. Understanding
constraint interaction is essential to avoid unintended register pressure, spills, and
instruction fallback to slower alternatives.

8.2.1 Constraint Classes and Operand Roles

Constraints control operand admissibility, not scheduling or register allocation. Operand
matching occurs before register allocation; therefore, constraints influence which RTL
forms survive into the allocation phase.
Common constraint categories:

Constraint Operand Class Meaning

r Register operand Must be held in a general-purpose
register

m Memory operand Must be a valid memory reference
under target addressing rules

i Immediate operand Compile-time constant encodable in
instruction format

232

Constraint Operand Class Meaning

g General operand Any valid operand: register, memory,
or immediate

s Symbolic constant Link-time-resolvable address or offset

M Memory reference requiring
special addressing form

Typically aligned, scalar, or page-
based constraints

An instruction pattern may specify multiple constraints to express alternative
encodings:

"r,m" → operand may be register or memory

Constraints govern legality; cost models influence which alternative is preferred
during selection.

8.2.2 Register Operand Constraints (r and Register Classes)

The r constraint indicates that the operand must reside in a general-purpose
register. During instruction matching, RTL is rewritten:

(set (reg:DI 5) (plus:DI (reg:DI 5) (const_int 4)))

If a value is not already in a register, a reload is introduced:

(reg ← mem)
use reg

Constraint refinement using architecture-specific classes enables more granular control:

233

Constraint Register Class Purpose

"r" any GPR Default integer register operand

"a" accumulator (e.g., x86 rax) Used for multiply/divide forms

"x" SIMD register Required for vector instruction
patterns

Constraint specialization prevents invalid instruction forms during matching.

8.2.3Memory Operand Constraints (m and Sub-Forms)

The m constraint indicates that the operand must be a loadable memory reference. The
target backend determines what constitutes a legal addressing mode:
Example x86-64 addressing RTL:

(mem:SI (plus:DI (reg:DI rbx) (const_int 32)))

Some architectures support:

• Base + displacement

• Base + index scaling

• PC-relative addressing

Others restrict memory operands to fixed offset or aligned locations.
When constraints disallow memory for an operand, GCC inserts a temporary register
load:

temp = mem(...)
use temp

This influences instruction scheduling and register pressure.

234

8.2.4 Immediate Operand Constraints (i, n, I, J, …)

Immediate constraints enforce encoding feasibility, not semantic correctness. For
example, on x86-64:

Constraint Immediate Encoding Rule

i Any integer constant representable in the target mode

I 8-bit constant sign-extended into operand width

J 0 only (used for test/compare special forms)

Example:

(plus:SI (reg:SI rdi) (const_int 300))

If 300 cannot be encoded as an 8-bit signed immediate, a load-constant+add
sequence is required.

8.2.5General Operand Constraint (g)

The g constraint defers operand form selection to the compiler. It indicates that the
operand may be a:

• Register

• Memory reference

• Immediate constant

However, it allows suboptimal instruction sequences if used indiscriminately.
Precision in constraint specification improves register allocation stability and
instruction compactness.

235

8.2.6 Symbol Constraints (s)

The s constraint permits symbolic constants whose values are resolved by the linker,
such as:

(symbol_ref:DI "global_array")

These often require addressing sequences based on platform relocation models (e.g.,
ELF GOT and PLT placement on x86-64). Backends use this constraint to ensure
correct relocation emission.

8.2.7 Summary

Constraint Operand Type Enforcement Effect

r General-purpose register Triggers reload if value resides in
memory

m Memory reference Disallows register-only instruction
forms

i / I / J Immediate constant
classes

Restricts encoding based on
architectural limits

g General operand Least restrictive; can reduce
optimization precision

s Link-time symbolic
constant

Ensures relocatable addressing
correctness

M Special memory class Matches architecture-specific
addressing modes

236

Operand constraints define the legal operand shapes for instruction patterns and
thus govern the space of encodable machine code. Precise constraint use improves
code generation determinism, reduces reload insertion, and enables backend optimizers
to preserve intended hardware execution characteristics.

237

8.3Machine Pattern Matching and Macro-Op Fusion
Candidates

Machine pattern matching is the stage in which RTL expressions are translated to
concrete target instructions by matching them against patterns defined in the machine
description (MD) files. The matcher operates before register allocation, using
structural pattern equivalence and operand constraints to select a valid instruction
form from the available encodings.
For modern superscalar out-of-order architectures, correctness alone is insufficient: the
mapping must account for microarchitectural fusion behavior, where the CPU
may fuse multiple dependent operations into a single internal micro-op. The presence
or absence of fusion has measurable effects on pipeline throughput, decode width
utilization, and branch prediction cost. Thus, pattern selection incorporates fusion
feasibility when forming instruction candidates.

8.3.1MD Pattern Identification

MD patterns describe valid RTL-to-instruction mappings:

(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r")

(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]

"TARGET_64BIT"
"add{l}\t%2, %1"

)

Pattern matching requires:

1. Structural equality of RTL operator tree (plus, set, etc.)

238

2. Operand mode consistency (SI, DI, etc.)

3. Constraint satisfaction for operand forms

4. Optional predicate satisfaction (e.g., target-family check, alignment model)

Patterns are ranked based on constraint specificity, not instruction latency.

8.3.2 Fusion-Friendly Canonical Forms

Modern x86-64 cores support macro-op fusion, where certain instruction pairs are
merged into a single dispatch/issue micro-op. Fusion reduces front-end pressure and can
hide branch latency.
Examples of fusion pairs (Intel and AMD families):

Pair Form Fusable Condition

cmp reg, reg/imm + jcc target No intervening instructions; operands in
canonical order

test reg, reg + jcc target Same

inc/dec reg + jcc target Target-dependent; disabled on some
microarchitectures

add/sub reg, imm + cmp reg,
imm

Fusion via flag equivalence if CFG allows
forward substitution

For the compiler to take advantage of fusion, the pattern matcher must preserve
canonical comparison-and-branch forms, avoiding transformations that obscure
the comparison operation or introduce unnecessary temporaries.
Example canonical RTL suitable for fusion:

239

(set (reg:CC FLAGS)
(compare:CC (reg:SI rdi) (const_int 0)))

(set (pc)
(if_then_else (ne (reg:CC FLAGS) (const_int 0)) (label_ref L1) (pc)))

If a transform rewrote this into a conditional move or branchless select, fusion becomes
unavailable.

8.3.3 Pattern Matching for Fusable RTL Sequences

The matcher does not fuse operations; instead, it selects instruction patterns that
preserve fusion eligibility. This depends on:

• Avoiding lowering compare into a disguised arithmetic instruction unless
profitable.

• Ensuring flag-producing instructions are used rather than synthetic boolean
temporaries.

• Maintaining direct branch conditions rather than value-based conditional tests.

Example non-fusable form (undesirable):

t1 = (x == 0);
if (t1) goto L;

RTL lowers to:

(set (reg:SI rax) (eq (reg:SI rdi) (const_int 0)))
(set (pc) (if_then_else (ne (reg:SI rax) (const_int 0)) ...))

This blocks fusion because the compare is no longer tied to the branch decision.

240

8.3.4MD Pattern Encoding for Fusion-Aware Selection

Backends define fusion-preferred patterns by ensuring:

• compare and conditional branch share the same operand source.

• No spurious moves separate compare and branch.

• Operand constraints prevent unnecessary register reloads that break fusion
adjacency.

Example fusion-friendly MD pattern pair:

(define_insn "cmp_si"
[(set (reg:CC FLAGS) (compare:CC (match_operand:SI 0 "register_operand" "r")

(match_operand:SI 1 "nonmemory_operand" "rI")))]
""
"cmp{l}\t%1, %0")

(define_insn "branch_cc"
[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC FLAGS) (const_int 0)])

(label_ref (match_operand 1 "" ""))
(pc)))]

""
"j%C0\t%l1")

The shared use of (reg:CC FLAGS) is critical: it ensures the backend preserves flag
dependency, enabling micro-op fusion.

241

8.3.5 Practical Fusion Limitations

Fusion eligibility may be disabled when:

Limitation Type Example

Instruction ordering
constraints

Scheduling pass separates compare and branch

Register allocation spills Additional loads inserted between fused pair

Target microarchitecture
differences

Some cores disable INC/DEC + Jcc fusion

Mixed-mode arithmetic Flags not preserved across inserted
narrowing/widening ops

Backends therefore place fusion consideration before scheduling and after initial RTL
formation.

8.3.6 Summary

Stage Role

Pattern Matching Maps RTL expressions to legal machine
instructions

Constraint Enforcement Ensures operands are encodable for the chosen
pattern

Fusion-Aware Selection Preserves sequences that allow hardware macro-op
fusion

242

Stage Role

Backend Machine Model Determines whether fusion improves
decode/dispatch efficiency

Correct pattern selection ensures RTL lowering maintains microarchitecturally
optimal control-flow and flag dependency structure, enabling the CPU to exploit
macro-op fusion and reducing execution pipeline pressure.

243

8.4RTL Verification Passes and Semantic
Equivalence Rules

After RTL generation and machine pattern selection, GCC performs a series of
verification and normalization passes to ensure that the RTL representation is well-
formed, structurally consistent, and semantically acceptable for register allocation,
scheduling, and final assembly emission. These verification passes detect illegal operand
modes, invalid addressing forms, incorrect data-dependencies, and transformations that
would violate the observable semantics of the original program.
The correctness criteria enforced at this stage are mechanical: they do not reconsider
language-level meaning but guarantee that the RTL graph preserves program semantics
under the machine model.

8.4.1 Structural Well-Formedness Checks

The verifier ensures that each RTL expression satisfies:

1. Operand Count Validity:
The number of operands matches the operation specification (e.g., set must have
two operands).

2. Mode Consistency:
The mode of the result matches the mode of the operator and its operands unless
the operator is explicitly mode-polymorphic.

3. Legal Operand Class Binding:
Operands must satisfy architecture-specific predicate checks (e.g., memory
operands must pass memory_operand_p under target addressing rules).

244

4. No Illegal Nested Sets:
RTL prohibits nested assignment expressions inside the left-hand side of a set
unless handled by multi-output patterns.

Structural correctness must hold prior to register allocation or scheduling to avoid
invalid machine states.

8.4.2Data-Dependence and Liveness Preservation

The verifier ensures RTL respects the Single Assignment + Mutation model at the
register granularity:

• Each pseudo register must be defined before first use.

• The live range of registers must not violate block dominance constraints.

• Flag registers and condition codes must not be clobbered without explicit
representation.

Incorrect transformations in earlier passes may generate undefined uses:

(set (reg:SI 42) (plus:SI (reg:SI 42) (reg:SI 19))) // illegal: read-before-write

This is corrected by insertion of a temporary or by converting to a canonical set
followed by explicit copy.

8.4.3Address Legality and Alignment Rules

Memory access expressions are validated against the target’s addressing mode
semantics:

• Scaled index addressing must match encodable forms.

245

• Displacements must fit relocatable encoding ranges.

• Misaligned access is permitted only if the architecture supports it or if alignment
assumptions have been explicitly relaxed.

Violations trigger the reload pass, which rewrites memory expressions into:

reg_tmp = address computation
(load/store using reg_tmp)

This step is correctness-preserving but may introduce spill pressure.

8.4.4 Semantic Equivalence Constraints

Verification ensures that transformations preserve observable behavior under the
C++ abstract machine and target ABI:

Category Constraint Example Violation

Volatile access Must not be reordered or
eliminated

Removing repeated volatile
reads

Strict aliasing Type-based disambiguation
cannot be broken

Combining stores across
incompatible pointer types

Floating-point
semantics

IEEE exceptions and
rounding must be preserved
unless explicitly relaxed

Reassociation of FP adds
without -ffast-math

Atomic
operations

Must maintain memory
order model

Lowering seq_cst fences
incorrectly

RTL verification enforces memory ordering through explicit insertion and preservation
of memory barriers and mode-specific atomic operations.

246

8.4.5 RTL Graph Normalization

Before register allocation, RTL is normalized to reduce unnecessary structural variation:

• Convert multi-step address expressions into canonical form.

• Collapse redundant moves (e.g., (set (reg X) (reg X))).

• Remove dead assignments detectable through backward liveness analysis.

• Replace target-independent idioms with target-preferred RTL operators (e.g., neg
vs sub from zero).

This improves pattern matching stability and minimizes the probability of generating
register pressure spikes.

8.4.6 Summary

Verification
Aspect

Enforcement Target Resulting Guarantee

Structural validity RTL node shape and
operand form

Ensures expression tree
correctness

Data dependency
legality

Register liveness and SSA
consistency

Prevents undefined or incorrect
value flow

Addressing
correctness

Target-specific addressing
constraints

Ensures encodable load/store
operations

Semantic
preservation

C++ memory model + FP
+ aliasing

Guarantees observable
correctness

247

Verification
Aspect

Enforcement Target Resulting Guarantee

Normalization Canonical RTL
representation

Enables stable instruction
selection and scheduling

Verification ensures that RTL remains a sound and executable low-level IR,
maintaining semantic equivalence to the source program while preserving the necessary
structural guarantees for back-end optimization, register allocation, and final assembly
emission.

248

8.5 Examples: Live RTL → Final x86-64 Assembly
Correlation

This section illustrates the relationship between live RTL after register allocation and
the final machine instructions emitted for x86-64. The objective is to show how
abstract RTL forms are resolved into architecture-specific register selections, addressing
modes, and instruction encodings. The examples are representative of GCC 11–14 code
generation behavior targeting the System V AMD64 ABI.

8.5.1 Example Source

int add_and_scale(int* x, int i) {
return x[i] * 3 + 5;

}

Compile with inspection:

g++ -O3 -S -fdump-rtl-expand -fverbose-asm example.cpp

8.5.2 Relevant Live RTL (Post-Expand, Pre-RA Simplified)

;; load x[i]
(set (reg:SI 66)

(mem:SI (plus:DI (reg:DI 64) (ashift:DI (reg:DI 65) (const_int 2)))))

;; multiply by 3
(set (reg:SI 67)

(mult:SI (reg:SI 66) (const_int 3)))

;; add 5
(set (reg:SI 68)

249

(plus:SI (reg:SI 67) (const_int 5)))

;; return value
(set (reg:SI 0) (reg:SI 68))

Key observations:

• reg:DI 64 corresponds to argument x

• reg:DI 65 corresponds to argument i

• The addressing (plus (reg64) (i<<2)) reflects 32-bit element size

• Temporaries 66, 67, 68 are pseudo registers (pre–register allocation)

8.5.3 Register Allocation Assignments (Typical)

reg:DI 64 → rdi ; pointer argument
reg:DI 65 → rsi ; index argument
reg:SI 66 → eax ; loaded element
reg:SI 67 → edx ; multiplied result
reg:SI 68 → eax ; reused storage (coalescing)

Register coalescing reduces live-range overlap, avoiding unnecessary moves.

8.5.4 Final x86-64 Assembly (Representative Output)

add_and_scale:
mov eax, DWORD PTR [rdi + rsi*4] # load x[i]
lea edx, [rax + rax*2] # multiply eax by 3
lea eax, [rdx + 5] # add 5
ret

250

Instruction rationale:

RTL Operation Lowered Form Reason

mem load mov eax, [rdi + rsi*4] Standard scaled-index addressing

mult by 3 lea edx, [rax + rax*2] Strength reduction replaces
multiply

add 5 lea eax, [rdx + 5] LEA used to fold immediate
addition

return ret ABI return in eax

Notably, GCC emits lea in place of multiplication where possible, reflecting a backend
strength-reduction rule informed by the cost model.

8.5.5 Example With Alias Inhibition vs restrict

Without restrict:

x[i] = x[i] + 1;

Result (typical):

mov eax, [rdi + rsi*4]
add eax, 1
mov [rdi + rsi*4], eax

With restrict:

add DWORD PTR [rdi + rsi*4], 1 # no load/store separation required

Alias guarantees directly influence RTL → assembly form.

251

8.5.6 Example With Loop-Carried Induction

Source:

int sum(int* x, int n) {
int s = 0;
for (int i = 0; i < n; ++i)

s += x[i];
return s;

}

Vectorization disabled (for clarity):
Final form (representative):

sum:
xor eax, eax
xor ecx, ecx

.L1:
cmp ecx, edi
jge .L2
add eax, DWORD PTR [rsi + rcx*4]
inc ecx
jmp .L1

.L2:
ret

Key correlations to RTL:

• ecx is the BIV induction variable from canonicalization.

• eax carries loop-reduced accumulation.

• Addressing again leverages scaled-index form.

252

8.5.7 Summary

Stage Representation Key Characteristic

Live RTL Typed operator trees with
pseudo registers

Architecture-aware but register-
agnostic

Register
Allocation

Pseudoreg → physical reg
mapping

Live-range coalescing and spill
minimization

Final Assembly Concrete opcodes and
addressing forms

Encodes ISA-efficient
addressing and ALU operations

The transition from RTL to final machine code is guided by machine modes, operand
constraints, alias guarantees, and microarchitectural cost models. The correspondence is
mechanical and traceable, enabling correctness validation, performance tuning, and
architecture-specific optimization reasoning.

Chapter 9

Register Allocation, Spill
Minimization, and Scheduling

9.1Graph Coloring Allocation and Coalescing
Register allocation assigns pseudo registers in RTL to a finite set of physical
registers on the target architecture. GCC applies a variant of graph coloring
register allocation, combined with copy coalescing and spill minimization, to
map the infinite-register SSA idealization to the fixed register resources of x86-64. The
allocator constructs an interference graph representing simultaneous live ranges, then
attempts to color the graph using the register classes available in the target machine
model.

9.1.1 Interference Graph Construction

An interference graph is defined as:

• Each node represents a pseudo register.

253

254

• An edge between two nodes indicates both registers are live at the same time,
thus cannot use the same physical register.

Liveness information is computed using backward data-flow analysis:

LIVE-IN(block) = USE(block) � (LIVE-OUT(block) − DEF(block))
LIVE-OUT(block) = � LIVE-IN(successors(block))

Two registers p and q interfere if:

� program point k: p � LIVE(k) � q � LIVE(k)

Edges are inserted accordingly.
The resulting graph often has higher-degree nodes representing wide live ranges
spanning multiple blocks.

9.1.2 Register Classes and Architectural Constraints

x86-64 exposes distinct register classes:

Class Members Typical Usage

GPR 64-bit rax rbx rcx rdx rsi rdi r8–
r15

Integer arithmetic,
addressing

XMM/YMM/ZMM SIMD registers Vectorization and FP
arithmetic

FLAGS Implicit condition register Generated by ALU ops

Graph coloring is performed per class, not globally.
A pseudo can only be colored with registers from the class dictated by its use sites and
operand constraints.

255

9.1.3Graph Coloring Heuristic

GCC applies a simplify–spill–select heuristic:

1. Simplify:
Remove nodes with degree < available registers; push to stack.

2. Spill Candidates:
If no such nodes exist, select a spill candidate based on spill cost:

• Estimated dynamic use frequency.

• Memory access penalties.

• Loop nesting depth weighting.

3. Assign Colors (Select):
Pop nodes in reverse order, assigning the lowest-cost available register.

The algorithm guarantees coloring when feasible; otherwise, spill insertion rewrites the
RTL and the allocator re-runs on the modified graph.

9.1.4 Copy Coalescing

Copy coalescing reduces the number of register move instructions by forcing two pseudo
registers to share the same physical register, provided that doing so does not introduce
new interference. For:

(set (reg p) (reg q))

Coalescing attempts to color p and q identically.
Conditions for coalescing:

256

• p and q must not interfere.

• Their live ranges must be merged without exceeding degree thresholds.

When beneficial, coalescing:

• Removes move instructions at instruction selection level.

• Reduces register pressure by tightening live-range boundaries.

9.1.5 Conservative vs Aggressive Coalescing

GCC uses aggressive coalescing, relying on later spill decisions to undo pathological
merges:

• Conservative coalescing performs only safe merges.

• Aggressive coalescing merges when beneficial, even if liveness expansion
increases temporary node degree.

This strategy leverages the rematerialization and reload support in later passes to
correct adverse cases.

9.1.6 Interaction with SSA Form

While SSA inherently minimizes interference, RTL is not SSA.
However, SSA-derived live ranges guide coalescing:

• The allocator attempts to preserve SSA �-webs (related SSA names).

• �-resolution becomes register coalescing when possible.

• If a �-node cannot be coalesced, moves are inserted in predecessor blocks.

Thus, coalescing serves as the structural analog of SSA �-elimination.

257

9.1.7 Summary

Component Purpose Result

Interference
Graph

Encodes simultaneous liveness
constraints

Determines register exclusivity

Graph Coloring Assigns physical registers to
pseudos

Produces legal allocation or
triggers spill

Spill Heuristic Minimizes memory overhead Balances performance vs.
register scarcity

Coalescing Eliminates redundant copies
and resolves �-nodes

Reduces move instructions and
live-range fragmentation

Graph coloring allocation and coalescing ensure that the abstract SSA machine
model is lowered into an architecture-valid and performance-efficient mapping to
physical registers, balancing instruction count, memory traffic, and pipeline utilization.

258

9.2 PBQP Allocation and Hybrid Region Spilling
While graph coloring remains the dominant allocation strategy in GCC’s RTL backend,
certain register allocation subproblems cannot be solved optimally under classical
coloring heuristics without excessive spilling or fragmentation. To address these cases,
GCC employs Partitioned Boolean Quadratic Programming (PBQP) allocation
for constrained regions, particularly those involving complex register classes, vector
registers, and instructions with tight operand coupling. PBQP supports approximate,
cost-driven register assignment where interactions among live ranges form cost matrices
rather than simple interference edges.
Hybrid allocation in GCC combines graph coloring for general-purpose regions
and PBQP-based allocation for constrained subregions, with region-based
spilling to minimize spill density and memory traffic under register pressure.

9.2.1 PBQP Formulation Overview

In PBQP allocation:

• Each pseudo register corresponds to a variable.

• Each allowable register assignment corresponds to an option for that variable.

• Each assignment has an associated base cost, reflecting spill likelihood, register
preference, and operand constraints.

• Interferences and preference interactions are expressed as pairwise cost
matrices.

Objective:

Minimize: Sum(base_cost(p)) + Sum(cost_matrix(p, q))

259

where p and q are pseudo registers live simultaneously.
Unlike graph coloring, PBQP allows the allocator to choose suboptimal (but globally
profitable) assignments to reduce spill propagation and constraint cascades.

9.2.2 Constrained Allocation Scenarios Requiring PBQP

PBQP is invoked when:

1. Operand classes differ across uses (e.g., a pseudo register must use a SIMD
register for one instruction and a GPR for another).

2. Instructions enforce register pairing, such as multiply-high/low or specific
operand register combinations.

3. Vectorized loops require consistent allocation for lanes to preserve shuffle and
reduction patterns.

4. Coalescing would create dense cliques that collapse under graph coloring.

PBQP allows the allocator to express these requirements as structured costs rather than
binary infeasibility.

9.2.3Hybrid Region-Based Spilling

Instead of spilling at the whole-function level, GCC performs region-based spilling:

• The function is partitioned into allocation regions (commonly loops or basic block
clusters).

• Each region undergoes allocation independently.

• Spill decisions consider loop nesting depth, frequency, and memory bandwidth
model.

260

Spill cost approximation:

spill_cost = dynamic_frequency * penalty(memory_latency + pipeline_stall_cost)

Spills in hot loops are avoided unless interference pressure exceeds register capacity
across all feasible allocations.

9.2.4 Live-Range Splitting under PBQP

PBQP enables precise live-range splitting, dividing a pseudo register’s lifetime to
reduce the interference footprint:

p: ���������������
split into:
p�: �������
p�: ��������

This permits:

• Different register assignments for subregions.

• Spill insertion only where pressure peaks.

• Coalescing applied locally rather than globally.

Live-range splitting is essential in vectorized kernels, where accumulator registers
conflict with induction variables and address registers.

9.2.5 Interaction with Scheduling and Rematerialization

The allocator communicates spill decisions to the scheduler:

• If an intermediate value is cheap to recompute, it is marked rematerializable
rather than spilled.

261

• For x86-64, immediates, address constants, and loop-invariant scale factors are
prime candidates.

Example canonical rematerialization substitution:

spill(reg)
→ (reload cost) > (recompute ALU op)
→ emit recompute instead of load

This avoids memory bandwidth penalties in tight loops.

9.2.6 Summary

Component Role Benefit

PBQP Allocation Cost-minimized register
assignment under complex
constraints

Handles SIMD and operand-
class conflicts more effectively
than graph coloring

Region-Based
Spilling

Localized spill decisions
based on hotness and
pressure

Minimizes memory traffic in
hot loops

Live-Range Splitting Reduces interference
footprint and spill scope

Preserves allocation quality
across program regions

Rematerialization Recomputes cheap
expressions instead of
loading from memory

Reduces stall and bandwidth
pressure

PBQP-based allocation and hybrid region spilling refine register assignment beyond
classical graph coloring, enabling GCC to maintain efficient code generation even under

262

complex operand constraints and high register pressure, especially in vectorized, loop-
intensive, and latency-sensitive kernels.

263

9.3 Scheduler: Port Pressure, Latency, Throughput
Tables

Instruction scheduling in GCC is performed after register allocation to map the
final RTL instruction stream onto the target microarchitecture’s execution resources.
Modern x86-64 processors feature multiple execution ports, heterogeneous functional
units, pipelined ALUs, SIMD units, and load/store subsystems. The scheduler attempts
to minimize stall cycles and execution port contention, while improving pipeline
utilization and reorder buffer stability.
The scheduler uses machine cost models derived from the target’s instruction tables,
including:

• Latency: cycles before a result becomes available.

• Throughput: cycles per issued instruction under steady state.

• Port usage mask: which execution pipelines an instruction may use.

• Load/store characteristics: memory latency, forwarding rules, and bandwidth.

These models guide reordering decisions to maintain both data dependency
correctness and executability under microarchitectural resource limits.

9.3.1 Instruction Latency Constraints

Latency defines how many cycles must elapse before an instruction’s result can be
consumed. The scheduler preserves true dependencies:

t2 = f(t1)
t3 = g(t2)

264

If f() has latency L_f, then the scheduler must ensure that g() is not issued before t2
is available. If sufficient independent instructions exist, they are scheduled in the
gap to avoid pipeline stalls. Failure to find independent work results in a data hazard
stall.
GCC uses dependency edge weightings to prioritize latency-critical paths when
selecting scheduling order.

9.3.2 Execution Port Pressure and Resource Contention

Each instruction type maps to one or more execution ports. For example, on a modern
Intel core:

Instruction Type Possible Ports Notes

Integer ALU add/sub P0, P1 High throughput

Integer multiply P0 Higher latency

Load P2/P3 Memory hierarchy
dependent

Store P4 + memory write-back path Store-buffer capacity limits

SIMD addps / mulps P0, P1 Vector throughput
dependent on width

The scheduler distributes instructions to avoid sustained load on a single port,
improving throughput.
This is crucial in vector-heavy loops, where unchecked accumulation of loads, stores,
or multipliers saturates particular resources.

265

9.3.3 Throughput-Based Instruction Arrangement

Throughput defines the expected steady-state rate of an instruction sequence. For
loop kernels:

Throughput = max(port_pressure, dependency_chain_latency, memory_bandwidth_limit)

The scheduler works to minimize the dominant term:

• If port pressure dominates → reorder or interleave instruction types.

• If latency dominates → interleave independent operations to hide wait cycles.

• If memory stalls dominate → prefer software prefetching and register-blocking
patterns.

Throughput considerations are strongest in loops with hot execution frequency
determined from profile-guided optimization (PGO) or heuristics.

9.3.4 Scheduling Boundary Constraints

The scheduler must respect:

• Dependency barriers (e.g., condition code dependencies, atomic operations)

• Control-flow boundaries (cannot reorder across unpredictable branches)

• Volatile load/store ordering semantics

• Memory fence enforcement under C++ memory model

x86 enforces strong memory ordering, but compiler scheduling must maintain
ordering semantics when multiple threads observe operations.

266

9.3.5 Example: Scheduling a Hot Loop Body

Consider:

for (int i = 0; i < n; ++i)
y[i] = a * x[i] + b;

Lowered key instructions (vectorized case omitted):

Instruction Ports Latency Throughput Consideration

Load x[i] P2/P3 memory-bound Interleave loads

Multiply P0 high latency Hide with independent loads

Add P0/P1 cheap Schedule after multiply to
avoid stall

Store y[i] P4 buffer limited Ensure store buffer not
saturated

Optimal scheduling clusters loads early, places multipliers first among ready ops,
and positions stores last to minimize pipeline blockage.

9.3.6 Summary

Component Role Result

Latency tables Establish dependency
timing

Prevent data hazards and stalls

Port usage maps Guide instruction
interleaving

Reduce execution port
contention

267

Component Role Result

Throughput models Evaluate sustainable
pipeline rate

Improve loop performance and
pipeline occupancy

Scheduling legality
checks

Ensure semantic correctness Maintain defined C++ memory
and ordering behavior

The scheduler transforms a functionally correct sequence of RTL instructions into
a sequence that matches the physical constraints of the execution pipeline,
minimizing cycles lost to stalls and maximizing sustained computational throughput
on x86-64 microarchitectures.

268

9.4 Skylake-Class µArch Execution Ports
(0,1,2,3,4,5,6)

Modern x86-64 processors in the Skylake-class microarchitecture family (Skylake,
Cascade Lake, Coffee Lake, Ice Lake Server with minor variations) use a distributed
execution backend where instructions are issued to multiple execution ports, each
associated with one or more functional units. Instruction scheduling in GCC’s backend
is influenced by these port mappings to avoid resource saturation, reduce critical-
path latency, and optimize steady-state throughput in loop kernels.
The port configuration defines where each instruction may execute and how often,
allowing the scheduler to interleave operations to maintain pipeline concurrency.

9.4.1 Execution Port Summary

Port Primary Functional Units Operations

Port 0 ALU / Integer Multiply / FP
Add

add, sub, integer multiply,
scalar/packed FP add

Port 1 ALU / Integer Multiply / FP
Multiply

add, integer multiply, scalar/packed
FP multiply

Port 2 Load Unit (address generation
+ load pipeline)

Load from memory

Port 3 Load Unit (dual load pipeline) Load from memory

Port 4 Store Data + Store Address Memory stores and store address
resolution

Port 5 Branch Unit / Misc Branches, flag-dependent operations

269

Port Primary Functional Units Operations

Port 6 Address Generation Unit
(AGU) support

Complex address formation,
interaction with ports 2–4

The execution engine can often issue multiple µops per cycle, but port contention
occurs if too many operations target the same port class.

9.4.2ALU and FP Arithmetic Distribution (Ports 0 and 1)

Arithmetic operations—integer or floating-point—are distributed across Ports 0 and
1:

• Integer add/sub and logic instructions are symmetric across both ports.

• Integer multiply may have asymmetric latency and throughput constraints but
is still shared across the same two ports.

• Scalar and packed FP addition vs. multiplication are allocated to separate
pipelines, but still map primarily through Ports 0/1.

Implication for scheduling:

• Interleave add and multiply operations to avoid single-port bottleneck.

• Avoid clustering dependent FP multiplies; latency stacking increases stall
probability.

9.4.3 Load and Store Pipelines (Ports 2, 3, 4, 6)

Loads and stores are bandwidth-limited and affect loop performance. The relevant port
usage:

270

Operation Ports Used Notes

Load (simple base+index) Port 2 or Port 3 Two loads may issue per
cycle if independent

Store Port 4 Store data path;
constrained by store buffer
entries

Complex Addressing (scaled index
+ displacement)

Port 6 assists
address
generation

AGU availability influences
scheduling order

Scheduling considerations:

• Sustained loops with two loads + one store per iteration saturate Ports 2/3/4
before arithmetic becomes limiting.

• AGU pressure (Port 6) becomes the bottleneck when using multiple complex
addressing forms in vector loops.

9.4.4 Branching and Control Dependencies (Port 5)

Branches and flag-dependent operations execute on Port 5, with branch prediction and
µop fusion influencing cost:

• cmp + jcc fusion reduces front-end µop count.

• Divergent branches degrade throughput; masking/vector predication is preferred
on AVX-512 systems.

The scheduler attempts to:

271

• Maintain compare→branch adjacency to enable fusion.

• Avoid unnecessary flag-setting operations that would consume Port 5 bandwidth.

9.4.5 Performance Implications in Loop Kernels

In compute kernels, steady-state throughput is frequently determined by:

max(
ALU/FP port utilization (Ports 0/1),
Load bandwidth (Ports 2/3),
Store bandwidth and buffer limits (Port 4),
Address generation constraints (Port 6)

)

Case analysis:

• Memory-bound loops saturate Ports 2/3/4 before arithmetic limits are
reached.

• Dot-product or matrix kernels saturate Ports 0/1 (FP pipelines).

• Gather/scatter patterns become Port 6 constrained due to complex
addressing.

Thus, GCC’s scheduling heuristics bias:

• Out-of-order reordering to hide arithmetic latency.

• Load clustering early in iteration to overlap latency.

• Store deferment to avoid store buffer congestion.

272

9.4.6 Summary

Port Group Resource Type Scheduling Goal

Ports 0 & 1 Integer/FP ALU pipelines Balance arithmetic workload to
prevent single-port overload

Ports 2 & 3 Load pipelines Spread loads to maintain bandwidth
and avoid serialization

Port 4 Store data pipeline Space stores to respect buffer and
retirement bandwidth

Port 6 Address generation Simplify addressing forms or
interleave AGU consumers

Port 5 Branch/control Preserve fusion patterns and avoid
unnecessary flag dependencies

Understanding port usage is essential for correlating generated assembly with
actual execution performance, enabling the compiler backend to emit instruction
sequences that align with Skylake-class superscalar, out-of-order execution
characteristics.

273

9.5 Examples: Stall Origin Detection via Annotated
Disassembly

Performance analysis of generated code requires understanding where pipeline stalls
originate and whether they are caused by data dependencies, port pressure, memory
latency, or speculation failures. Annotated disassembly correlates machine instructions
with microarchitectural behavior by overlaying latency, throughput, and port
usage information on the final binary. This section demonstrates structured stall-
source identification for Skylake-class x86-64 hardware.

9.5.1 Example Hot Loop

float dot(const float* x, const float* y, int n) {
float s = 0.f;
for (int i = 0; i < n; ++i)

s += x[i] * y[i];
return s;

}

Compiled with:

g++ -O3 -march=skylake -fno-tree-vectorize -S dot.cpp

Representative assembly (simplified):

.L1:
movss xmm1, DWORD PTR [rdi + rax*4] # load x[i]
movss xmm2, DWORD PTR [rsi + rax*4] # load y[i]
mulss xmm1, xmm2 # multiply
addss xmm0, xmm1 # accumulate

274

inc rax
cmp rax, rdx
jl .L1

9.5.2Annotated Disassembly with Port Maps and Latency

Applying annotation (via tools such as llvm-mca, IACA-equivalent models, or manual
µOp tables):

Instruction Port(s) Used Latency Notes

movss [rdi+rax*4] P2 (Load) memory-
dependent

May stall if L1 miss

movss [rsi+rax*4] P3 (Load) memory-
dependent

Independent load; dual-
load bandwidth available

mulss xmm1, xmm2 P1 (FP multiply
pipe)

~4 cycles Critical-path contributor

addss xmm0, xmm1 P0 (FP add pipe) ~4 cycles Forced dependency on
mulss result

inc rax P0/P1 1 cycle Not latency-critical

cmp/jl (fusable) P5 1 cycle +
branch pred

Macro-op fusion prevents
front-end stall

Key performance characteristic:

Critical path = mulss → addss dependency chain

This chain defines the minimum achievable throughput regardless of port
availability.

275

9.5.3 Stall Source Classification

Stalls in this loop may originate from one of four sources:

Stall Type Detection Pattern Likely Cause

Memory latency stall Loads retire slowly; IPC
falls toward 1

Input not in L1 cache

Port contention stall Port 2/3 overcommitted Excessive load pressure (two
loads per iteration)

Dependency stall FP pipeline throttles mulss latency dominating
addss

Branch misprediction
stall

Loop iteration
unpredictable

Data-dependent control flow
(not applicable here)

In this kernel, the dominant limiting factor depends on data residency:

• If x and y fit in L1/L2 → dependency-limited.

• If sourced from memory → memory-latency-limited.

9.5.4Annotated Analysis with Throughput Model

Steady-state throughput estimate (assuming L1 residency):

mulss latency � 4 cycles
addss latency � 4 cycles
Both executed in dependent sequence → throughput limited to ~1 result / 4 cycles

Load units (Ports 2 and 3) can sustain two loads per cycle, so load bandwidth does
not dominate if data is warm.

276

The backend scheduler cannot shorten dependency chains; vectorization is required
to reduce dependency depth.

9.5.5Vectorized Case Contrast (AVX2 / AVX-512)

When vectorized:

vmovaps ymm1, YMMWORD PTR [rdi + rax]
vmovaps ymm2, YMMWORD PTR [rsi + rax]
vfmadd231ps ymm0, ymm1, ymm2 # fused multiply-add

Characteristics:

• FP multiply and add fused → latency reduced to ~4 cycles for 8–16 elements
in parallel.

• Critical-path length no longer equals scalar dependency chain.

• If stalls persist, origin shifts to Port 2/3 memory bandwidth.

Thus annotated stall diagnosis provides direction:

Dominant Stall Optimization Strategy

Dependency chain Apply vectorization

Load port pressure Preload / software prefetch / loop blocking

Store buffer pressure Delay stores or restructure accumulation

Front-end / decode Ensure fusion patterns preserved (cmp+jcc)

277

9.5.6 Summary

Analysis Target What Is Inferred How Used in Optimization

Port assignment Detect port saturation Reorder arithmetic and memory
operations

Latency path Identify critical dependency
chains

Encourage vectorization or
unrolling

Memory pressure Detect bandwidth or cache
limitations

Apply blocking, prefetching, or
layout tuning

Branch fusion state Determine front-end load Maintain compare–branch
adjacency

Annotated disassembly is a mechanical diagnostic tool: it reveals stall sources that
are otherwise invisible in pure assembly or high-level IR. This correlation is essential
for verifying whether backend scheduling, register allocation, and loop structure
align correctly with Skylake-class pipeline execution constraints.

Chapter 10

x86-64 SIMD Vectorization and
Data Layout

10.1Vector Instruction Selection (SSE → AVX →
AVX2)

SIMD vectorization on x86-64 progresses through several instruction set generations,
each expanding register width, datatype support, throughput characteristics, and
functional capabilities. GCC’s backend selects vector instructions based on:

1. Available target ISA (-march= or -mavx* flags)

2. Vectorization profitability heuristics (iteration count, alignment, memory
stride)

3. Scalar evolution and dependence safety

4. Lane width selection for throughput vs. register pressure

278

279

The vectorizer operates on GIMPLE vector IR and later lowers to RTL patterns
corresponding to SSE, AVX, or AVX2 instruction forms. The backend ensures that
chosen vector width and instruction variants align with the core’s decode, port, and
pipeline constraints.

10.1.1 SSE (Streaming SIMD Extensions)

• Register width: bits (xmm0–xmm15)

• Data Types: FP32, FP64, and limited integer operations

• Instruction Semantics: Register-to-register operations; loads/stores performed
explicitly

• No fused multiply-add support

Example lowering (scalar → SSE):

a[i] = b[i] + c[i];

May be emitted as:

movaps xmm1, XMMWORD PTR [rdi] ; load b
movaps xmm2, XMMWORD PTR [rsi] ; load c
addps xmm1, xmm2 ; vector add
movaps XMMWORD PTR [rdx], xmm1 ; store result

SSE vectorization is latency-limited and does not fully exploit modern port distribution;
it is retained mainly for compatibility.

280

10.1.2AVX (Advanced Vector Extensions)

• Register width increased to bits (ymm registers)

• Three-operand instruction format (dest = src0 op src1)

• Split load/store paths from arithmetic to enhance pipeline utilization

• Still no integer gather/scatter; integer support largely scalarized or emulated

GCC prefers AVX patterns when both input and output vectors are representable as
V8SF / V4DF etc., and when loop bodies have enough work to amortize transition cost.
Example:

vmovaps ymm1, YMMWORD PTR [rdi]
vmovaps ymm2, YMMWORD PTR [rsi]
vaddps ymm1, ymm1, ymm2
vmovaps YMMWORD PTR [rdx], ymm1

The VEX prefix avoids partial register stalls that SSE inflicted when mixed with AVX
state.

10.1.3AVX2 (Integer Vectorization Extension)

AVX2 adds:

• Full integer ALU support in 256-bit vectors

• Vector load/store addressing modes equivalent to scalar counterparts

• Gather instructions for irregular indexing patterns (vgatherdps, vgatherdpd)

281

This enables efficient vectorization of mixed integer-floating kernels, hash functions,
pixel and DSP processing, and polynomial arithmetic.
Example:

for (int i = 0; i < n; ++i)
a[i] = b[i] * c[i];

Lowered to AVX2 integer multiply:

vmovdqu ymm1, YMMWORD PTR [rdi]
vmovdqu ymm2, YMMWORD PTR [rsi]
vpmulld ymm1, ymm1, ymm2 ; 8×32-bit integer multiply
vmovdqu YMMWORD PTR [rdx], ymm1

10.1.4Vector Width and Microarchitectural Throughput

ISA Register Width FP Throughput
Characteristics

Integer SIMD
Capability

SSE 128-bit Shared FP port, add/mul
pairing limited

Partial

AVX 256-bit Add/mul split pipelines;
better ILP

Limited integer

AVX2 256-bit Same FP model; adds full
integer ALU

Full 32-bit +
partial 64-bit

Selecting vector width involves:

• Port utilization analysis (Ports 0/1 for FP, 2/3 load, 4 store)

• Load/store alignment and AGU pressure

282

• Register pressure tradeoff (wider vectors imply fewer registers available for
temporaries)

10.1.5 ISA Transition and Domain Penalties

Mixing SSE and AVX instructions may generate state transitions incurring
performance penalties:

• Transition from SSE to AVX incurs upper-state zeroing cost

• GCC avoids mixing domains unless register pressure or ABI constraints force
fallback

• Full AVX register domain is preferred for any loop with vector arithmetic

To enforce AVX-domain consistency:

-mprefer-vector-width=256

For scalar fallback or power-aware behavior:

-mprefer-vector-width=128

10.1.6 Summary

ISA Key Benefit Backend Selection Driver

SSE Compatibility and minimal
register state

Legacy or narrow vector hot
paths

AVX Higher ILP and three-operand
form

FP kernels, vector adds/muls

283

ISA Key Benefit Backend Selection Driver

AVX2 Full integer + FP SIMD support Mixed arithmetic and
throughput-critical loops

Vector instruction selection determines which hardware pipelines are engaged, how
data is grouped, and what degree of parallelism the loop can sustain. GCC’s
backend chooses the SIMD width and instruction form that maximize throughput while
preserving correctness and respecting microarchitectural scheduling constraints.

284

10.2 Load/Store Alignment Constraints and
Gather/Scatter Costs

Vector performance on x86-64 is strongly influenced by memory access alignment
and the regularity of data indexing. The backend must select load/store forms and
evaluate whether irregular memory access patterns require gather/scatter operations,
register shuffle sequences, or scalar fallback. These choices directly affect latency,
throughput, and effective memory bandwidth.

10.2.1Alignment Constraints for SIMD Loads and Stores

For SSE, AVX, and AVX2, aligned accesses (aligned to the full vector width) are
optimal:

Vector ISA Register Width Optimal Alignment
Boundary

SSE 128 bits 16 bytes

AVX/AVX2 256 bits 32 bytes

Unaligned loads and stores are permissible under all post-Nehalem microarchitectures;
however:

• Aligned loads typically have identical latency to unaligned loads when memory
is L1-resident.

• For cross-cacheline, TLB-miss, or page-boundary cases:

– Unaligned accesses may require two cache-line requests or replays.

285

– The penalty amplifies in bandwidth-bound loops.

GCC uses alignment inference from:

• Scalar evolution offsets

• Pointer provenance analysis

• Attribute annotations such as __builtin_assume_aligned or alignas

If alignment can be proven, the vectorizer emits aligned memory instructions:

vmovaps ymm0, YMMWORD PTR [rdi] ; aligned load

Otherwise:

vmovups ymm0, YMMWORD PTR [rdi] ; unaligned load

The distinction affects replay rates under heavy load pressure.

10.2.2 Stride and Interleave Effects on Access Form

Unit stride (a[i], b[i]) produces efficient wide loads/stores.
If stride > 1 (e.g., a[i*2]), the vectorizer attempts:

1. Scaled addressing, if legal:

vmovaps ymm0, YMMWORD PTR [rdi + rax*8]

2. Lane unpacking + permutation, if stride is affine:

• Adds shuffle overhead but still cheaper than gather.

If stride is non-affine or depends on elements:

a[i] = b[index[i]];

access becomes irregular.

286

10.2.3Gather and Scatter Instructions (AVX2)

AVX2 introduces gather operations:

vgatherdps ymm0, [rdi + ymm1*4], ymm2

Characteristics:

Property Behavior

Latency ~10–20 cycles (microarchitecture dependent)

Throughput Effectively serialized for most index patterns

Port Usage Uses load ports + AGU + retirement resources

Load Granularity Loads per element, not per vector

Thus, gather performance more closely resembles scalar loads in parallel, not one
vector load.
The scheduler treats gather as a composite load with combined Port 2/3 + Port 6
demand.
Scatter (store equivalent) relies on store buffer capacity and retires at similar cost.

10.2.4Vectorizer Decision Rules for Gather/Scatter Emission

The vectorizer will emit gather/scatter only if:

1. Loop trip count is high enough to amortize the instruction overhead.

2. Index array is proven non-aliasing, to avoid additional speculation stalls.

3. The memory footprint is expected to remain L1/L2 resident, or prefetching is
applicable.

287

If these conditions do not hold, GCC falls back to:

• Scalarized load/store sequences, or

• Strip-mine and pack, converting irregular memory to temporary contiguous
buffers.

This trade-off is determined by a profitability model evaluating:

gather_cost � unrolled_scalar_cost + (register_shuffle_cost × vector_width)

10.2.5Hybrid Approaches: Load + Shuffle vs. Gather

For moderate irregularity patterns (e.g., permutations from small lookup tables):

• The backend attempts load + vpshufd / vpermps sequences.

• Shuffles are handled on Port 5 or SIMD pipelines, avoiding load port
saturation.

• Shuffles cost ~1 cycle throughput, significantly cheaper than gather.

This is preferred when index patterns are static or compile-time analyzable.

10.2.6 Summary

Access Pattern Backend Strategy Performance Outcome

Contiguous aligned Use aligned loads/stores Highest throughput, lowest
replay penalty

288

Access Pattern Backend Strategy Performance Outcome

Contiguous
unaligned

Use unaligned loads/stores Slight penalty; minimal if L1-
resident

Affine stride Use scaled addressing +
shuffles

Moderate cost, still vector-
efficient

Fully irregular Emit gather/scatter or scalar
fallback

High latency; often memory-
bound

Static permutation Load + shuffle instructions Avoids gather, preserves
bandwidth

Alignment and access regularity determine whether vectorization produces memory-
efficient SIMD kernels or becomes latency-bound by gather/scatter operations.
GCC’s backend selects the vector load/store strategy that minimizes replay, port
saturation, and AGU contention while preserving correctness.

289

10.3Data Structure Layout for Cache-Optimized
Iteration

The effectiveness of SIMD vectorization depends not only on the arithmetic instruction
sequence but also on the spatial and temporal locality of data. The backend
ultimately consumes data in a hardware-defined streaming model, and the layout
of arrays, structs, and object aggregates directly influences cache footprint, memory
bandwidth, TLB behavior, and alignment guarantees. GCC’s vectorization heuristics
assume that memory accesses follow unit-stride, contiguous iteration where
elements required for computation are laid out sequentially in memory.
When data layout does not satisfy these properties, vectorization either fails, requires
gather/scatter, or is forced to insert additional shuffle stages, increasing port pressure
and cycle cost. Therefore, designing data structures for predictable linear access is a
prerequisite for generating high-throughput vector code.

10.3.1AoS vs. SoA Transformations

The difference between Array of Structures (AoS) and Structure of Arrays
(SoA) is fundamental for SIMD.
Example AoS:

struct Point { float x, y, z; };
Point a[N];

Accessing a[i].x yields stride = 3 * sizeof(float) = non-unit stride → requires shuffle
or gather.
Equivalent SoA:

struct Points { float x[N], y[N], z[N]; };

290

Now x[i], y[i], z[i] are all unit-stride contiguous → directly vector-loadable.

Layout Vectorization
Suitability

Reason

AoS Poor Fields interleaved → non-contiguous per
component

SoA Excellent Each field forms a contiguous vector array

The compiler cannot always legally convert AoS to SoA; therefore, layout should be
determined at design time for bandwidth-critical loops.

10.3.2 Padding, Alignment, and Page-Locality Considerations

Data structures should be aligned to the vector register width of the target
architecture:

Target ISA Preferred Alignment

SSE 16 bytes

AVX/AVX2 32 bytes

AVX-512 64 bytes

Misalignment does not cause correctness issues in modern cores, but it increases:

• Load pipeline replay rates

• Data TLB lookup frequency

• Cache-line doubling on boundary crossings

291

Explicit alignment:

alignas(32) float x[N];

or dynamic alignment assertions:

float* x = static_cast<float*>(aligned_alloc(32, N * sizeof(float)));

improve streaming efficiency.

10.3.3 Loop Nest and Tile Layout for Cache Blocking

For multidimensional data (matrices, tensor blocks), iteration should follow row-major
or column-major order depending on memory layout. Consider row-major storage:

for (i)
for (j)

A[i][j] = ...

This order yields unit-stride iteration in j. Reversing the loops introduces cache line
thrashing and inhibits vectorization because each iteration jumps by one full row.
For larger workloads, blocking improves locality:

for (ii = 0; ii < N; ii += B)
for (jj = 0; jj < M; jj += B)

for (i = ii; i < ii+B; ++i)
for (j = jj; j < jj+B; ++j)
A[i][j] = ...

Block size B is chosen based on L1/L2 capacity and vector width constraints.

292

10.3.4 Struct Reordering and False-Sharing Avoidance

When structures contain fields with differing update frequencies, group high-access
fields together to minimize unnecessary cache line loads.
Example:

struct S {
float temperature;
float pressure;
int id; // rarely used
float density;

};

Reorder to:

struct S {
float temperature;
float pressure;
float density;
int id;

};

This reduces wasted cache bandwidth when streaming the float fields across SIMD
operations.
Similarly, in multi-threaded contexts, avoid placing mutable fields accessed by multiple
cores on the same cache line to prevent false sharing. Use padding:

struct alignas(64) Shared {
float value;
char pad[60];

};

293

10.3.5Alignment Propagation Through the Compiler

For the compiler to leverage alignment in vector loads:

• Alignment must be provable at compile time (static alignment), or

• Guaranteed via explicit assertion (__builtin_assume_aligned).

Example:

void f(float* __restrict x) {
x = (float*)__builtin_assume_aligned(x, 32);
// vectorizable loop follows

}

This allows the backend to emit vmovaps instead of vmovups, reducing memory replay
penalties.

10.3.6 Summary

Data Layout
Property

Impact on Vectorization Resulting Performance
Behavior

Contiguous per-field
arrays (SoA)

Enables direct vector loads High throughput, minimal
shuffles

Interleaved fields
(AoS)

Requires gather/shuffle Increased latency and port
pressure

Alignment to vector
width

Reduces load/store replay Stable streaming bandwidth

294

Data Layout
Property

Impact on Vectorization Resulting Performance
Behavior

Correct loop
iteration order

Preserves spatial locality Avoids cache thrashing and
pipeline stalls

Blocking/tiling Improves L1/L2 reuse Helps both scalar and
vectorized kernels

Effective SIMD performance depends on designing data layouts that match hardware
memory semantics, ensuring that iteration patterns are predictable,
contiguous, and aligned, and avoiding unnecessary addressing complexity.

295

10.4ABI Implications of Vector Calling Conventions

Vectorization affects not only computation inside a function but also how data is passed
across function boundaries. The x86-64 System V ABI (used by Linux) defines how
vector registers, aggregate types, and SIMD values are passed between caller and
callee. GCC must honor these rules during IR lowering and register allocation to ensure
binary compatibility, especially across:

• Shared libraries

• Dynamically loaded modules

• Handwritten assembly routines

• Cross-compiler builds (e.g., GCC � Clang interoperability)

Thus, SIMD-aware code must consider both the performance model and the ABI
stability requirements.

10.4.1Vector Registers in the x86-64 System V ABI

Under System V AMD64 ABI:

• XMM0–XMM7 are used for passing floating-point arguments.

• XMM0 is used for returning floating-point and vector values up to 128 bits.

• YMM registers do not expand the ABI; AVX and AVX2 are treated as
extensions over XMM state.

This means:

296

• A 256-bit __m256 function argument is passed in XMM registers, split across
pairs of registers in the calling convention.

• The caller and callee must preserve legacy XMM register save rules even
when operating in AVX2 or AVX-512 mode.

Example function:

__m256 add_avx(__m256 a, __m256 b) {
return _mm256_add_ps(a, b);

}

The ABI passes a and b via expanded XMM register tuples, not single 256-bit registers
at the ABI boundary.

10.4.2 Register Save / Restore Semantics

Registers are classified into:

Register Class Caller-Saved Callee-Saved

XMM0–XMM15 Yes No

YMM upper halves Yes No

Thus:

• Functions using vector registers must not assume registers are preserved
across calls.

• The compiler inserts spills/restores when calling other functions mid-vector loop.

• Deeply vectorized kernels avoid interprocedural calls to prevent register
pressure expansion.

297

This influences the inlining heuristics: the compiler aggressively inlines vector loops
to avoid ABI register crossing overhead.

10.4.3ABI and State Transition Costs (SSE � AVX)

Mixing SSE and AVX instructions causes state transitions between legacy XMM
state and AVX YMM state. These transitions incur a performance penalty on most
Intel architectures before Ice Lake.
The ABI enforces:

• Function entry into AVX state using vzeroupper to avoid false dependencies in
XMM register rename tracking.

• GCC automatically emits vzeroupper when a function emits AVX instructions
but may be called from a non-AVX caller.

This is required to avoid register bank stalls, not for semantic correctness.

10.4.4 Struct and Aggregate Passing Rules

The ABI breaks large composite parameter types into:

• Base integer arguments in GPRs

• Base floating arguments in XMM registers

• Remaining components by memory reference

Example:

struct Vec {
float a[8]; // 8 floats = 32 bytes

};

298

Passing Vec by value:

• Does not allow direct use of YMM registers at ABI boundary.

• Compiler spills struct to stack, then loads into YMM inside callee.

This means performance-sensitive vector data should be:

1. Passed as pointers, not by value.

2. Stored in contiguous aligned arrays, not embedded arrays inside aggregates.

10.4.5 Cross-Module Optimization Boundary

When functions are compiled separately:

• ABI boundaries prevent vector-width assumptions.

• Inter-procedural vectorization (IFV) is disabled unless Link-Time Optimization
(LTO) is used.

With LTO:

• GCC may perform cross-module loop fusion and SIMD promotion.

• Without LTO, vector width decisions are locally constrained.

Thus, for high-performance code:

g++ -O3 -march=skylake -flto

ensures global vector width consistency.

299

10.4.6 Summary

ABI Rule Effect on SIMD Code Practical Guideline

Passing SIMD values
follows XMM-based
conventions

YMM data must be
reconstructed in callee

Prefer passing pointers
instead of value aggregates

XMM/YMM registers
are caller-saved

Function calls inside vector
loops cause register spills

Inline hot loops to avoid
ABI crossings

vzeroupper required for
transition avoidance

Avoid mixing AVX and
SSE domains

Compile translation units
uniformly with AVX
enabled

Struct-by-value blocks
vectorization at
boundary

Memory copies inserted by
ABI rules

Use SoA layout and
pointer/passed-by-reference
parameters

Correct SIMD usage requires respecting ABI-defined calling and state-transition
rules, otherwise the backend is forced to insert spills, alignment fixups, or state
synchronization operations that can dominate execution cost. Effective vectorized
system design therefore couples data layout decisions with function boundary
management and linkage-time optimizations.

300

10.5 Examples: Loop Rewritten into Full AVX2
Pipeline

This section presents a complete example demonstrating how GCC transforms a
scalar loop into a fully pipelined AVX2 vector loop. The objective is to illustrate IR
lowering, vector width selection, load/store emission, and fused arithmetic
sequencing with alignment and scheduling considerations applied.
The example is representative of typical numeric kernels found in linear algebra, DSP,
and machine learning preprocessing pipelines.

10.5.1 Original Scalar Code

float saxpy(float* __restrict y, const float* __restrict x, float a, int n) {
for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];
return y[0];

}

Memory access:

• x and y accessed linearly (unit stride).

• No aliasing constraints due to __restrict.

• Arithmetic pattern matches FMA opportunities when enabled.

10.5.2GCC Vectorization Conditions

GCC vectorizes the loop if:

1. The loop trip count is unknown but assumed sufficiently large.

301

2. Alignment constraints allow either vmovaps or vmovups.

3. The scalar expression can be lowered to vector multiply-add.

With:

g++ -O3 -march=skylake -ffast-math

GCC generates AVX2 vector code due to:

• Contiguous float arrays → eligible for 256-bit vectorization

• Multiply-add pattern → convertible to FMA (vfmadd231ps)

• Restrict-qualified pointers → no alias-based dependency hazard

10.5.3 Representative Vectorized Assembly (Simplified)

.Lloop:
vmovups ymm0, YMMWORD PTR [rsi + rax] # load x[i..i+7]
vmovups ymm1, YMMWORD PTR [rdi + rax] # load y[i..i+7]
vfmadd231ps ymm1, ymm0, ymm2 # ymm1 = ymm1 + ymm0 * ymm2
vmovups YMMWORD PTR [rdi + rax], ymm1 # store result
add rax, 32 # advance by 8 floats
cmp rax, rdx
jb .Lloop

Where:

• ymm2 holds broadcasted scalar a.

• rax increments by vector width × sizeof(float) = 8×4 = 32 bytes.

• Operations map primarily to:

302

– Ports 0/1 for FP arithmetic

– Ports 2/3 for loads

– Port 4 for stores

This mapping allows simultaneous arithmetic and memory movement, enabling
high throughput.

10.5.4 Pipeline Characteristics on Skylake-Class Cores

Component Behavior

vmovups loads Issue per-cycle on Ports 2 and 3

vfmadd231ps Uses FP add and multiply units; 1 fused op per cycle
throughput

vmovups store Uses Port 4 + store buffer, max sustained ~1 store/cycle

Loop update and
compare

Branch unit (Port 5), predictable loop — no misprediction
penalty

Critical throughput factor:

Max throughput � min(
FP pipeline capacity,
load bandwidth,
store bandwidth,
AGU capacity

)

Under L1 residency and steady state, typical throughput approaches:

~1 vector FMA per cycle → 8 scalar FMA equivalents per cycle

303

10.5.5 Comparison to Scalar Performance

Implementation FLOP/iteration Cycles/iteration
(approx.)

Result

Scalar (mulss +
addss)

2 ~4–6 cycles Low throughput,
dependency-bound

SSE (128-bit) 8 ~2–3 cycles Improved ILP,
limited width

AVX2 (256-bit
FMA)

16 ~1 cycle steady state ~8–10× speedup
vs scalar

Note: Actual speedup depends on memory bandwidth and dataset size.

10.5.6 Observations from Annotated Disassembly

• The compiler hoists scalar a into a broadcast register once → avoids per-
iteration load.

• No gather/scatter required due to linear access.

• No register spills occur → register allocation was sufficient.

• No alignment directives emitted → backend assumed unaligned safe (vmovups)
because input alignment could not be proven.

Performance improves further if alignment is asserted:

x = (float*)__builtin_assume_aligned(x, 32);
y = (float*)__builtin_assume_aligned(y, 32);

304

Which enables:

vmovaps / vmovaps

reducing replay stalls.

10.5.7 Summary

Property Impact on Vectorization

Unit-stride contiguous arrays Allows direct vector loads/stores

Restrict-qualified pointers Enables safe FMA fusion and scheduling

FMA instruction availability Reduces dependency chain depth

No aliasing / no gather Avoids pipeline serialization

Alignment proven (optional) Reduces load/store replay penalty

The rewritten AVX2 loop demonstrates how GCC emits fully pipelined SIMD
instructions with minimal register pressure and optimal arithmetic/memory pairing.
The transformation converts scalar per-element computation into wide parallel
execution that saturates the floating-point and memory execution pipelines efficiently.

Part V

C++ OBJECT MODEL AND
RUNTIME ABI

305

Chapter 11

Itanium ABI Deep Structure for
C++

11.1 Symbol Mangling Encoding Structures

C++ symbol mangling under the Itanium C++ ABI provides a deterministic
encoding for names, types, scopes, templates, and calling conventions, allowing linkers,
shared object loaders, and debuggers to operate across languages, compilers,
and binary formats. GCC adheres to this ABI for ELF-based systems on x86-64
Linux, ensuring binary compatibility across translation units and across compilers
conforming to the same ABI contract.
Unlike C, where function names map directly to linker symbols, C++ requires encoding
of:

• Namespace and class scopes

• Overloaded function signatures

307

308

• Template parameters and instantiations

• Type qualifiers (const, volatile, reference types)

• Calling conventions and linkage attributes

• Operator names and internal compiler-generated entities

The mangling scheme is lexical and hierarchical, reflecting the fully qualified
signature of an entity. This creates a canonical identifier for each object or
function, serving as the program’s external identity in the symbol table.

11.1.1 Top-Level Mangling Prefix

All Itanium ABI-mangled C++ symbols begin with:

_Z

This distinguishes C++ ABI-mangled symbols from C identifiers and other foreign-
format symbols in ELF object files.
Example:

int add(int, int);

Mangled:

_Z3addii

Here:

_Z # Itanium ABI prefix
3add # identifier "add" with length 3
ii # argument types: int, int

309

11.1.2Name Scoping Encoding

Nested scopes are encoded through length-prefixed segments:

namespace N { struct S { void f(); }; }

Mangled:

_ZN1N1S1fEv

Breakdown:

Fragment Meaning

_Z Itanium ABI prefix

N … E Nested name sequence

1N Namespace N

1S Class S

1f Method f

Ev void parameter list

This structure allows arbitrary nesting depth without ambiguity.

11.1.3 Type Encoding and Qualifiers

Types are encoded using single-letter codes with modifier prefixes:

Type Code

int i

310

Type Code

float f

double d

void v

pointer to T P <T>

reference to T R <T>

const-qualified T K <T>

Example:

double* const& g(float);

Mangled:

_Z1gRfKPd

Which expands to:

g(float) returning reference to const pointer to double

11.1.4 Template Argument Encoding

Templates introduce parameterized symbols. Each parameter is encoded recursively.
Example:

std::vector<int>

Contains:

St6vectorIiSaIiEE

311

Where:

Component Meaning

St Standard library vendor prefix

6vector Identifier “vector” (length 6)

I … E Template argument list

i int

SaIiE std::allocator<int>

For nested templates, the encoding compresses repeated sequences using substitution
tables to avoid duplication and reduce symbol length.

11.1.5 Operator and Special Function Mangling

Operators and special member functions have reserved encodings:

C++ Feature Mangled Form

Constructor C1, C2 (in-place and complete object forms)

Destructor D1, D2

operator+ pl

operator<< ls

Conversion operator (operator T) cv <T>

Example:

S::operator int() const;

312

Mangled:

_ZNK1ScviiEv

11.1.6 Summary

Structural Element Encoding Mechanism Purpose

Prefix _Z Identifies Itanium C++
ABI symbol

Distinguishes from
unmangled C

Nested names Length-prefixed scope
encoding

Resolves overload and
namespace identity

Types and qualifiers Single-letter encodings with
modifier prefixes

Achieves compact and
deterministic substitution

Templates Bracketed argument lists
with substitution

Supports parameterized
and recursive type systems

Operators and special
functions

Reserved encodings Preserves semantic
mapping in binary interface

Symbol mangling is therefore not an implementation detail but a core ABI
mechanism that ensures link-time correctness, cross-module interoperability,
and runtime symbol resolution stability across compiler versions and standard
library implementations adhering to the Itanium ABI.

313

11.2VTable Encoding, Virtual Base Pointer Offsets,
and Thunks

In the Itanium C++ ABI, the representation of polymorphic classes is explicitly defined
to guarantee binary compatibility across compiler versions and compilation
units. The ABI specifies the vtable layout, the handling of virtual base offsets,
and the insertion of thunks when dynamic dispatch requires adjustment to either the
this pointer or the call target. GCC conforms strictly to these rules to ensure that
dynamic binding, RTTI lookups, and cross-module polymorphic behavior are stable and
deterministic.

11.2.1VTable Structural Layout

A vtable is an array of function pointers and metadata. For each polymorphic class
type, the primary vtable associated with its most-derived object layout contains:

Slot Offset Entry Meaning

-2 Address of RTTI object Used for dynamic_cast and type
identification

-1 Offset-to-top (for subobject
adjustment)

Adjustment needed to recover base
from subobject

0..n Virtual function pointers Target addresses for dynamic dispatch

The offset-to-top field enables recovery of the complete object pointer when
dispatching a call on a subobject for cases involving multiple inheritance.
Example conceptual structure:

vtable:

314

[-2] -> RTTI descriptor
[-1] -> offset to most-derived type base
[0] -> &Derived::f
[1] -> &Derived::g
...

This structure allows the runtime to restore the correct this pointer before invoking a
method.

11.2.2Virtual Base Pointer Offsets (vbpointers)

For classes using virtual inheritance, the object representation contains a virtual
base table pointer (vbptr) referencing a virtual base offset table. This table
allows determining the physical address of shared virtual base subobjects.
Example:

struct A { int x; };
struct B : virtual A {};
struct C : virtual A {};
struct D : B, C {};

Class D contains only one A, shared through virtual inheritance. The vbpointer logic
ensures that both B and C subobjects compute the same physical location for A.
The vtable stores:

• The offset from the current subobject to the virtual base

• The offset from the most-derived object to the base

GCC emits these offsets in the vtable’s auxiliary tables, allowing runtime pointer
adjustments without performing type-level computation.

315

11.2.3 Thunks and this Pointer Adjustment

A thunk is a compiler-generated function whose role is to adjust the this pointer and
then transfer control to the actual method body. Thunks are required when:

1. A virtual function is inherited through multiple paths and the object layout
differs across base subobjects.

2. The function is overridden in a derived class, but dispatch occurs through a base
pointer requiring adjustment.

3. Calling conventions or return address conventions require consistency across a
hierarchy.

Example pseudo-assembly for a thunk adjusting this by a known offset:

adjustor_thunk:
add rdi, offset_adjustment ; adjust this pointer
jmp Derived::f ; tail jump

Thunks do not introduce an additional function frame. They perform pointer
adjustment and branch to the final implementation, ensuring no additional call
overhead beyond the required address fixup.

11.2.4VTable Reuse and Subobject-Specific VTables

A single class may have multiple vtables if it appears as multiple subobjects within a
hierarchy, especially under repeated and virtual inheritance. The ABI ensures that:

• Each subobject variant has a distinct vtable view.

• The correct vtable is selected at construction time.

316

• Adjusted function pointers (possibly via thunks) encode the appropriate offset
semantics.

The compiler assigns each subobject a unique vtable address, enabling RTTI and
dynamic_cast to determine which subobject layout is active.

11.2.5 Summary of Runtime Dispatch Flow

At the call site for a virtual function:

1. The caller loads the vtable pointer from the object.

2. The appropriate vtable slot entry is selected.

3. If required, a thunk adjusts the this pointer.

4. Control is transferred to the function implementation.

This process is O(1) in runtime complexity and does not require branching over
hierarchy depth.

11.2.6 Summary

Feature Mechanism Purpose

VTable layout Offset-to-top + RTTI +
dispatch slots

Unified, deterministic
polymorphic dispatch

Virtual inheritance
offsets

vbptr + offset tables Shared base resolution
without ambiguity

317

Feature Mechanism Purpose

Thunks this pointer adjustment +
jump forwarding

Correct dynamic dispatch
under non-uniform layouts

Multiple vtable instances Subobject-specific tables Represents distinct layout
contexts in hierarchies

The Itanium ABI makes object layout and dynamic dispatch structural, not heuristic.
GCC adheres to these specifications to ensure that polymorphism, downcasting, and
cross-module dynamic linkage remain consistent, predictable, and compatible across
compilers and shared libraries.

318

11.3 Exception Table Encoding, DWARF CFI, and
LSDA

C++ exceptions on Linux x86-64 under GCC are implemented according to the
Itanium C++ ABI exception propagation model, which relies on zero-cost
exception frames, DWARF Call Frame Information (CFI), and the Language-
Specific Data Area (LSDA) embedded into the binary. The model avoids runtime
overhead in non-throwing paths and shifts the cost into the unwind phase during
exceptional control flow.
This section describes the structure and role of the exception tables and how GCC
emits and queries LSDA metadata to perform stack unwinding, destructor invocation,
and landing pad selection.

11.3.1 Zero-Cost Exception Handling Model

Unlike setjmp/longjmp-based models, Itanium-style exception handling does not
modify the function’s normal execution path. Most runtime tables are read-only data
structures in .eh_frame and .gcc_except_table sections.
Execution divides into two phases:

1. Search Phase:
The unwinder walks stack frames to identify the handler for the thrown exception.
No stack modifications occur yet.

2. Cleanup Phase:
Stack frames between the throw point and handler are unwound; destructors and
cleanup blocks are invoked.

319

Both phases require structured frame metadata to locate saved registers and landing
pads.

11.3.2DWARF CFI and .eh_frame

Each function capable of participating in unwinding contains a Call Frame
Information (CFI) record encoding:

• Canonical frame address (CFA) computation rules

• Saved register locations

• Stack pointer deltas and base pointer restoration instructions

CFI directives are emitted during compilation, often visible in assembly as:

.cfi_startproc

.cfi_def_cfa_offset ...

.cfi_offset ...

.cfi_endproc

During unwinding, libgcc’s _Unwind_* routines interpret this metadata to reconstruct
register state and return addresses, permitting control flow to move up stack frames
safely.

11.3.3 LSDA: Language-Specific Data Area

The LSDA augments .eh_frame data with C++-specific exception handling
rules. It resides in the .gcc_except_table section and describes:

• The mapping from instruction ranges to landing pads (exception handlers or
cleanup blocks)

320

• The types of exceptions matched at each landing pad (decoded via typeinfo
pointers)

• Filters and catch-all regions

• Cleanup-only (destructor) regions without catch semantics

The LSDA structure enables the unwinder to determine:

• Whether a frame must participate in unwinding

• Which landing pad to transfer control to when an exception matches

LSDA data is compactly encoded using DWARF pointer encodings, relocation
types, and PC-range tables.

11.3.4Action and Call-Site Tables

Within the LSDA:

• A call-site table maps instruction ranges to landing pad entry points.

• Each landing pad references an action table, describing the exception type
sequence to match.

Conceptual form:

call-site entry:
start address
length
landing pad offset
action index

321

Action entries are chained; a negative next-link index terminates the chain.
This allows matching logic:

for each type in action chain:
if thrown_type is derived or equal → handler selected

11.3.5 Interaction with typeinfo and RTTI Objects

Exception matching relies on comparing the thrown exception’s typeinfo object
pointer with the types listed in the LSDA action table.
This ensures correct selection of:

• Exact match

• Base class match

• catch(...) universal handler

• Cleanup-only blocks (for RAII destruction)

RTTI stability across translation units and dynamically loaded libraries is guaranteed
due to the ABI’s canonical typeinfo uniqueness rules.

11.3.6 Landing Pads and Control Transfer

Landing pads are compiler-generated blocks, not callable functions. A landing pad
receives:

• The exception object pointer (_Unwind_Exception*)

• The selector value indicating matched handler type index

A typical landing pad structure:

322

.Llanding:
mov %rdx, %rdi # move exception pointer
call _ZdlPv # invoke destructor if cleanup-only
jmp .Lresume # pass control back to unwinder

The unwinder controls PC adjustment and resume execution, preserving full frame
semantics.

11.3.7 Summary

Component Role Location

DWARF CFI Defines how to restore frame/register
state during unwinding

.eh_frame

LSDA Defines catch/cleanup mapping to code
ranges

.gcc_except_table

Call-Site Table Correlates instruction regions to landing
pads

Part of LSDA

Action Table Encodes exception type matching
sequence

Part of LSDA

Typeinfo Objects Identify runtime class relationships .rodata in vtable
segments

The Itanium ABI exception model is structurally deterministic, separating
mechanical stack recovery (CFI) from C++-specific handler semantics (LSDA),
enabling GCC to implement zero-cost exception dispatch consistent across dynamic
linking boundaries and heterogeneous compilation environments.

323

11.4RTTI and Dynamic Type Resolution Through
Typeinfo Graph

Runtime Type Information (RTTI) under the Itanium C++ ABI is implemented
through a canonical typeinfo object graph that describes the dynamic type
relationships of polymorphic classes. This enables safe dynamic_cast, runtime type
comparisons, and exception type matching across shared libraries, translation units,
and compilers adhering to the ABI. GCC emits and queries these typeinfo structures
at runtime to resolve type identity and inheritance paths without relying on language-
level metadata lookup or compiler-generated RTTI registries.

11.4.1 Typeinfo Object Structure

Each polymorphic class has a unique typeinfo object, generated in the .rodata
segment. The base representation is defined by:

struct __cxxabiv1::__class_type_info {
const typeinfo* typeinfo; // pointer to vtable for typeinfo
const char* name; // mangled class name

};

Derived typeinfo classes extend this to encode inheritance semantics. For class types,
the ABI defines:

struct __cxxabiv1::__si_class_type_info
: __class_type_info {
const __class_type_info* base; // single inheritance base

};

For multiple or virtual inheritance:

324

struct __cxxabiv1::__vmi_class_type_info
: __class_type_info {
unsigned int flags; // inheritance characteristics
unsigned int base_count;
struct {

const __class_type_info* base;
long offset_flags; // offset + virtual inheritance indicators

} base_info[];
};

Thus, RTTI encodes both type identity and topological inheritance structure,
forming a type graph, not a flat hierarchy.

11.4.2 Canonical Uniqueness and Linkage Consistency

To avoid ambiguities during dynamic linking:

• Each class produces exactly one canonical typeinfo object.

• Shared libraries export typeinfo symbols with weak linkage, allowing the
dynamic loader to perform pointer identity coalescing.

• Two types are considered the same at runtime if and only if their typeinfo
pointers compare equal.

This pointer identity rule ensures that dynamic_cast works even when classes are
defined across multiple shared objects compiled separately.

11.4.3Dynamic Type Resolution Algorithm (dynamic_cast)

To perform a downcast or cross-cast, GCC utilizes:

325

1. The vtable pointer of the dynamic object to obtain the RTTI pointer of the
most-derived type.

2. The typeinfo graph to search for the requested target type.

3. The offset_flags values to compute the correct this pointer adjustment if
necessary.

The resolution follows these rules:

Case Outcome

Target type is a public unique base Return adjusted pointer

Target type appears multiple times via
virtual inheritance

Resolve to shared virtual base

Target type is inaccessible or ambiguous Result is null pointer for pointer cast;
throws bad_cast for reference cast

Resolution is structural and derivation-based, not textual or linkage-name based.

11.4.4Using RTTI in Exception Matching

During exception propagation, the LSDA lists typeinfo pointers describing catch
patterns. Exception matching operates as:

if (thrown->typeinfo == catch_typeinfo)
match;

else if (thrown->typeinfo is derived from catch_typeinfo)
match;

else
continue search;

326

This is identical to dynamic_cast relationship matching and relies on the same typeinfo
graph traversal.

11.4.5 Example: Multiple and Virtual Inheritance Type
Resolution

struct A { virtual ~A() {} };
struct B : virtual A {};
struct C : virtual A {};
struct D : B, C {};

RTTI graph relationships:

D → (B, C) → A

Since A is a virtual base, all paths must converge to a single shared subobject.
The typeinfo for D contains:

• An entry marking A as virtual

• Offset metadata instructing the runtime how to locate the unique A subobject

During:

A* pa = dynamic_cast<A*>(static_cast<D*>(p));

The runtime:

1. Identifies that A is a virtual base of D.

2. Reads offset_flags from typeinfo.

3. Adjusts the pointer to yield the correct shared base address.

No runtime scanning of object memory occurs; adjustment uses static layout metadata.

327

11.4.6 Summary

Component Role Stability and Guarantee

typeinfo objects Identify class types Canonical and unique
across shared objects

Inheritance descriptors Encode class hierarchy
structure

Fully structural, no reliance
on reflection systems

dynamic_cast resolution Computes correct adjusted
pointer

Deterministic graph walk
using offset encodings

Exception matching Uses same typeinfo graph
for handler selection

Unifies RTTI and exception
semantics

RTTI in the Itanium ABI is structurally minimal, fully deterministic, and tightly
integrated with both the vtable and the exception handling system. GCC relies on
these encodings for safe polymorphic operations, cross-module type comparisons,
and dynamic dispatch under arbitrary inheritance complexity—all without requiring
runtime metadata lookup tables or language-level reflection infrastructure.

328

11.5 Examples: VTable Reverse Reconstruction from
Binary

Reverse reconstruction of vtables from an ELF binary provides a direct, layout-accurate
view of a class’s runtime polymorphic structure. Because the Itanium C++ ABI
mandates a canonical vtable format, the contents and ordering of the table can
be inferred systematically from the binary without symbol-level recovery or debug
information. This procedure is fundamental for binary compatibility audits, ABI
regression analysis, decompilation, static security review, and reverse engineering of
proprietary components.
This section demonstrates a methodical reconstruction of class hierarchy properties
by inspecting .rodata, .data.rel.ro, and relocation table entries in an optimized,
stripped executable.

11.5.1 Sample Class Hierarchy (Source)

struct A {
virtual ~A() {}
virtual void f();

};

struct B : virtual A {
virtual void g();

};

struct C : A {
virtual void h();

};

struct D : B, C {

329

void f() override;
};

This hierarchy involves both virtual inheritance (B → A) and multiple inheritance
(D : B, C). The Itanium ABI will generate multiple vtables and virtual base offset
entries for D.

11.5.2 Identifying VTable Regions in the Binary

The vtables are emitted into read-only relocation-adjusted tables, typically under:

.data.rel.ro

.data.rel.ro.local

Search pattern:

1. Locate references to typeinfo objects:
Typeinfo symbols follow the naming convention:

_ZTI<encoded-name>

2. Scan for nearby objects prefixed with:

_ZTV<encoded-name>

3. Confirm by checking that the table begins with:

[-2] RTTI pointer
[-1] offset-to-top
[0] function pointer entries

Example (annotated pseudo-disassembly):

330

_ZTV1D:
00: 0x00000000004020a0 ; RTTI for D
08: 0xfffffffffffffff0 ; offset-to-top = -16
16: 0x0000000000401130 ; D::f()
24: 0x00000000004010a0 ; inherited A::~A()
32: 0x0000000000401090 ; inherited B::g() (via virtual base adjustment thunk)
40: 0x0000000000401080 ; inherited C::h()

Values vary; structure remains constant.

11.5.3Detecting Virtual Base Inheritance

Virtual base presence is encoded not in the vtable itself, but in the typeinfo object
associated with the vtable. The __vmi_class_type_info structure includes the
offset_flags array describing:

• Virtual inheritance markers

• Offset displacements to shared bases

You confirm virtual inheritance by inspecting the typeinfo graph:

typeinfo for D → vmi_class_type_info
base_count = 2
base[0] = B (non-virtual)
base[1] = A (virtual)

This indicates:

• A single instance of A is shared across the entire D object.

• Some entries in the vtable for D will correspond to adjustor thunks to restore
correct base pointer positions.

331

11.5.4 Recognizing Thunks in Reconstructed Dispatch Table

A thunk is identified by:

• A short function whose body performs pointer arithmetic on rdi (the this
pointer)

• A tail call (jmp) to the actual implementation

Example assembly fragment observed during reconstruction:

thunk_B_g_for_D:
add rdi, -0x10 ; adjust this pointer to mapped B subobject
jmp 0x401090 <B::g()>

This confirms:

• The vtable entry does not directly store the real method pointer.

• The ABI preserves correct dynamic dispatch semantics by pointer adjustment.

11.5.5 Reverse Inferring Class Relationship Structure

From the recovered vtable:

1. Count the contiguous region of virtual function entries → determines
interface surface.

2. Different offset-to-top values across vtable variants → indicates number of
inherited subobjects.

3. Presence of adjustor thunks → indicates non-trivial inheritance path
requiring pointer correction.

332

4. Typeinfo chain inspection → reconstructs inheritance graph reliably.

The reversed class hierarchy obtained from the vtable and RTTI metadata (without
source code) matches the original:

A
/ \

virtual \
B C
\ /
D

This is a structural property, not metadata or debug-data dependent.

11.5.6 Summary

Feature Observed Interpretation

RTTI pointer at vtable[-2] Identifies dynamic type root

Offset-to-top at vtable[-1] Recovers correct this pointer for calls

Thunk entries Adjust this for multiple or virtual inheritance
dispatch

Multiple vtable sections for the
same class

Indicates distinct subobject layout contexts

Typeinfo graph relationships Reconstruct entire class inheritance topology

Reverse vtable reconstruction is reliable and deterministic because the Itanium ABI
specifies a fixed and observable runtime object representation. GCC follows this
definition rigorously, allowing the object model to be recovered from the binary with
no source-level visibility, symbol names, or debug information.

Chapter 12

glibc Runtime, Static Initialization,
and TLS Models

12.1 Startup Code (crt1, crti, crtn) and _start
Transition

The GNU C Library (glibc) and GCC runtime architecture for ELF-based Linux
systems defines a deterministic sequence of initialization and transfer stages between
the kernel, the startup runtime (CRT objects), and the C++ application entry point
(main). On x86-64, this transition is implemented through a precisely defined execution
chain beginning at the kernel’s execve() system call and ending in user code after
runtime construction of the execution environment.
This sequence is controlled by crt1.o, crti.o, and crtn.o, which form the
foundational C runtime (CRT) components that GCC links automatically before and
after user object files.

333

334

12.1.1 Entry: Kernel to User Mode Transition

When a Linux ELF binary is executed, the kernel sets up:

• The initial stack containing argc, argv, and envp.

• The auxiliary vector (auxv) entries providing runtime parameters (page size,
platform string, program header address, etc.).

• The entry instruction pointer (_start) pointing to the process’s initial instruction
in crt1.o.

This entry point bypasses glibc entirely at first. The CPU’s state on entry is defined by
the System V AMD64 ABI, not by the C or C++ runtime environment.
Registers upon entry:

RSP → argc
[RSP+8] → argv[0]
[RSP+(argc+1)*8] → envp[0]

No stack alignment, heap, or TLS setup beyond kernel guarantees is present yet.

12.1.2 _start Symbol in crt1.o

The _start symbol defines the first instruction executed in user space. It performs the
following sequence:

1. Extracts argc, argv, and envp from the process stack.

2. Aligns the stack according to ABI (16-byte alignment).

3. Initializes the frame pointer and clears callee-saved registers.

335

4. Calls the internal symbol __libc_start_main() with:

• The address of main

• The addresses of constructors (__libc_csu_init)

• The addresses of destructors (__libc_csu_fini)

• Stack arguments and environment vectors

Conceptual flow:

_start:
mov rdi, argc
lea rsi, [rsp+8] ; argv
lea rdx, [rsp + (argc+2)*8]; envp
call __libc_start_main
hlt ; should never return

This defines the fixed point where user-defined logic becomes reachable.

12.1.3 crti.o and crtn.o: Constructor Frame Wrappers

crti.o and crtn.o are small object files that define prologue and epilogue sections
used to construct global initialization routines at link time.
They provide stub definitions for .init and .fini sections:

• crti.o — introduces section prologue symbols (_init / _fini entry labels).

• crtn.o — closes the sections, completing the control flow frame.

When GCC compiles a translation unit containing global constructors or static objects,
it emits .init_array entries. During final link:

336

[crti.o prologue]
[object init code (.init_array)]
[crtn.o epilogue]

The linker concatenates these into a single composite _init and _fini section that
runs before and after main().

12.1.4 __libc_start_main() Coordination

__libc_start_main() (from glibc) is responsible for:

1. Initializing thread-local storage (TLS) and dynamic linker state.

2. Executing pre-initialization functions (.preinit_array).

3. Calling global constructors (.init_array and _init).

4. Invoking the user main(argc, argv, envp).

5. Calling destructors (.fini_array, _fini) upon exit.

This function provides the boundary contract between CRT startup and the
glibc runtime.
The kernel never interacts directly with C++ initializers — all such activity is mediated
by __libc_start_main().

12.1.5 Static vs. Dynamic Linking Behavior

• Static binaries: All startup routines (crt1.o, crti.o, crtn.o, libc, and
libstdc++ runtime stubs) are linked into one ELF segment. The entry point
remains _start.

337

• Dynamically linked binaries: The dynamic linker (ld-linux-x86-64.so.2) is
first mapped by the kernel as the interpreter (PT_INTERP segment). The dynamic
linker’s _start executes first, relocates shared libraries, and then transfers control
to the application’s _start defined in crt1.o.

The execution order for dynamic binaries:

Kernel → ld-linux → app’s crt1::_start → __libc_start_main() → main()

12.1.6 Observing _start and CRT Symbols

To inspect startup symbols and section linkage in a binary:

$ readelf -s a.out | grep 'crt\|_start'
0000000000401000 0 FUNC GLOBAL DEFAULT 1 _start
...

$ objdump -d a.out | grep _start -A20

And to view the constructed initialization arrays:

$ readelf -r a.out | grep init_array

12.1.7 Summary

Stage Component Function

Process entry Kernel → _start (crt1) Initializes argc/argv/envp
stack

Runtime prologue crti.o Creates .init and .fini
section headers

338

Stage Component Function

Library entry __libc_start_main() Constructs TLS and
executes global constructors

User execution main() Application-defined logic

Termination crtn.o + glibc Calls destructors and
performs runtime cleanup

The crt1–crti–crtn chain forms the compiler-agnostic mechanical base of all C++
binaries under Linux, linking kernel state to user logic in a reproducible and ABI-
stable way. Every GCC-compiled program, whether static or dynamically linked, passes
through this precisely defined transition pipeline before invoking any C++ runtime
functionality.

339

12.2 TLS Model Selection (local-exec, initial-exec,
local-dynamic)

Thread-Local Storage (TLS) allows each thread to maintain private instances of global
or static variables. The ELF and glibc runtime define multiple TLS access models,
each representing a trade-off between performance, relocation flexibility, and
dynamic linking compatibility. GCC selects a TLS model during compilation based
on symbol visibility, linkage, and optimization assumptions. The correct TLS model
choice is critical for both ABI stability and execution efficiency on Linux x86-64.

12.2.1 TLS Access Models in the Itanium ABI

Four models are relevant in ELF systems:

Model Requires Position? Can Be Used
in Shared
Libraries?

Performance
Characteristics

local-exec Non-position-independent
(no relocations)

No Fastest; direct
access via %fs
segment

initial-exec PIC allowed but variable
must be non-interposable

Yes, if symbol
resolves at load
time

Fast; single
GOT lookup

local-dynamic Fully position independent Yes Runtime TLS
block offset
resolution per
module

340

Model Requires Position? Can Be Used
in Shared
Libraries?

Performance
Characteristics

general-
dynamic

Fully general resolution Yes Slowest; full
dynamic TLS
lookup sequence

The compiler, linker, and dynamic loader cooperate to resolve which model is valid
in a given context.

12.2.2 Segment Register and TLS Memory Layout

On x86-64 Linux, each thread has a Thread Control Block (TCB) referenced by the
%fs register. TLS variables are stored at fixed offsets relative to the TCB inside a per-
thread memory region allocated at thread creation.
Accessing a TLS variable in the local-exec model is simply:

mov rax, qword ptr fs:offset

This requires no GOT indirection and offers register-level latency, making it the
preferred model for performance-critical code such as allocators, memory pools, or hot-
path schedulers.

12.2.3 Local-Exec Model

Used when:

• The binary is statically linked (-static), or

• The TLS variable is hidden visibility and known to reside in the main module.

341

Example:

__attribute__((tls_model("local-exec")))
thread_local int counter;

This instructs GCC to emit direct %fs-relative access sequences, minimizing runtime
overhead. However, this model cannot be used if the variable may reside in a shared
library loaded at runtime.

12.2.4 Initial-Exec Model

Used when the variable is:

• In a shared library but not interposable (typically STV_HIDDEN or
STV_PROTECTED).

• Known to be bound at program load time (no dlopen relocation).

Access form:

mov rax, qword ptr [GOT entry]
mov rax, fs:[rax]

This requires a fixed GOT offset that is resolved only once during program load. The
cost is low: one memory indirection + segment-base load. This is the most
common model for TLS when using shared libraries with standard C++ runtimes.

12.2.5 Local-Dynamic Model

Used when PIC is required and the TLS block offset must be resolved at runtime, but
the variable’s module is known.
TLS access sequence:

342

call __tls_get_addr@plt
mov rax, [rax + var_offset]

The call resolves the thread-specific offset for the module. Cost: function call +
arithmetic. This model trades flexibility for moderate overhead.

12.2.6General-Dynamic Model

The fallback model used when:

• The symbol may be interposable across shared libraries.

• The compiler cannot assume early binding.

Access requires:

call __tls_get_addr@plt ; resolves module + symbol offset

Used when no compile-time assumptions are valid.
This model is significantly slower and should be avoided in hot paths.

12.2.7 Compiler and Linker Selection Rules

GCC applies the following heuristics:

Symbol Property Selected TLS Model

thread_local with hidden visibility in main
executable

local-exec

thread_local in shared library with default
visibility

local-dynamic or general-
dynamic

343

Symbol Property Selected TLS Model

-fno-pic or static linking local-exec

Link-time optimization proving symbol non-
interposable

initial-exec

User override:

__attribute__((tls_model("initial-exec")))
thread_local int flag;

12.2.8 Summary

Model Pros Cons Best Use

local-exec Fastest TLS
access

Not usable in shared
libraries

Performance-critical
static binaries

initial-exec Fast access with
PIC

Requires non-
interposition
guarantees

Shared libraries with
fixed runtime binding

local-dynamic Flexible module
TLS offsets

Requires
__tls_get_addr call

General shared library
TLS with moderate
cost

general-
dynamic

Fully
interposable

Slowest TLS model dlopen-loaded or
ABI-unconstrained
libraries

344

TLS model selection is therefore a link-time ABI decision, not a purely compiler-
local choice. Correct use ensures both high-performance TLS access and runtime
relocation correctness across shared object boundaries.

345

12.3 Constructor Order Resolution and Guard
Variable Semantics

C++ relies on deterministic construction of global and static-duration objects
before entering main(), and deterministic destruction after main() completes. The
glibc runtime and GCC cooperate to sequence initialization operations through the
.init_array, .preinit_array, and .fini_array tables, while enforcing one-time
initialization semantics for local static objects using guard variables. This section
describes the ordering, enforcement rules, and generated machine code sequences
associated with these mechanisms.

12.3.1Global and Namespace-Scope Static Initialization

For each translation unit, GCC emits constructors into the .init_array segment. At
runtime, during __libc_start_main():

1. .preinit_array functions run (rarely used; reserved for runtime frameworks).

2. .init_array constructors run in the exact order they appear in the final link.

3. main() is invoked.

Order is link-order, not source-order, which means:

• Relative constructor order across translation units is unspecified unless
controlled via link script order or explicit initialization dependencies.

• Within a single translation unit, with standard global variable declarations, top-
to-bottom declaration order is preserved.

This ordering cannot be used to encode runtime dependencies unless explicitly
documented.

346

12.3.2Dynamic Initialization vs. Static Initialization

Two initialization categories exist:

Initialization
Type

Timing Example Cost

Static Performed at load
time; generates
relocations only

constexpr int x =
42;

No runtime overhead

Dynamic Executed via
.init_array at
runtime

std::string s =
"hello";

Runs code before
main()

GCC places dynamic initialization code into synthetic functions referenced from
.init_array. The code runs sequentially in monothreaded context early in process
startup, avoiding race conditions by construction.

12.3.3 Local Static Initialization and Guard Variables

Local static objects must follow the one-time initialization rule mandated by the
C++ standard:

void f() {
static Widget w; // must initialize exactly once, even under concurrency

}

To enforce this, GCC emits a guard variable and lock-free test mechanism around the
initialization block:

mov al, BYTE PTR guard_variable[rip]

347

test al, al
jne .Linit_done
call __cxa_guard_acquire(guard_variable)
; construct w
call __cxa_guard_release(guard_variable)

.Linit_done:

If initialization fails (exception thrown):

call __cxa_guard_abort(guard_variable)

Guard variables are encoded with type __guard ABI rules:

• 1-byte fast check for initialization completion

• Atomic acquire/release semantics when multi-threaded support is linked
(-pthread or libstdc++ with concurrency support)

• No OS locks unless required by preemption context

This ensures correctness under concurrent execution even when multiple threads first
call the same function.

12.3.4 Interaction with TLS (thread_local Objects)

thread_local variables follow the same one-time initialization semantics, but per-
thread.
Their guards are stored in the thread’s TLS block, ensuring no cross-thread
interference.
Example:

void f() {
thread_local std::vector<int> q;

}

348

Initialization must occur once per thread, not globally. The guard variable lives in
TLS and uses the same __cxa_guard_* logic but scoped to thread lifetime.

12.3.5Destructor Ordering and Program Shutdown

Destructors for static-duration objects are registered via:

__cxa_atexit(function_pointer, object_pointer, dso_handle)

The dso_handle uniquely identifies each shared object. Destructors run in reverse
construction order, obeying dependency consistency.
Order of teardown:

1. Objects in the executable’s .fini_array

2. Objects in shared libraries, in reverse order of loading

3. TLS destructors for each thread at thread exit

This ensures no object is destroyed before another that may depend on it.

12.3.6 Summary

Mechanism Purpose Runtime Effect

.init_array Sequencing of global
constructors

Deterministic initialization
before main()

Guard variable Enforce one-time static
initialization

Thread-safe lazy initialization

349

Mechanism Purpose Runtime Effect

__cxa_guard_{acquire
,release,abort}

Implements guard
semantics

Prevents races and double
initialization

.fini_array +
__cxa_atexit

Reversed destruction
ordering

Ensures dependency-safe
resource teardown

TLS guard storage Per-thread static
initialization

No cross-thread interference
for thread_local

The constructor and guard variable mechanisms form a core part of the C++ runtime
execution contract: initialization of global and local static objects is guaranteed to
be correct, ordered, and thread-safe, while still supporting zero-cost access after
the initial setup. GCC and glibc implement this behavior in a manner that is stable
across shared libraries, dynamic loading boundaries, and multithreaded environments.

350

12.4 Shutdown Ordering and Finalization Guarantees

The C++ runtime provides deterministic guarantees for the destruction of static-
duration and thread-local objects at program and thread termination. These guarantees
are required for correctness in resource management, especially when involving file
handles, memory allocators, mutexes, and user-defined RAII abstractions. On Linux
x86-64, finalization is orchestrated jointly by glibc, libstdc++, and the Itanium
C++ ABI functions that manage destructor registration and invocation.

12.4.1Global Object Finalization via __cxa_atexit

Every dynamic initialization of a static-duration object registers a destructor with:

__cxa_atexit(void (*destructor)(void*), void* object, void* dso_handle);

Where:

• destructor is the function to be called at finalization,

• object is the instance to be destroyed,

• dso_handle identifies the shared object or executable in which the object resides.

Registration order follows construction order, guaranteeing reverse-order
destruction, implementing a strict LIFO semantics globally.
This ensures that any object depending on another constructed earlier remains valid
during its own finalization.

351

12.4.2 Shared Library Unloading and DSO Handles

In dynamically linked programs, shared libraries may be unloaded before program exit
(e.g., after dlclose).
To maintain correctness:

• Each library receives its own dso_handle.

• Destructors registered from that library are grouped and executed when the
library is unloaded.

• If the application terminates normally, destructors are run in the reverse order of
library dependency loading.

This ensures correctness even in complex plugin architectures.

12.4.3 Finalization Ordering Across Translation Units

Although destructors run in reverse order of constructor calls, constructor order
across translation units is not defined by the standard. The linker, not the compiler,
determines the physical order of .init_array entries.
However, destruction still respects:

last constructed → first destroyed

This property allows stable resource dependency chains when initialization is explicitly
structured (e.g., through factory or singleton patterns), while discouraging implicit
cross-TU static initialization coupling.

352

12.4.4 Termination vs. Exit Path Semantics

Finalization only occurs under regular termination paths:

Termination
Method

Are Global Destructors
Run?

Notes

return from main() Yes Normal exit sequence

std::exit() Yes Calls __cxa_atexit destructors

std::quick_exit() No Calls only at_quick_exit
handlers

_Exit() / _exit() No Immediate process termination

abort() No Abnormal termination; no
unwinding

Production systems must ensure termination matches resource lifetime expectations.

12.4.5 Thread Exit and TLS Destructors

For objects declared thread_local:

• Destructors run at thread termination, not at program exit.

• glibc registers thread-specific destructor lists in TLS control blocks.

• When a thread exits (via pthread_exit, thread returning from start function, or
cancellation), destructors run in reverse initialization order for that thread only.

This ensures:

Per-thread resources are reclaimed deterministically.

353

TLS destructors must not assume global objects still exist if threads persist past main
thread exit.

12.4.6 Shutdown Ordering Example

struct Logger {
Logger() { /* open file */ }
~Logger() { /* flush, close file */ }

};

thread_local Logger local_log;
static Logger global_log;

int main() {
// work

}

Shutdown sequence:

1. main() returns.

2. Global destructors run in reverse construction order (~Logger() for global_log).

3. If any threads remain:

• Their TLS destructors run when each thread exits.

4. glibc final process cleanup occurs last.

If threads continue running after main() exits, TLS destructors for those threads will
run after global static destructors, implying resource dependency reversal is possible
and must be avoided in design.

354

12.4.7 Summary

Mechanism Ordering Rule Scope Notes

.init_array /

.fini_array
Reverse of
construction order

Process-wide Core global object
lifetime management

__cxa_atexit
registry

LIFO destruction Per shared
object

Ensures correctness
across dynamic
loading

TLS destructor
chains

Reverse of per-
thread construction
order

Per thread Runs at thread exit,
not process exit

Normal vs.
abnormal
termination handling

Deterministic vs.
skipped finalization

Whole
process

Affects cleanup
correctness and
resource guarantees

Finalization ordering is a strictly defined and ABI-stable component of C++ object
lifetime semantics. GCC and glibc ensure that all static and thread-local destructors
run predictably only in well-defined exit paths, preserving invariants required for
safe RAII-based resource management.

355

12.5 Examples: Instrumenting Global Initialization
Graphs

Static and global object initialization forms an implicit dependency graph across
translation units, shared libraries, and the C++ runtime. Correctness and performance
often depend on understanding this graph—particularly when dealing with subsystems
such as logging frameworks, memory allocators, or device interfaces that must be
available before use. This section demonstrates practical methods to trace,
visualize, and reason about global initialization sequences in a GCC + glibc
runtime environment on Linux x86-64.
The objective is not to avoid global objects entirely, but to make their initialization
and finalization behavior explicit, observable, and verifiable.

12.5.1 Basic Instrumentation via Constructor Attributes

GCC supports function attributes that allow attaching custom initialization routines
into .init_array:

#include <cstdio>

__attribute__((constructor))
static void init_A() {

std::puts("init_A");
}

__attribute__((constructor))
static void init_B() {

std::puts("init_B");
}

356

int main() {
std::puts("main");

}

Running this binary yields a runtime ordering trace:

init_A
init_B
main

This provides coarse-grained ordering, but does not show per-object construction.

12.5.2 Instrumenting Individual Static Objects

To observe per-object initialization, wrap global instances with logging behavior:

struct Trace {
const char* name;
Trace(const char* n) : name(n) { std::printf("Construct: %s\n", name); }
~Trace() { std::printf("Destruct: %s\n", name); }

};

static Trace A("A");
static Trace B("B");

Execution:

Construct: A
Construct: B
main
Destruct: B
Destruct: A

This confirms reverse-order destruction and link-order construction.

357

12.5.3Detecting Cross-Translation-Unit Initialization
Dependencies

Consider two translation units:
file1.cpp

extern int init_B();

int init_A() {
return init_B() + 1; // dependent on B

}

static int A = init_A();

file2.cpp

int init_B() { return 10; }
static int B = init_B();

Compile and inspect constructor ordering:

g++ file1.cpp file2.cpp -o app -Wl,--no-as-needed -Wl,--verbose 2>&1 | grep init_array

If file1.o appears before file2.o, init_A() executes before init_B(), violating
assumed dependency ordering.
There is no standard-guaranteed sequencing across translation units.
Mitigation requires either:

• converting to runtime initialization control (explicit initialization function),

• using function-local statics with guard variables,

• or consolidating static dependencies into single compilation units.

358

12.5.4Visualizing .init_array Contents

Use readelf and objdump:

$ readelf -a app | grep init_array

Then inspect referenced constructor functions:

$ objdump -d --section=.init_array app

Each entry typically holds a pointer to compiler-synthesized initialization functions such
as _GLOBAL__sub_I_<symbol>.

12.5.5 Full Initialization Graph Extraction

The following script extracts and annotates initialization function call traces:

objdump -d app |
awk '/_GLOBAL__sub_I_/ {print $1}' |
while read sym; do

echo "Constructor: $sym"
objdump -d --disassemble=$sym app | sed 's/^/ /'

done

This allows:

• Mapping which static objects originate from which translation units.

• Detecting ordering cycles and unintended dependencies.

• Verifying initialization transitivity guarantees.

359

12.5.6 Runtime Graph Representation

A recommended representation of initialization ordering is a directed acyclic graph
(DAG) where:

• Nodes = static or thread-local objects

• Edges = “must-be-initialized-before” relationships

Cycles imply invalid hidden dependencies and require architectural restructuring.

12.5.7 Summary

Task Technique Key Insight

Observe
constructor order

__attribute__((constructor))
or tracing class constructors

Confirms link-order
sequencing

Trace per-object
initialization

Logging constructors/destructors Reveals hidden inter-
object dependencies

Detect cross-
TU dependency
hazards

Compare .init_array and
symbol visibility

Ordering across
translation units is not
guaranteed

Visualize
initialization DAG

Extract _GLOBAL__sub_I_ symbols Enables structural
correctness validation

Instrumenting global initialization is essential in advanced C++ system design
because it transforms implicit object lifetime contracts into explicit, analyzable
behavior.

360

This supports stable runtime architecture, reduces startup nondeterminism, and
prevents subtle bugs related to uninitialized subsystems or resource lifetimes.

Chapter 13

Memory Allocation Internals and
Latency Control

13.1 ptmalloc Arena Design and Cache Locality

The GNU C Library allocator, ptmalloc2, provides the default implementation of
malloc, free, and related allocation services on Linux x86-64. Its design is based on
dlmalloc but extended to support multi-threaded scalability through the concept
of arenas. Each arena contains metadata and data regions used to satisfy allocations,
allowing threads to reduce contention by operating mostly within their assigned
arena. For performance-critical C++ systems, understanding how arenas influence
locality, fragmentation, and load distribution is essential for predictable allocation
latency.

13.1.1Arena Structure Overview

An arena consists of:

361

362

• A top chunk representing the current expandable end of the heap.

• One or more bins, each holding free blocks grouped by size class.

• A thread ownership model, where a thread may acquire an arena and reuse it
to reduce lock contention.

Memory belonging to an arena is typically obtained via:

1. mmap (for large allocations or multiple arenas), or

2. sbrk (primary heap expansion for the main arena).

Each arena serves allocation requests locally without requiring coordination with
others, unless the requested block cannot be satisfied within its own bin set.

13.1.2Multi-Arena Behavior and Thread Locality

By default, glibc selects the arena based on:

• The calling thread.

• Whether the requested block size fits within per-size free lists.

• The number of existing arenas relative to the number of CPU cores.

A common heuristic is:

number_of_arenas � 8 × number_of_CPU_cores

This ensures that threads rarely contend for the same arena lock.
Because each arena reuses blocks previously freed to it, allocation and free
operations exhibit locality over time, particularly in thread-bound workloads.
However, if threads migrate across cores or if tasks are scheduled non-deterministically,
blocks may be allocated by one thread and freed by another, causing cross-arena
memory movement, which reduces locality and may introduce fragmentation.

363

13.1.3 Cache Locality and Allocation Patterns

Cache locality is influenced by:

• Temporal locality: Recently freed blocks tend to be reused first.

• Spatial locality: Smaller bins store blocks close together in memory.

• Arena affinity: Threads often operate on the same arena repeatedly, reinforcing
locality.

However, large allocations trigger mmap, which:

• Allocates dedicated regions separate from arenas.

• Keeps overhead low but increases fragmentation risk for irregular workloads.

For performance-critical loops that allocate and free frequently, using custom allocators
or scoped storage (std::pmr::monotonic_buffer_resource) can dramatically reduce
cache misses and synchronization overhead.

13.1.4 Binning and Coalescing Strategy

ptmalloc uses segregated free lists (“bins”) categorized by block sizes. Small
allocations (e.g., < 512 bytes) are handled from dedicated small bins optimized for
locality, while larger allocations use tree bins that trade locality for flexible fit selection.
Free blocks adjacent in memory are coalesced automatically, reducing fragmentation
but requiring conditional metadata checks. These coalescing operations are constant-
time due to the chunk header linkage structure, but may cost CPU cycles under heavy
multi-threaded churn.

364

13.1.5 Impact on C++ Allocator Behavior

C++ abstractions are layered on top of ptmalloc:

Allocation Layer Mechanism Notes

operator
new/delete

Calls
malloc/free

Performance inherits ptmalloc arena
behavior

std::allocator<T> Thin wrapper Does not guarantee locality across
containers

pmr memory resources Optional custom
arenas

Can enforce locality and eliminate
contention

Performance-sensitive components (e.g., message queues, lock-free structures,
schedulers) benefit from:

• per-thread memory pools,

• slab allocators, or

• monotonic region allocators.

These avoid the unpredictability of arena switching and lock acquisition.

13.1.6 Practical Diagnosis

To analyze arena behavior:

$ MALLOC_ARENA_MAX=1 ./app

Reduces number of arenas for repeatable tracing.

365

$ LD_PRELOAD=/usr/lib/libtcmalloc.so ./app

Substitutes allocator for comparison testing.
To inspect chunk layout:

$ gdb -ex "set print pretty on" -ex "call malloc_stats()" --args ./app

13.1.7 Summary

Property Effect on Performance

Per-thread arenas Reduces lock contention; improves scalability

Bin-based size classing Improves reuse locality; predictable small-block
allocation

Coalescing + metadata
overhead

Controls fragmentation at moderate CPU cost

Large allocations use mmap Reduces overhead but may fragment the address
space

Thread migration May reduce arena locality and induce cross-core
traffic

ptmalloc’s design is optimized for general-purpose robustness, not for minimal-
latency deterministic allocation. Performance-critical C++ architectures should
consider explicit memory locality management, either through standard
polymorphic memory resources or custom domain-specific allocators.

366

13.2Multithreaded Allocator Contention and Arena
Replication

In multi-threaded C++ applications, memory allocation frequently becomes a shared
synchronization point. The default glibc allocator, ptmalloc2, mitigates contention
using multiple arenas, allowing concurrent threads to allocate memory independently.
However, arena replication introduces trade-offs in locality, fragmentation, and
scalability. Understanding these behaviors is necessary to reason about allocator-
induced latency under real workloads.

13.2.1Arena Acquisition and Thread Mapping

When a thread requests memory, ptmalloc attempts to assign it to an existing arena. If
an arena is free (its lock is not held), the thread acquires it and continues allocating
exclusively within it. If multiple threads concurrently attempt to acquire the same
arena, lock contention occurs.
If all arenas are busy, and the number of arenas has not reached the system’s allowed
threshold:

max_arenas � 8 × number_of_CPU_cores

then ptmalloc creates a new arena via mmap. The newly created arena is then
assigned to the contending thread.
This mechanism spreads allocator load across CPU cores and reduces the likelihood of
lock contention but increases:

• Total resident memory footprint

• Fragmentation across arenas

• Cross-thread allocation ownership inconsistencies

367

13.2.2Arena Locking Granularity and Fast Path Behavior

Each arena has a central mutex protecting:

• Bin lookup and updates

• Coalescing operations

• Top chunk extension

Small allocations are served aggressively from size-class bins; if the bin contains suitable
free blocks, allocation resolves with:

lock → remove chunk → unlock

The lock duration is short but still serialized. If the thread repeatedly uses the same
arena, locality is preserved and cache reuse remains high. When a thread switches
arenas, two penalties occur:

1. Allocator lock migration across CPU cores.

2. Reusable free blocks belonging to different memory regions, reducing cache
locality.

Threads migrating frequently between arenas are characteristic of systems with dynamic
scheduling or work-stealing task runtimes.

13.2.3 Fragmentation from Cross-Arena Freeing

When memory allocated in one arena is freed by a thread associated with a different
arena, ptmalloc must:

• Acquire the arena lock of the block’s originating arena.

368

• Return the block to the correct bin and possibly coalesce it.

This results in:

• Allocator lock traffic between threads

• Poor temporal locality, since memory freed may not be reused by the freeing
thread

• Increased fragmentation when allocation/free patterns become non-local

This behavior is particularly costly in producer/consumer systems where ownership
transfer is high.

13.2.4NUMA Effects and Core Affinity

On NUMA systems, arena replication interacts with memory locality:

Behavior Result

Thread repeatedly allocates/free in the
same arena

Memory resides in local NUMA node;
cache locality maintained

Thread migrates cores Accesses remote-memory arenas; latency
increases

Thread frees memory allocated by
another NUMA domain

Inter-node traffic and increased LLC
pressure

This makes allocator behavior latency-sensitive to scheduler decisions.
For systems requiring strict memory locality (e.g., real-time engines, HPC kernels),
binding threads to cores (sched_setaffinity) significantly improves allocator
performance.

369

13.2.5 Contention Diagnostics

To diagnose arena contention:

$ MALLOC_ARENA_MAX=1 ./app

Forces single-arena mode, exposing lock stalls directly.
Use perf to measure lock wait times:

$ perf lock record ./app
$ perf lock report

High lock wait indicates allocator pressure; solutions include:

• Thread-local pooling (thread_local slab or object pools)

• PMR monotonic or fixed-size buffer resources

• Choosing an alternative allocator (e.g., tcmalloc, jemalloc, mimalloc)

13.2.6 Summary

Mechanism Benefit Cost

Arena replication Reduces locking
contention

Increases fragmentation and
memory footprint

Per-arena free lists High locality when
threads do not migrate

Locality collapses under
thread movement

Cross-arena free
handling

Correct memory return Introduces inter-thread lock
traffic

370

Mechanism Benefit Cost

Core and NUMA affinity Stabilizes allocator
locality

Requires scheduler-aware
application design

Arena replication enables scalable average-case performance, but only when
thread locality is stable. Systems that move work dynamically across threads will
incur allocator-induced latency unless memory allocation is explicitly designed to be
thread-local or region-based.

371

13.3 Custom Allocators for STL Containers
The default allocator used by standard containers (std::allocator<T>) delegates
to operator new, which in turn relies on the global heap allocator (ptmalloc2 in
glibc). While this is sufficient for general-purpose workloads, performance-critical and
concurrent systems benefit from custom allocator strategies that reduce contention,
improve cache locality, and control object placement. The C++ allocator model enables
replacing the default allocator with container-aware and domain-specific allocation
behavior.

13.3.1Allocator Model Requirements

C++20 defines the allocator interface through std::allocator_traits, separating
allocator policy from allocator binding. Any custom allocator must define:

template<class T>
struct Allocator {

using value_type = T;

T* allocate(std::size_t n);
void deallocate(T* p, std::size_t n) noexcept;

};

All higher-level semantics—object construction, destruction, rebind, propagation on
move—are derived automatically through std::allocator_traits.
This separation allows:

• Allocators to be shared across container instances,

• Per-container memory pools,

• Region or arena-backed allocation.

372

13.3.2Motivations for Custom Allocators in High-Performance
Systems

Requirement Default Allocator
Behavior

Custom Allocator Advantage

Cache locality Objects may be
widely dispersed

Allocator may enforce contiguous
block placement

Multithreaded scalability Dependent on arena
behavior

Thread-local pools eliminate lock
contention

Deterministic latency Allocation requires
metadata lookup

Fixed-size pools provide O(1)
allocation

Memory ownership
control

Lifetime is implicit Region/arena destruction is
constant time

In performance-critical systems, memory locality and synchronization behavior
matter more than raw allocation throughput.

13.3.3 Pool Allocators for Fixed-Size Objects

For containers such as std::vector<T> or std::deque<T>, object size is known and
stable. A slab or pool allocator pre-allocates a large contiguous region and serves
objects from it:

template<class T>
class PoolAllocator {
public:

using value_type = T;

373

T* allocate(std::size_t n) {
return static_cast<T*>(pool.allocate(n * sizeof(T)));

}

void deallocate(T* p, std::size_t) noexcept {
pool.deallocate(p);

}

private:
ThreadLocalPool pool;

};

Benefits:

• Minimal fragmentation

• Cache-coherent iteration

• No interaction with the global heap

13.3.4Monotonic and Region-Based Allocation

C++17 introduced std::pmr to
simplify allocator design. std::pmr::monotonic_buffer_resource allocates memory
in growing regions, with no individual deallocation:

std::pmr::monotonic_buffer_resource buffer;
std::pmr::vector<int> v(&buffer);

Advantages:

• Zero per-object free cost

374

• Lifetime tied to region scope

• Excellent locality for construction-heavy phases

This model is ideal for parse trees, compiler front-ends, scene graphs, and batch
computations.

13.3.5 Thread-Local Allocators for Concurrency

To avoid arena contention, a thread-local allocator isolates allocation to the
executing thread:

thread_local std::pmr::monotonic_buffer_resource thread_pool;
std::pmr::unordered_map<Key, Value> map(&thread_pool);

This eliminates allocator locks entirely so long as objects remain local to the thread.
When cross-thread ownership transfer is required, memory ownership must be explicitly
mediated—either via shared-memory transfer queues or per-thread reclamation systems
such as hazard-pointer based reclamation.

13.3.6 Performance Considerations and Trade-offs

Allocator Type Strengths Limitations

Pool / Slab Consistent latency;
strong locality

Must manage type sizes
explicitly

Monotonic Region Fast allocation and
teardown

No granular deallocation; must
reset region at controlled points

375

Allocator Type Strengths Limitations

Thread-Local Zero contention Requires strict ownership
discipline

Global Arena-Backed
(std::allocator)

Simple; universal
semantics

Potential contention and reduced
locality under concurrency

13.3.7 Summary

Custom allocators transform the memory allocation layer from a general-purpose
heap into a domain-optimized storage strategy. In systems where memory
allocation is on the critical path—such as schedulers, real-time control loops, messaging
fabrics, indexing engines, or UI event pipelines—allocator selection directly influences:

• Cache locality and coherence behavior

• Tail latency under contention

• Memory footprint stability

• Overall determinism of execution time

The allocator is therefore not a peripheral implementation detail but a first-order
architectural parameter in advanced C++ system design on Linux.

376

13.4Using ASan + Heaptrack to Diagnose
Fragmentation

Efficient memory allocation in complex C++ systems is not solely determined by
raw allocator throughput; fragmentation patterns, lifetime mismatches, and
unintended allocation hot paths often dominate performance behavior. To identify
and correct such issues, modern toolchains provide two complementary diagnostic tools:

• AddressSanitizer (ASan) for detecting incorrect memory usage.

• Heaptrack for tracing allocation patterns, fragmentation, and allocator pressure.

Together, they form a behavioral and structural analysis pipeline that reveals the
root causes of allocation-induced latency and memory growth.

13.4.1Why ASan and Heaptrack Are Complementary

Tool Primary Focus Strengths Limitations

ASan Detect invalid memory
behavior (use-after-free,
buffer overflow)

Strong correctness
enforcement;
immediate failure
reporting

Does not analyze
fragmentation
dynamics

Heaptrack Observe allocation size,
frequency, and temporal
patterns

Reveals fragmentation
and allocation
hotspots

Does not detect
invalid memory access

ASan addresses safety; Heaptrack addresses efficiency. Correctness and performance
diagnostics must be performed jointly.

377

13.4.2 Building and Running with ASan

Enable ASan during compilation:

$ g++ -O2 -fsanitize=address -fno-omit-frame-pointer app.cpp -o app_asan

Key options:

• -fsanitize=address enables redzones and shadow memory.

• -fno-omit-frame-pointer allows accurate stack trace resolution.

• Avoid -flto unless using a version of LLVM with matching sanitizer runtime
compatibility.

Running detects:

• Heap-use-after-free

• Stack and heap buffer overflows

• Double free

• Incorrect delete/delete[] mismatches

Example failure output:

==12345==ERROR: AddressSanitizer: heap-use-after-free ...

If ASan reports no violations, fragmentation and allocator inefficiency become the
primary suspects.

378

13.4.3 Collecting Heaptrack Traces

Run the application under Heaptrack:

$ heaptrack ./app

This produces a .gz trace file. Analyze the trace:

$ heaptrack_gui heaptrack.<pid>.gz

Key signals to examine:

• Hot allocation call stacks: repeated allocation inside loops.

• Lifetime mismatch chains: long-lived objects retaining large blocks.

• Cross-thread memory free patterns: indicative of loss of arena locality.

• Large mmap event frequency: implies non-locality or allocator exhaustion.

Heaptrack’s flame graphs reveal allocation “pressure zones” where redesign or custom
allocators may be warranted.

13.4.4Diagnosing Fragmentation Patterns

Common fragmentation indicators include:

Symptom Root Cause Mitigation

Many small freed blocks
remain unused

Interleaving lifetimes in shared
arena

Convert to monotonic
region or pool allocator

379

Symptom Root Cause Mitigation

Frequent mmap / munmap
cycles

Oversized allocations
bypassing bins

Introduce slab
partitioning for large
objects

Memory footprint grows
without leak

Long-lived containers holding
many small nodes

Compact underlying
data structures or use
reserve()

Highly variable
allocation latency

Cross-arena deallocation from
thread migration

Introduce thread-local
pools or affinity policies

Heaptrack provides context: which code path allocates, how frequently, and with which
lifetime distribution.

13.4.5 Combining ASan and Heaptrack in Diagnostic Workflow

Typical workflow:

1. Run with ASan
Ensure correctness.
If errors are found, fix them before investigating performance.

2. Run with Heaptrack
Capture full-system allocation behavior.

3. Inspect Hot Paths
Identify functions responsible for allocation volume, churn, or waste.

4. Redesign Allocation Strategy
Apply:

380

• reserve() for vectors,

• shrink_to_fit() when appropriate,

• std::pmr for region-based lifetimes,

• thread-local slab allocators for concurrency.

5. Re-measure under realistic load
Verify behavior under concurrent stress.

13.4.6 Summary

Objective Tool Result

Ensure memory
correctness

AddressSanitizer Prevent corruption, use-after-free,
overflow, and double free

Understand memory
behavior

Heaptrack Reveal allocation patterns, growth,
and fragmentation

Improve stability and
throughput

Custom allocator
strategy

Reduce latency, contention, and
memory footprint

This combined diagnostic approach converts allocator behavior from implicit
emergent patterns into observable, controllable system properties.
In advanced C++ systems, memory behavior must be treated as a first-class
architectural dimension, not an incidental runtime detail.

381

13.5 Examples: Optimizing Allocator for std::vector
Reuse Patterns

std::vector is one of the most commonly used containers in performance-sensitive
C++ systems. Its behavior is predictable: it stores elements contiguously in memory
and grows its capacity geometrically (typically by a factor of 1.5 or 2). However, in
systems where vectors are repeatedly created and destroyed—such as in frame-based
simulation pipelines, request batching layers, or message processing loops—the default
allocator may induce:

• Repeated heap calls for allocation and deallocation

• Loss of cache locality due to memory churn

• Increased pressure on the ptmalloc arena structure

• Latency spikes from top-chunk growth and coalescing

To optimize for such reuse-heavy patterns, we replace the default allocator with
monotonic, pool-backed, or small-buffer optimized strategies that allow
std::vector to reuse previously acquired memory rather than repeatedly interacting
with the general heap.

13.5.1 The Problem: Transient Vectors in Tight Loops

Example pattern:

for (;;) {
std::vector<float> data; // allocate
data.reserve(4096); // heap expansion
process(data);

} // deallocate

382

This creates and frees a heap buffer every iteration, defeating cache locality and
increasing allocator contention.
Even if the vector is outside the loop:

std::vector<float> data;
for (;;) {

data.clear(); // does NOT free capacity
process(data);

}

The underlying capacity may still be reallocated if the workload occasionally requires
temporary growth beyond previously seen sizes.
The optimization goal is to tie vector allocation lifetime to a reuse scope.

13.5.2Using std::pmr::monotonic_buffer_resource

#include <memory_resource>
#include <vector>

thread_local std::pmr::monotonic_buffer_resource buffer;

void run() {
std::pmr::vector<float> v(&buffer);
v.reserve(4096);
process(v);

}

Properties:

383

Behavior Effect

Allocations are taken from
buffer

No calls to malloc during reuse

No per-element deallocation Destruction is O(1) when buffer resets

Memory locality Guaranteed for all vectors using the same region

Best for repeated bulk-compute phases with well-bounded vector sizes.

13.5.3 Pool Allocator for Stable Object Sizes

For vectors with fixed or predictable maximum size, use a slab allocator that
supplies contiguous blocks:

template<class T, std::size_t Max>
class SlabAllocator {
public:

using value_type = T;
T* allocate(std::size_t n) {

if (n > Max) throw std::bad_alloc();
return reinterpret_cast<T*>(storage);

}
void deallocate(T*, std::size_t) noexcept {}

private:
alignas(T) static inline std::byte storage[sizeof(T) * Max];

};

Usage:

std::vector<int, SlabAllocator<int, 4096>> v;

This ensures:

384

• Zero fragmentation

• No heap calls

• Optimal cache locality

Constraint: Maximum size must be known.

13.5.4 Reuse-Aware std::vector Wrapper

A common reusable pattern is to couple capacity stability with clear():

template<class T>
class ReusableVector {
public:

void reset() noexcept { vec.clear(); } // keep capacity
auto& get() { return vec; }

private:
std::vector<T> vec;

};

When used in high-frequency pipelines:

thread_local ReusableVector<float> scratch;
auto& buf = scratch.get();
buf.clear();
process(buf);

The buffer persists per thread, eliminating allocation churn.

13.5.5 Performance Comparison

385

Method Allocation
Overhead

Cache
Locality

Fragmentation
Risk

Best Use Case

Default
std::allocator

Medium under
reuse; high
under churn

Medium Medium/High General-purpose
workloads

Thread-local
reuse (clear())

Very low High Low Hot loops with
fixed working set

std::
pmr::monotonic
_buffer_resource

Zero amortized High Region
growth only

Batch compute
/ parsing /
simulation frames

Slab/fixed pool
allocator

Zero Maximum No resizing
flexibility

Real-time,
embedded, latency-
bound tasks

13.5.6 Summary

To optimize std::vector reuse patterns:

1. Retain capacity, avoid reallocations (clear() not shrink_to_fit()).

2. Use thread-local pools to prevent arena cross-traffic.

3. Prefer monotonic or region-based allocators for batch-structured
computation phases.

4. Use slab allocators in environments requiring predictable latency and hard
memory bounds.

386

Memory allocation is not only a cost center but also a locality and stability
mechanism.
Performance-critical C++ systems must treat the allocator as a deliberate
architectural choice, not a passive implementation detail.

Part VI

ELF, LINKER, LOADER, AND
BINARY EXECUTION

387

Chapter 14

ELF Structural Mathematics

14.1 Segment Mapping into Virtual Address Space

When an ELF executable is launched on Linux, the kernel loader constructs the process
address space by mapping program segments into memory. These segments originate
from the Program Header Table (PHT), which describes how the binary is to
be realized at runtime. The mapping process establishes the layout of executable
code, read-only data, writable data, thread-local regions, the runtime loader, and
dynamically linked libraries. Understanding this mapping is fundamental for analyzing
performance behavior, memory isolation, address resolution, and binary compatibility
across systems.

14.1.1 ELF Segments vs. Sections

At link time, ELF organization is described in terms of sections (e.g., .text, .data,
.rodata, .bss).
At execution time, the kernel ignores sections and uses segments, defined in the

389

390

Program Header Table:

Structure Purpose Used at
Compile/Link Time?

Used at Run
Time?

Sections Code & data grouping
for the linker

Yes No

Segments Memory mapping and
permissions

No Yes

Segments specify ranges of the file that must be mapped into the virtual address space,
with associated attributes:

• Permissions (R/W/X)

• Alignment

• Offset in file

• Virtual address

The compiler and linker determine how sections are packed into segments, ensuring
alignment and page-granular mapping consistency.

14.1.2 Program Header Table (PHT) Structure

The PHT is located near the beginning of the ELF file and contains entries like:

Type: PT_LOAD # Loadable segment
VirtAddr: 0x400000
FileOffset: 0x000000
FileSize: ...

391

MemSize: ...
Flags: R E
Align: 0x200000

Typical x86-64 executable layout:

Segment Purpose Permissions

Text Segment Executable code and read-only
constants

RX

Data Segment Initialized writable globals RW

BSS Segment Zero-initialized globals RW (zero-filled at load)

PT_INTERP
Segment

Dynamic loader path R

TLS Segment Per-thread static storage RW (instantiated per-
thread)

14.1.3Mapping Behavior and Alignment Constraints

Linux uses mmap internally to map segments into memory.
Segments are aligned to page boundaries (commonly 4 KiB on x86-64) and may be
further aligned to superpages (e.g., 2 MiB) for TLB efficiency.
Mapping rules:

1. p_filesz bytes are loaded from disk.

2. If p_memsz > p_filesz, the remaining memory is zero-initialized (for .bss).

3. Permissions are applied at the page granularity.

392

This enables efficient memory sharing:

• Code segments are shared between processes (copy-on-execute).

• Writable segments are private, with copy-on-write behavior.

14.1.4Address Space Layout and Randomization

Modern Linux systems apply ASLR (Address Space Layout Randomization),
relocating:

• Executable base (unless compiled -no-pie)

• Shared libraries

• Stack and heap regions

ASLR enhances security by eliminating static address predictability.
Position-independent executables (PIE) are mapped at randomized bases and use RIP-
relative addressing for functions and data.
Non-PIE executables are mapped at a fixed location (commonly 0x400000), simplifying
static disassembly and debugging at the cost of predictability.

14.1.5 Example: Inspecting Segment Mappings

Using readelf:

$ readelf -l ./a.out

Output excerpt:

LOAD 0x000000 0x0000000000400000 0x0000000000400000 R E 0x200000
LOAD 0x001000 0x0000000000600000 0x0000000000600000 RW 0x200000

393

Meaning:

• The first segment maps executable code at virtual address 0x400000.

• The second segment maps writable data at virtual address 0x600000.

At runtime, verify with /proc/<pid>/maps:

$ cat /proc/$(pidof a.out)/maps

Expected form:

00400000-0040c000 r-xp ... a.out # .text/.rodata segments
00600000-00601000 rw-p ... a.out # .data
00601000-00603000 rw-p ... # .bss (zero-filled)

14.1.6 Relevance to System-Level C++ Engineering

The way segments are mapped influences:

Design
Consideration

Implication

Instruction locality TLB and I-cache efficiency

Data locality Placement of static/global objects affects cache prefetch paths

Security ASLR, WX̂ memory enforcement

IPC & Shared
Memory

Shared vs private memory pages

Binary compatibility ABI and runtime loader expectations

C++ runtime behavior, including exception tables, RTTI maps, and vtables, is tightly
coupled to the segments in which they reside.

394

14.1.7 Summary

Segment mapping determines how an ELF binary becomes an executing process.
It is the bridge between static layout (link time) and dynamic execution
(runtime). By understanding the memory permissions, alignment constraints, and
the loader’s mapping rules, system-level C++ developers can reason about performance
behavior, security properties, and ABI conformance with precision.

395

14.2 Section Grouping, Alignment Models, and
Relocation Records

ELF files encode the logical structure of a program through sections, which represent
arrangement, classification, and linkage of code and data prior to runtime mapping.
While segments dictate runtime memory layout, sections exist primarily for the
linker, symbol resolution, relocation processing, and binary inspection. Understanding
how sections are grouped, aligned, and transformed into relocatable program images is
fundamental for analyzing C++ compilation, template instantiation artifacts, exception
tables, and symbol binding.

14.2.1 Section Grouping and Logical Composition

Sections are grouped to support:

• Relocation processing

• Template and inline-generated code deduplication

• Dead code elimination (garbage collection of sections)

• Shared object symbol scoping

ELF uses comdat groups to designate sections that may appear multiple times across
object files but must be uniquely selected. The linker eliminates duplicates based on
symbol identity.
Example of group membership:

.section .text._ZN1A3fooEv,"axG",@progbits,comdat

.section .data._ZN1A3xEi,"awG",@progbits,comdat

396

The G flag declares comdat, ensuring function template instantiations defined in
multiple translation units do not produce redundant runtime code.

14.2.2Alignment Requirements

Alignment ensures predictable address relationships and CPU correctness:

Section Typical Alignment Rationale

.text (executable code) 16 to 64 bytes Instruction prefetch / I-
cache alignment

.data / .rodata 8 or natural type
alignment

Data load efficiency

.bss Same as .data, zero-
filled

Page-in on demand

Exception frames (.eh_frame) 8 bytes minimum Unwinding metadata
correctness

Linkers may increase alignment to satisfy segment boundary requirements.
For performance-tuned builds, code alignment affects:

• Branch prediction efficiency

• Decoding throughput

• Vectorized loop entry alignment

Modern linkers allow explicit alignment control via linker scripts or attributes:

__attribute__((aligned(64)))
static int buffer[128];

397

14.2.3 Relocation Records: Type and Resolution Semantics

Relocation records instruct the linker (or dynamic loader) to adjust addresses after
symbol placement is finalized. Each relocation entry contains:

• Offset into the section where relocation applies

• Symbol index referring to a symbol table entry

• Relocation type (architecture-specific)

• Addend (arithmetic adjustment factor)

For x86-64, common relocation types include:

Relocation Meaning Usage

R_X86_64_PC32 32-bit PC-relative Short jumps, local calls

R_X86_64_PLT32 Call to symbol via PLT Dynamic function calls

R_X86_64_GOTPCREL Load address from GOT PIC data/model access

R_X86_64_64 Absolute 64-bit relocation Non-PIC and kernel code

C++ emits relocation records aggressively in:

• Template instantiation units

• vtable placement

• Typeinfo tables

• Exception unwind metadata

Correct relocation is crucial for:

398

• Dynamic linking consistency

• Position-independent code correctness

• ABI-stable cross-module symbol references

14.2.4 Interaction with Position-Independent Code (PIC)

Position-independent binaries avoid absolute relocation use by encoding addresses
relative to:

• The program counter (RIP-relative addressing)

• The Global Offset Table (GOT)

• The Procedure Linkage Table (PLT)

PIC requires that:

All global symbol references are resolved through GOT/PLT entries.

This enables the loader to relocate the object image without rewriting executable
instructions, improving:

• Shared library loading performance

• Memory sharing across processes

• ASLR effectiveness

399

14.2.5 Example: Inspecting Relocations

Compile a relocatable object:

$ g++ -c -fPIC demo.cpp -o demo.o
$ readelf -r demo.o

Output example:

OFFSET TYPE SYMBOL
00000010 R_X86_64_PC32 _Z3foov - 4

This indicates that a call to foo() is encoded relative to the current instruction pointer
and requires placement resolution at link time.

14.2.6 Summary

Concept Purpose Relevance to System-
Level C++

Section grouping /
comdat

Eliminates duplicate template
instantiations

Reduces binary size;
ensures ABI consistency

Section alignment Controls memory layout for
efficient fetch and access

Impacts cache locality and
execution throughput

Relocation records Define how symbol addresses are
resolved

Crucial for PIC, shared
libraries, and dynamic
linking

GOT/PLT
indirection

Enables relocation at runtime Foundation of ASLR and
shared object reuse

400

Section grouping, alignment rules, and relocation semantics define how compiler
output becomes executable machine code. In advanced C++ system design, these
details are not ancillary—they directly influence performance, binary size stability,
ABI integrity, and runtime loader efficiency.

401

14.3Weak, Local, Hidden, Protected, and Global
Symbol Rules

Symbol visibility and binding semantics determine how identifiers in an ELF binary
participate in linking, relocation, dynamic symbol resolution, and interposition. In
C++ programs, the correct handling of symbol visibility is critical for maintaining ABI
stability, dynamic library performance, and predictable linkage behavior—particularly
given template instantiation, inline emission, RTTI, vtables, and exception type
metadata. This section formalizes the properties of weak, local, hidden, protected,
and global symbols under the System V AMD64 ABI.

14.3.1 Symbol Binding Classes

Every symbol in ELF has a binding attribute, controlling how it participates in
linking:

Binding Meaning Resolution Scope Typical Usage

LOCAL Not visible outside
the object file

Linker-internal only Static functions,
TU-local data

GLOBAL Publicly visible
symbol

Resolved across DSOs Function exports,
shared library API

WEAK Public but
overrideable

Resolved only if non-weak
alternative not found

Optional overrides,
fallback symbols

Weak binding permits definition override. A weak symbol behaves as:

If a strong definition exists → use strong version.
Else → use weak definition.

402

This is used in libc for system call wrappers and in C++ libstdc++ fallback routines.

14.3.2Visibility Attributes and Link-Time Export Control

Visibility controls dynamic symbol table exposure, not the existence of the symbol
itself:

Visibility Exposed to
DSOs?

Allows
Interposition?

Notes

default Yes Yes Standard export; can be overridden

hidden No No Address known at link time; enables
direct calls

internal No No Similar to hidden; stronger and link-
only

protected Yes No Symbol visible externally but cannot
be replaced

In C++:

__attribute__((visibility("hidden")))
int internal_state;

A hidden symbol allows the compiler to treat references as local and avoid GOT/PLT
indirection under PIC, improving runtime performance and eliminating interposition
ambiguity.
Protected visibility is useful when exporting a symbol without permitting override:

__attribute__((visibility("protected")))
void api_function();

403

Call sites use direct addressing, preserving performance while allowing symbol visibility
for linking.

14.3.3 Interaction with Position-Independent Code (PIC)

To preserve relocatability, global symbols normally require GOT/PLT lookups:

call foo@PLT

But if a symbol is marked hidden, the compiler replaces the indirect call with RIP-
relative direct addressing:

call foo # No PLT indirection

Meaning:

• hidden reduces relocation overhead,

• hidden reduces runtime GOT pressure,

• hidden improves I-cache performance by eliminating PLT stubs.

Thus, symbol visibility directly affects execution speed and is a performance tuning
parameter, not just a linkage rule.

14.3.4Weak Symbols in C++ Object Models

Weak symbols commonly arise in:

1. Typeinfo (typeinfo for T) and RTTI

2. VTable emission for polymorphic classes

3. Template instantiations compiled in multiple TUs

404

The Itanium C++ ABI mandates:

• VTables and typeinfo are weak ODR symbols.

• The linker selects a single canonical copy during link.

• All references in the program resolve to that canonical copy.

This ensures object identity semantics required for dynamic_cast and exception type
matching.

14.3.5 Symbol Interposition and Dynamic Linking Behavior

Symbol interposition occurs when a symbol in one DSO overrides another symbol of the
same name in a dependent DSO. This only occurs when:

• Symbols are global,

• Visibility is default,

• The object is dynamically linked.

Interposition is resolved by the dynamic loader based on dependency order (DT_NEEDED
chain).
Protected and hidden symbols explicitly disable interposition, making runtime
behavior deterministic.
Example eliminating accidental override:

__attribute__((visibility("hidden")))
static int cache_state;

405

14.3.6 Summary

Attribute Type Governs Key Behavior Performance
Impact

Binding (LOCAL,
GLOBAL, WEAK)

Link selection rules Weak allows fallback
or duplication
control

None directly

Visibility (default,
hidden, protected)

Dynamic symbol
exposure and
interposition

Hidden/protected
eliminate PLT/GOT
indirections

Significant in
tight loops
and PIC

Weak ODR C++
Symbols

VTables, RTTI,
templates

Ensures single
canonical definition

Required
for ABI
correctness

Symbol binding and visibility rules are core to how C++ semantics are
implemented at the binary level.
They shape:

• ABI stability across shared libraries,

• Dynamic linking behavior,

• PIC performance,

• Identity semantics of polymorphic types and RTTI.

In high-performance C++ system design, symbol visibility should be consciously
designed, not left implicit.

406

14.4DWARF Integration and Line Table Encoding
The DWARF debugging format provides a standardized representation of source-level
program structure, type information, control flow, and variable locations that can be
mapped back to machine code addresses. In ELF binaries produced by GCC on x86-
64 Linux, DWARF metadata resides in dedicated non-loadable sections, separate
from executable code and data. These sections allow symbolic debuggers, profilers, and
sampling tools to reconstruct program semantics without modifying or instrumenting
executable code.
DWARF integration is fundamental in areas such as exception unwinding, profile-
guided optimization feedback, symbolic stack tracing in runtime diagnostics, and
performance tooling workflows.

14.4.1DWARF Section Structure

Debugging information is primarily stored in the following ELF sections:

Section Purpose

.debug_info Describes the program structure and type information
as DIEs (Debugging Information Entries)

.debug_abbrev Encodes abbreviation tables for compressed DIE
representations

.debug_str String table referenced by DIEs

.debug_line Line number to PC address mapping tables

.debug_ranges /

.debug_rnglists
Variable and scope address ranges

407

Section Purpose

.debug_loc /

.debug_loclists
Variable location expressions

.eh_frame Runtime unwinding metadata (used by exception
handling and stack tracing)

DWARF data is read only by debuggers and profiling tools, and never mapped into
executable memory, preserving security and cache efficiency.

14.4.2 Line Table Encoding Principles

The .debug_line section maps machine code addresses to source file line numbers. It
encodes:

• Compilation directory

• Source file index table

• Instruction address deltas

• Line number deltas

• Statement boundaries and inlined location entries

Rather than storing one entry per instruction, DWARF encodes state transitions
using a compact bytecode interpreted by the debugger. This bytecode updates:

(line, column, file, PC address)

in a state machine.
This encoding allows efficient compression while retaining precise stepping capability.

408

14.4.3Address-to-Line State Machine Encoding

The line table is a sequence of opcodes such as:

Opcode Class Meaning

Standard Opcode Adjust address or line, set flags (e.g., DW_LNS_advance_pc)

Special Opcode Combined PC and line delta encoded in one byte

Extended Opcode Insert markers such as end-of-sequence or define-file directives

Example (conceptual):

DW_LNS_set_file file #3
DW_LNS_advance_pc +24
DW_LNS_advance_line +2
DW_LNS_copy

Debugger interpretation reconstructs a mapping such as:

0x400610 → main.cpp : 14
0x400624 → main.cpp : 16

Efficient stepping and precise breakpoints rely on this mapping.

14.4.4Debug Information Entries (DIEs)

.debug_info contains a tree of DIEs representing:

• Namespace contexts

• Class definitions, methods, member variables

• Template instantiations (with mangled/linkage names)

409

• Parameter and local variable scope metadata

Each DIE includes:

• A tag (e.g., DW_TAG_class_type, DW_TAG_subprogram)

• A set of attributes (e.g., name, type, address range, linkage name)

• Optional children representing hierarchical structure

C++ template instantiation and overload resolution significantly increase DIE graph
complexity, requiring abbreviation tables to avoid redundancy.

14.4.5Debug vs. Unwind Semantics

The .eh_frame section is used at runtime by libgcc and libunwind to implement:

• C++ exception propagation

• Stack unwinding for backtraces

Whereas .debug_frame (if present) contains equivalent information for debuggers
only and may use richer encodings not required by the runtime.
Key distinction:

Section Consumer Purpose

.eh_frame Runtime Deterministic unwind during exceptions

.debug_line,

.debug_info
Debugger /
Profiler

Source mapping and symbolic analysis

This separation ensures runtime unwind remains minimal, compact, and safe under
ASLR.

410

14.4.6 Practical Inspection

To inspect DWARF line tables:

$ objdump --dwarf=decodedline ./a.out

To inspect type DIEs:

$ readelf --debug-dump=info ./a.out

For profiling correlation (e.g., perf + DWARF):

$ perf record ./a.out
$ perf report --stdio

Line accuracy depends on compiler optimization:

• -O0 → exact mapping

• -O2 / -O3 → instruction scheduling may reduce 1:1 correspondence

• -fno-omit-frame-pointer improves stack trace interpretability

14.4.7 Summary

Component Role Relevance

.debug_line Maps PC → Source
line

Enables debugging, profiling,
and code annotation

.debug_info (DIE graph) Encodes program
structure

Required for full C++
symbolic debugging

411

Component Role Relevance

.eh_frame Runtime unwinding
tables

Required for exception
handling and stack tracing

Line state machine
encoding

Compact PC/line
mapping

Efficient and scalable across
translation units

DWARF provides the semantic bridge between optimized machine code and source-
level program understanding.
For system-level C++ engineering, DWARF metadata is essential for:

• Performance attribution

• Exception diagnostics

• Low-overhead runtime observability

• ABI stability verification

412

14.5 Examples: Re-mapping ELF Segments via
Custom Linker Script

Control over ELF segment layout allows system-level C++ developers to influence
memory mapping, cache behavior, load-time locality, and binary security posture.
The GNU linker (ld) supports linker scripts which explicitly define how sections are
grouped into segments, where segments are placed in the virtual address space, and how
alignment relationships are enforced.
This capability is essential when:

• Constructing position-dependent executables for embedded systems.

• Aligning .text to large page boundaries to reduce TLB pressure.

• Co-locating data structures to improve cache locality in high-performance code.

• Enforcing W^X (write-xor-execute) security constraints strictly.

• Reducing page working-set footprint in memory-constrained environments.

14.5.1 Linker Script Core Structure

A minimal script defines how input sections map to output sections:

ENTRY(_start)

SECTIONS {
/* Map .text at fixed aligned base */
.text 0x400000 ALIGN(0x200000) : {

(.text .text.)
}

413

/* Read-only data tightly following code */
.rodata ALIGN(64) : {

(.rodata .rodata.)
}

/* Writable data and zero-fill region */
.data ALIGN(4096) : {

(.data .data.)
}

.bss : {
(.bss .bss. COMMON)

}
}

Key properties:

• ENTRY(_start) sets process entry point.

• Alignment ensures page or cache boundary placement.

• Multiple input sections merge into unified logical output regions.

This output section mapping is subsequently converted into PT_LOAD segments by
the linker.

14.5.2 Controlling Segment Formation

To explicitly influence runtime mapping, we declare PHDRS blocks:

PHDRS {
text PT_LOAD FLAGS(R X);

414

data PT_LOAD FLAGS(R W);
}

SECTIONS {
.text : {

(.text)
} : text

.rodata : {
(.rodata)

} : text

.data : {
(.data)

} : data

.bss : {
(.bss)

} : data
}

This forces .text and .rodata into a single RX segment, improving I-cache prefetch
and reducing TLB coverage.
.data and .bss reside in a separate RW segment, preventing accidental execution
permissions.
This separation reflects a strict W^X discipline.

14.5.3 Example: Large Page Alignment for Instruction Fetch
Efficiency

High-throughput HPC or signal-processing loops benefit from mapping .text on 2 MiB
hugepages to reduce TLB misses.

415

Link script modification:

.text 0x400000 ALIGN(0x200000) : {
(.text .text.)

}

And runtime mapping (system config allowing):

$ echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
$ madvise(text_region, size, MADV_HUGEPAGE);

The result: larger page granularity reduces ITLB pressure and improves predictable
instruction delivery.

14.5.4 Example: Isolating a Hot Data Region Near Executable
Code

A high-frequency data structure (e.g., jump tables, frequently-read state arrays) may be
deliberately mapped adjacent to .text:

.hotdata ALIGN(64) : {
KEEP(*(.hotdata))

}

When placed immediately after .text, the processor benefits from spatial locality in
unified I/D L1 cache, reducing long-latency reloads.
To place such globals:

__attribute__((section(".hotdata")))
static uint64_t state_buffer[256];

416

14.5.5Verifying Segment Mapping

After linking:

$ readelf -l app | grep LOAD

Example output:

LOAD 0x000000 0x00400000 0x00400000 R E 0x200000
LOAD 0x001000 0x00600000 0x00600000 R W 0x200000

Validate runtime layout:

$ cat /proc/$(pidof app)/maps

Confirm .text and .rodata share an RX region, and .data + .bss are separate RW.

14.5.6 Summary

Control Mechanism Purpose Resulting Property

Section-to-segment
grouping

Defines memory protection
regions

Enforces WX

and interposition
predictability

Alignment directives Align code and data on cache
/ TLB boundaries

Reduces ITLB/DTLB
churn; improves locality

Custom placement of hot
data

Co-locates computation and
state

Reduces memory latency
in hot loops

417

Control Mechanism Purpose Resulting Property

PHDRS mapping Explicit control over load
segments

Predictable binary and
loader behavior

By re-mapping ELF segments via custom linker scripts, a C++ system architect
can reshape memory semantics to match execution behavior, achieving
improvements in:

• Latency stability

• Instruction and data locality

• Security posture

• Binary reproducibility and ABI reliability

This represents the point where compiler output becomes micro-architectural
strategy.

Chapter 15

Dynamic Loader Algorithm and
GOT/PLT Behavior

15.1 Lazy vs Immediate Binding Resolution State
Machine

Dynamic linking in ELF environments allows symbols defined in shared libraries to
be bound to references in executable code at runtime. The dynamic loader (ld.so)
coordinates this process using the Global Offset Table (GOT) and the Procedure
Linkage Table (PLT). Program behavior, startup latency, memory locality, and
runtime determinism depend on whether symbol resolution is performed lazily (when
first called) or immediately (at application startup).
Understanding the binding state machine is essential for system-level C++ applications
where call-path determinism, latency predictability, and dynamic linking correctness
must be guaranteed.

418

419

15.1.1 PLT/GOT Indirection Overview

For a call to a function in a shared object, the compiler generates an indirect call via
the PLT:

call foo@PLT

The PLT entry contains code that jumps through GOT entries to determine the
actual address of foo(). Initially, the GOT entry does not contain the final address;
it contains a pointer back to the dynamic loader’s resolution handler.
At a high level:

Element Purpose

PLT Dispatches function calls that may require dynamic resolution

GOT Stores resolved runtime addresses of external symbols

Resolver Performs lookup, relocation, and GOT patching

15.1.2 Lazy Binding State Transition

Lazy binding defers symbol resolution until first call, reducing startup overhead and
enabling shared libraries to be loaded without immediate symbol patching.
State machine (simplified):

Initial Call:
PLT entry → jump to resolver stub → call into ld.so
ld.so:

* Lookup symbol in symbol tables
* Resolve symbol address
* Patch GOT entry with resolved address

Return to call site

420

Subsequent Calls:
PLT entry → jump directly to resolved function (no loader invocation)

This results in a one-time resolution penalty per dynamic symbol, amortized
across program execution.
Advantages:

• Lower startup cost

• Lower memory footprint at launch

• Supports dlopen/dlclose flexibility

Disadvantages:

• First-call latency spike

• Loader invocation during execution

• Increased branch unpredictability during initial execution

15.1.3 Immediate Binding State Transition

Immediate binding resolves all symbol references before program execution enters
main().
Enabling immediate binding:

$ LD_BIND_NOW=1 ./app

or linking with:

-Wl,-z,now

421

State machine:

Program Load:
ld.so:

* For each PLT-referenced symbol:
- Perform lookup
- Patch GOT entry

main() executes with all call targets fixed

Advantages:

• No runtime resolution latency

• Deterministic call behavior

• Stable performance characteristics in tight loops

Disadvantages:

• Longer startup time

• Increased page faults at startup

• Higher memory working-set at load time

15.1.4 Performance and Determinism Trade-offs

Property Lazy Binding Immediate Binding

Program startup Fast Slower

First call performance Unpredictable Deterministic

422

Property Lazy Binding Immediate Binding

Runtime latency Possible spikes Stable

Real-time suitability Poor Good

Debuggability More complex Straightforward

Security (RCE hardening) Weaker Stronger (reduces attack window)

For real-time processing, low-latency trading, simulation loops, HPC kernels,
immediate binding is preferable to avoid path-length variability.
For general GUI applications, dynamic plugin systems, or interactive
scripting runtimes, lazy binding reduces load time overhead.

15.1.5 C++ Language-Level Effects

Lazy binding interacts with:

• Virtual dispatch (indirect calls stack with PLT indirection)

• Exception unwinding (handler tables are unaffected but tracing overhead may
differ)

• Function pointer identity (indirection affects equality and pointer comparison only
during unresolved states)

Critically, pure virtual call resolution and ABI vtable layout are independent of
dynamic binding; PLT only affects symbol linkage, not dispatch semantics internal to
object models.

423

15.1.6 Summary

Component Role Implications

PLT Dispatches calls requiring
runtime binding

Introduces indirection on external
calls

GOT Holds resolved symbol
addresses

Patched on first use (lazy) or load
(immediate)

Lazy Binding Defers resolution to first call Minimizes startup cost; introduces
runtime latency

Immediate
Binding

Resolves all calls before
main()

Maximizes determinism; increases
startup cost

The lazy vs immediate binding model is a runtime contract influencing performance
predictability and system behavior.
In advanced C++ system design, selecting binding mode is not a configuration detail—
it is a first-order architectural decision tied directly to execution environment
constraints.

424

15.2 IFUNC, Symbol Interposition, and Auditing
Interfaces

The ELF dynamic linking model allows flexible symbol resolution at runtime. Beyond
standard lazy and immediate binding, Linux provides indirect functions (IFUNC),
symbol interposition, and audit interfaces to modify or observe symbol resolution.
These features are powerful tools for performance adaptation, ABI compatibility
layers, profiling frameworks, and hardened security monitoring, but they must be used
selectively due to their impact on determinism, caching, and execution transparency.

15.2.1 IFUNC (Indirection Functions) Resolution Mechanism

An IFUNC is a symbol whose address is determined by executing a resolver function
at runtime. This allows CPU feature–adaptive implementations without requiring
multiple shared libraries or runtime dispatch branches inside hot code.
Example declaration:

extern "C" void foo_impl_ssse3();
extern "C" void foo_impl_avx2();

static void* foo_resolver() {
if (__builtin_cpu_supports("avx2"))

return (void*)foo_impl_avx2;
else

return (void*)foo_impl_ssse3;
}

extern "C"
__attribute__((ifunc("foo_resolver")))
void foo();

425

At load time (or if lazy-bound, at first call), the dynamic loader executes
foo_resolver() and patches the GOT entry with the returned function pointer.
Subsequent calls incur zero dispatch overhead.
Advantages:

• Branch-free CPU specialization

• Compatible with PIC and shared libraries

• No runtime overhead after resolution

Costs:

• Resolver executes during relocation

• Must avoid heavy computation in resolver

• Increases loader complexity if used excessively

IFUNC is widely used in optimized glibc, OpenSSL, BLAS libraries, and HPC math
kernels.

15.2.2 Symbol Interposition and Resolution Ordering Rules

Symbol interposition allows a symbol in one object to override a symbol of the same
name in another object, provided:

• Both are GLOBAL binding symbols

• Visibility is default

• Resolution occurs through dynamic linking

426

Search order:

1. Executable (if dynamic)
2. Libraries in DT_NEEDED order, breadth-first
3. LD_PRELOAD libraries (prepend override)

Example interposition:

extern "C" void foo() {
// replacement implementation

}

And run:

$ LD_PRELOAD=./override.so ./app

Interposition rewrites call targets by altering PLT/GOT bindings.
Risks in high-performance C++ systems:

• Loss of inlining and devirtualization opportunities

• Indirect call overhead persists even after binding

• Debugging complexity increases significantly

Modern performance-guided C++ designs often mark internal APIs as:

__attribute__((visibility("hidden")))

to disable interposition where determinism is required.

427

15.2.3 Protected Visibility and IFUNC Interaction

When applying:

__attribute__((visibility("protected")))
void foo();

the symbol remains externally visible but is not interposable.
Combined with IFUNC, this guarantees:

• CPU-optimized implementation selected at load time

• No PLT indirection

• No interposition override vulnerabilities

This is the recommended model for high-throughput shared library APIs.

15.2.4 LD_AUDIT and Dynamic Linking Auditing Interfaces

The loader provides an auditing API allowing shared libraries to intercept and log:

• Symbol lookup

• PLT/GOT binds

• Object loading and unloading events

To enable:

export LD_AUDIT=./audit.so

An audit module implements callbacks such as:

428

extern "C" unsigned int la_version() { return LAV_CURRENT; }

extern "C" void* la_symbind64(
Elf64_Sym* sym, unsigned int ndx,
void* refcook, void* symcook,
const char* symname)

{
// Inspect or log binding
return (void*)sym->st_value; // Return target address

}

Use cases:

Category Purpose

Profiling frameworks Record dynamic call graphs

Security monitoring Detect unauthorized symbol redirection

ABI transition
support

Rewrite symbol references across library versions

Auditing runs inside the loader, so it must be minimal, thread-safe, and free of
recursion into dynamic lookup.

15.2.5 Performance and Security Considerations

Mechanism Strengths Costs Recommended Use

IFUNC Zero-overhead
CPU feature
specialization

Resolver overhead
at load; added
complexity

Numerical kernels,
cryptographic fast
paths

429

Mechanism Strengths Costs Recommended Use

Symbol
Interposition

Runtime override
flexibility

Prevents inlining;
introduces call
indirection

Testing layers,
debugging shims,
compatibility layers

Protected
/ Hidden
Visibility

Eliminates binding
variability

Must be designed
into the ABI early

Library internal APIs,
high-performance
compute, real-time
systems

LD_AUDIT Full symbol-level
observability and
tracing

High runtime
introspection
overhead

Debugging, ABI
migration verification,
runtime conformance
checking

15.2.6 Summary

The dynamic linking model is not limited to binding addresses—it is a programmable,
policy-controlled resolution system.

• IFUNC selects optimized implementations based on microarchitectural
capabilities.

• Interposition enables override-based layering but must be avoided in latency-
critical paths.

• Protected visibility guarantees stability and eliminates unnecessary indirection.

• Audit interfaces provide controlled introspection into runtime symbol behavior.

430

In advanced C++ system design, these mechanisms enable strategic control over
the mapping between binary structure and execution performance,
forming a bridge between compilation artifacts, the loader’s resolution engine, and
microarchitectural optimization behavior.

431

15.3RELRO, BIND_NOW, PIE Hardening
Behavior

Modern ELF loaders support several binary hardening features that strengthen the
runtime memory model against corruption, dynamic call target manipulation, and code-
reuse attacks. The principal mechanisms relevant to system-level C++ binaries are:

• RELRO (Relocation Read-Only) — restricts mutation of relocation-resolved
tables.

• BIND_NOW — enforces early binding to eliminate runtime PLT resolution
trampolines.

• PIE (Position Independent Executable) — enables full Address Space
Layout Randomization (ASLR) for the main executable.

Each feature influences the structure and stability of dynamic linking, loader control
flow, and GOT/PLT indirection patterns, with effects on both security and execution
determinism.

15.3.1 RELRO: Read-Only Relocation Protection

During dynamic symbol resolution, the dynamic loader writes resolved addresses into:

• The GOT (Global Offset Table),

• The Dynamic Relocation sections, and

• Various runtime linker state structures.

By default, these memory regions remain writable throughout execution, enabling
attack vectors such as:

432

• GOT overwrite → redirect function call instructions,

• PLT entry hijacking → arbitrary code redirection.

RELRO mitigates this by transitioning relocation-resolved sections to read-only after
their initialization phase.
RELRO modes:

Mode Behavior Protection
Coverage

Cost

partial
RELRO

.got.plt remains
writable

Linker metadata only No runtime overhead

full RELRO Entire GOT
becomes read-only
after relocation

Complete GOT
protection

Requires immediate
binding

Full RELRO requires BIND_NOW, since lazy-binding depends on the ability to modify
GOT at call time.

15.3.2 BIND_NOW: Immediate Symbol Resolution
Enforcement

The BIND_NOW option forces the loader to resolve all PLT entries before main()
executes, eliminating dl-runtime lazy binding stubs.
Compile-time or link-time selection:

-Wl,-z,now

or runtime override:

433

LD_BIND_NOW=1

Effects:

• Ensures GOT is stable and safe to make read-only (required for Full
RELRO).

• Eliminates per-symbol first-call latency.

• Produces deterministic call-site behavior across all control paths.

Trade-offs:

Benefit Cost

Deterministic call performance Higher startup time

Required for security-hardening More relocations during load

No runtime resolver entry points Larger working set at program start

This model is appropriate for servers, daemons, financial engines, HPC pipelines,
not latency-sensitive short-lived CLI tools.

15.3.3 PIE: Position Independent Executable and ASLR
Enforcement

PIE compiles the main executable as position-independent code, enabling it to be
mapped at randomized addresses in memory. This disrupts absolute code and data
offsets that would otherwise be stable across runs.
Compile:

-fPIE -pie

434

Effects:

• All code uses RIP-relative addressing, same as shared libraries.

• The base address of the executable is randomized at load time.

• Increases resistance to return-oriented programming (ROP) and jump-oriented
programming (JOP) attacks.

Memory model impact:

Region Without PIE With PIE

.text Loaded at fixed virtual address Randomized per execution

.data / .bss Fixed offsets Offset relative to randomized
program base

GOT / PLT Fixed tables Still present, but base address
varies

PIE pairs naturally with Full RELRO + BIND_NOW, creating a memory
environment where code and call indirection targets are both unpredictable and
immutable.

15.3.4 Combined Hardening Model

The strongest security profile uses:

-fPIE -pie -Wl,-z,relro -Wl,-z,now

Resulting properties:

435

Property Security Effect Performance Impact

PIE ASLR enabled for executable Minor for well-optimized PIC

Full RELRO GOT completely read-only Requires immediate binding

BIND_NOW No lazy binding or GOT
patching

Slightly slower startup; stable
runtime

No writable
code pointers

Eliminates PLT/GOT
overwrite vectors

None at steady state

From the system-engineering perspective, this configuration trades startup time for
maximum runtime stability and predictability.

15.3.5 Summary

Mechanism Purpose Strength When to Use

RELRO Make relocation
tables read-only

High (Full), Medium
(Partial)

Always for
production binaries

BIND_NOW Resolve PLT entries
at load time

High determinism;
required for Full
RELRO

Daemons, long-
running, or real-time
systems

PIE Enable ASLR for
main executable

High entropy &
exploit resistance

All modern Linux
deployments

In well-architected C++ systems—particularly those that must be safe, deterministic,
and resilient to memory corruption—compiler and linker hardening flags are not

436

optional. They define the structural security boundary within which all higher-level
abstractions operate.

437

15.4GOT/PLT Entry Address Calculation and
Trampoline Jump Flow

The interaction between the Global Offset Table (GOT) and the Procedure Linkage
Table (PLT) defines how dynamically linked functions are invoked on x86-64 Linux.
The compiler emits indirect call instructions referencing PLT entries, while the
PLT entries themselves perform indirect jumps using addresses stored in the GOT.
These structures enable dynamic symbol resolution, deferred binding, and symbol
interposition without modifying instruction encodings in-place. This section formalizes
the execution flow for PLT-dispatched calls and the mechanics of GOT patching under
lazy and immediate binding modes.

15.4.1 Structural Relationship Between PLT and GOT

Each dynamically linked function call site compiled as:

call foo@PLT

references a PLT stub. That stub:

1. Loads a function address from a GOT entry.

2. Indirectly jumps to that function.

GCC and the linker generate:

.text:
foo@PLT:

jmp *GOT[foo] # indirect jump via GOT
pushq <relocation-index> # resolver argument
jmp PLT[0] # call dynamic resolver

438

Thus:

• PLT performs dispatch.

• GOT holds resolved function addresses.

• The dynamic resolver patches the GOT pointer to replace the trampoline.

15.4.2 Initial GOT State and Lazy Binding Control Flow

Before symbol resolution:

GOT[foo] → PLT resolver stub (dl-runtime)

Execution flow on first call:

call foo@PLT
→ PLT[foo]:

jmp *GOT[foo] ; jumps to resolver
→ Resolver trampoline:

push relocation index
jmp PLT[0]

→ PLT[0]:
jmp *GOT[linker resolver] ; enters ld.so

→ ld.so:
Resolve symbol
Patch GOT[foo] = real foo address

← Return to caller

Second and subsequent calls:

call foo@PLT
→ PLT[foo]:

jmp *GOT[foo] ; now points directly to foo

The trampoline path executes only once.

439

15.4.3 Immediate Binding Behavior

When BIND_NOW is enabled, symbol resolution is performed during program startup:

• The loader resolves all PLT/GOT pairs before main().

• GOT entries contain final function addresses prior to execution.

• The resolver path is never executed at runtime.

Execution becomes:

call foo@PLT
→ PLT[foo]:

jmp *GOT[foo] ; already patched, no resolution cost

This eliminates first-call latency and supports Full RELRO (GOT read-only).

15.4.4 Code Generation Constraints: RIP-Relative GOT Access

In x86-64 System V ABI, the GOT is addressed via RIP-relative addressing,
ensuring PIC/PID compatibility:

jmp *foo@GOTPCREL(%rip)

The compiler expresses addresses symbolically; the linker resolves them to GOT-relative
displacements:

GOT[foo] = &foo (once resolved)

This allows:

• PIE executables to be relocated freely.

• Shared libraries to operate with a uniform addressing model.

• No absolute relocation rewriting required.

440

15.4.5 PLT[0] and the Dynamic Resolver Interface

PLT entry zero (PLT[0]) is a special dispatcher used by all unresolved PLT entries:

PLT[0]:
push GOT[1] ; pointer to dynamic linker's link_map
jmp GOT[2] ; jump to resolver entry

GOT[1] and GOT[2] are populated at load time:

• GOT[1] → link_map describing loaded objects.

• GOT[2] → ld.so's resolution entry function (_dl_runtime_resolve).

This defines the ABI contract between generated PLT code and the system dynamic
loader implementation.

15.4.6 Summary of Trampoline Jump Flow

Phase GOT Entry
Value

PLT Behavior Result

Before
resolution

Pointer to resolver
stub

PLT jumps to resolver Loader resolves
target

During
resolution

GOT patched PLT path is stable but still
indirect

GOT now holds
final function
address

After
resolution

Pointer to final
function

PLT jump goes directly to
function

Zero overhead
dispatch

441

This incremental state transition ensures:

• Correctness with dynamic symbol lookup.

• PIC/PIE compatibility through RIP-relative addressing.

• Optional determinism via BIND_NOW.

• Hardening with RELRO to seal GOT after resolution.

15.4.7 Summary

The GOT/PLT dispatch mechanism is a carefully engineered dynamic linkage model
where:

• The PLT mediates call dispatch through symbolic indirection.

• The GOT stores resolved addresses, patched by the dynamic loader.

• Lazy binding defers cost but introduces first-use latency and mutability.

• Immediate binding enforces determinism and enables hardening (Full
RELRO).

• RIP-relative addressing ensures binary relocatability under PIE/ASLR.

In high-performance C++ systems, understanding this flow is essential for reasoning
about call latency, security exposure, and code layout behavior at runtime.

442

15.5 Examples: Breakpointing PLT Resolver Inside
ld.so

Understanding dynamic symbol resolution requires observing the control transfer
from the Procedure Linkage Table (PLT) to the dynamic loader runtime (ld.so).
Instrumenting this path provides direct visibility into lazy-binding behavior, GOT
patching, and symbol lookup mechanics. This section demonstrates how to set
breakpoints at the PLT resolver entrypoint, inspect GOT updates, and trace symbol
resolution flow in a running dynamically linked C++ executable.

15.5.1 Identifying the Resolver Entry Symbol

The dynamic loader exports internal entry points responsible for PLT resolution. On
x86-64 glibc systems, the resolver is typically:

_dl_runtime_resolve

or, depending on glibc version:

_dl_runtime_resolve_xsave

We inspect available symbols using:

$ nm -D /lib64/ld-linux-x86-64.so.2 | grep resolve

This yields the resolver’s load address offset relative to the interpreter segment.

15.5.2 Launching the Example Target

Consider a program that calls a shared library function:

443

// foo.cpp
#include <iostream>
extern void bar();
int main() {

bar();
return 0;

}

Compile and link dynamically:

$ g++ -O2 -fPIE -pie foo.cpp -L. -lbar -o foo

Do not enable -Wl,-z,now; we want lazy binding to trigger the resolver.

15.5.3Attaching a Breakpoint in GDB

Launch under gdb with loader symbols loaded:

$ gdb foo
(gdb) set stop-on-solib-events 1
(gdb) run

Once ld.so loads:

(gdb) b _dl_runtime_resolve
Breakpoint 1 at 0x7ffff7ddc850

Continue execution:

(gdb) continue

Execution halts when the first unresolved PLT call occurs.

444

15.5.4 Inspecting Resolver Arguments

Upon hitting the breakpoint:

(gdb) info registers rdi rsi

Resolver calling convention (System V AMD64):

Register Meaning

rdi link_map* describing the loaded shared-object dependency graph

rsi Relocation index into .rela.plt

To inspect the resolved relocation entry:

(gdb) x/4gx *(Elf64_Rela *)(link_map->l_info[DT_JMPREL]->d_un.d_ptr + rsi *
sizeof(Elf64_Rela))↪→

This yields:

• Symbol table index,

• Offset of GOT entry,

• Relocation type (R_X86_64_JUMP_SLOT).

15.5.5Watching GOT Patching

Before resolution:

(gdb) x/gx foo@GOT
0x0000000000404018: 0x00007ffff7ddc850 # resolver entry

Step through resolution:

445

(gdb) stepi # step a few instructions

After return, inspect again:

(gdb) x/gx foo@GOT
0x0000000000404018: 0x00007ffff7bc1230 # actual bar() address

The GOT entry now contains the final function pointer. Subsequent PLT calls are
direct jumps to this address.

15.5.6Verifying PLT → GOT → Function Flow

Disassemble the PLT entry:

(gdb) disassemble foo@plt

Expect:

foo@plt:
jmpq *0x404018(%rip) # jump via GOT[foo]
pushq $index
jmpq plt[0]

Now confirm direct dispatch:

(gdb) break bar
(gdb) continue

Execution now enters bar() immediately, without returning to the resolver pathway.

446

15.5.7 Interpretation

The observed behavior illustrates the state transitions described previously:

Phase GOT Entry PLT Path Execution Loader
Involvement

Before first
call

Points to resolver
stub

PLT jumps to resolver Resolution occurs

After first
call

Contains real
symbol address

PLT jumps directly to
function

Loader no longer
involved

The non-recurring rewrite of the GOT entry enforces latency amortization across calls.
Under BIND_NOW, this entire dynamic trampoline execution path is eliminated before
main().

15.5.8 Summary

This procedure demonstrates:

• The exact branch path taken during lazy binding.

• How ld.so uses relocation index metadata to resolve function targets.

• Real-time GOT patching behavior and its effects on subsequent call performance.

• The difference between first-call resolution cost and steady-state dispatch.

Understanding and being able to observe this behaviour is a prerequisite for reasoning
about:

• Security hardening (RELRO, BIND_NOW, PIE),

447

• Control-flow integrity models,

• Performance sensitivity in code with frequent external symbol calls.

Part VII

DEBUGGING, PROFILING,
VERIFICATION, AND

PERFORMANCE ENGINEERING

448

Chapter 16

GDB for C++ ABI State Analysis

16.1Unwinding Optimized Frames Lacking Symbol
Boundaries

When debugging optimized C++ binaries, particularly those compiled with -O2 or
-O3, frame unwinding is frequently obstructed by the absence of conventional frame
boundaries. This occurs because the compiler performs aggressive inlining, register
allocation, tail-call elimination, and frame-pointer omission (-fomit-frame-pointer
default on x86-64 for optimized builds). As a result, the call stack no longer forms
a strictly nested chain of frame pointers; instead, execution contexts are implicitly
reconstructed from DWARF Call Frame Information (CFI) and register spill heuristics.
This section formalizes the mechanics and failure cases of unwinding optimized frames,
with emphasis on ABI constraints, compiler lowering decisions, and debugger-side
recovery algorithms.

450

451

16.1.1 FP and CFA: Distinct Logical Models

Unwinding relies on the Canonical Frame Address (CFA), defined relative to a
stable stack reference. In unoptimized code, the CFA is commonly derived from the
frame pointer register (rbp), forming a simple parent-link chain. Under optimization,
the compiler is free to:

• Reuse rbp for general-purpose allocation,

• Eliminate the frame pointer entirely,

• Depend on the stack pointer (rsp) as the sole frame reference.

Therefore:

CFA = rsp + offset (optimized)
vs.
CFA = rbp + offset (non-optimized)

GDB must track the CFA from DWARF .eh_frame or .debug_frame tables rather
than assuming rbp chain validity.

16.1.2 Inlining and Loss of Explicit Call-Site Boundaries

Inlining removes call/return boundaries in the generated machine code. The debugger
reconstructs inlined call contexts symbolically through DWARF inline info tables, which
describe:

• Original call site location,

• Containing function lexical scope,

• Variable location expressions relative to CFA or registers.

452

However, inlined contexts do not imply recoverable runtime frames. They exist
only as symbolic overlays on top of a single physical frame. Stack traces in optimized
binaries therefore mix:

• Physical frames (real stack)

• Inline-expanded logical frames (DWARF-only metadata)

This distinction is essential when interpreting backtraces involving template
instantiations and concept-substituted lambdas.

16.1.3 Tail-Call Elimination and Frame Collapsing

Tail-call optimization transforms:

caller → call callee → return

into:

caller → jump callee

which removes the caller’s runtime frame entirely. This is legal under the System V
C++ ABI when:

• Argument conventions match or can be adapted at zero cost,

• No local destructors must run after the call,

• No exception landing pads depend on the outgoing frame.

For a debugger, this means the call chain is semantically present, but physically
absent. GDB reconstructs this relationship using:

453

• DWARF .debug_info call-site metadata (if present),

• Heuristic inspection of PC-to-function-symbol mapping,

• Inline call-tree annotation as fallback.

Tail-call elimination thereby produces valid but non-intuitive backtraces that omit
intermediate logical calls.

16.1.4 Register-Allocated Variables and Unwind State
Instability

In optimized code, many variables do not reside in memory:

• Scalar locals may live entirely in registers,

• Temporaries may be materialized only across partial basic blocks,

• Liveness intervals may overlap and shift based on branch prediction.

DWARF location expressions annotate register-based variable lifetime:

DW_OP_regN # lives fully in register
DW_OP_bregN + offset # relative to base register
DW_OP_fbreg + offset # relative to CFA

If the variable’s register is repurposed or clobbered at the sampling point, GDB reports
it as optimized out, even though it was logically present at compile time. This is
not a debugger limitation; it reflects the fundamental transformation rules of SSA and
register allocation.

454

16.1.5 Recovery Strategies in GDB

To improve stack reconstruction accuracy:

• Force frame pointers:

$ g++ -O2 -fno-omit-frame-pointer

• Preserve variable location clarity:

$ g++ -g3 -fvar-tracking-assignments

• Enable precise unwind metadata:

$ g++ -fasynchronous-unwind-tables -fexceptions

For minimal perturbation debugging builds, it is advisable to use:

-O2 -g -fno-omit-frame-pointer

This retains most optimization benefits while allowing predictable unwinding.

16.1.6 Summary

Optimization
Feature

Effect on Unwind Debugger Recovery
Mechanism

Frame pointer
omission

Removes explicit frame
chain

CFA via DWARF CFI

Inlining Eliminates physical call
frames

DWARF inline call metadata

455

Optimization
Feature

Effect on Unwind Debugger Recovery
Mechanism

Tail-call elimination Removes intermediate
frames

Symbol + call-origin analysis

Register allocation Eliminates stable variable
addresses

Variable location expressions

Understanding that optimized stack traces reflect transformed execution structure,
not source-level control flow, is essential when debugging modern C++ binaries.
Correct interpretation requires familiarity with both ABI-level calling conventions and
compiler lowering strategies, as described in preceding chapters.

456

16.2On-the-fly Reconstruction of Object Layout

During debugging of optimized C++ binaries, the debugger frequently encounters
object instances whose in-memory representation no longer directly reflects the abstract
layout described in the source type. Optimization passes (inlining, scalar replacement of
aggregates, dead-store elimination, register promotion, and partial lifetime shortening)
often transform an object into a distributed representation consisting of:

• Registers holding active fields,

• Spill slots allocated on the stack,

• Temporaries fused into SSA-defined value ranges,

• Or fields wholly eliminated due to proven non-use.

GDB must therefore reconstruct the logical object layout at runtime using DWARF
type descriptions, location lists, and liveness intervals, rather than assuming a
contiguous, stable memory block. This section formalizes how such reconstruction is
performed and outlines the conditions under which it fails.

16.2.1 Object Model Stability vs. Optimization-Induced
Fragmentation

In the canonical C++ object model (Itanium ABI):

• struct and class types imply a fixed in-memory field layout,

• Virtual base adjustments are encoded through vtable-relative offsets,

• Derived-to-base pointer conversions are purely offset arithmetic.

457

Optimization does not change the abstract layout, but may aggressively change its
physical realization.
Example transformations under full optimization:

Field Behavior Lowering Target Condition

Scalar field accessed
frequently

Promoted to register Field does not escape and its
address is never taken

Field written but never
read

Eliminated entirely Proven dead store

Aggregate copied only
once

Scalarized into
independent SSA values

Proven independent per-use

Small object passed by
value

Materialized in registers ABI calling convention allows
it

Thus, debugging requires symbolic reconstruction from metadata.

16.2.2DWARF Location Lists for Field-Level Resolution

Each field in a class has an associated DWARF location expression describing how to
obtain its value at a given program counter (pc). Example location descriptors:

• DW_OP_regN — field lives entirely in register N.

• DW_OP_fbreg + offset — field resides at stack offset relative to CFA.

• DW_OP_bregN + offset — field resides at memory referenced by register.

• DW_OP_piece — field is split into multiple partially overlapping storage
fragments.

458

To reconstruct:

1. Identify the object's static type from symbol information.

2. Compute the CFA from .eh_frame unwind tables.

3. Resolve each field’s active location expression at the current instruction address.

4. Materialize field values by extracting bytes from registers and memory segments.

Example (conceptual):

struct S { int a; double b; };

a → DW_OP_reg5
b → DW_OP_fbreg −16

Here, a resides in r8d, b resides on the stack.

16.2.3 Composite Object Reconstruction in GDB

When printing a C++ object:

(gdb) print obj

GDB performs:

• Type query → extract class layout record.

• Field iteration → evaluate each DWARF location expression.

• On failure → annotate field as <optimized out>.

If parts of the object are in registers and others in memory, GDB synthesizes a virtual
unified view by composing temporary snapshots.
This process is non-invasive: no instrumentation, no memory copying back into struct
form.

459

16.2.4 Failure Modes and Non-Recoverability Conditions

Reconstruction fails when:

1. The compiler emits no location record for a field (e.g., field eliminated).

2. The field exists, but its lifetime has ended (liveness interval expired).

3. The function was compiled without DWARF (-g0 or stripped).

4. The unwind tables cannot identify
a stable CFA (rare under -fasynchronous-unwind-tables but common in JIT
or manually patched code).

In such cases, GDB reports:

<optimized out>

This is not incorrect—it reflects the fact that the object does not exist in memory in a
materializable form at that point.

16.2.5Debug Builds for Reliable Object Reconstruction

For high-fidelity debugging of complex object graphs:
Recommended flags:

-O2 -g3 -fno-omit-frame-pointer -fvar-tracking -fvar-tracking-assignments

These preserve:

• Sufficient unwinding metadata (-fno-omit-frame-pointer),

• Precise field-level movement tracking across SSA transformations
(-fvar-tracking-assignments),

460

• High debug symbol resolution detail (-g3).

This configuration maintains almost all runtime optimization benefits while greatly
improving debuggability.

16.2.6 Summary

Component Role in Reconstruction Constraint

DWARF type
metadata

Defines structural layout Independent of optimization

Location lists Map fields to
registers/stack segments

Valid only within active liveness
ranges

CFI + CFA Recover base frame
location

Requires unwind table integrity

Field liveness Determines
reconstructability

May be zero-length under
aggressive optimization

On-the-fly object reconstruction is a metadata-driven reassembly process, not a
memory dump. Correct interpretation requires understanding that optimized C++
objects frequently do not exist as contiguous physical entities. The debugger’s
role is to logically reconstruct them from the SSA-derived storage state.

461

16.3Reverse Debugging and Record–Replay
Execution

Traditional debugging assumes forward-only progression: the debugger advances
execution state while the engineer interprets program behavior. However, optimized
C++ binaries often exhibit failure modes that occur significantly after the underlying
cause (e.g., heap misuse, stale references, moved-from object usage, or incorrect lifetime
assumptions). In such cases, reverse debugging—stepping execution backward—provides
the ability to observe the exact state evolution leading to failure. This section describes
the mechanisms that enable reverse execution in GDB, the architectural constraints
of record–replay instrumentation, and the cases where deterministic replay becomes
limited by optimization artifacts or hardware interactions.

16.3.1Determinism Requirements and Sources of
Non-Reproducibility

Record–replay execution relies on reconstructing program state by replaying the effects
of nondeterministic events. Deterministic replay requires that all external influences be
captured. Nondeterministic input sources include:

• System calls returning time, data, or randomness,

• Thread scheduling and synchronization interleavings,

• Hardware exceptions (page faults, signals),

• Memory-mapped I/O and device register interactions.

To achieve reproducibility, record–replay systems intercept and log these
nondeterministic operations, producing a serialized event log that can be safely replayed

462

during debugging. The required granularity differs based on execution model:

Source of
Nondeterminism

Logging Strategy

System calls Record return values and observable side effects

Thread scheduling Serialize scheduler decisions

Signals Log signal delivery and context

Shared memory
interactions

Require deterministic locking or full-memory logging

Highly parallel code increases log volume; single-threaded code typically yields minimal
record overhead.

16.3.2GDB Process Record / Replay Infrastructure

GDB provides a built-in record–replay engine via record full mode:

(gdb) record full

This activates:

• Instruction-level recording of register and memory stores,

• Event log maintenance in an in-memory ring buffer,

• Reverse execution primitives (reverse-step, reverse-next, reverse-continue).

Backward stepping:

(gdb) reverse-step
(gdb) reverse-next
(gdb) reverse-continue

463

GDB reconstructs prior execution states by restoring register sets and memory blocks
from the recorded log. When buffer capacity is exceeded, the oldest entries are
discarded—record length depends on program state complexity and memory mutation
rate.
Strengths:

• Works even on heavily optimized binaries.

• Requires no compiler instrumentation.

• Provides precise historical state reconstruction.

Limitations:

• Increases execution overhead (typically 2× to 15×).

• Memory-intensive for write-heavy workloads.

• Does not capture kernel or device state transitions beyond logged syscalls.

16.3.3 rr: Deterministic Record–Replay for Multi-Threaded
C++ Systems

For multi-threaded applications, GDB’s built-in recorder may be insufficient due to
scheduler nondeterminism. The rr tool (userspace deterministic replay engine) provides
stronger guarantees:
Execution under rr record:

$ rr record ./app

Replay under GDB with reverse stepping support:

464

$ rr replay
(rr) reverse-next
(rr) reverse-continue

Key architectural choices in rr:

• Serializes thread scheduling to ensure deterministic execution.

• Logs only sources of nondeterminism (system call results, signal delivery).

• Avoids full memory logging by replaying instructions exactly.

This makes rr suitable for debugging:

• Data-race-induced heap corruption,

• Transient lifetime bugs relating to move semantics,

• Incorrect atomic synchronization patterns.

Performance overhead is moderate (~1.2× to 5× typical).

16.3.4Memory Model Visibility and C++ Object State
Recovery

Reverse execution makes it possible to observe:

• Where a moved-from object lost its last valid value,

• The precise point at which a shared pointer reference count reached zero,

• The moment a stale pointer originated due to container reallocation,

• Cross-thread ownership transfer without synchronization.

465

When combined with DWARF location tracking (Section 16.2), reverse debugging
allows reconstruction of objects as they existed historically, not merely at failure time.
Key advantage:

Instead of debugging where the crash *happened*,
reverse debugging lets us debug where the object *became invalid*.

This shifts the debugging paradigm from post-failure analysis to causality tracing.

16.3.5 Constraints Under Full Optimization

Reverse debugging remains valid when code is optimized, but information loss persists:

Compiler
Optimization

Reverse Debug Impact

Inlining Logical frames reconstructed from DWARF metadata

Register promotion Values retrievable only during active liveness ranges

Dead-store elimination Some historical object states never existed materially

Tail-call elimination Frame collapse reduces visibility of call chain origins

Reverse execution does not recreate eliminated states; it navigates the actual
lowered execution, not the source-level abstraction. Therefore, interpreting results
requires fluency in the lowered IR model (Chapters 5–9).

16.3.6 Summary

466

Technique Scope Strength Constraint

GDB record
full

Single-threaded or
coarse-threaded
workloads

Precise historic
reconstruction

High memory and
performance overhead

rr Multi-threaded
deterministic
replay

Low logging cost,
stable replay

Serializes scheduling; not
suitable for real-time
workloads

Reverse
stepping

Root-cause tracing
backwards from
failure

Enables lifetime
and ownership
debugging

Does not recover
compiler-eliminated
states

Reverse debugging transforms debugging strategies for optimized C++ binaries: rather
than diagnosing effects, the engineer can trace causal events backward, recovering
execution pathways that conventional debugging cannot reveal.

467

16.4 Python-Driven Structural Introspection
Automation

The GDB Python API enables programmatic inspection of C++ execution state,
permitting extraction of type layouts, object field mappings, symbol relationships,
register states, and unwind metadata directly from the running process. For modern
C++ where compiler optimizations fragment object representations across registers,
stack regions, and temporary SSA values, automated introspection is often superior to
manual debugging. This section describes the architectural model for Python-driven
introspection inside GDB, mechanisms for resolving ABI-layer object relationships, and
techniques for constructing reproducible structural analyzers for optimized binaries.

16.4.1 The Python/GDB Integration Model

GDB exposes a Python object hierarchy that mirrors debugger entities:
Using these abstractions allows writing structural analyzers that adapt to compiler-
generated layout rather than relying on static assumptions.

16.4.2 Extracting C++ Class Layout from Debug Information

C++ types in DWARF contain:

• Field names

• Field byte offsets

• Subobject inheritance structure

• Virtual base adjustment information

468

GDB Entity Python Object Type Purpose

Frame gdb.Frame Inspect stack frame, CFA, registers,
and program counter (PC).

Value gdb.Value Represents a typed value;
supports dereference, casting, and
field/member lookup.

Type gdb.Type Encapsulates C/C++ type
metadata obtained from DWARF
debug information.

Symbol Table gdb.Symbol /
gdb.Block

Resolves symbol names to
associated types, memory addresses,
and scope locations.

Inference Helpers gdb.selected_frame(),
gdb.lookup_type()

Dynamic lookup and contextual
evaluation within the active
debugging session.

Python example:

import gdb

def describe(type_name):
t = gdb.lookup_type(type_name)
print(f"Type: {t}")
for f in t.fields():

print(f" {f.name}: offset={f.bitpos // 8} bytes, type={f.type}")

describe("std::string")

469

This outputs the logical ABI layout even when the object itself is partially optimized
out.

16.4.3 Resolving Runtime Object Instances

Given an instance obj in the current frame:

obj = gdb.parse_and_eval("obj")

To iterate fields safely:

for f in obj.type.fields():
try:

value = obj[f.name]
print(f"{f.name} = {value}")

except gdb.error:
print(f"{f.name} <optimized-out>")

This logic matches the symbolic reconstruction model outlined in Section 16.2.

16.4.4Walking VTables and Virtual Hierarchies

The Itanium ABI prescribes:

• First pointer-sized slot → address of vtable data

• Vtable layout → array of function pointers and RTTI reference

Python inspection:

def vptr(obj):
return int(obj.address.reinterpret_cast(gdb.lookup_type("void").pointer()))

def rtti(obj):

470

return gdb.parse_and_eval(f"*((void**){vptr(obj)} - 1)")

print("vptr:", hex(vptr(obj)))
print("RTTI:", rtti(obj))

This resolves:

• Dynamic type identity,

• Virtual dispatch targets,

• Base class orientation.

Such introspection is critical when debug frames are ambiguous due to inlining and
devirtualization.

16.4.5Automating Structural Checks Across Call Frames

Python-driven analysis can traverse multiple frames and evaluate object consistency:

frame = gdb.newest_frame()
while frame:

try:
locals = frame.block()
Example: Detect std::vector resizing events
for sym in locals:

if sym.is_argument or sym.is_variable:
val = frame.read_var(sym.name)
if str(val.type).startswith("std::vector"):

Inspect size/capacity relationship
sz = int(val["_M_impl"]["_M_finish"] - val["_M_impl"]["_M_start"])
cap = int(val["_M_impl"]["_M_end_of_storage"] -

val["_M_impl"]["_M_start"])↪→

471

if sz > cap:
print(f"[Warning] Vector overflow detected in frame

{frame.name()}")↪→

except:
pass

frame = frame.older()

This model scales to automated detection of:

• Dangling references,

• Containers invalidated by reallocation,

• Memory ownership rule violations,

• Incorrect destructor sequencing traces.

16.4.6Application: Stable Forensic Snapshots Under Reverse
Debugging

When combined with reverse execution (Section 16.3), Python introspection scripts can
record semantic object states over time, not just raw memory content.
Instead of manually stepping backward to locate a corruption point, one can:

• Monitor container invariants,

• Break when invariants fail,

• Dump reconstructable object fragments,

• Continue reversing to the causal write.

This transforms debugging from interactive exploration to post-hoc structural
verification.

472

16.4.7 Summary

Feature Purpose Benefit

DWARF-driven
field iteration

Recover object state
regardless of physical
layout

Works under compiler optimization.

VTable / RTTI
graph inspection

Reveal true dynamic
type and dispatch
resolution path

Critical for debugging polymorphic
runtime behavior.

Frame-automated
invariants

Detect semantic
corruption instead of
only crash symptoms

Enables earlier detection of hidden
state errors.

Reverse + Python
integration

Supports structural
time-travel debugging

Makes isolating the original cause of
failure feasible.

Python-driven introspection elevates debugging from memory inspection to semantic
program analysis, aligning the debugger with the internal C++ object model and
ABI behavior discussed throughout this book.

473

16.5 Examples: Pretty-printing C++ Polymorphic
Hierarchies Automatically

Polymorphic class hierarchies are central to the C++ object model, yet under
optimization the debugger must infer dynamic type identity through vtable entries,
RTTI descriptors, and ABI-defined pointer adjustments rather than relying on static
declarations. To improve readability and automate structural inspection, GDB supports
Python-driven pretty-printers that interpret polymorphic object state at runtime
and render human-meaningful representations. This section demonstrates how to
automatically detect dynamic types, traverse base–derived relationships, extract field
values regardless of storage location, and display hierarchical information predictably.

16.5.1Dynamic Type Resolution via the Itanium ABI

Under the Itanium C++ ABI used on Linux/x86-64, every polymorphic object contains
a vptr at offset zero:

| 0x00 | vptr → vtable → RTTI descriptor → type_info name
| 0x08 | first non-static data field
| ... | class-defined members

Dynamic type identification proceeds as follows:

1. Read the vptr from the object.

2. Resolve the vtable base address.

3. Dereference the RTTI pointer located at *(vtable − sizeof(void*)).

4. Interpret the type_info name stored in .rodata sections.

474

GDB already performs this operation when printing polymorphic values with display
/r, but Python integration allows this mechanism to be embedded in automated
formatting routines.

16.5.2 Python Pretty-Printer Registration

GDB discovers pretty-printers through Python modules registered on startup:

import gdb.printing

class PolyPrinter:
def __init__(self, val):

self.val = val

def to_string(self):
dynamic = self.val.dynamic_type
return f"<{dynamic.tag}> object"

def build_pretty_printer():
pp = gdb.printing.RegexpCollectionPrettyPrinter("cpp_poly")
pp.add_printer("polymorphic", ".*", PolyPrinter)
return pp

gdb.printing.register_pretty_printer(gdb.current_objfile(),
build_pretty_printer())

This simple template intercepts printed values and replaces raw addresses with dynamic
type names. Real printers extend this behavior to include field decoding.

16.5.3Hierarchy Expansion Through Base Class Traversal

To produce a structured view of an object and its base classes:

475

def walk_bases(typ):
yield typ
for base in typ.fields():

if base.is_base_class:
yield from walk_bases(base.type)

def describe_object(obj):
dynamic = obj.dynamic_type
result = []
for t in walk_bases(dynamic):

result.append(f"[{t.tag}]")
for field in t.fields():

if field.is_base_class:
continue

try:
value = obj.cast(t)[field.name]
result.append(f" {field.name} = {value}")

except gdb.error:
result.append(f" {field.name} <optimized-out>")

return "\n".join(result)

This function:

• Identifies the dynamic type,

• Walks all public, protected, and private base classes,

• Prints each data field,

• Gracefully handles optimized-out or register-promoted values.

16.5.4Applying Pretty-Printers Automatically

Inside .gdbinit:

476

python
import cpp_poly
end

Usage:

(gdb) print obj
[Derived]
value = 42
mode = ACTIVE

[Base]
id = 7

Even if:

• Base::id is spilled to the stack,

• Derived::mode is held in a register,

• The object's static type in the current frame is Base&,

the script recovers the true dynamic instance layout.

16.5.5 Practical Example: Inspecting std::unique_ptr to Base

struct Base { virtual void f(); int id; };
struct Derived : Base { int value; };

std::unique_ptr<Base> p = std::make_unique<Derived>();

At runtime:

477

(gdb) print *p
[Derived]
value = 12

[Base]
id = 3

Without printers, GDB yields:

$1 = {id = 3}

or, under optimization:

$1 = <synthetic pointer> <optimized-out>

The pretty-printer reintroduces hierarchical semantic meaning lost during lowering.

16.5.6 Summary

Component Role Benefit

vptr + RTTI Identify dynamic type Required when static type is
not indicative.

Base class tree walk Reconstruct inheritance
hierarchy

Respects C++ ABI class layout
rules.

Field enumeration
via DWARF

Recover data members
under optimization

Works even when partially
register-bound.

Python custom
pretty-printers

Automate structured and
readable debug output

Reduces manual symbolic
debugging effort.

Automated polymorphic pretty-printing aligns debugger output with the semantic
structure defined at the C++ source level, while still reflecting the physical storage
structure defined by the compiler’s optimization and ABI-lowering pipeline.

Chapter 17

Performance Profiling and Pipeline
Diagnostics

17.1 perf Event Group Models and Event Attribution
Performance analysis on modern out-of-order superscalar x86-64 processors requires
interpreting execution behavior in terms of event groups rather than individual raw
counters. The perf subsystem provides structured grouping of hardware performance
monitoring events to allow consistent attribution of pipeline stalls, retirement
bottlenecks, cache miss patterns, and branch prediction degradation. Understanding
these group models is essential for diagnosing performance anomalies in optimized C++
binaries where compiler transformations obscure direct correlation to source code.

17.1.1Hardware Performance Counters and Event Domains

Contemporary x86-64 cores expose several key event domains:

478

479

Domain Meaning Example Signals

Frontend Instruction fetch and
decode behavior

I-cache misses, ITLB misses,
decode bandwidth stalls.

Backend Execution resource pressure
and availability

ALU port pressure, store buffer
full, ROB exhaustion.

Memory
Subsystem

Cache + DRAM
interaction behavior

L1/L2/L3 misses, TLB refills,
LLC occupancy metrics.

Branch / Control
Flow

Branch prediction
correctness and stability

Misprediction penalties, BTB
conflict rates.

Retirement Architecturally completed
instructions

IPC (instructions per cycle),
µops retired.

Raw counters alone are insufficient; attribution requires correlating stalled cycles to the
correct causality domain.

17.1.2 Event Grouping: Coordinated Measurement Guarantees

perf’s event grouping model ensures that:

• All events in a group start and stop simultaneously.

• Group scheduling maintains hardware counter alignment.

• Ratios derived across events within the same group are architecturally
meaningful.

Example:

480

$ perf stat -e \
'{cycles,instructions,branches,branch-misses}' \
./app

Interpreting these events independently would be misleading. Grouping ensures:

IPC = instructions / cycles
Branch Mispredict Rate = branch-misses / branches

remain valid under multiplexing constraints.

17.1.3 Stalled Cycle Attribution and Pipeline Accounting

Modern CPUs treat cycles where no macro-op retires as stalled cycles, but this stall
may be caused by different subsystems. perf distinguishes:

Stall Class Signal Root Cause

Frontend stall idq_uops_not_delivered Instruction supply insufficient.

Backend stall backend_bound or port
pressure events

Execution resources congested.

Memory bound
stall

l1d_miss, l2_miss,
mem_load_retired.*

Load latency on the critical
path.

Branch stall branch-misses ×
misprediction penalty

Control-flow resolution delay.

Attribution is therefore non-distributive: total stalls � sum of stall classes. Instead, stalls
must be analyzed via hierarchical dominance rules:

1. If pipeline not fed → frontend bottleneck.

481

2. Else if operands unavailable → memory bottleneck.

3. Else if execution ports saturated → backend bottleneck.

4. Else → branch speculation or retirement bottleneck.

This ordering matches the microarchitectural scheduling path.

17.1.4 Event Group Models for Pipeline Diagnostics

Representative event groups used in profiling optimized C++ workloads:
Instruction Throughput Group

perf stat -e '{cycles,instructions,task-clock,cpu-clock}' ./app

Interpretation:

• IPC close to core-width (e.g., ~4 on Skylake) → near peak throughput.

• IPC < 1.0 → memory-bound or serialized execution.

Frontend Supply Group

perf stat -e '{idq_uops_not_delivered.core,icache.misses,itlb.misses.walk.completed}'
./app↪→

Indicates decode starvation or fetch stalls.
Memory Latency Group

perf stat -e
'{mem_load_retired.l3_miss,mem_load_retired.fb_full,cycle_activity.stalls_l3_miss}'
./app

↪→

↪→

Identifies memory-critical-window delay effects.
Execution Port Utilization Group

perf stat -e '{uops_executed.port_0,uops_executed.port_1,...}' ./app

Reveals port pressure and execution bottleneck alignment.

482

17.1.5Attribution to C++ Source Constructs

Once performance bottleneck class is identified, attribution to C++ constructs follows
compilation flow:

Profiling Domain C++ Construct Likely Responsible

Frontend bound Large template instantiations, heavy inline expansion.

Memory latency bound Non-contiguous containers, pointer-chasing, cache
misses.

Backend port pressure High arithmetic density, instruction scheduling
imbalance.

Branch misprediction Complex conditionals, virtual dispatch without
devirtualization.

Significant: attribution requires correlating binary-level hot paths (via perf report
or perf annotate) back to the lowered IR behavior, not direct source expressions.

17.1.6 Summary

Concept Purpose Interpretation
Requirement

perf event groups Ensure synchronized,
comparable measurements.

Ratios are valid only inside
event groups.

Stall attribution
model

Distinguish root cause
versus surface symptom.

Analyze in the hierarchical
pipeline model.

483

Concept Purpose Interpretation
Requirement

Source-to-
microarchitecture
mapping

Relate optimized code to
performance behavior.

Requires understanding
compiler lowering and ABI.

Correct use of perf demands reasoning in terms of pipeline utilization, not raw event
deltas. Event grouping, attribution hierarchies, and ABI-aware interpretation together
yield actionable performance diagnosis, forming the foundation for subsequent chapters
on microarchitectural hotspot reduction.

484

17.2 Branch Mispredict, ROB Stall, RS Full, Store
Buffer Full, etc.

Pipeline stalls in modern superscalar out-of-order x86-64 processors arise from
interactions between speculative control-flow execution, dependency chains, execution
resource limits, and memory subsystem latency. These stalls are not independent;
they reflect distinct points in the pipeline where forward progress becomes impossible.
Effective performance diagnostics require distinguishing where in the pipeline execution
is blocked and why the stall is structurally dominant. This section formalizes the
roles of key pipeline structures—Branch Prediction Unit (BPU), Reorder Buffer
(ROB), Reservation Stations (RS), and Store Buffer (SB)—and provides interpretation
guidelines for profiling metrics using perf, top-down analysis, and microarchitectural
event groups.

17.2.1 Branch Misprediction and Control-Flow Recovery

The branch predictor determines which instruction path to fetch speculatively. A
mispredicted branch invalidates speculative work:

• All in-flight µops younger than the branch are squashed.

• Pipeline flush and frontend refetch occur.

• Recovery latency typically spans ~15–22 cycles on Skylake-class CPUs.

• The mispredicted path stalls frontend supply until new target instructions
arrive.

Performance counter interpretation:

485

Metric Meaning

branch-misses Number of mispredicted branch instructions.

branches Total executed branch instructions.

branch-misses / branches Misprediction rate.

cycles / branch-misses Amortized penalty per misprediction.

High mispredict rates indicate performance tied to unpredictable control flow such as:

• Virtual function dispatch without devirtualization,

• Data-dependent branching (e.g., string scanning),

• Complex decision trees lacking branch-free rewrite opportunities.

17.2.2 ROB Stall: Reorder Buffer Saturation

The Reorder Buffer holds in-flight µops until retirement in program order. When the
ROB is full:

• No new µops can issue.

• Execution stops until one or more µops retire.

• ROB full is typically a symptom, not a root cause.

Common causes:

486

Cause ROB Pressure Source

Long dependency chain on loads Memory latency stalls retirement.

Independent µops but poor speculation Flushes prevent progress in retirement.

Integer-heavy loops with unresolved
dependencies

Value dependencies block completion and
retirement.

Related perf indicators:

cpu/event=0xA2,umask=0x01/ # Resource_Stalls:ROB
topdown:backend_bound

17.2.3 RS Full: Reservation Station Congestion

Reservation Stations queue µops waiting for operand availability. RS full indicates:

• Ready µops cannot be issued because execution ports are oversubscribed.

• This represents backend pressure, not frontend starvation.

Typical patterns:

Pattern Example C++ Construct

Integer ALU saturation Tight scalar arithmetic loops.

FP pipeline saturation Matrix multiply without vectorization.

Misbalanced ILP Partially vectorized code with underutilized SIMD
lanes.

Key measurement:

487

cpu/event=0xA2,umask=0x08/ # Resource_Stalls:RS

Mitigation paths include vectorization, unrolling, or explicit scheduling rewrites.

17.2.4 Store Buffer Full: Memory Store Commitment Stall

The Store Buffer holds pending memory stores before they commit to L1. If full:

• No additional stores can issue.

• Loads may stall waiting for store-to-load forwarding correctness checks.

This is common in:

• Producer–consumer pipelines with high write traffic,

• Struct writes that exceed store bandwidth,

• Poorly aligned or uncoalesced writes.

Performance signal:

cpu/event=0xA2,umask=0x04/ # Resource_Stalls:SB

Remedies include:

• Reducing write rates (e.g., avoid frequent container reallocation),

• Improving alignment,

• Prefetching and write combining where applicable.

488

17.2.5 Integrating Stall Attribution: Top-Down
Microarchitectural Analysis

Intel’s Top-Down Method classifies pipeline slots into four mutually exclusive
categories:

Class Interpretation

Retiring Useful architecturally visible work.

Bad Speculation Branch mispredictions and speculative pipeline flushes.

Frontend Bound Instruction supply or decode bandwidth constraints.

Backend Bound Execution resources or memory subsystem delays.

Stall origin interpretation hierarchy:

If bad speculation high → branch predictor tuning / control flow refactoring.
Else if frontend bound → I-cache behavior / inlining choice / code layout.
Else if backend bound and memory-bound → Data structure layout and access locality.
Else if backend bound and core-bound (RS/ROB/SB) → Arithmetic intensity or port

pressure.↪→

This hierarchical reasoning avoids misattribution—for example, ROB fullness is a
symptom of deeper backend stalls, not a cause.

17.2.6 Summary

489

Stall Type Structural Cause Diagnostic Metric Likely C++
Trigger

Branch
misprediction

Control-flow
speculation
invalidation.

branch-misses /
branches

Complex branching,
polymorphic
execution.

ROB full In-flight retirement
blocked.

resource_stalls.rob Dependency chains,
cache miss latency.

RS full Execution ports
oversubscribed.

resource_stalls.rs Scalar bottlenecks
and weak ILP.

Store buffer
full

Commit bandwidth
exhausted.

resource_stalls.sb High write traffic
or contested shared
data.

Pipeline stall classification is critical before attempting optimization. Correct diagnosis
requires mapping back to the compiler’s lowering decisions and data layout decisions in
the C++ codebase.

490

17.3 Flame Graph Construction and Cycle
Attribution

Flame graphs provide a visual representation of where execution time (or sampled
cycles) is spent across the call stack. Unlike raw performance counters, flame graphs
express hierarchical cost attribution—they show which functions consume cycles
and how they were reached. This is essential in optimized C++ systems where
aggressive inlining, template expansion, and link-time optimization obscure direct
correspondence between source structure and machine code execution paths. Flame
graphs therefore function as a bridge from low-level CPU cycle sampling to architecture-
aware optimization decisions.

17.3.1 Sampling Model and Statistical Accuracy

Flame graphs are built from periodic sampling of the instruction pointer (IP). The
sampling frequency must respect two constraints:

1. Sufficient statistical representation of execution hotspots.

2. Non-intrusiveness to avoid perturbing pipeline behavior.

Typical profiling settings:

$ perf record -F 999 -g -- ./app # ~1 kHz sampling, call graph capture

Interpretation:

• Stacks where the IP frequently appears are hot paths.

• The width of a bar represents proportional time spent, not call count.

This sampling-based approach yields meaningful attribution without full tracing or
instrumentation.

491

17.3.2 Collapsing Stacks into Aggregated Execution Paths

Raw perf output must be collapsed into aggregated stack traces:

$ perf script | stackcollapse-perf.pl > out.folded

A folded stack format contains each unique stack trace on one line, with a count
representing its sampling frequency. For example:

main;process;compute;_ZN4math6mul@plt 12023
main;process;load_data;_ZNSt6vector19emplace_backERK 8301

This representation captures:

• Execution lineage (caller → callee relationships).

• Relative consumption of cycles across call chains.

• Shared subpaths aggregated to avoid duplicated visual patterns.

17.3.3 Flame Graph Rendering Model

Rendering:

$ flamegraph.pl --colors=java --width=1600 < out.folded > perf.svg

Interpretation rules:

• X-axis: aggregated time; wider boxes indicate higher contribution.

• Y-axis: call depth; each row represents one frame in the call chain.

• Horizontal adjacency: separate call-path contributions, not temporal sequence.

Important: flame graphs do not show when execution occurred—only how often a path
contributed to total samples.

492

17.3.4Mapping Optimized Code to High-Level Constructs

Due to inlining and template instantiation, the displayed function names often
correspond to mangled or transformed symbols. Deconstruction follows ABI
conventions (described in Part V):

$ c++filt _ZNK3foo4barIiEET_v

To preserve meaningful semantic identity:

• Use -fno-omit-frame-pointer to stabilize unwinding.

• Retain full DWARF types: -g3 -ggdb.

• Avoid symbol stripping during production builds intended for profiling.

Where necessary, flame graphs represent:

Symbol Type Resolution Strategy

Inlined function DWARF inline call site reconstruction.

Template instantiation Use demangling + specialization context.

std:: / container code Enable libstdc++ pretty-printers (Chapter
16.5).

This allows attribution of performance costs back to specific C++ abstractions.

17.3.5 Cycle Attribution and Root-Cause Localization

Flame graphs identify where cycles accumulate, not why. Interpretation must pair flame
graph results with microarchitectural stall attribution (Section 17.2):

493

Observation from Flame Graph Next Diagnostic Step

Wide leaf function Use perf annotate to inspect
instruction scheduling.

Hot loops Evaluate vectorization and ILP
opportunities.

Heavy recursion Investigate tail-call elimination
opportunities.

std::vector / std::map hotspots Check allocator behavior, capacity
growth, and locality.

For example:

if a flame graph shows 40% time in std::string::append
→ check memory allocation reuse and SSO thresholds
→ measure `resource_stalls.sb` to confirm store saturation

Thus, flame graphs locate the cost center, while event grouping identifies the structural
bottleneck class causing the cost.

17.3.6 Summary

Component Purpose Diagnostic Value

Stack
sampling

Capture statistically
meaningful execution paths

Low overhead; suitable for continuous
profiling.

494

Component Purpose Diagnostic Value

Stack
collapsing

Aggregate identical call
chains

Shows true hotspot concentration and
eliminates incidental variance.

Flame graph
visualization

Represent hierarchical cost
distribution

Allows intuitive navigation of
performance-critical code.

Cycle
attribution

Relate hotspots to
architecture-level stall
categories

Enables selecting the correct micro-
architectural optimization.

Flame graphs are not a standalone analysis method; they are the visual entry point
to pipeline diagnostics. Combined with perf stall classification and compiler-level IR
inspection, they provide a complete workflow for performance engineering in optimized
C++ systems.

495

17.4 Performance Bound Classification: Compute vs
Memory vs Control

Optimizing a modern C++ system requires determining why execution is slow, not
merely where instructions are executing. Microarchitectural performance is governed
by three dominant bound classes:

• Compute-bound — performance limited by execution throughput or arithmetic
intensity.

• Memory-bound — performance limited by data fetch latency or bandwidth.

• Control-bound — performance limited by branch prediction and speculative
execution stability.

Correct classification is essential. Applying optimization strategies intended for the
wrong class produces no measurable improvement. This section establishes a rigorous
framework for distinguishing these bound categories using hardware counter analysis,
flame graph inspection, and top-down performance modeling.

17.4.1 Compute-Bound Execution

A pipeline is compute-bound when arithmetic or instruction retirement rate is the
limiting factor. The execution core is busy, but instruction-level parallelism (ILP) or
SIMD utilization is insufficient to saturate available execution ports.
Key indicators:

496

Signal Interpretation

High IPC (Instructions Per
Cycle), near core peak

Indicates efficient backend utilization with
minimal stall delays.

Port utilization skew Suggests bottlenecked execution resources, often
due to arithmetic specialization or insufficient
ILP.

Low memory stall counters Implies the working data set is cache-resident,
reducing DRAM impact on performance.

Minimal misprediction overhead Indicates stable and predictable control flow
with accurate branch prediction.

Common C++ causes:

• Scalar loops with insufficient vectorization.

• Function-level inefficiencies hidden behind abstraction layers but preserved after
optimization.

• Excessive precision usage (e.g., double where float is sufficient in hot loops).

Optimization strategies:

Approach Effect

SIMD vectorization Increases throughput by executing multiple
operations per instruction cycle.

Loop unrolling Improves ILP and reduces control-flow overhead.

497

Approach Effect

Algorithmic restructuring Reduces computational cost by selecting more
efficient data structures or algorithms.

Specialization Removes dynamic dispatch overhead and enables
additional compiler optimization.

For compute-bound code, adding more cores does not increase single-thread
performance.

17.4.2Memory-Bound Execution

Workloads become memory-bound when waiting for data dominates execution
time. Memory-bound latency shows up as widespread pipeline stalls despite available
compute capacity.
Key indicators:

Metric Meaning

High mem_load_retired.* Load stalls caused by DRAM or LLC
latency.

High cycle_activity.stalls_l3_miss The memory hierarchy is the dominant
bottleneck.

Low IPC (< 1.0) Execution pipelines are underutilized
due to stalls.

Flame graphs dominated by simple loop
frames

Indicates data arrival latency rather
than arithmetic bottleneck.

Common C++ triggers:

498

• Pointer-chasing data structures (std::list, std::map, intrusive trees).

• Non-contiguous memory access patterns (AoS instead of SoA).

• Repeated allocation without pooling (cache eviction of active structures).

• Containers resized frequently without capacity planning.

Optimization strategies:

Approach Effect

Data layout refactoring (SoA, flattened
trees, packed arrays)

Improves locality and reduces cache
miss rate.

Prefetching or explicit cache warm-up Hides memory latency by overlapping
loads with computation.

Batching and tiling Ensures computation operates within
cache-friendly windows.

Reducing indirection layers Decreases pointer chasing and improves
cache efficiency.

For memory-bound workloads, algorithmic improvements often exceed micro-
optimizations.

17.4.3 Control-Bound Execution

A workload becomes control-bound when branch prediction failures, speculative
execution rollbacks, or unpredictable decision paths limit effective forward progress.
Key indicators:

499

Metric Interpretation

High branch-misses / branches Predictor accuracy is low.

Non-linear flame graph structure Indicates branching complexity and
diverse code paths.

Frequent speculative flushes in perf
annotate

Speculation errors are degrading
throughput.

IPC drop proportional to mispredict penalty Frontend stalls caused by pipeline
recovery latency.

Common C++ causes:

• Data-dependent branches in tight loops.

• Polymorphic call sites without devirtualization.

• Poorly structured or deeply nested conditional logic.

• State machines with high branching entropy.

Optimization strategies:

Approach Effect

Replace branches with arithmetic form (branchless
programming)

Eliminates mispredicts
entirely

Move dispatch tables from runtime computation to
compile-time resolution (constexpr)

Reduces control entropy

Use static polymorphism / CRTP where feasible Removes vtable dispatch

500

Approach Effect

Reorder condition checks based on observed probability Aids predictor training

Control-bound code often benefits from predictability, not raw computational strength.

17.4.4Determining Bound Class: Diagnostic Workflow

A standardized pipeline for classification:

Step 1: Measure IPC, stall counters, and branch mispredict rate (perf stat -d).
Step 2: Generate flame graph to locate execution hotspots.
Step 3: Attribute stall source using top-down methodology:

- If Retiring fraction low → slowdown is pipeline-bound.
- If Backend bound + high memory stalls → memory-bound.
- If Backend bound + high port pressure → compute-bound.
- If Bad Speculation high → control-bound.

Step 4: Apply targeted optimization strategy based on class.

This workflow prevents inefficient optimization cycles and ensures correctness of
performance decisions.

17.4.5 Summary

Correctly identifying whether a workload is compute-, memory-, or control-bound is the
foundation of performance engineering. Every other optimization effort derives from
this classification.

501

Bound Class Primary
Limiting Factor

Typical Signal Correct
Optimization Lever

Compute-
bound

Execution
throughput

High IPC, RS full Vectorization, ILP,
specialization

Memory-bound Data supply
latency

High L3/DRAM
miss stalls

Data layout, locality
optimization

Control-bound Speculation
accuracy

High branch
mispredict rate

Branch elimination,
predictor stabilization

17.5 Examples: Deriving Stall Source Percentages on
Skylake

Stall attribution on modern Intel Skylake-class microarchitectures requires correlating
sampled hardware events to structural performance categories. Skylake partitions
execution behavior into three primary constraint domains:

• Frontend Bound — instruction supply / decode constraints.

• Backend Bound — execution resource contention or memory latency.

• Bad Speculation — branch misprediction and speculative execution rollback.

The Top-Down Microarchitectural Analysis methodology classifies pipeline slots into
these categories and yields quantitative stall attribution percentages. This section
demonstrates stall percentage derivation using perf event groups and interprets the
results in the context of optimized C++ workloads.

502

17.5.1 Required perf Event Groups for Skylake

To acquire necessary counters for top-down analysis:

$ perf stat -e \
cycles,instructions, \
idq_uops_not_delivered.core, \
uops_issued.any, \
uops_executed.core, \
resource_stalls.rob, \
resource_stalls.rs, \
resource_stalls.sb, \
cycle_activity.stalls_l3_miss, \
branch-misses,branches \
-- ./app

These measurements capture:

Event Stall Attribution Domain

idq_uops_not_delivered.core Frontend supply inefficiency

resource_stalls.rs Backend core execution congestion

resource_stalls.rob Retirement bottleneck and dependency delays

cycle_activity.stalls_l3_miss Memory latency stall severity

branch-misses / branches Control-bound misprediction rate

17.5.2 Example Output from Real Execution

Example perf stat summary (abbreviated):

4,200,000,000 cycles

503

3,000,000,000 instructions # 0.71 IPC
180,000,000 branch-misses

1,200,000,000 idq_uops_not_delivered.core
1,800,000,000 resource_stalls.rs

950,000,000 resource_stalls.rob
410,000,000 cycle_activity.stalls_l3_miss

17.5.3 Computing Stall Domain Percentages

1. IPC and Retirement Efficiency

IPC = instructions / cycles = 3.0B / 4.2B � 0.71

Versus Skylake theoretical retirement throughput � 4 instructions per cycle:

Retiring Efficiency � 0.71 / 4 � 18%

→ The pipeline is mostly stalled.
2. Bad Speculation (Control-Bound)

Branch Mispredict Rate = branch-misses / branches
Assume branches � 1.1B → rate � 180M / 1.1B � 16%

16% misprediction rate is structurally high; speculative flush recovery likely contributes
~10–20% stall time.
3. Frontend Bound

Frontend Stall Share = idq_uops_not_delivered.core / cycles
� 1.2B / 4.2B � 28.6%

→ ~29% of total cycles are limited by instruction fetch/decode supply.
4. Backend Bound
Break backend into core-bound vs memory-bound:

504

• RS pressure → core execution congestion:

RS Stall Share = resource_stalls.rs / cycles � 1.8B / 4.2B � 42.8%

• ROB stall share suggests dependency constraints:

ROB Stall Share = 950M / 4.2B � 22.6%

• Memory latency share:

Memory Stall Share = cycle_activity.stalls_l3_miss / cycles � 410M / 4.2B � 9.8%

Backend interpretation summary:

Subclass Share Meaning

Core Execution Bound ∼ 43% ALU / port pressure or mixed scalar
workload

Dependency / Retirement
Bound

∼ 23% Long dependency chains, partial
vectorization

Memory Latency Bound ∼ 10% Data locality issues present but not
dominant

17.5.4 Final Stall Attribution Breakdown

Bound Class Percent of
Cycles

Dominant Signal

Backend (Core) ∼ 43% resource_stalls.rs

505

Bound Class Percent of
Cycles

Dominant Signal

Frontend ∼ 29% idq_uops_not_delivered.core

Bad Speculation ∼ 16% Branch misprediction rate

Memory Latency ∼ 10% cycle_activity.stalls_l3_miss

Useful Work ∼ 18% IPC relative to peak retire width

This reveals:

• The workload is backend execution bound, not memory-bound.

• Frontend supply issues are secondary, but not negligible.

• Branch prediction contributes nontrivial waste but is not dominant.

• Memory subsystem behavior is acceptable; performance is not DRAM latency
limited.

17.5.5 Interpretation and Optimization Direction

Given this profile, effective optimization strategies include:

Optimization Target Rationale

Improve ILP / reduce dependency chains Alleviate RS pressure and ROB
stalls

Strengthen vectorization and type
specialization

Reduce scalar ALU saturation

506

Optimization Target Rationale

Consolidate instruction footprint / reduce
inline bloat

Mitigate frontend starvation

Consider branchless forms where possible Lower mispredict penalty footprint

Incorrect strategies to avoid:

• Memory prefetch tuning (problem is not memory-bound).

• Allocator changes (store buffer not under pressure).

• Thread parallelism for speedup (bottleneck is single-thread execution
throughput).

17.5.6 Summary

Stall source derivation on Skylake requires:

1. Collecting microarchitectural counters.

2. Converting raw counts into normalized stall shares.

3. Classifying pipeline behavior into compute, memory, or control-bound categories.

4. Selecting optimizations aligned to the dominant structural bottleneck.

This quantifies performance in a way that directly maps to the compiler and
architecture model described in prior chapters, enabling principled and repeatable
optimization rather than trial-and-error tuning.

Part VIII

SYSTEM ENGINEERING CASE
STUDIES (FULL STACK)

507

Chapter 18

Linux Kernel Compilation, Boot,
and Live Debugging

18.1Kernel Toolchain Integration
The Linux kernel is not built with the same compilation assumptions as user-space
C++ binaries. The toolchain that produces the kernel must enforce architectural
determinism, ABI stability, minimal runtime dependencies, and predictable code
generation. Kernel compilation is therefore an explicit contract between:

• The compiler (GCC or Clang, configured in kernel mode),

• The assembler (binutils as or LLVM integrated assembler),

• The linker (ld from binutils or lld under restricted compatibility),

• The C library boundary model (the kernel cannot depend on glibc),

• The bootloader and firmware environment, which define the execution entry
vector.

509

510

Understanding how these components integrate is essential before analyzing runtime
debugging or kernel memory model behavior.

18.1.1Kernel-Supported Compiler Feature Subset

The Linux kernel enforces a strict compiler capability contract:

• No exceptions (-fno-exceptions)

• No RTTI (-fno-rtti)

• No stack protector unless explicitly enabled via Kconfig
(CONFIG_CC_STACKPROTECTOR)

• No use of the standard C++ library (kernel is written in C, with limited C++
allowed only in restricted environments)

• Reliance on compiler built-in intrinsics rather than libc-provided routines

• Fixed calling convention according to System V AMD64 ABI, but with additional
constraints for interrupt/trap entry frames

The kernel build system validates compiler compatibility at configuration time:

$ make menuconfig
$ make CC=gcc

If GCC emits code requiring glibc or unwinder frames, the kernel build will fail. The
kernel maintains its own lightweight runtime (atomic ops, memcpy, memset, division
helpers) to avoid external linking.

511

18.1.2Assembler and Linker Role in Kernel Layout

The kernel’s ELF layout differs from user executables:

• PIE is not used; the kernel operates in a fixed virtual address map.

• .text, .data, and .rodata are placed into explicitly controlled memory regions.

• Special linker sections (.init.*, .exit.*, .smp_locks) govern initialization
lifetime and hot/unhot code segmentation.

The kernel build system uses linker scripts such as arch/x86/kernel/vmlinux.lds.S
to enforce:

SECTIONS
{
. = KERNEL_BASE;
.text : { *(.text*) }
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : { *(.bss*) }

}

This defines physical and virtual memory layout at boot.
The assembler (as) emits relocations that are resolved at link time, not runtime,
because the kernel cannot rely on a dynamic loader (ld.so is user-space only).

18.1.3Kernel ABI and Syscall Interface Boundaries

The kernel defines a stable ABI surface consisting of:

• System call interface (via syscall / sysenter / int 0x80 paths),

512

• VDSO interfaces for fast time queries,

• io_uring, futex, and memory-map primitives.

The kernel does not guarantee ABI stability for any internal symbols. Only the syscall
table and UAPI headers form the compatibility contract.
Toolchain impact:

• GCC must avoid optimizing across syscall boundary assumptions.

• Inline assembly blocks (asm volatile("syscall" ...)) must conform to the
System V AMD64 calling convention.

• Clang/LLVM must reproduce exact register clobber semantics when used as
kernel compiler.

18.1.4Kernel Configuration and Build System (Kbuild)

Compilation flow:

$ make defconfig # baseline configuration
$ make -j$(nproc) # parallel kernel compilation

Kbuild orchestrates:

• Per-directory Makefile recursion,

• Dependency scanning for cross-architecture header selection,

• Unit-level compilation flags derived from architecture constraints
(arch/x86/Makefile).

Every compilation unit may include architecture-specific flags:

513

KCFLAGS += -mno-sse -mno-red-zone -fno-stack-protector

No user-level runtime assumptions are permitted. The kernel cannot rely on red-zone
space, because interrupt handlers may clobber stack beyond rsp.

18.1.5 Cross-Compilation and Toolchain Targeting

Kernel builds commonly target alternate architectures:

$ make ARCH=x86_64 CROSS_COMPILE=x86_64-linux-gnu-

The cross-compiler must provide:

Component Requirement

gcc or clang Supports kernel-compatible feature subset

ld Correct relocation model for kernel virtual memory mapping

objcopy, objdump Used to package boot images and symbol tables

nm Used for internal dependency resolution

Version compatibility is strict; kernel releases encode minimum supported GCC/Clang
versions in Documentation/process/changes.rst.

18.1.6 Summary

514

Component Kernel Requirement Toolchain Constraint

Compiler No runtime library
dependencies; fixed calling
conventions

-fno-exceptions -fno-rtti
-mno-red-zone

Assembler Full control over section
placement

objtool validation of frame
correctness

Linker Deterministic ELF layout, no
dynamic relocation

Custom linker scripts control
memory model

Runtime model No glibc; kernel provides
intrinsics internally

Must not generate external libc
calls

Kernel toolchain integration is fundamentally a whole-program compilation model,
not a dynamic linking model. Unlike user-space C++ binaries—where the compiler
participates in a multi-stage dynamic loader pipeline—the kernel forms a closed system,
with all symbol resolution fixed at link time and all code execution performed without
external runtime support.

515

18.2QEMU + GDB Step-Controlled Boot Path
Analysis

Controlled kernel boot tracing allows precise observation of state transitions from
firmware handoff through early kernel initialization. QEMU, when paired with
GDB, provides a deterministic execution environment that reproduces architectural
state transitions, interrupt enablement points, paging setup, and early stack
initialization without requiring physical hardware access. This capability is essential
for understanding the kernel’s execution semantics as compiled by GCC.

18.2.1 QEMU Execution Environment as a Deterministic CPU
Model

QEMU emulates x86-64 CPU microarchitectural behavior while preserving architectural
correctness (register file, paging, segment descriptor interpretation, APIC state). It
does not model speculative execution internals or dynamic �ops scheduling. Therefore,
analysis at this stage focuses on:

• Instruction sequence correctness,

• Control flow integrity,

• Memory access ordering (architecturally visible),

• Boot register and descriptor initialization.

Launching the kernel under QEMU with GDB stub enabled:

$ qemu-system-x86_64 \
-kernel arch/x86/boot/bzImage \

516

-append "console=ttyS0 nokaslr" \
-nographic -s -S

Flags:

Flag Meaning

-S Halt CPU on reset before executing the first instruction

-s Open a GDB remote debugging server at port 1234

-nographic Use serial console only (disable graphical display)

nokaslr Disable kernel ASLR to ensure stable and repeatable code
layout

This produces a static, repeatable boot entry position for analysis.

18.2.2Attaching GDB and Initial Execution Boundary

Attach GDB:

$ gdb vmlinux
(gdb) target remote :1234

vmlinux must be the unstripped ELF produced by kernel linking (not bzImage). It
contains:

• Full symbol table,

• Debug DWARF,

• Accurate section layouts.

Set a break at the architecture-specific entry point:

517

(gdb) break start_cpu
(gdb) continue

For x86-64, early execution may initially be in 16-bit real mode entry or 32-bit
trampoline code; however, QEMU virtual BIOS hands control to the decompressor stub,
which ultimately transitions into 64-bit long mode before entering start_kernel().

18.2.3 Stepping Through the Boot Decompression Phase

The kernel decompressor (arch/x86/boot/compressed) is compiled with the same
compiler but under a restricted runtime environment:

• No paging initially,

• Flat real-mode or early protected-mode addressing,

• No stack preservation guarantees beyond controlled setup.

Use:

(gdb) layout asm
(gdb) stepi

Observe:

• GPR initialization in real mode,

• Transition to protected mode via CR0/CR4 writes,

• GDT installation,

• Entry to decompressed kernel image.

This stage verifies that GCC-generated code matches the expected environment
constraints (no reliance on red-zone, no segment-relative assumptions early on).

518

18.2.4 Transition to start_kernel() and Subsystem Bring-Up

Once identity paging and long mode are established, execution proceeds to:

start_kernel()
→ setup_arch()
→ mm_init()
→ trap_init()
→ sched_init()
→ rest_init()

Setting conditional breakpoints:

(gdb) break start_kernel
(gdb) break setup_arch
(gdb) break early_idt_handler

This reveals:

• Interrupt table initialization correctness,

• Memory model boot-time identity mapping integrity,

• Kernel stack pointer installation before scheduler start.

Verification focuses on correctness of code generation under kernel flags
(-mno-red-zone, struct alignment rules).

18.2.5Dissection of Paging Setup and Virtual Memory
Transition

A key boot verification step is inspecting the transition from identity mapping to full
kernel virtual memory space at PAGE_OFFSET. Dump active page tables:

519

(gdb) monitor info mem
(gdb) x/32gx $cr3

Here, the goal is to ensure that relocations and linker script–defined segments align
with the paging structure produced at runtime.
This confirms that:

• The kernel ELF layout matches the execution virtual memory model,

• ld and GCC-generated relocation assumptions are preserved.

18.2.6 Summary

Component Observed
Through
QEMU+GDB

Verification Objective

Real-mode and trampoline
code

Single-step
execution

Confirm transition correctness

Decompressor and early
protected mode

Instruction trace Ensure stack/register model
portability

Paging and long mode enable CR0 / CR3 /
CR4 / MSR state
inspection

Validate memory identity
assumptions

Scheduler and subsystem
initialization

Symbol
breakpoints

Confirm correct entry into
process execution

520

Step-controlled kernel boot analysis enables deterministic validation that GCC-
generated kernel code satisfies architectural, calling convention, and memory
initialization contracts, all without reliance on hardware instrumentation facilities.

521

18.3 System Call Return Path Disassembly
The return path of a system call is the completion of the privileged-to-unprivileged
execution transition. Unlike the entry sequence, which establishes kernel context, the
return sequence must guarantee correct restoration of architectural state, privilege level,
and observable memory effects. This return boundary defines the completion semantics
of all Linux system calls. A correct understanding of this path ensures that any GCC-
level optimizations within kernel code respect register, stack, and control-flow invariants
across privilege transitions.

18.3.1 Return Path Overview

For x86-64, system call return transitions through the following layered sequence:

sys_call_table[nr]()
↓

do_syscall_64()
↓

entry_SYSCALL_64_tail
↓

sysretq (fast-path) or iretq (slow-path / interrupts)

The return mechanism is determined by processor state and flags. The kernel must
restore register values and privilege-level stack boundaries precisely. Any deviation
results in immediate privilege or memory errors.

18.3.2 Tail Section: entry_SYSCALL_64_tail

Assembly excerpt (simplified):

entry_SYSCALL_64_tail:

522

testq $TS_COMPAT, %rcx
jne handle_compat_syscall_return

movq %rax, %rdi # Return value already in %rax
callq syscall_return_slowpath

jmp restore_regs_and_sysretq

Register-level guarantees at this stage:

• %rax contains syscall return value or error code.

• No user-controlled state is restored until the transition instruction is executed.

• Kernel stack remains resident; no switching until privilege-level transition.

18.3.3 Fast vs Slow Return Paths

Two architectural paths exist:

Path Instruction Trigger Condition Characteristics

Fast
return

sysretq No pending signals, no
rescheduling, clean task
flags

Preserves forward progress
performance

Slow
return

iretq Signal handling required
or return to different CPL
state

More strict and fully
restores segment and
EFLAGS state

sysretq assumes:

• Canonical user-mode %rip and %rsp are already valid.

523

• RFLAGS-compatible model persists across boundary.

• No security-sensitive state requires full reinitialization.

If these conditions fail, iretq is selected; this guarantees full state restoration but
incurs higher latency.

18.3.4 Stack and pt_regs Restoration

Kernel entry saved CPU state into a pt_regs structure located at the top of the task’s
kernel stack:

struct pt_regs {
unsigned long r15, r14, r13, r12;
unsigned long rbp, rbx, r11, r10;
unsigned long r9, r8, rax, rcx;
unsigned long rdx, rsi, rdi, orig_rax;
unsigned long rip, cs, eflags, rsp, ss;

};

Return restoration:

popq %r15
popq %r14
popq %r13
...
popq %rdi
popq %rbp

This model is strictly maintained; GCC's kernel compilation rules forbid frame pointer
omission unless the unwinder graph is provably correct (validated by objtool).

524

18.3.5 Symbol Boundary Verification via Disassembly

Using GDB:

(gdb) break entry_SYSCALL_64_tail
(gdb) continue
(gdb) disassemble /m entry_SYSCALL_64_tail
(gdb) stepi

Then inspect the return instruction:

(gdb) x/i $rip

Expected output patterns:
Fast path:

sysretq

Slow path (signal pending, scheduling event, or traced process):

iretq

Verification objective:

• Ensure correct stack frame unwind sequence,

• Confirm that %cs, %ss, and RFLAGS return to user values,

• Validate that no stale kernel address leaks to user-mode.

525

18.3.6 Error Code Propagation and -errno Semantics

System call implementations return negative errno encodings:

• Kernel places -EXXX in %rax.

• Userspace wrappers in glibc translate to errno and return -1.

Verification disassembly confirms that no user-mode side-effects occur before the
boundary instruction.
Example audit:

(gdb) print $rax

Return is applied after privilege exit, not before, ensuring exception visibility
correctness.

18.3.7 Summary

Component Responsibility Verified Through
Disassembly

entry_SYSCALL_64_tail Pre-return state evaluation Instruction sequencing and
flag handling

pt_regs unwind Restore architectural
registers

Stack frame integrity

sysretq / iretq Privilege boundary
transition

Safety invariants and
correct CPL resolution

526

Component Responsibility Verified Through
Disassembly

Return value
propagation

Kernel-to-user ABI contract %rax validity and error
code rules

The system call return path is the architectural mirror of the entry path: it completes
the privilege transition while preserving execution correctness, security invariants, and
ABI stability. Disassembly confirms that GCC-generated kernel code follows these
obligations without deviation.

527

18.4 Page Table + Virtual Memory Initialization
Walkthrough

The transition from early identity-mapped execution to the kernel’s full virtual address
space defines the core memory model under which all subsequent kernel subsystems
execute. This phase establishes the initial page table hierarchy, maps the kernel
text/data segments into canonical high-half virtual addresses, installs the direct
physical memory map, and prepares the address space for scheduler activation and
user-mode process creation. Correctness at this stage is mandatory: any inconsistency
causes immediate triple faults or undefined behavior before debugging infrastructure is
available.

18.4.1Architectural Memory Model Baseline

On x86-64, virtual memory uses a 4-level or 5-level paging hierarchy, depending on
hardware capabilities:

CR3 → PML4 → PDPT → PD → PT → Physical Page

Key invariants:

• All addresses used during initialization must be canonical.

• Instruction fetch and data access must reference mapped pages.

• Kernel segments must be aligned to page boundaries as enforced by linker script.

Linux uses the higher-half kernel model:

528

Region Typical Virtual
Base

Description

Kernel text/data ffffffff81000000 Linked static kernel image

Direct physical map ffff888000000000 Linear mapping of RAM frames

Per-CPU region fffffe0000000000 CPU-local structures

The initial identity map is temporary and removed once full virtual memory is live.

18.4.2 Initial Page Table Creation (Early Boot)

The kernel decompressor constructs a minimal 64-bit bootstrap page table. After
entering long mode, control transfers to the relocated kernel image, which initializes
the full memory map in setup_arch().
Critical function path:

start_kernel()
→ setup_arch()

→ early_alloc_pagetable()
→ paging_init()

early_alloc_pagetable():

• Allocates initial top-level page directory.

• Maps kernel text and data using large (2 MiB) pages for TLB efficiency.

• Establishes temporary identity mapping enabling code execution continuity.

Representative code fragment (simplified conceptual form):

529

void __init paging_init(void) {
init_top_pgt = alloc_pgt_page();
map_kernel_text(init_top_pgt);
map_kernel_rodata(init_top_pgt);
map_kernel_data(init_top_pgt);
map_phys_mem(init_top_pgt); // direct physical mapping
write_cr3(init_top_pgt);

}

Mappings use PAGE_KERNEL and PAGE_KERNEL_EXEC protection macros that expand to
architecture-specific PTE flags.

18.4.3Kernel Virtual Mapping: Text, Data, and BSS

The kernel linker script defines symbol boundaries:

VIRT_TEXT_START = 0xffffffff81000000;
VIRT_DATA_START = VIRT_TEXT_START + text_size;

These addresses are compile-time constants encoded into relocation fixups resolved
by ld during kernel linking.
Disassembly verification:

(gdb) info files
...
0xffffffff81000000 - 0xffffffff81xxxxxx is .text

Page table entries for .text include the NX bit cleared, while .rodata pages have NX set
and RW cleared.
Ensuring separation of executable and data memory regions enforces W^X policy in
kernel mode.

530

18.4.4Direct Physical Memory Map Construction

The direct mapping provides a 1:1 mapping of all physical RAM into a contiguous
region in the virtual address space. This avoids repeated calls into architecture-specific
translation logic when referencing physical frames.
Example calculation:

virtual = PAGE_OFFSET + physical

Here, PAGE_OFFSET is fixed (example ffff888000000000) and determined by
architecture configuration.
This region supports:

• Slab and buddy allocator operations,

• Direct frame access for device drivers,

• Kernel crash dump introspection.

Large (2 MiB or 1 GiB) pages are preferred to reduce TLB pressure.

18.4.5 Page Attribute Enforcement and Memory Protection
Flags

Relevant x86-64 PTE bit flags:

Flag Meaning

P (Present) Page is valid and mapped

RW Writable

531

Flag Meaning

US User-accessible (kernel mappings generally clear this bit)

NX Non-executable (if supported by CPU)

PS Large page mapping (2 MiB or 1 GiB page size)

PAT Cache type override / Page Attribute Table selection

During kernel mapping:

• User-access flags are cleared (US=0).

• NX is selectively enabled to enforce execute-only .text.

• Large pages are used where alignment and section granularity permit.

These constraints are preserved against GCC optimizations by explicit attribute
annotations in architecture-specific headers, not by user-level compiler assumptions.

18.4.6Debugging Page Table Initialization with QEMU + GDB

After kernel entry:

(gdb) break paging_init
(gdb) continue
(gdb) stepi

To inspect CR3:

(gdb) print/x $cr3

To walk page tables manually:

532

(gdb) x/8gx 0x<cr3_value>

To verify direct-mapped physical memory access:

(gdb) x/8gx 0xffff888000000000

Expected: deterministic mapping, no faults.

18.4.7 Summary

Component Purpose Verification Target

Bootstrap page table Enable long mode Identity-mapped execution
correctness

Kernel high-half
mapping

Execute kernel image .text and .data protection flags

Direct physical map Global RAM visibility TLB locality and allocator efficiency

PTE flag enforcement Memory safety Correct WX implementation

Debug tracing Structural validation Page hierarchy and CR3 correctness

The kernel’s virtual memory initialization is a contract between the GCC-generated
ELF image, the linker script’s symbolic layout, and architecture-enforced paging
semantics. Correctness is demonstrated through disassembly and live introspection
under a controlled emulator environment.

533

18.5 Examples: Stepping from startup_64 into
Scheduler Initialization

This section provides a controlled, instruction-level walkthrough of the execution
path from the entry point of the kernel’s 64-bit bootstrap code (startup_64) through
early CPU bring-up and into the first activation of the scheduler. The objective
is to verify that the GCC-compiled kernel image obeys architectural expectations
regarding privilege level, stack initialization, paging setup, and context hand-off into
rest_init(), which launches the idle task and the scheduler core.
The analysis uses QEMU with GDB attached, allowing repeatable breakpoints and
controlled stepping.

18.5.1 Establishing Initial Debug Environment

Launch QEMU with debugging enabled:

$ qemu-system-x86_64 \
-kernel arch/x86/boot/bzImage \
-append "console=ttyS0 nokaslr" \
-nographic -s -S

Attach GDB:

$ gdb vmlinux
(gdb) target remote :1234

You are now positioned at the CPU’s reset halt, before executing the first instruction of
the decompressor.

534

18.5.2 Breakpoint at startup_64

Set an initial breakpoint:

(gdb) break startup_64
(gdb) continue

startup_64 performs:

• Establishment of early page tables,

• Control register setup (CR0, CR4, EFER.LME),

• Jump into the relocated kernel text.

Disassemble the entry block:

(gdb) disassemble /m startup_64

Expected major operations (simplified):

movq initial_page_table, %cr3
movl $MSR_EFER, %ecx
wrmsr
ljmp $__KERNEL_CS, $entry_64

This transition enables full 64-bit mode and transfers to C-level initialization.

18.5.3 Transition to start_kernel()

After architectural setup, execution flows through:

startup_64
→ x86_64_start_kernel

→ start_kernel

535

Set breakpoint:

(gdb) break start_kernel
(gdb) continue

Verify call stack:

(gdb) bt

Expected top-level call:

start_kernel()

Confirm that:

• Paging is active,

• Kernel stack pointer is correct,

• Interrupts are disabled (checked via RFLAGS.IF bit).

18.5.4 Core Initialization Path into Scheduler Bring-Up

start_kernel() performs global subsystem setup, eventually reaching:

rest_init()
→ kernel_init()

→ sched_init()

Set breakpoints:

(gdb) break rest_init
(gdb) break sched_init
(gdb) continue

536

Disassemble:

(gdb) disassemble /m sched_init

Key scheduler initialization operations:

• Creation of the idle task (init_task),

• Initialization of per-CPU runqueue structures,

• Setup of load balancing state and topology domains.

Representative C-level excerpt (conceptual):

void __init sched_init(void) {
init_idle(current, smp_processor_id());
rq = cpu_rq(smp_processor_id());
rq->curr = rq->idle;

}

This establishes the idle task as the first schedulable entity.

18.5.5 First Context Switch Activation

The scheduler is first invoked in:

rest_init()
→ schedule_preempt_disabled()

Set breakpoint:

(gdb) break schedule
(gdb) continue

Inspect register state prior to first task switch:

537

(gdb) info registers

Expected behavior:

• current points to idle task (swapper),

• Task state is TASK_RUNNING,

• Stack pointer resides in per-CPU kernel stack region.

The first schedule() call does not switch context—it validates the idle thread and
returns immediately.

18.5.6 Summary

Execution
Phase

Verified Element Key Diagnostic

startup_64 CPU mode and paging
initialization

Disassembly of MSR writes and
CR3 load

start_kernel() System-wide initialization entry Stack and segment state
correctness

rest_init() Transition to scheduler bring-up First scheduling loop boundary

sched_init() Idle task and runqueue setup Validation of scheduler data
structure initialization

First
schedule()

Beginning of runtime scheduling
control

Ensures no premature context
switch

This walkthrough confirms that:

538

• The GCC-generated kernel follows the expected control transfer order,

• Page tables and virtual memory are valid before scheduler activation,

• Scheduler initialization is deterministic and architecture-compliant,

• Early execution does not depend on userspace ABI conventions.

At this point, the system is considered operational; multi-tasking and userspace process
launch can proceed.

Chapter 19

Bare-Metal C++ Runtime
Construction

19.1Manual CRT (crt0.s) and ABI-Conformant
Startup

Constructing a minimal C++ runtime requires replacing the standard C runtime
initialization sequence normally provided by glibc’s startup objects (crt1.o, crti.o,
crtn.o). In fully controlled environments such as bare-metal kernels, unikernels,
embedded systems, or research operating systems, this initialization must be
implemented manually while still conforming to the System V AMD64 ABI. The
objective is to provide the execution environment required for calling main(), ensuring
defined register state, stack alignment, and proper termination semantics without
relying on libc.

539

540

19.1.1Architectural Requirements for Startup Code

When control is transferred to the program by the loader (whether a bootloader or a
bare-metal entry vector), the runtime startup code must establish:

1. Canonical stack pointer alignment to bytes, mandated by the ABI before
any function call.

2. Program entry point linkage, typically named _start, referenced by the ELF
header.

3. Argument and environment pointer capture, passed to main() in a form
compatible with the C++ ABI.

4. Zero-initialized .bss region, ensuring static object correctness.

5. Relocation fixups (for position-independent binaries, if applicable).

6. C++ static initialization sequencing prior to invoking main().

No standard library calls are available at this stage. All operations must be
implemented in pure assembly and minimal C.

19.1.2 Prototype Startup Assembly (crt0.s)

A minimal ELF ABI-compliant _start implementation for x86-64:

.global _start
_start:

mov %rsp, %rdi # argc = initial stack pointer contents
lea 8(%rsp), %rsi # argv = next address after argc

541

and $-16, %rsp # Align stack to 16 bytes (ABI requirement)
call __crt_init # Perform runtime initialization (BSS, constructors)

call main # int main(int argc, char** argv)

call __crt_fini # Invoke destructors before exit

mov %rax, %rdi # Use main() return value as exit code
mov $60, %rax # SYS_exit
syscall

Key rules:

• _start must not assume any preserved registers.

• _start must not rely on red-zone memory (kernel compilers disable red-zone;
user-space must not rely on it during _start before stack alignment).

• The final termination must invoke system call exit, not return.

19.1.3 __crt_init: BSS Zeroing and Static Constructors

The .bss section contains zero-initialized objects. The linker exports boundary labels
(not namespaced; defined in linker script):

extern uint8_t __bss_start;
extern uint8_t __bss_end;

static void __crt_init() {
uint8_t* p = &__bss_start;
while (p < &__bss_end) {

*p++ = 0;

542

}

extern void (*__init_array_start[])(void);
extern void (*__init_array_end[])(void);

for (size_t i = 0; i < (__init_array_end - __init_array_start); ++i) {
__init_array_start[i]();

}
}

Constructor invocation sequences are defined by the Itanium C++ ABI, not invented
per implementation:

• Global and static objects are registered in .init_array at link time.

• The startup code walks the function pointer array in definition order.

19.1.4 __crt_fini: Destructor Sequencing

Correct C++ runtime shutdown requires invoking destructors for global/static objects:

static void __crt_fini() {
extern void (*__fini_array_start[])(void);
extern void (*__fini_array_end[])(void);

for (size_t i = (__fini_array_end - __fini_array_start); i > 0; --i) {
__fini_array_start[i - 1]();

}
}

Destructor ordering is reverse of initialization order, ensuring dependencies release in a
valid lifetimes sequence.

543

19.1.5ABI Conformance Rules That Must Be Preserved

Requirement Specification Source Enforcement

Stack alignment System V AMD64 ABI _start aligns stack before first
call

Argument passing System V AMD64 ABI
register conventions

argc in %rdi, argv in %rsi

Static initialization
ordering

Itanium C++ ABI
.init_array

__crt_init() walks constructor
table

Destruction ordering Itanium C++ ABI
.fini_array

__crt_fini() applies
destructors in reverse order

Exit semantics Linux Syscall ABI _start must perform syscall
exit, not return

Failure in any of these rules leads to:

• Undefined behavior in global object lifetimes,

• Incorrect function call boundaries,

• Stack misalignment causing crashes in vectorized function calls,

• Incomplete tear-down and resource leakage.

19.1.6 Summary

Building a manual CRT replaces the assumption of a hosted runtime environment with
a fully deterministic, ABI-compliant execution bootstrap:

544

• _start provides the minimal architectural transition into C++.

• C++ static initialization and destruction are explicitly driven through
.init_array and .fini_array.

• No external libc components are required.

• Semantic correctness is preserved by adhering to the System V AMD64 ABI and
the Itanium C++ ABI.

This foundation enables construction of freestanding C++ runtimes for kernels,
microcontrollers, hypervisors, and high-assurance embedded systems.

545

19.2 Eliminating glibc and Implementing Runtime
Primitives

In a freestanding C++ environment, the standard C library and the standard C++
library are unavailable by definition. The compiler, however, still assumes the presence
of certain runtime facilities unless explicitly overridden. Eliminating glibc therefore
requires constructing a minimal support layer that satisfies GCC’s internal lowering
assumptions, supports essential C++ runtime semantics, and provides controlled access
to the underlying execution environment (kernel, hypervisor, or bare metal). The
resulting runtime must define symbol contracts, memory allocation primitives, and
exception/termination semantics entirely within the program’s own binary.

19.2.1Hosted vs Freestanding: What the Compiler Expects

The C++ standard differentiates between:

• Hosted environment: full support of libc, libstdc++, and system calls.

• Freestanding environment: only core language features guaranteed; no
standard library beyond minimal headers.

To compile in freestanding mode:

g++ -ffreestanding -fno-exceptions -fno-rtti -nostdlib -nostartfiles

Mandatory implications:

546

Feature Provided by Compiler? Must be Implemented
Manually?

Integer arithmetic Yes No

Objects with static storage Yes Initialization required

Global constructors /
destructors

Compiler emits
constructor tables

Must call .init_array /
.fini_array

Dynamic memory (new,
delete)

Compiler may emit calls
to allocation APIs

Must supply custom
allocator

Exception unwinding Compiler generates
unwind tables, but
requires runtime unwinder

Typically disabled in bare-
metal (-fno-exceptions)

Thus, the runtime must provide just enough infrastructure to satisfy the compiler, not
the entire libc.

19.2.2 Required Runtime Symbols

Even in freestanding mode, GCC may emit calls to certain symbols unless disabled:

• memcpy, memset, memcmp

• memmove

• __stack_chk_fail (if stack protector is not disabled)

• __cxa_atexit and __cxa_finalize (for static destructors, unless replaced)

To avoid external linkage:

547

-fno-stack-protector
-fno-exceptions
-fno-unwind-tables
-fno-asynchronous-unwind-tables

Custom replacements must ensure correctness and predictable performance:

extern "C" void *memcpy(void* dst, const void* src, size_t n) {
unsigned char* d = static_cast<unsigned char*>(dst);
const unsigned char* s = static_cast<const unsigned char*>(src);
while (n--) *d++ = *s++;
return dst;

}

Non-optimized versions are acceptable initially; optimized variants may later use
architecture-specific intrinsics.

19.2.3 Implementing new and delete

The compiler expects the following symbols:

void* operator new(std::size_t size);
void operator delete(void* ptr) noexcept;

For bare-metal systems lacking virtual memory, the simplest allocator is a bump-pointer
region:

static uint8_t heap[HEAP_SIZE];
static std::size_t offset = 0;

void* operator new(std::size_t size) {
size = (size + alignof(std::max_align_t) - 1) & ~(alignof(std::max_align_t)-1);
if (offset + size > HEAP_SIZE) return nullptr;

548

void* p = &heap[offset];
offset += size;
return p;

}

void operator delete(void*, std::size_t) noexcept {}

In kernel or embedded scenarios, this allocator would later be replaced by slab, buddy,
TLSF, or custom region allocators.

19.2.4Avoiding glibc for System Interaction

In a bare-metal configuration, no system call interface exists. The environment defines
the lowest-level I/O mechanism:

• UART registers (SoC firmware),

• Memory-mapped device controllers,

• Supervisor-mode hypercalls,

• BIOS/UEFI stubs,

• syscall only if a kernel is present.

For example, writing to a memory-mapped UART:

static volatile uint8_t* const UART_TX = reinterpret_cast<uint8_t*>(0x10000000);

inline void crt_putc(char c) {
*UART_TX = static_cast<uint8_t>(c);

}

Higher abstractions (print routines, logging subsystems, formatted output) are layered
atop these primitives, not libc.

549

19.2.5 Termination Semantics Without exit()

Final teardown must not assume libc finalization. In hosted Linux environments,
termination uses SYS_exit:

mov %rax, %rdi # exit code -> rdi
mov $60, %rax # SYS_exit
syscall

On bare-metal systems, termination may instead:

• Halt the CPU,

• Trigger a machine reset,

• Trap to firmware,

• Or loop indefinitely.

19.2.6 Summary

Removing glibc requires rebuilding the minimal runtime surface that C++ compilation
assumes:

Runtime Component Implementation Strategy

Startup Manual CRT entry via _start

Global init/fini Traverse .init_array and .fini_array sections

Memory Provide custom new/delete or region allocator

String / memory ops Implement core routines such as memcpy, memset, etc.

550

Runtime Component Implementation Strategy

Termination Use syscall exit or platform-specific halt mechanism

System services Replace libc wrappers with explicit system or hardware
interface calls

This runtime provides a deterministic, self-contained execution substrate suitable for
embedded systems, research kernels, secure execution domains, hypervisors, and high-
integrity environments where reliance on external standard libraries is unacceptable.

551

19.3 Console Output + Interrupts + Minimal Heap
A freestanding C++ runtime must supply three foundational subsystems to enable
structured program execution: (1) a deterministic output interface for diagnostic
visibility, (2) a minimal interrupt dispatch layer to handle external or timer-generated
events, and (3) a controlled heap allocator to support dynamic storage. These
subsystems must operate independently of libc, libstdc++, and kernel services. Their
design is constrained entirely by the execution environment’s hardware model and by
the System V AMD64 ABI.

19.3.1 Console Output: Direct Hardware or MMIO Write Path

Without glibc, output cannot rely on printf() or file descriptors. Console output must
directly write to a hardware-defined sink. On bare-metal x86-64 platforms two models
are typical:

1. Memory-Mapped Framebuffer (e.g., text mode VGA)
Writes directly to the display memory region.

2. Memory-Mapped UART
Writes character output to a serial port.

Example: MMIO UART transmit register access:

static volatile uint8_t* const UART_TX = reinterpret_cast<uint8_t*>(0x10000000);

inline void crt_putc(char c) {
*UART_TX = static_cast<uint8_t>(c);

}

Minimal line-buffered output:

552

void crt_print(const char* s) {
while (*s) {

if (*s == '\n') crt_putc('\r');
crt_putc(*s++);

}
}

This provides deterministic output timing and does not require formatting logic. More
advanced formatting is layered atop this primitive; no variadic printf parsing is required
initially.

19.3.2 Interrupt Descriptor Table (IDT) and Interrupt Gate
Setup

Bare-metal execution must handle traps, exceptions, and optionally timer interrupts.
This requires defining the Interrupt Descriptor Table, loading it with the lidt
instruction, and associating each interrupt vector with an entry stub that performs:

• Register state preservation,

• Transition to a C-level interrupt handler,

• Restoration and iretq.

Example interrupt stub (simplified):

.global isr_timer
isr_timer:

pushq %r15; pushq %r14; pushq %r13; pushq %r12;
pushq %r11; pushq %r10; pushq %r9; pushq %r8;
pushq %rsi; pushq %rdi; pushq %rbp; pushq %rbx;
pushq %rdx; pushq %rcx; pushq %rax;

553

call timer_interrupt_handler

popq %rax; popq %rcx; popq %rdx; popq %rbx;
popq %rbp; popq %rdi; popq %rsi; popq %r8;
popq %r9; popq %r10; popq %r11; popq %r12;
popq %r13; popq %r14; popq %r15;

iretq

C++ side:

extern "C" void timer_interrupt_handler() {
// Acknowledge interrupt source, update internal timing state.

}

This preserves full calling convention correctness, allowing C++ code to run inside an
interrupt context without violating register state.

19.3.3 Interrupt Controller Initialization

Hardware interrupt routing must be enabled manually. Example cases:

• APIC / x2APIC on x86-64, configured via MSRs.

• PLIC / GIC on RISC-V or ARM systems.

The runtime must:

1. Initialize the interrupt controller,

2. Unmask required interrupt vectors,

3. Ensure that interrupt return (iretq) is valid.

Interrupt latency and reentrancy behavior must be controlled; the minimal runtime
does not provide preemption or scheduling unless explicitly designed.

554

19.3.4Minimal Heap and Allocation Strategy

A freestanding C++ environment cannot assume a virtual memory-backed heap. The
allocator must treat memory as a finite region with no external expansion. The simplest
correct model is a bump-pointer allocator, where memory grows monotonically:

static constexpr std::size_t HEAP_SIZE = 64 << 10;
static std::aligned_storage_t<HEAP_SIZE, alignof(std::max_align_t)> heap_storage;
static std::size_t heap_offset = 0;

void* operator new(std::size_t size) {
size = (size + alignof(std::max_align_t) - 1) & ~(alignof(std::max_align_t)-1);
if (heap_offset + size > HEAP_SIZE) return nullptr;
void* p = reinterpret_cast<uint8_t*>(&heap_storage) + heap_offset;
heap_offset += size;
return p;

}

void operator delete(void*) noexcept {}

Characteristics:

Property Behavior

Allocation O(1), monotonic

Free operation No-op

Fragmentation None

Lifetime model Permanent (until system reset)

This is sufficient for early runtime, logging buffers, static objects, and message queues.
More advanced runtimes may replace this allocator with region-based recycling or
TLSF-based O(1) allocators once interrupts and timers are stable.

555

19.3.5 Summary

The minimal functional runtime stack consists of:

Component Responsibility Key Constraint

Console Output Deterministic debug
visibility

Direct MMIO / port access; no
stdio

Interrupt
System

Controlled event handling ABI-safe register preservation

Minimal Heap Enable dynamic storage use No external memory manager
dependency

This layer enables C++ to run in a deterministic, platform-controlled environment
without libc, syscalls, or operating system support. It establishes the foundation upon
which higher-level abstractions such as cooperative scheduling, device drivers, and
message-passing subsystems can be constructed.

556

19.4 Static Constructors Without Runtime Support
In a bare-metal C++ environment, global and static objects must still be constructed
before main() executes, even though no standard C runtime or dynamic loader is
available to perform this task. The compiler and linker continue to emit constructor
metadata in .init_array, but it is the responsibility of the manually implemented
runtime to invoke these constructors in the correct order, without interfering with
ABI rules or violating memory initialization guarantees. Failure to handle constructor
sequencing results in uninitialized global state, undefined object lifetimes, or incorrect
ordering dependencies in complex subsystems.

19.4.1How GCC Represents Static Initialization

Under the Itanium C++ ABI (used by GCC on x86-64), the compiler translates each
global or namespace-scope object with a non-trivial constructor into an entry in the
.init_array section.
The linker concatenates all such entries into a contiguous region:

[__init_array_start]
ctor_0
ctor_1
...
ctor_n

[__init_array_end]

Each entry is a function pointer of type:

using ctor_t = void (*)();

No implicit ordering guarantees are imposed beyond link-unit concatenation; however,
link order is deterministic and stable across reproducible builds.

557

19.4.2 Constructing the .init_array Region Manually

The runtime must call each constructor exactly once, before invoking main():

extern "C" void __crt_run_constructors() {
extern ctor_t __init_array_start[];
extern ctor_t __init_array_end[];

for (ctor_t* f = __init_array_start; f != __init_array_end; ++f) {
(*f)(); // Invoke constructor

}
}

This function must be invoked in _start (or __crt_init) after .bss has been zero-
initialized and before main() is called. Calling constructors before .bss initialization
produces invalid runtime state.

19.4.3Destruction Without a Runtime: .fini_array

Destructor order is the reverse of constructor order, as required by the ABI to ensure
dependent static objects unwind correctly.

extern "C" void __crt_run_destructors() {
extern ctor_t __fini_array_start[];
extern ctor_t __fini_array_end[];

for (ctor_t* f = __fini_array_end; f != __fini_array_start;) {
(--f)[0](); // Reverse iteration

}
}

If the runtime does not call destructors, global objects with RAII-managed resources
(buffers, device handles, log pipes) will leak or fail to release hardware state
consistently.

558

19.4.4Aligning Constructor Execution With Memory Model
Constraints

Global lifetime rules require the following invariants:

1. .bss must be fully zeroed before any constructor runs.

2. No heap allocation should occur during construction unless operator new is
already available.

3. Interrupts must be disabled, to avoid concurrent access before system
initialization completes.

4. The console device must be operational, or objects producing debug output
will fail silently.

A typical ordering discipline:

_start
→ Clear BSS
→ Initialize heap (optional)
→ Enable console output
→ __crt_run_constructors()
→ main()

19.4.5 Common Failure Cases and Their Root Causes

559

Failure Mode Cause Correction

Static object not
constructed

.init_array not
invoked

Ensure runtime calls constructor table

Double
construction

Runtime invoked
.init_array twice

Invoke only once before main()

Destructors never
run

No .fini_array
invocation

Call destructor table after main() or
before halt

Heap used before
allocator init

Constructors allocate
storage

Initialize minimal allocator before
constructor pass

Deadlock in
constructors

Constructors assume
interrupts enabled

Defer enabling interrupts until after
main()

Constructors must be considered pure initialization code and executed in a deterministic
isolated environment.

19.4.6 Summary

Global/static initialization remains fully supported in freestanding C++—but
only if triggered explicitly by the runtime. GCC emits constructor metadata
automatically, but no initialization occurs unless the runtime:

1. Defines _start,

2. Clears .bss,

3. Walks .init_array manually,

4. Optionally invokes .fini_array at termination.

560

This design preserves C++ language guarantees without relying on glibc, libstdc++, or
dynamic loader machinery, enabling C++ to function predictably in kernel, hypervisor,
embedded, and secure execution domains.

561

19.5 Examples: Booting a C++ ELF Directly Under
QEMU

This section demonstrates how to construct, link, and execute a freestanding C++
binary as a bootable image under QEMU, without an operating system, dynamic loader,
libc, or firmware runtime. The objective is to verify that the manually defined runtime
startup sequence (_start, .bss zeroing, .init_array constructor calls) is valid and
that the ELF image is structurally compatible with the CPU reset execution model
once positioned as a kernel entry payload.
This illustrates the end-to-end viability of the bare-metal runtime implemented in
Chapter 19.

19.5.1Minimal Linker Script for Bare-Metal ELF

A custom linker script defines:

• The executable load address,

• Segment layout,

• Symbol exposure for .init_array and .bss.

Example (linker.ld):

ENTRY(_start)

SECTIONS
{
. = 0x100000; /* Physical load address */

.text ALIGN(4K) :

562

{
(.text .text.)

}

.rodata ALIGN(4K) :
{

(.rodata .rodata.)
}

.data ALIGN(4K) :
{

(.data .data.)
}

.bss ALIGN(4K) :
{

__bss_start = .;
(.bss .bss. COMMON);
__bss_end = .;

}

.init_array ALIGN(8) :
{

__init_array_start = .;
(.init_array)
__init_array_end = .;

}

.fini_array ALIGN(8) :
{

__fini_array_start = .;
(.fini_array)
__fini_array_end = .;

563

}
}

This script ensures identity-mapped access and page-aligned segment boundaries,
matching standard bootloader expectations.

19.5.2Minimal Bootable C++ Program

extern "C" void crt_putc(char c);

static int counter = 0;

struct Demo {
Demo() { crt_putc('I'); crt_putc('N'); crt_putc('I'); crt_putc('T'); }

} demo_instance;

extern "C" int main() {
while (true) {

crt_putc('0' + (counter++ % 10));
}

}

This example confirms:

• .init_array constructor execution (Demo() runs before main()),

• .bss was zero-initialized (counter == 0 initially),

• Output path is functioning (crt_putc must be operational).

19.5.3 Startup Assembly (crt0.s)

.global _start

564

_start:
mov %rsp, %rdi # argc (unused)
and $-16, %rsp # ABI-required alignment

call __crt_zero_bss
call __crt_run_constructors
call main

hang:
hlt
jmp hang

This matches the ABI rules already established:

• Stack alignment,

• Constructor invocation,

• No return from main().

19.5.4 Building the ELF

g++ -ffreestanding -fno-exceptions -fno-rtti -mno-red-zone \
-nostdlib -nostartfiles -Wl,-T,linker.ld \
crt0.s runtime.cpp main.cpp -o kernel.elf

Flags:

Flag Meaning

-ffreestanding Disable assumptions about hosted environments (no standard
runtime guaranteed).

565

Flag Meaning

-mno-red-zone Avoid using the red-zone so stack remains valid across
interrupts and traps.

-nostdlib Exclude default C/C++ runtime libraries such as libc and
libstdc++.

-T linker.ld Use a custom linker script to define memory layout rather
than the default.

19.5.5 Running the ELF Under QEMU

Direct ELF boot (QEMU treats kernel.elf as kernel entry payload):

$ qemu-system-x86_64 \
-kernel kernel.elf \
-nographic

If the UART output function maps to QEMU’s emulated -serial stdio:

IN IT01234567890123456789...

This verifies:

• The binary executed without loader involvement.

• Global constructors executed before main().

• The .bss region started zeroed.

• The console write primitive is functional.

566

19.5.6Debugging the Boot Sequence

Enable stop-on-reset and GDB stub:

$ qemu-system-x86_64 -kernel kernel.elf -s -S -nographic

Attach debugger:

$ gdb kernel.elf
(gdb) target remote :1234
(gdb) break _start
(gdb) continue
(gdb) stepi

Inspect .init_array execution:

(gdb) break __crt_run_constructors

Inspect .bss:

(gdb) print __bss_start
(gdb) x/32bx __bss_start

Expected: all zeroed.

19.5.7 Summary

This example confirms that:

Runtime Component Verified Behavior

ELF layout Correct and bootable without external loader

Constructor execution .init_array walked correctly

567

Runtime Component Verified Behavior

Memory model .bss zero initialization validated

Console output Hardware primitive operational

Main execution Program control reached and sustained

This constitutes a minimal, fully self-sufficient, freestanding C++ execution
environment, suitable for:

• kernel prototyping,

• embedded firmware,

• hypervisor and enclave runtimes,

• OS research.

Chapter 20

High-Performance C++ Systems
Optimization Project

20.1Devirtualization → Inlining → Vectorization
Pipeline

High-performance C++ systems rely on the compiler’s ability to eliminate abstraction
overhead while preserving correctness. Modern GCC performs a staged optimization
pipeline in which dynamic dispatch is reduced, call boundaries are collapsed,
and loop bodies are restructured for SIMD execution. This section describes how
devirtualization enables inlining, which in turn enables vectorization. These steps are
not independent; they form a dependency chain that determines whether high-level
code can be lowered to hardware-efficient machine instructions.

568

569

20.1.1 Precondition: Alias, Escape, and Type Visibility

Before GCC attempts to optimize a polymorphic call, it evaluates whether:

1. The concrete dynamic type is statically discoverable, or at least
sufficiently constrained.

2. Pointer aliasing does not obscure object identity, i.e., pointer provenance
is known.

3. The object does not escape to unknown callers, preventing assumptions
about replacement.

These properties are determined during GIMPLE-SSA construction, where the compiler
performs:

• Range and provenance analysis,

• Escape analysis,

• De-facto class hierarchy resolution.

If the compiler can prove the object’s dynamic type is unique or non-overridden,
virtual dispatch can be replaced with a direct function call.

20.1.2Devirtualization: From Virtual Call to Direct Call

Given:

struct Base { virtual int f(int) const; };
struct Derived : Base { int f(int) const override; };

void run(const Base* p, int x) {
int r = p->f(x);

}

570

If run() is compiled with sufficient information (LTO or visible translation unit), and
the compiler proves p always refers to Derived, the call:

p->f(x)

becomes:

Derived::f(x)

This removes:

• VTable load,

• Indirect branch,

• Pointer misprediction hazard.

The result is:

• Lower instruction count,

• Reduced branch misprediction,

• Better pipeline predictability.

Devirtualization is a structural enabler for inlining.

20.1.3 Inlining: Eliminating Call Boundaries

Once devirtualized, the function becomes eligible for inlining, provided it meets the
inliner cost model:

• Function body size < inlining threshold,

571

• No excessive register pressure,

• ABI boundary is internal to the compilation unit,

• Call is in a hot path determined by PGO (if available).

Inlining effects:

Result Benefit

Call frame eliminated No prologue/epilogue overhead

Arguments become SSA values Enables constant propagation

Control flow merges Enables loop fusion and simplification

Memory accesses can be hoisted Improves locality and vectorizability

Inlining moves the computation into context where semantic structure becomes
optimizable.

20.1.4Vectorization: SIMD Lowering After Structural
Simplification

The vectorizer operates on loops with clear induction structure and uniform side
effect patterns. After inlining removes function boundaries:

• Loops become single, analyzable regions.

• Scalar expressions form canonical recurrence relations in SSA.

• The compiler identifies opportunities for:

– Packed arithmetic (XMM/YMM registers),

572

– Load/store grouping,

– Branch elimination into mask operations.

Example pre-vectorization:

for (size_t i = 0; i < n; ++i)
out[i] = a[i] * scale + bias;

After successful devirtualization and inlining:

• The loop body reduces to a pure arithmetic lambda on arrays.

• The vectorizer emits AVX2 or AVX-512 instructions depending on compile flags:

vmovaps ymm0, [rdi + rax*4]
vmulps ymm0, ymm0, ymm3
vaddps ymm0, ymm0, ymm4
vmovaps [rsi + rax*4], ymm0

No conditional branches, no indirect calls, no runtime indirection remain.

20.1.5 Practical Optimization Implications

Optimization
Stage

Trigger Condition Visibility Requirement

Devirtualization Type uniqueness proven Class hierarchy information must
be visible (LTO recommended)

Inlining Cost model threshold
satisfied

Call site and function definition
must be visible

573

Optimization
Stage

Trigger Condition Visibility Requirement

Vectorization Canonical loop, pure
arithmetic, and aligned
access patterns

No aliasing ambiguity and
predictable memory strides

Failing earlier steps prevents later steps entirely.
For example, failing to devirtualize prevents inlining, which prevents loop simplification,
which prevents vectorization.
This pipeline is therefore strictly sequential.

20.1.6 Summary

The pipeline:

Virtual Call
↓ (Type Proven)

Devirtualized Call
↓ (Inlining Cost Pass)

Inlined Function Body
↓ (Loop Simplification and SSA canonicalization)

Vectorized Loop

Key insight:

High-performance C++ does not come from “writing low-
level code,” but from writing code whose structure enables the
compiler to *lower* abstractions safely.

Modern GCC, when given full program visibility and optimization freedom, can convert
expressive object-oriented C++ into tight SIMD-optimized code paths equivalent
to manually written assembly.

574

20.2Memory Layout Re-Factoring for Cache
Residency

High-performance C++ execution is fundamentally constrained by memory system
behavior. Modern x86-64 cores can execute multiple arithmetic operations per cycle,
but memory latency—particularly beyond L1—dominates execution cost. Effective
optimization therefore requires restructuring data layouts and traversal order to
maximize cache residency, spatial locality, and predictable access stride. This
section focuses on memory layout refactoring, not algorithmic changes: the computation
remains identical, but its representation in memory is reorganized to match the
behavior of the CPU cache hierarchy.

20.2.1Architectural Background: Latency and Bandwidth
Constraints

Typical approximate memory access costs on contemporary x86-64 (e.g., Skylake,
Zen2):

Memory Level Latency (cycles) Bandwidth Characteristics

Register File 1 Internal execution width-limited

L1 Data Cache ∼ 4 64B per cycle load/store peak

L2 Cache ∼ 12 Intermediate buffering layer

L3 Cache ∼ 40–70 Shared across cores; non-uniform

DRAM ∼ 120–300 Orders of magnitude slower

If working sets exceed L1/L2 residency, execution becomes memory bound, not

575

compute bound—even if vectorized.
This shifts optimization emphasis from instruction transformations to data layout
constraints.

20.2.2Array-of-Structs (AoS) vs Struct-of-Arrays (SoA)

Consider:

struct Particle {
float x, y, z;
float vx, vy, vz;

};

std::vector<Particle> P;

AoS layout:

[x y z vx vy vz] [x y z vx vy vz] ...

When computing x += vx, only two fields are used, but the cache must fetch all fields.
Cache bandwidth is wasted.
Refactoring to SoA:

struct Particles {
std::vector<float> x, y, z;
std::vector<float> vx, vy, vz;

};

Now:

• Loads of x and vx are contiguous,

• Vectorization applies directly,

576

• Working set reduces to active components.

This improves:

Property AoS SoA

Spatial Locality Poor (unused fields
intermixed)

High (relevant values contiguous)

SIMD Utilization Low (strided gather) High (contiguous loads)

Cache Residency Unpredictable Predictable and tunable

This restructuring is often the difference between scalar and AVX-saturated
execution.

20.2.3Aligning Data for SIMD and Line Size

Cache lines are 64 bytes. SIMD loads require alignment to avoid penalties and fallback
to partial load paths.
For float arrays (4 bytes):

• 64 bytes / 4 bytes = 16 elements per cache line.

• AVX (256-bit) load fetches 8 floats at once.

• AVX-512 loads fetch 16 floats at once.

To allow optimal load and store grouping:

alignas(64) std::vector<float> x;

Or static arrays:

577

alignas(64) float x[N];

Alignment ensures:

• Fewer cross-line loads,

• No extra load micro-ops,

• Reduced TLB pressure due to larger effective stride uniformity.

20.2.4Minimizing Working Set Size Through Compaction

Unnecessary per-object or per-element metadata increases footprint. Reducing structure
size reduces cache miss rate.
Example: Instead of storing full state in each object, extract constants shared across
many objects:

// Before
struct Node { float weight; float bias; };

// After
struct Node { float weight; };
float bias_global;

This compresses state and improves packing density.
For containers, prefer:

• std::vector over std::list (contiguous vs pointer-chasing)

• Manual memory pools over scattered allocation

• Page-aligned clustered pools for task-locality groups

578

20.2.5 Traversal Strategy and Prefetch-Favoring Order

Loops must follow sequential, unit-stride memory traversal to enable automatic
hardware prefetch:

for (size_t i = 0; i < n; ++i) {
x[i] += vx[i];

}

Avoid:

for (auto idx : random_index_list) {
x[idx] += vx[idx];

}

Random access degrades to DRAM-bound latency.
If non-contiguous traversal is unavoidable, software prefetch can mitigate:

__builtin_prefetch(&x[i + PREFETCH_DISTANCE]);

Prefetch distance must match measured memory latency in cycles.

20.2.6 Summary

Effective memory layout optimization proceeds in the following transformation
sequence:

High-Level Object Design
↓

Remove Unused or Duplicate State
↓

Convert AoS → SoA where possible
↓

579

Enforce 64B Alignment & Contiguous Allocation
↓

Rewrite Loop Traversal to Sequential Stride
↓

Measure → Adjust Working Set to Fit L1/L2

Resulting Performance Characteristics:

Capability Enabled By

SIMD auto-vectorization SoA + contiguous layout

Hardware prefetch success Sequential access stride

Low latency compute loops Working set fits in L1/L2

Stable scaling across cores Reduced shared L3 contention

In high-performance C++, data layout is performance. Compiler optimizations are only
effective when the underlying memory representation allows coherent, dense, predictable
data movement.

580

20.3 PGO + LTO Combined Execution Optimization

Profile-Guided Optimization (PGO) and Link-Time Optimization (LTO) are orthogonal
but complementary optimization strategies in GCC. When applied together, they
enable the compiler to make globally informed decisions regarding inlining, branch
prediction, indirect call elimination, and memory layout. The result is performance that
cannot be attained with static heuristic optimization alone.
This section examines the combined PGO+LTO pipeline, the execution information it
leverages, and the precise structural transformations that occur.

20.3.1 Rationale: Static Heuristics vs Profiled Behavior

Without profiling data, GCC must rely on static estimates:

• Branch probabilities inferred from code structure,

• Polymorphic call site assumptions,

• Loop iteration count guesses,

• Indirect call frequency heuristics.

Such heuristics approximate worst-case distributions and are inherently conservative.
Profile-Guided Optimization replaces assumptions with measured execution
data, allowing the optimizer to:

• Promote hot call paths to inline candidates,

• Devirtualize polymorphic dispatch based on observed dynamic type frequencies,

• Inline allocation and memory access patterns based on actual working-set usage.

581

20.3.2 The Two-Phase PGO Workflow

Phase 1: Instrumentation Build

g++ -O2 -fprofile-generate -flto -o app_profiled app.cpp ...

Executing the program generates .gcda counters capturing:

• Branch hit ratios,

• Loop iteration histograms,

• Call target frequency distributions.

Phase 2: Feedback-Driven Rebuild

g++ -O3 -fprofile-use -flto -o app_optimized app.cpp ...

LTO ensures that this runtime profile data is visible across all translation units,
enabling cross-module inlining and global call graph restructuring.

20.3.3 Internal Optimization Effects

With PGO and LTO active, GCC’s midend performs:

Optimization Triggering Data Effect

Branch
Probability
Adjustment

Relative branch
execution counts

Reorders basic blocks to reduce
pipeline stalls and improve
fetch/decode efficiency.

582

Optimization Triggering Data Effect

Indirect Call
Promotion

Call target frequency
tables

Replaces virtual or indirect calls with
direct calls in hot call sites, reducing
dispatch overhead.

Cross-Module
Inlining

Whole-program view
under LTO

Inlines hot or small functions across
translation units to eliminate call
overhead.

Hot/Cold Code
Partitioning

Execution density maps Moves infrequently executed blocks
into separate code sections to improve
I-cache locality.

Loop
Transformation
Biasing

Loop iteration profile Applies selective unrolling, fusion, or
vectorization only where beneficial to
execution throughput.

The key mechanism is informed cost modeling: transformations are only performed
where the measured benefits exceed register pressure and memory expansion costs.

20.3.4 Example: Virtual Dispatch Collapse Under PGO

Consider:

struct Base { virtual float f(float) const = 0; };
struct DerivedA : Base { float f(float x) const override { return x * 2; } };
struct DerivedB : Base { float f(float x) const override { return x * 3; } };

float compute(const Base* p, float x) {
return p->f(x);

}

583

With no profiling, GCC preserves virtual dispatch.
If runtime profile indicates p is DerivedA in >99% of calls:

• GCC rewrites dispatch to a direct call to DerivedA::f,

• Inserts a fallback indirect dispatch only for the rare path.

This eliminates:

• VTable loads,

• Indirect branch misprediction,

• Potential pipeline flushes.

20.3.5 Example: Cross TU Inlining Through LTO

Without LTO:

// a.cpp
float g(float);

// b.cpp
float compute(float x) { return g(x) + 1; }

g(x) cannot be inlined unless the programmer manually includes its definition.
With LTO:

• The full call graph is available at link time,

• compute(x) can be fully inlined and vectorized,

• The optimizer can eliminate redundant loads or recomputation.

584

This globally enables transformations such as:

• Constant propagation across translation units,

• Dead code elimination spanning modules,

• Layout merging for cold segments.

20.3.6 Combined PGO + LTO Optimization Model

Runtime Profile Collection
↓

Global Call Graph + Cost Model at Link Time (LTO)
↓

Profile-Driven Devirtualization and Inlining (PGO)
↓

Loop, Vectorization, and Memory Layout Optimization

The pipeline does not merely speed up functions; it restructures the entire
program execution behavior around empirical runtime patterns.

20.3.7 Summary

Property Without
PGO/LTO

With PGO + LTO

Inlining Scope Local (per
translation unit)

Global (whole-program visibility)

Branch Prediction Heuristic and static
guesswork

Driven by measured runtime branch
frequencies

585

Property Without
PGO/LTO

With PGO + LTO

Virtual Dispatch Preserved at runtime Eliminated or devirtualized in hot code
paths

Loop
Optimization

Pattern-based
optimizations only

Profile-guided selective unrolling and
vectorization

Code Layout Arbitrary relative
placement

Hot/cold partitioning to improve I-cache
locality

In high-performance C++ systems, PGO and LTO together convert runtime dynamics
into structural optimization decisions, enabling architecture-level saturation (vector,
cache, and pipeline) that static compilation cannot achieve.

586

20.4ABI Stability Under Optimized Transformations
High-performance optimization must preserve the Application Binary Interface (ABI)
contract. While the optimizer may transform control flow, inlining boundaries, data
layout access paths, and calling frequency, it must not alter externally observable
calling conventions, name mangling rules, exception propagation semantics, or symbol
visibility. This section clarifies which compiler transformations are ABI-neutral, which
are ABI-sensitive, and how GCC enforces stability guarantees in the presence of
aggressive optimization including LTO, PGO, vectorization, and devirtualization.

20.4.1ABI Elements That Must Not Change

The System V AMD64 ABI defines binary interoperability rules across shared libraries,
dynamic loaders, and user code. The following elements are invariant:

1. Function Calling Conventions

• Argument and return value registers (RDI, RSI, RDX, RCX, R8, R9;
XMM0+ for floating and vector types).

• Stack alignment requirements (16-byte alignment at call boundaries).

• Caller vs callee-saved register responsibilities.

2. Object Layout for Standard Layout and Polymorphic Types

• Base class subobject offsets.

• VTable pointer placement (typically first word of dynamic objects).

• Typeinfo object identity.

3. Mangling and Symbol Naming (Itanium C++ ABI)

587

• Guarantees cross-language and cross-module link compatibility.

4. Exception Unwind Encoding (DWARF CFI + LSDA Tables)

• Interface to stack unwinder must remain structurally valid under
optimization.

These constraints define what the optimizer is allowed to modify internally without
altering program linkage behavior.

20.4.2 Transformations That Are ABI-Neutral

The following classes of optimization do not change externally visible binary contracts:

Transformation ABI Impact Reason

Inlining (within a module) None Call site is replaced locally; no
external linkage contracts are changed.

SSA and GIMPLE
restructuring

None These affect only internal compiler
IR forms and do not alter linkage or
symbol boundaries.

Loop transformations
(unrolling, vectorization)

None Control flow and iteration structure
change, but public interfaces remain
unchanged.

Constant and range
propagation

None The optimization influences values, not
layout or external type signatures.

588

Transformation ABI Impact Reason

Code motion (LICM,
hoisting)

None Execution semantics are preserved
without affecting symbol visibility or
calling conventions.

These optimizations are always permissible during PGO and LTO.

20.4.3 Transformations That Are ABI-Sensitive

Certain optimizations must be guarded by symbol visibility and linkage rules:

Transformation Risk Control Condition

Devirtualization of
external polymorphic
calls

Assumes derived type
identity at runtime.

Requires whole-program
visibility, LTO, or
explicit control of RTTI
boundaries.

Cross-module inlining
with LTO

May inline symbols that
are not stable public
API or reveal internal
implementation details.

Safe only when both
caller and callee are
compiled and linked
under the same LTO
pipeline.

Structure layout re-
packing

May change binary
layout and break ABI
compatibility.

Permitted only for types
not shared or exposed
across module or shared-
library boundaries.

In general, optimizations are constrained by linkage visibility:

589

• hidden and internal symbols may be freely restructured.

• default visibility symbols must preserve layout and calling semantics.

20.4.4 Compiler and Linker Coordination Under LTO

During LTO, the compiler performs whole-program analysis. However, ABI stability is
preserved by marking:

• Exported symbols as non-relocatable by layout,

• External calls as devirtualization-blocked unless type provenance is proven,

• VTable and RTTI structures as identity-protected objects.

Internally, GCC’s LTO orchestration layer annotates:

// Marked internal TU-local function, eligible for inlining/elim.
__attribute__((visibility("hidden")))
static float process(float x);

vs

// Exported API function — ABI contract must remain stable.
__attribute__((visibility("default")))
float api_entry(float x);

This separation ensures that the optimizer may fully restructure internal computation
while preserving binary boundary correctness.

590

20.4.5 Example: ABI-Preserving Devirtualization in Hot
Contexts

Given:

struct Base { virtual double f(double) const; };
struct Derived : Base { double f(double x) const override { return x + 1; } };

extern void consume(const Base&);

If profiling determines consume is always invoked with Derived, GCC may perform:

• Direct call substitution inside the TU,

• But must not alter the VTable or remove Base’s virtual function slot.

Generated code:

; Inside hot path
call Derived::f(double)

; But symbol table still exposes:
_ZN4Base1fEd:

jmp *vtable(Base)+offset

The ABI-visible dispatch structure remains intact.

20.4.6 Summary

ABI stability is a first-class optimization constraint. GCC permits internal
structural optimization while ensuring that:

• Module boundaries retain expected symbol forms,

591

• Exported type and function identities remain stable,

• Runtime linkability and exception unwinding remain correct.

In high-performance system development, the implementation must be aggressively
optimized, but the binary agreement surface must remain invariant. This
balance ensures scalability, interoperability, and long-term maintainability of optimized
C++ systems.

592

20.5 Examples: Before/After Disassembly + perf
Comparison Trace

This section illustrates the measurable behavioral consequences of PGO+LTO-driven
optimization, devirtualization, and vectorization. The objective is not to show syntactic
differences in source but to demonstrate instruction-level structural evolution and
the subsequent microarchitectural performance impact.
A scalar loop is used as the baseline. It is deliberately memory-linear and branch-free to
isolate changes introduced by the optimizer, rather than algorithmic reformulation.

20.5.1 Baseline Code (Unprofiled, No LTO)

double sum(const double* __restrict a, std::size_t n)
{

double s = 0.0;
for (std::size_t i = 0; i < n; ++i)

s += a[i];
return s;

}

Compile baseline:

g++ -O2 -fno-tree-vectorize -o baseline sum.cpp

Relevant disassembly (trimmed for clarity):

.L2:
movsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0
inc %rax
cmp %rax, %rsi
jne .L2

593

Performance (perf stat ./baseline on Skylake-class core, n � 10^8):

Instructions Retired: ~4.1e8
Cycles : ~4.9e8
IPC : ~0.84
Estimated BW : ~12.8 GB/s (memory-bound)

The loop is scalar and tightly coupled to dependency latency (addsd has a 3–5 cycle
dependent chain delay).

20.5.2 Optimized Build (PGO + LTO + Vectorization)

Profile and optimize:

g++ -O3 -march=skylake -fprofile-generate -flto -o sum_prof sum.cpp
./sum_prof # runtime profiling
g++ -O3 -march=skylake -fprofile-use -flto -o sum_opt sum.cpp

Optimized disassembly (inner loop):

.Lhotvector:
vmovupd (%rdi,%rax,8), %ymm1
vaddpd %ymm1, %ymm0, %ymm0
add $4, %rax
cmp %rax, %rsi
jb .Lhotvector

Scalar tail cleanup omitted.
Key structural differences:

594

Aspect Baseline Optimized

ISA width SSE scalar AVX2 256-bit

Data per iteration 1 element 4 elements

Loop-carried
dependency

Yes (serial) No (parallel lanes)

Branch frequency 1 per element 1 per 4 elements

Vector loads
alignment

Unaligned but
contiguous

Same, but promoted to wider loads

20.5.3 Performance Result

perf stat ./sum_opt

Typical metrics:

Instructions Retired: ~1.4e8
Cycles : ~2.2e8
IPC : ~1.63
Estimated BW : ~28–35 GB/s (approaching L2→L1 streaming limits)

Observations:

• IPC nearly doubled due to reduced dependency chaining and improved port
utilization.

• Retired instructions decreased by ~65%.

• Memory throughput doubled, approaching front-end sustainable throughput.

• The loop transitions from latency-bound to bandwidth-bound.

595

20.5.4Microarchitectural Reasoning

Phenomenon Explanation

Dependency chain removal AVX vector lanes compute in parallel,
eliminating the scalar accumulation latency
chain.

Load-Use penalty reduction Wider loads reduce per-element addressing
overhead and amortize memory latency.

Instruction retirement pressure Reduced loop control overhead, as the branch
executes far less frequently (�75

Backend utilization vaddpd instructions issue across multiple vector
execution ports, efficiently saturating ALU
throughput.

This transformation moves execution from front-end loop overhead constraints to
data feed limits, aligning performance with architectural maximums.

20.5.5 Symbol and ABI Boundary Stability

Despite radical restructuring inside the function body:

• Symbol name remains unchanged (_Z3sumPKdm or equivalent under Itanium ABI).

• Calling convention is preserved (arguments and return still in registers as
defined).

• No external code references are altered.

596

• The function remains link-compatible across dynamic/shared library boundaries.

Optimization affected implementation, not interface.

20.5.6 Summary

This example validates the core principle of modern C++ systems performance
engineering:

Correctness is defined at the ABI boundary; performance is
determined inside the boundary.

The optimizer may restructure loops, apply vectorization, modify instruction scheduling,
and change memory-access granularity — provided the externally visible ABI contract
remains invariant.

Appedices

Appendix A - System V AMD64 ABI Reference
This appendix consolidates the binary-interface rules that govern C++ binaries
produced by GCC for Linux x86-64. It is written as a verification reference: concise
tables, exact register/stack rules, and minimal examples you can correlate with
disassembly, DWARF, and linker views. The content reflects post-2020 practice on
modern GCC and x86-64 cores (including AVX/AVX2/AVX-512 register files).

A.1 Integer & Floating-Point Register Classification

A.1.1 General-purpose (GP) registers

Register Role Volatility

RAX return value, scratch caller-saved

RBX callee frame/temps callee-saved

RCX arg4, scratch caller-saved

RDX arg3, scratch caller-saved

RSI arg2 caller-saved

597

598

Register Role Volatility

RDI arg1 caller-saved

RBP frame pointer (optional) callee-saved

RSP stack pointer special (must be restored by callee)

R8–R11 args5–8, scratch caller-saved

R12–R15 callee temps callee-saved

Notes:

• Integer args 1..6 map to: RDI, RSI, RDX, RCX, R8, R9 (then spill to stack).

• __int128 uses RDX:RAX for returns when not memory-classed.

A.1.2 Vector/FP registers (SSE/AVX/AVX-512)

Register class Coverage Role Volatility

XMM0–XMM7 128-bit FP/vector args/returns caller-saved

XMM8–XMM15 128-bit additional FP args caller-saved

YMM/ZMM 256/512-bit width aliases of XMM caller-saved

XMM16–XMM31 (if supported) extra FP/vector caller-saved

Notes:

• Callee must not assume preservation of any XMM/YMM/ZMM; they are caller-
saved under SysV.

599

• x87 stack regs (st(0), …) are used only for long double (80-bit) and its complex
variants.

A.2 Function Argument Mapping & “Shadow” Areas

A.2.1 Core mapping (fixed-arity functions)

1. GP integer/pointer args → RDI, RSI, RDX, RCX, R8, R9, then stack (right-
to-left layout, 8-byte aligned).

2. FP/scalar vector args → XMM0–XMM7 (then XMM8–XMM15 if available),
then stack.

3. Mixed aggregates follow the SysV AMD64 classification (A.3).

A.2.2 No Windows “shadow space”

• SysV AMD64 has no 32-byte “shadow space.”

• The ABI defines a 128-byte red-zone below RSP for leaf functions (A.4), but it
is unrelated to Windows shadow space.

A.2.3 Variadic call support areas

va_list layout (SysV AMD64) is:

typedef struct {
unsigned int gp_offset; // bytes consumed from GP area
unsigned int fp_offset; // bytes consumed from FP (SSE) area
void *overflow_arg_area; // stack args beyond register arrays
void *reg_save_area; // home buffer for GP/FP register args

} __va_list_tag[1];

600

• For variadic callees, the prologue materializes a register save area so va_arg
can fetch both GP and FP arguments consistently, regardless of where the caller
passed them.

A.3 Return Value Encoding (scalar, aggregate, vector)

A.3.1 Scalars

Type Return location

int, long, pointer RAX

__int128 RDX:RAX

float, double XMM0

long double (80-bit) x87 st(0)

_Complex float, _Complex double XMM0:XMM1

_Complex long double st(0):st(1)

A.3.2 Aggregates & the SysV classification algorithm

• Every aggregate is split into 8-byte chunks and each chunk is classified as:
INTEGER, SSE, SSEUP, X87, X87UP, COMPLEX_X87, or MEMORY.

• If any chunk is MEMORY (or the aggregate > 2×8 bytes without a legal
register assignment), the result is returned via hidden sret pointer passed in
RDI (callee writes to that address).

• Otherwise up to two 8-byte chunks are returned in registers:

– INTEGER chunks → RAX, then RDX

601

– SSE/SSEUP chunks → XMM0, then XMM1

Practical rules of thumb:

• �16 bytes POD aggregates often return in regs if composed solely of
INTEGER/SSE classes.

• Mixed integer/FP fields can still be register-returned if classification permits.

• Non-trivial C++ objects with user-defined copy/move typically use sret.

A.4 Stack Frame, Alignment & Red-Zone

A.4.1 Alignment rule

• The caller must ensure RSP is 16-byte aligned *immediately before* call.
After the call pushes the 8-byte return address, the callee’s frame has (RSP+8) %
16 == 0.

A.4.2 Prologue/Epilogue (canonical)

push %rbp
.cfi_def_cfa_offset 16
.cfi_offset %rbp, -16
mov %rsp, %rbp
.cfi_def_cfa_register %rbp
sub $N, %rsp # align local area to 16B if needed
...
leave
.cfi_def_cfa %rsp, 8
ret

602

A.4.3 Red-zone (leaf function scratch)

• A 128-byte red-zone exists below the current RSP which leaf functions may
use without adjusting RSP.

• Do not rely on the red-zone in:

– Kernel code (-mno-red-zone)

– Signal/interrupt handlers

– Code that may be probed by stack-walking tools or instrumentation

A.5 Variadic Functions & Homogeneous Aggregates

A.5.1 Variadic argument retrieval

• FP args to variadic functions are still passed in XMM regs when available;
va_arg(double) reads them from the FP portion of reg_save_area using
fp_offset, falling back to overflow_arg_area (stack) when exhausted.

• Mixing integer and FP varargs is fully supported; ordering is preserved by the
va_list offsets.

A.5.2 “Homogeneous aggregates”

• The SysV AMD64 ABI does not define the AArch64-style “homogeneous
aggregate” term as a separate rule.

• Practically, vectors such as __m128, __m256, __m512 and aggregates composed
entirely of the same FP/vector class are classified into SSE/SSEUP and
passed/returned via XMM/YMM/ZMM according to the general classification
in A.3.

603

A.6 DWARF Unwind Directives & Exception Frames

A.6.1 CFI in assembly (minimal, exception-safe)

.globl foo

.type foo,@function
foo:
.cfi_startproc
push %rbp
.cfi_def_cfa_offset 16
.cfi_offset %rbp, -16
mov %rsp,%rbp
.cfi_def_cfa_register %rbp
sub $32,%rsp
...
leave
.cfi_def_cfa %rsp, 8
ret
.cfi_endproc

.size foo, .-foo

Key CFI ops:

• .cfi_startproc / .cfi_endproc: mark frame scope.

• .cfi_def_cfa: define Canonical Frame Address (CFA).

• .cfi_offset %rbp, -16: tell unwinder where callee-saved regs are spilled
relative to CFA.

• .cfi_def_cfa_register %rbp: switch CFA base to RBP after prologue.

604

A.6.2 C++ exceptions (Itanium model on ELF)

• Personality routine: __gxx_personality_v0 (drives stack unwind and landing
pads).

• Tables:

– .eh_frame / .eh_frame_hdr: unwind CFI

– .gcc_except_table: LSDA (landing pad/action table) per function with
try/catch.

• Optimizations must maintain valid CFI for any function that can participate
in unwinding, even under inlining and tail-merge. GCC/objtool validate this
for kernel-like builds; for userspace, ensure you do not strip .eh_frame when
exceptions are enabled.

A.7 Quick Reference Tables

A.7.1 Integer argument order

RDI → RSI → RDX → RCX → R8 → R9 → [stack…]

A.7.2 FP/vector argument order

XMM0 → XMM1 → … → XMM7 (→ XMM8..XMM15 if available) → [stack…]

A.7.3 Callee-saved set

RBX, RBP, R12, R13, R14, R15 (and RSP must be restored).
All XMM/YMM/ZMM are caller-saved.

605

A.7.4 Return registers

• Integer/pointer: RAX (with RDX as high part if 128-bit)

• FP/vector scalars: XMM0

• Complex FP: XMM0:XMM1

• 80-bit long double: st(0)

• Small aggregates: RAX/RDX and/or XMM0/XMM1 per classification; else
sret.

A.8 Practical Verification Checklist

1. Call sites: Is RSP 16-byte aligned before call?

2. Prologue CFI: Are .cfi_* matching actual spills/moves?

3. Red-zone usage: Safe context (userspace leaf, no signals) or disabled?

4. Small aggregate returns: Do disassembly and classification agree (register vs
sret)?

5. Variadic access: Is va_list initialized (gp/fp offsets) and reg save area present?

6. Vector width: Are FP args/returns in XMM regs and preserved only by caller?

7. Callee-saved: Are RBX/RBP/R12–R15 restored along all exits (including
exceptions)?

606

Purpose Recap

These rules allow you to:

• Audit GCC output for ABI correctness,

• Hand-write or patch prologues/epilogues safely,

• Design JIT trampolines and interpose at PLT/GOT with confidence,

• Correlate DWARF CFI with actual frame layout for robust exception
unwinding.

This appendix is intentionally compact; it is meant to be kept open beside objdump -d,
readelf -Ws, and GDB while performing low-level diagnostics or constructing custom
runtimes.

Appendix B - GCC Diagnostic and Dump
Infrastructure

GCC exposes internal compilation stages through structured dump outputs. These
facilities allow the full lowering path—from C++ source to GIMPLE, SSA, RTL,
and final scheduled assembly—to be examined with precision. For system-level
compilation, runtime ABI inspection, and performance tuning, the ability to correlate
transformations at each stage is essential. This appendix provides the diagnostic
workflow required to evaluate correctness and verify optimization behavior, particularly
under aggressive inlining and link-time optimization.

607

B.1 Dump Invocation and Output Structure

Dump options are attached to the compile command and emit internal representations
into structured files alongside the object output.
General format:

g++ -O2 -fdump-tree-all -c file.cpp
g++ -O2 -fdump-rtl-all -c file.cpp

Generated files follow:

file.cpp.XXXX

where XXXX denotes the specific transformation stage.

Recommended workflow

1. Enable tree dumps during semantic lowering and early optimization.

2. Enable SSA dumps to analyze value propagation and dominance structure.

3. Enable RTL dumps to inspect machine abstraction and register allocation.

4. Compare dumps before and after enabling vectorization, LTO, and PGO.

B.2 Tree Dumps and GIMPLE Phase Map

-fdump-tree-* captures transformations during the high-level and mid-level phases.
Key checkpoints:

608

Dump Name Phase Purpose

original Post parsing, pre-lowering Confirms correct semantic
structure.

gimple Canonical control/data flow Baseline for all midend analysis.

optimized After high-level passes Shows inlining, constant
propagation, dead code
removal.

vect After vectorization passes Indicates feasibility and lane
structure.

inline Inlining decisions Shows call-site elimination and
cost feedback.

Example invocation:

g++ -O3 -fdump-tree-optimized -fdump-tree-vect -c compute.cpp

Interpretation principle:

• GIMPLE is the representation to evaluate program logic independent
of machine architecture.

• Inlining, virtual devirtualization, loop canonicalization, and type-based alias
analysis all occur here.

B.3 SSA Dumps and Value Flow Visibility

SSA form is central to all value-propagation decisions. Dumps:

g++ -O3 -fdump-tree-ssa -fdump-tree-dom -fdump-tree-fre -c file.cpp

609

Key analysis constructs:

• SSA names represent distinct value definitions.

• Phi functions appear at dominance frontiers and indicate control-dependent flow
merges.

• Range propagation signals the optimizer’s derived value constraints.

Researchers should inspect SSA for:

1. Eliminated loads/stores.

2. Inferred constant ranges on induction variables.

3. Hardening decisions (bounds checks preserved or removed).

B.4 RTL Dumps and Target-Lower Boundaries

-fdump-rtl-* documents the transition from GIMPLE to the machine-level IR that
models registers, addressing modes, and instruction semantics.
Representative checkpoints:

Dump Name Information

expand First RTL form; GIMPLE lowered but unoptimized.

cse1/cse2 Common subexpression elimination at RTL.

sched Post-scheduling with pipeline ordering.

reload Register allocation and spill decisions.

final Emit-ready instruction stream.

610

Command example:

g++ -O3 -fdump-rtl-expand -fdump-rtl-final -c kernel.cpp

Key interpretation focus:

• Instruction selection and addressing mode legalization.

• Register allocation pressure and spill cost structure.

• Scheduling alignment with microarchitectural ports.

B.5 Optimization Feedback: Inlining and Vectorization

GCC provides direct textual reasoning for specific optimizations:

g++ -O3 -fopt-info-inline -fopt-info-vec -c loop.cpp

Example (interpreted):

loop.cpp:17: note: loop vectorized with 4 lanes (cost model: fast)
loop.cpp:3: note: inlined function compute(): call frequency high, size small

These diagnostics confirm whether the compiler validated a transformation's cost-
benefit model rather than merely attempting the transformation heuristically.

B.6 LTO Metadata and Whole-Program Visibility

When using link-time optimization, dump analysis must include link-stage IR:

g++ -O3 -flto -fopt-info -c module.cpp
g++ -O3 -flto -fopt-info -o app module.o other.o

611

Inspection commands:

gcc-nm --plugin=liblto_plugin.so app
gcc-objdump --plugin=liblto_plugin.so -dr app

LTO maintains:

• Complete cross-translation-unit call graph,

• Accurate devirtualization and alias analysis visibility,

• Consistent inlining decisions aligned with whole-program cost models.

B.7 Practical Procedure for Transformation Verification

To evaluate optimization correctness:

1. Dump GIMPLE and verify logical structure is preserved.

2. Dump SSA and confirm value propagation matches expected dominance trees.

3. Dump RTL expand and ensure memory access semantics and ABI are correct.

4. Dump RTL final and correlate assembly with register binding and scheduling.

5. Use perf to confirm pipeline saturation or stall-resolution behavior.

This progression ensures that semantic correctness, structural transformation,
and microarchitectural efficiency are all validated consistently.

612

Purpose Restated

This diagnostic infrastructure:

• Makes the compiler pipeline observable,

• Enables proof-of-correctness for optimizations,

• Supports research-level analysis of compilation strategies,

• Provides stable workflows for performance forensics and binary validation.

It is the essential toolset for advancing from using GCC to actively analyzing and
controlling its compilation behavior.

Appendix C - GDB, objdump, readelf, and perf
Integration

This appendix establishes a unified methodology for correlating symbolic
program structure, compiler-transformed machine code, and runtime
microarchitectural performance behavior. The workflow is designed for verifying
compiler output, diagnosing execution bottlenecks, and reconstructing semantic
meaning from binary code. The methodology applies particularly to optimized C++
programs compiled under -O3, -flto, and PGO conditions.

C.1 Tracing Execution from _start to main

The entry point _start is provided by the runtime CRT object (crt1.o). It sets up the
initial process state and invokes __libc_start_call_main, which ultimately transfers
control to main.

613

Disassembly of the startup sequence

objdump -d --demangle --no-show-raw-insn a.out | less

Navigate to _start:

_start:
xor %ebp,%ebp
mov %rdx,%r9
...
call __libc_start_call_main

To confirm the transition chain:

gdb ./a.out
(gdb) starti
(gdb) si # step instruction-by-instruction
(gdb) b main
(gdb) continue

This sequence verifies correct linkage of stack, argc/argv, TLS, and constructor
invocation order.

C.2 Reconstructing Logical Structure from Disassembly

Identifying hot loops

objdump -dr --disassemble=compute a.out

Look for loop-carried dependency chains, induction variables, and memory stride
patterns.

614

Mapping back to GIMPLE

Use previously generated dumps (-fdump-tree-optimized and -fdump-tree-vect) to
correlate:

GIMPLE Construct Assembly Indicator

phi node at loop head register reload at loop boundary

Induction step (i = i + 1) inc or add $1 against loop index register

Vector lane parallelism VEX-prefixed vaddpd, vmulpd, etc.

The reconstruction aligns machine execution behavior with compiler-level
representation.

C.3 GOT/PLT Resolution Analysis

Dynamic linking introduces indirection via the Procedure Linkage Table (PLT) and
Global Offset Table (GOT). To observe:

readelf -r a.out # Relocation entries
readelf -Ws a.out # Symbol table
objdump -d a.out | less

Runtime binding behavior can be observed in GDB:

(gdb) catch syscall open
(gdb) break *plt_function_entry

Objective:

• Determine if symbol bindings occur eagerly (BIND_NOW) or lazy via PLT stubs.

• Identify interposition and relocation deferral behavior.

615

C.4 Performance Counter Acquisition via perf

Baseline performance characteristics

perf stat ./a.out

Reports:

• Instruction-retired count

• Cycle count

• IPC (Instructions per Cycle)

• Branch miss ratio

Recording pipeline-level stall detail

perf record -e cycles:u -e instructions:u -e branches:u -e branch-misses:u ./a.out
perf report

To examine micro-op dispatch and memory subsystem:

perf stat -e \
cycles, \
instructions, \
L1-dcache-load-misses, \
LLC-load-misses, \
branch-misses, \
idq_uops_not_delivered.core, \
uops_issued.any, \
resource_stalls.any \
./a.out

Key Interpretation:

616

• IPC < 1 typically indicates stalls or poor parallelism.

• LLC-load-misses track working-set spill outside L2.

• idq_uops_not_delivered identifies front-end starvation.

• resource_stalls.any tracks backend pipeline congestion.

C.5 Annotated Disassembly for Pipeline Attribution

To correlate microarchitectural events with specific instructions:

perf record -g ./a.out
perf annotate

This overlays event frequency on machine instructions.

• Vectorization success corresponds to sustained wide-lane instruction clusters.

• Register allocation pressure reveals itself as spill/reload traffic.

• Branch misprediction appears as high-frequency penalties surrounding
conditional jumps.

C.6 Integrated Diagnostic Workflow

Step Tool Objective

1 readelf Validate symbols, relocations, dynamic loader
linkage

2 objdump Inspect final emitted instruction sequence

617

Step Tool Objective

3 gdb Reconstruct control flow and call boundaries

4 perf stat Collect macro performance metrics

5 perf record/annotate Attribute stalls and latency sources to exact
instructions

6 Compare with
SSA/GIMPLE dumps

Determine whether performance loss originates
from algorithmic structure, missed optimization
opportunities, or architecture-level constraints

The result is a closed-loop analysis linking:

• Compiler-level decision trace

• Binary-level execution structure

• Hardware-level pipeline behavior

Purpose Restated

This appendix provides a reproducible workflow to:

• Confirm compiler-intended transformations are present and correct,

• Attribute runtime behavior to precise machine instructions,

• Validate symbol linkage, calling convention compliance, and ABI stability,

• Identify microarchitectural bottlenecks and optimization opportunities.

The integration of symbolic reasoning and instruction-level performance analysis is a
prerequisite for trusted high-performance C++ systems development.

618

Appendix D - Linker Scripts and ELF Structural
Control
This appendix presents the mechanisms required to explicitly control ELF binary layout
when targeting Linux x86-64 with GCC and the GNU linker (ld). By default, GCC
relies on built-in linker scripts that define section placement and address assignment.
System-level software, kernel components, static runtimes, and embedded deployments
frequently require deterministic and analyzable layout, making manual control
essential.
The material here describes the structure of a custom linker script, the semantics of
ELF sections, the impact of dynamic linking relocations, and constraints related to
position-independent execution. The treatment assumes familiarity with ELF parsing
tools (readelf, objdump) and the ABI rules described in Appendix A.

D.1 Structure of a Minimal Linker Script

The GNU linker script grammar is declarative: memory regions and output sections are
defined, and input object sections are mapped accordingly.
Example (annotated):

/* Define ELF entry point */
ENTRY(_start)

/* Default memory region for userland process */
SECTIONS
{

/* Code segment */
.text : ALIGN(16) {

KEEP(*(.init)) /* CRT initialization entry */
(.text .text. .gnu.linkonce.t.*)

619

}

/* Read-only constants */
.rodata : ALIGN(16) {

(.rodata .rodata. .gnu.linkonce.r.*)
}

/* Global/static data (initialized) */
.data : ALIGN(16) {

(.data .data. .gnu.linkonce.d.*)
}

/* Global/static data (zero-initialized) */
.bss : ALIGN(16) {

*(COMMON)
(.bss .bss. .gnu.linkonce.b.*)

}

/* C++ static constructors / destructors */
.init_array : ALIGN(8) {

PROVIDE(__init_array_start = .);
KEEP(*(.init_array .init_array.*))
PROVIDE(__init_array_end = .);

}

.fini_array : ALIGN(8) {
PROVIDE(__fini_array_start = .);
KEEP(*(.fini_array .fini_array.*))
PROVIDE(__fini_array_end = .);

}

/* Thread-local storage */
.tdata : ALIGN(8) { *(.tdata .tdata.*) }

620

.tbss : ALIGN(8) { *(.tbss .tbss.*) }
}

Key principles:

• Section ordering directly influences page locality and execution bandwidth.

• KEEP() prevents startup metadata from being removed by garbage-collection
(--gc-sections).

• PROVIDE() emits exported symbols enabling C++ runtime initialization
sequences.

D.2 Relocation Sections and Dynamic Linking Semantics

Dynamic binaries contain relocation records that resolve symbol addresses at load time.
Relevant ELF sections:

Section Purpose

.rela.dyn Global relocations for data and GOT

.rela.plt Relocations used by PLT trampolines

.got / .got.plt Indirection tables used by loaders

.plt Late-binding trampoline stubs

Behavior:

• If -fPIC or -pie is enabled, function and global references are emitted using PC-
relative addressing and indirect resolution via GOT/PLT.

• For static binaries, relocation fixups occur at link time, and .plt and .got.plt
are omitted.

621

Inspect relocations:

readelf -r program
readelf -d program | grep RELA

This is essential when verifying:

• Symbol interposition rules,

• IFUNC dispatch,

• Position-independent address arithmetic.

D.3 Segment Alignment and Protection Control

ELF segments are mapped page-wise. Section-to-segment mapping controls permissions:
Typical layout (simplified):

Segment Permissions Contains

PT_LOAD(text) RX .text, .rodata

PT_LOAD(data) RW .data, .bss, TLS regions

PT_TLS RW .tdata, .tbss

Control using:

PHDRS
{

text PT_LOAD FLAGS(R X);
data PT_LOAD FLAGS(R W);
tls PT_TLS FLAGS(W);

}

622

SECTIONS {
.text : { ... } :text
.rodata : { ... } :text
.data : { ... } :data
.bss : { ... } :data
.tdata : { ... } :tls
.tbss : { ... } :tls

}

This allows enforcing:

• W^X memory policy,

• Executable separation for audit/security,

• Cache locality tuning for performance-sensitive systems.

D.4 Hot and Cold Code Separation

Modern GCC marks branch-predicted unlikely blocks:

• .text.unlikely for cold paths,

• .text.hot for frequently executed sequences.

Enable code section splitting:

g++ -O3 -freorder-blocks-and-partition

Linker script mapping:

.text.hot : ALIGN(16) { *(.text.hot .text.hot.*) }

.text.unlikely : ALIGN(16) { *(.text.unlikely .text.unlikely.*) }

623

Benefits:

• Improved I-cache residency for hot loops,

• Cold paths moved outside primary fetch footprint,

• Reduced branch target collision for high-frequency loops.

D.5 Position-Independent Code and Addressing Rules

For shared libraries (-fPIC):

• Use RIP-relative addressing for globals.

• Access to data objects occurs via GOT indirection.

For PIE executables (-pie):

• The entire binary is relocatable at runtime.

• Startup loader assigns a randomized base address (ASLR).

Exceptions:

• Bare-metal, kernel, or VMM code may use absolute addressing.

• Must disable relocations and PIE:

g++ -nostdlib -static -fno-pic -no-pie -Wl,-T,linker.ld

624

D.6 Verification Workflow

1. Inspect section and segment layout:

readelf -lW a.out
readelf -SW a.out

2. Confirm GOT/PLT presence or elimination:

objdump -d a.out | grep plt

3. Verify constructor and TLS boundaries:

nm -n a.out | grep init_array

4. Validate page protections:

/proc/<pid>/maps

Objective Restated

This appendix equips the reader to:

• Construct deterministic memory layouts,

• Control runtime initialization semantics,

• Enforce security and performance-aware mapping policies,

• Produce statically analyzable and tightly constrained binaries for high-
assurance environments.

These capabilities are foundational in embedded runtimes, kernel-level components,
language runtimes, and high-performance distributed execution systems.

625

Appendix E - Bare-Metal C++ Runtime Templates

Bare-metal execution requires constructing a minimal runtime that performs tasks
normally handled by the C library, dynamic loader, and kernel. This appendix
provides reference templates illustrating how to establish an ABI-conformant execution
environment, initialize memory regions, invoke static constructors, provide memory
allocation facilities, and ensure deterministic termination. These templates allow C++
to execute on hardware or emulated platforms without glibc, without crt1.o, and
without dynamic loader support.
The routines here assume:

• System V AMD64 ABI semantics (register assignments, stack alignment),

• A flat virtual/physical address model (no paging assumptions),

• No kernel services unless explicitly provided.

E.1 _start Entry and Stack Establishment

At process or boot entry, no stack frame is present and no runtime state is initialized.
The entry routine must:

1. Set up a valid stack,

2. Zero-initialize .bss,

3. Call global constructors via .init_array,

4. Transfer control to main,

5. Execute destructors before termination, if required.

626

Example — handwritten _start in assembly:

.global _start
_start:

/* Assume bootloader or environment sets RSP to usable stack top */

/* Zero .bss */
lea _bss_start(%rip), %rdi
lea _bss_end(%rip), %rsi
call memset_range_zero

/* Run global constructors */
lea __init_array_start(%rip), %rdi
lea __init_array_end(%rip), %rsi
call run_constructors

/* Call main() */
call main

/* Call destructors */
lea __fini_array_start(%rip), %rdi
lea __fini_array_end(%rip), %rsi
call run_destructors

/* Program exit - no OS assumes shutdown */
1: jmp 1b

This entry sequence is conformant with C++ initialization rules while remaining
independent of external runtimes.

627

E.2 .bss Clearing and Constructor Invocation

Zero-initialization ensures that all storage-duration objects in .bss start in the correct
state.
Minimal zeroing implementation:

extern "C" void memset_range_zero(void* begin, void* end) {
unsigned char* p = static_cast<unsigned char*>(begin);
while (p < end) {

*p++ = 0;
}

}

Global constructor execution:

extern "C" void run_constructors(void** begin, void** end) {
for (void** fn = begin; fn < end; ++fn) {

reinterpret_cast<void(*)()>(*fn)();
}

}

extern "C" void run_destructors(void** begin, void** end) {
for (void** fn = end; fn > begin;) {

(--fn, reinterpret_cast<void(*)()>(*fn)());
}

}

This matches the initialization semantics described in the Itanium C++ ABI.

E.3 Minimal Heap for Dynamic Allocation

A simple bump allocator provides deterministic and threadless memory allocation. This
is sufficient for embedded execution without fragmentation control.

628

static unsigned char* heap_base;
static unsigned char* heap_limit;
static unsigned char* heap_ptr;

extern "C" void heap_init(void* base, std::size_t size) {
heap_base = static_cast<unsigned char*>(base);
heap_limit = heap_base + size;
heap_ptr = heap_base;

}

extern "C" void* malloc(std::size_t n) {
unsigned char* r = heap_ptr;
if (r + n > heap_limit) return nullptr;
heap_ptr += n;
return r;

}

extern "C" void free(void*) { /* no-op */ }

To enable new/delete:

void* operator new(std::size_t n) { return malloc(n); }
void operator delete(void*) noexcept {}

This allocator is stable under single-threaded deterministic workloads.

E.4 System-Independent Console Output (UART / MMIO)

Bare-metal output typically targets a memory-mapped peripheral interface.
Example — generic byte-write to MMIO UART:

static volatile unsigned char* const UART0 = reinterpret_cast<unsigned
char*>(0x10000000);↪→

629

extern "C" void putc(char c) {
*UART0 = static_cast<unsigned char>(c);

}

extern "C" void puts(const char* s) {
while (*s) putc(*s++);

}

This function set forms the basis for diagnostics, logging, and test output.

E.5 Program Termination

If no operating environment is present, program termination must resolve to a
controlled halt.

extern "C" void abort() {
for(;;) { __asm__ volatile("hlt"); }

}

If running under QEMU, halting or writing to a debug port may be appropriate.

E.6 Example: Minimal Bare-Metal C++ Executable Build

Compile without CRT and without glibc:

g++ -nostdlib -ffreestanding -fno-exceptions -fno-rtti \
-Wl,-T,linker.ld startup.o runtime.o main.cpp -o baremetal.elf

The linker script must define:

_bss_start
_bss_end

630

__init_array_start
__init_array_end
__fini_array_start
__fini_array_end

as described in Appendix D.

Outcome

This appendix provides the foundation required to execute C++ on bare
hardware, without external libraries, dynamic loaders, or kernel support. By defining:

• Entry sequencing,

• Memory initialization,

• Constructor/destructor coordination,

• Minimal heap provisioning,

• Low-level I/O interfaces,

the developer gains full control of execution semantics, memory topology, and binary
layout.
This runtime layer forms the stepping stone for:

• Embedded firmware,

• Microkernel and hypervisor construction,

• OS development research,

• Real-time and deterministic control environments.

The principles scale directly to both single-core and multi-core architectures.

631

Appendix F - Performance and Microarchitectural
Reference

This appendix provides a compact, engineering-oriented reference for interpreting
disassembly against contemporary x86-64 cores. Values are representative of Skylake-
class (SKL/SKL-X/CL), Ice Lake client/server (ICL/ICX), and Zen-class
(Zen2/Zen3/Zen4) cores. Where silicon/stepping and frequency scaling materially
affect numbers, ranges or normalized costs (cycles per µop / per cache line) are given.
Use these tables to reason about throughput ceilings, latency bottlenecks, and the side-
effects of vector width and memory hierarchy.

F.1 Execution Ports and Issue Structure (High-Level)

F.1.1 Intel Skylake-class (SKL/CL)

• Front-end: up to µops/cycle decode; µop cache delivers up to µops/cycle.

• Back-end ports (common view):

– p0/p1: vector/FP ALU (FMA, add, mul)

– p5: integer ALU (also branch)

– p2/p3: load address gen (AGU) and load data (2 loads/cycle total)

– p4: store data

– p7: store address gen (AGU)

• Loads/stores per cycle: typically loads + 1 store (1 store data + 1 store
address).

632

• Branch: one per cycle (p5), with fused-domain front-end for simple cmp+jcc
pairs.

F.1.2 Intel Ice Lake (ICL/ICX)

• Front-end: wider rename/issue, improved µop cache efficiency.

• Back-end:

– AGUs: load + 1 store address in the same cycle more reliably than SKL.

– Additional improvements to vector permutes and gather/scatter throughput.

• Vector: AVX-512 supported on many SKUs; per-core FMA width increases with
512-bit units.

F.1.3 AMD Zen-class (Zen2/Zen3/Zen4)

• Front-end: µop cache (Zen2+), 4-wide decode typical.

• Back-end:

– load + 1 store per cycle sustained (Zen2/3), AGU availability depends on
generation.

– FP pipelines: 2× FMA (Zen2/3) with balanced add/mul throughput.

– Zen4 improves permute/broadcast and vector integer throughput.

Implications: peak loop body throughput is often bounded by AGU availability
(address generation), memory ports (load/store), or vector FMA/add units, not
by scalar ALUs.

633

F.2 Latency and Reciprocal Throughput (Representative)

Values below are typical at nominal clocks. Always validate on target hardware.

Operation (scalar unless
noted)

Skylake Ice Lake Zen3

Integer add add r64,r64 1c / 0.25c 1 / 0.25 1 / 0.25

Integer mul imul r64 3 / 1 3 / 1 3 / 1

FP add vaddpd ymm 4 / 0.5 3–4 / 0.5 3–4 / 0.5

FP mul vmulpd ymm 4 / 0.5 3–4 / 0.5 3–4 / 0.5

FMA vfmadd231pd ymm 4–5 / 0.5 4 / 0.5 4 / 0.5

Load (L1 hit) 4–5 latency ~4 4–5

Store (to store buffer) ~1 retire ~1 ~1

Shuffle vpermilpd ymm 3–6 / 1 3–4 / 0.5–1 3–5 / 0.5–1

Gather vpgatherdd ymm tens of cycles;
mem-lat bound

improved but
mem-bound

improved but
mem-bound

c = cycles; “/” separates latency / reciprocal throughput. For wide vectors,
latency often stays similar; throughput scales with width until limited by ports, rename,
or power/freq constraints.

F.3 Cache & Memory Hierarchy (Rules of Thumb)

F.3.1 Sizes, associativity, and typical access

634

Level Capacity (typical) Assoc Line Latency (cycles)

L1D 32 KiB/core 8-way 64 B ~4

L2 256–1280 KiB/core 4–12 64 B ~10–14 (ICL tends lower)

LLC 2–64 MiB / shared 16–24 64 B ~35–80

DRAM tens of GiB/s — — ~120–300 (NUMA-, freq-,
page-policy-dependent)

F.3.2 Bandwidth ceilings (steady-state, single core, streaming)

• L1D: approach 2×64 B loads + 1×64 B store per N cycles; practical ~50–
90+ GB/s depending on vector width and core.

• L2: ~20–40 GB/s.

• DRAM (single core): 10–30 GB/s depending on memory channels, prefetch,
and stride.

Rule: If a loop consumes >1 cache line per ~3–5 cycles, you are quickly
bandwidth-bound, regardless of arithmetic throughput.

F.4 TLB and Page Walk Costs

TLB Coverage (typical) Miss Cost

L1 DTLB ~64 entries (4 KiB pages) Falls to L2 TLB; tens of cycles

L2/STLB ~1–2k entries Page walk if miss

635

TLB Coverage (typical) Miss Cost

Page walk 4-level (4 KiB pages) ~100–200 cycles; parallelism
limited

Huge pages 2 MiB / 1 GiB Fewer levels → reduced miss rate
and walk cost

Guidance: Regularize strides, prefer contiguous access, and consider MiB huge
pages for large arrays with streaming access to reduce TLB pressure.

F.5 AVX2 / AVX-512 Alignment & Access Constraints

• Alignment: 32-byte alignment for AVX2 (ymm), 64-byte preferred for AVX-512
(zmm) to minimize split-line penalties and enable aligned loads/stores.

• Misalignment penalties:

– Crossing a 64-B line adds an extra load; repeated line splits degrade
sustained throughput.

– Gather/scatter are latency dominated by memory; use only when
structure prevents SoA refactor.

• Non-temporal stores (vmovntps/pd): beneficial for write-only streams that
outstrip cache reuse; avoid polluting caches and can increase sustained DRAM
bandwidth.

F.6 Mixed-Width Transitions and Frequency Behavior

• SSE�AVX mixing: On older Intel parts (pre-ICL), mixing SSE and AVX
frequently can trigger domain transitions; keep a kernel homogeneously

636

vectorized.

• AVX-512 down-clock: Many Intel SKUs reduce core frequency when executing
heavy AVX-512 to stay within power/thermal envelopes. Throughput may still
improve for math-dense kernels; measure.

• Mitigation:

– Isolate wide-vector kernels in time (batch), or constrain vector width
(-mno-avx512f or use AVX2) if frequency loss dominates.

– Keep hot loops free of scalar instructions when vector lanes are active
(avoid reformatting between scalar/vector inside the loop body).

F.7 Roofline and “Cycles per Cache Line” Heuristics

F.7.1 Operational intensity

I =
FLOPs

Bytes moved
Compare I against attainable bandwidth to determine if the kernel is compute-bound
or memory-bound.

F.7.2 Cycles per CL model

For a streaming loop touching N cache lines per iteration with sustained B bytes/cycle
from the relevant level:

cycles/iter ≈ 64N

B

If this exceeds arithmetic throughput time, the kernel is bandwidth-bound.

637

F.8 Practical Diagnostics: What to Check in Annotated
Disassembly

1. Load/store grouping: aim for loads + 1 store per cycle sustained.

2. AGU saturation: address patterns that exceed available AGUs throttle
throughput.

3. Vector homogeneity: avoid scalar ops within vectorized loop bodies.

4. Shuffle density: excessive permutes often dominate port usage; refactor data
layout (SoA) to reduce permutes/gathers.

5. Prefetch: regular, unit-stride accesses let hardware prefetch hide most of L2
latency; irregular strides may need software prefetch.

F.9 Quick Reference Tables

F.9.1 Vector width & elements per 64-B line

Type AVX2 (256b) AVX-512 (512b) Elements/CL

float (4 B) 8 16 16

double (8 B) 4 8 8

int32_t 8 16 16

int64_t 4 8 8

F.9.2 Sustained arithmetic ceilings (per core, idealized)

638

Kernel SKL ICL Zen3

DP FMA (AVX2) up to 16 flops/cycle (2
FMAs × 4 lanes)

similar or
better

similar

DP FMA (AVX-512) up to 32 flops/cycle (2
FMAs × 8 lanes)

supported N/A (no AVX-512
on Zen2/3)

Actuals depend on port conflicts, loads/stores, and frequency behavior.

F.10 Engineering Guidance (Checklist)

• Data layout first: SoA for vector kernels; 64-B alignment on hot arrays.

• One width per kernel: choose SSE/AVX2/AVX-512 and keep loops uniform.

• Balance memory ops: target 2L/1S per cycle; minimize line splits.

• Control working set: fit inner loops into L1, outer tiles into L2.

• Measure: verify with perf stat (IPC, L1/LLC misses), perf annotate for per-
instruction hotspots.

• Consider pages: huge pages for large, streaming datasets to reduce TLB misses.

Purpose Restated

This appendix supplies numbers and rules to translate a hot loop’s disassembly into
expected throughput and latency, recognize when execution is port/AGU-bound
vs memory/TLB-bound, and make data-driven choices about vector width, layout,
and tiling. Use it as your on-bench reference while iterating on high-performance C++
kernels compiled with GCC on modern x86-64.

639

Appendix G - Verified Object Model Layouts
This appendix records canonical C++ object layouts as emitted by GCC (G++ 10+)
for the Itanium C++ ABI on Linux x86-64. The intent is verification: correlate source
declarations with binary shape (object memory, vptr locations, VTable organization,
RTTI objects, and adjustment thunks) to validate ABI compliance, support reverse
analysis, and drive advanced debugging.
Assumptions:

• System V AMD64 ABI (Appendix A) for data layout and calling convention.

• Itanium C++ ABI for object model, mangling, RTTI, and exception machinery.

• GCC defaults: new/delete from libstdc++, EH enabled, RTTI on.

G.1 Standard Layout, Trivial Types, and POD Aggregates

For standard layout and trivial aggregates, GCC lays out members with natural
alignment and no interstitial control fields.

struct S {
int a; // 4B
double b; // 8B
char c; // 1B

}; // sizeof(S) == 24 on x86-64

Memory (little-endian, byte offsets):

0x00: a (4) | padding (4)
0x08: b (8)
0x10: c (1) | padding (7)

Rules:

640

• Aggregates have no hidden headers or vptrs.

• Alignment equals max alignment of members (alignof(S) == 8 here).

• Empty base optimization (EBO) applies when a class with no data (other than its
type identity) is used as a base; its size may collapse to 1 or be subsumed at offset
0 in a derived object when permitted by the ABI.

Verification:

• static_assert(std::is_standard_layout_v<S> && std::is_trivial_v<S>);

• offsetof(S, a)==0, offsetof(S, b)==8, offsetof(S, c)==16.

G.2 Single Inheritance (Non-Virtual) with Polymorphism

Polymorphic classes contain a single vptr (pointer to VTable) at object offset 0.

struct Base {
virtual ~Base();
virtual int f() const;
int x; // data follows vptr

};

struct Derived : Base {
int y;
int f() const override;

};

Object layout (x86-64):

Base:
+0x00: vptr (8) -> &VTable_Base[0]
+0x08: x (4)

641

+0x0C: padding (4)
sizeof(Base) == 16

Derived:
+0x00: vptr (8) -> &VTable_Derived[0]
+0x08: x (4)
+0x0C: padding (4)
+0x10: y (4)
+0x14: padding (4)
sizeof(Derived) == 24

VTable shape (primary vtable for the most derived object):

VTable_Derived:
[0]: ptr-to-typeinfo (&typeinfo for Derived)
[1]: ptrdiff_t offset-to-top (0 for primary)
[2]: &Derived::~Derived (deleting destructor)
[3]: &Derived::~Derived (complete destructor)
[4]: &Derived::f
...

Notes:

• The first two slots form the VTable header (RTTI pointer, offset-to-top).

• Destructors appear before other virtuals per Itanium order.

• offset-to-top == 0 for primary vptr in a complete object.

G.3 Multiple Inheritance (Non-Virtual Bases)

With multiple non-virtual bases, the subobject of the first listed base occupies the
object prefix; subsequent bases follow with their own data but no additional vptrs
unless polymorphic subobjects are distinct.

642

struct A { virtual ~A(); int a; };
struct B { virtual void g(); int b; };
struct C : A, B { int c; };

Layout:

C (complete object):
[A-subobject]

+0x00: vptr_A' -> primary VTable_C (A view)
+0x08: a

[B-subobject]
+0x10: vptr_B' -> secondary VTable_C (B view)
+0x18: b

[C-own]
+0x20: c

sizeof(C) == 0x28 (alignment/padding may vary)

Key properties:

• Two vptrs exist: one at offset 0 (A view), another at the start of the B-
subobject.

• The secondary VTable (B view) has a nonzero offset-to-top (−0x10 here),
enabling dynamic_cast from B* to C* through the negative adjustment.

• Virtual function pointers in each vtable are adjusted thunks as required to rebase
this when calls originate from the corresponding base view.

G.4 Virtual Inheritance

Virtual bases are stored once, at an implementation-chosen offset placed after the non-
virtual part of the most-derived object. Access uses virtual base offsets stored in the
VTable.

643

struct V { virtual ~V(); int v; };
struct A : virtual V { int a; };
struct B : virtual V { int b; };
struct C : A, B { int c; };

Schematic layout:

C (complete object):
[Primary subobject] (A is primary if first listed)

+0x00: vptr_C(A-view)
+0x08: A::a

[B-subobject]
+0x10: vptr_C(B-view)
+0x18: B::b

[C-own]
+0x20: C::c

[Virtual base V] <-- placed once
+0x28: vptr_C(V-view)
+0x30: V::v

VTable (primary view) contains:

• RTTI pointer

• offset-to-top (0)

• virtual function slots

• Virtual base offset entries (vcall/vbase offsets) enabling dynamic adjustment
to reach V from any subobject view at runtime, independent of the physical
placement chosen by the linker.

Consequences:

644

• Any pointer to a base subobject carries an implicit view; calls may require this-
adjusting thunks.

• dynamic_cast consults RTTI graph and vbase offsets to compute unique
addresses or report failure.

G.5 VTable, Thunks, and This-Adjustment

For non-leftmost bases or virtual bases, GCC may emit thunks that add a constant
delta to this before tail-calling the real implementation:

; thunk for B::g() in C when called via B* (delta = -0x10)
C::_ZThn16_N1B1gEv:
lea rdi, [rdi - 0x10] ; adjust this to C*
jmp C::g() ; tail call keeps EH tables intact

• Thunks are listed in the vtable entries corresponding to that base view.

• Thunks preserve EH personality and CFI expectations; they are leaf glue.

G.6 RTTI Objects (typeinfo) and Relationships

Each polymorphic type has a typeinfo object:

VTable header slot 0 --> &typeinfo for most-derived type

typeinfo encodes:

• Mangled name of the type,

• Base class list and virtual base graph (via ABI-defined structures),

• Used by typeid and dynamic_cast.

645

Offsets:

• offset-to-top (slot 1) is a signed ptrdiff_t applied to a subobject pointer to
reach the most-derived object.

• Secondary vtables carry their own offset-to-top values.

G.7 Composite Reconstruction from Raw Memory

Given only a data pointer and vptr, reconstruct the object view:

1. Read vptr at [p] → vptr0.

2. Resolve vptr0[-1] (slot −1) → offset-to-top.

3. Compute top = p + offset-to-top.

4. Inspect vptr0[-2] (slot −2) → RTTI pointer; identify the dynamic type.

5. Use ABI rules or known class definitions to parse subobject boundaries.

For multiple/virtual inheritance:

• Secondary vptrs appear at known subobject offsets; each carries its own header.

• Virtual base offsets are obtained from the vtable’s vbase table; add to top to
locate virtual bases.

G.8 Validation Patterns (GDB / objdump)

Recommended checks:

• Confirm vptr at object offset 0 for primary base; locate secondary vptrs at non-
zero offsets.

646

• Dump vtables (objdump -s -j .rodata) and identify:

– &typeinfo,

– offset-to-top,

– sequence of function pointers and thunks.

• In GDB:

– (gdb) p/x *(void**)obj → vptr

– (gdb) p/x ((void**)vptr)[-1] → offset-to-top

– (gdb) p ((std::type_info*) ((void**)vptr)[-2])->name()
(symbolization available in non-stripped builds)

G.9 Edge Cases and Notable Details

• EBO (Empty Base Optimization): Empty non-virtual bases may occupy no
additional space in the most-derived object’s layout.

• Final classes / devirtualization: Optimization does not remove vptrs for
externally visible types; ABI requires stable layout even if calls devirtualize
internally.

• Multiple identical base subobjects: Disambiguation via qualified casts; RTTI
encodes the base graph for unambiguous dynamic_cast.

• Diamond with virtual base: Only one V instance exists in the most-derived;
base subobjects carry vbase offsets to reach it.

647

G.10 Minimal Worked Examples

G.10.1 Two-base non-virtual

struct A { virtual ~A(); int a; };
struct B { virtual ~B(); int b; };
struct C : A, B { int c; };

Expected:

• vptr at offset 0 (A view), secondary vptr at offset sizeof(A) (B view).

• Two vtables for C: primary (A view), secondary (B view).

• offset-to-top in secondary vtable = -ptrdiff_t(sizeof(A)).

G.10.2 Virtual diamond

struct V { virtual ~V(); int v; };
struct A : virtual V { int a; };
struct B : virtual V { int b; };
struct C : A, B { int c; };

Expected:

• Primary vptr at offset 0 (A view) with vbase table entries to locate V.

• C contains one V instance; both A and B access it via vbase offsets.

• Thunks adjust this from A/B views to C where needed.

648

G.11 Practical Checklist

• Primary vptr at 0 for polymorphic complete objects.

• Secondary vptrs start each non-leftmost base subobject.

• offset-to-top negative for secondary views; zero for primary.

• RTTI slot always immediately preceding offset-to-top in the vtable.

• Thunks appear where cross-view this adjustment is needed; tail-call preserves
CFI.

• Virtual bases resolved via vbase offsets from the vtable of the current view.

Objective Restated

This appendix provides verified patterns for GCC’s Itanium C++ ABI object layouts.
Use them to:

• Validate ABI stability across releases,

• Reconstruct composite objects from memory alone,

• Interpret vtable headers and thunks during reverse engineering,

• Guarantee correctness when interfacing hand-written assembly, JIT stubs, or
binary patching with polymorphic C++ objects.

649

Appendix H - Full Compilation and Optimization
Case Study

This appendix presents a reproducible, end-to-end walk from C++ source to an
optimized ELF binary, correlating each compiler stage with the emitted machine code
and measured runtime behavior. The goal is to verify that semantic intent is preserved,
optimizations are justified by a cost model, and ABI contracts remain intact.
The example is deliberately simple but non-trivial: a reduction kernel with a branchless
transform and a hot inlinable helper. Build on Linux x86-64 with GCC � 10.

H.1 Source Program

// file: case.cpp
#include <cstddef>
#include <cstdint>
#include <cmath>

static inline double transform(double x) noexcept {
// small nonlinearity to provoke vector math + FMA opportunities
return std::sqrt(x * x + 1.0);

}

extern "C"
double reduce_sum(const double* __restrict a, std::size_t n) {

double acc = 0.0;
for (std::size_t i = 0; i < n; ++i) {

acc += transform(a[i]) * 0.5;
}
return acc;

}

650

Build variants (instrumented):

Baseline optimized + dumps
g++ -O3 -march=native -fno-exceptions -fno-rtti \

-fdump-tree-original-raw -fdump-tree-optimized -fdump-tree-ssa \
-fdump-tree-vect -fdump-rtl-expand -fdump-rtl-final \
-S -o case.s -c case.cpp

LTO + PGO path (optional)
g++ -O3 -flto -fprofile-generate -march=native -c case.cpp -o case.gen.o
g++ -O3 -flto -fprofile-generate -o app.gen case.gen.o
./app.gen # run with representative data to emit .gcda
g++ -O3 -flto -fprofile-use -march=native -o app.opt case.cpp

H.2 Stage 1 — AST and Semantic Graph
(-fdump-tree-original-raw)

Artifacts: case.cpp.003t.original.
What to verify:

• Function prototypes: extern "C" double reduce_sum(const double*,
size_t).

• transform is static inline and noexcept: eligible for inlining at O3.

• Loop canonicalization: induction i from 0 to n, strict forward progress.

Actionable checks:

• Confirm no implicit temporaries that would block vectorization (e.g., by-value
aggregates).

• Confirm __restrict propagated on pointer a.

651

H.3 Stage 2 — GIMPLE + SSA + CFG

Artifacts: case.cpp.optimized, case.cpp.ssa, case.cpp.vect.
Key markers:

• Inlining: transform should be eliminated as a separate call; look for its body
folded into the loop body in optimized.

• SSA: acc becomes �-merged at the loop header; i is an induction variable with a
single definition chain.

• Alias and TBAA: __restrict on a reduces alias pessimism for the load.

• Vectorization report (-fdump-tree-vect): expect something like “loop
vectorized width=4/8” depending on ISA.

What to read:

• In vect dump: lanes, data‐ref analysis (stride = 8 bytes), cost model acceptance,
epilogue handling for n % VL.

H.4 Stage 3 — Midend Optimization Decisions

Transformations to confirm in dumps:

• Constant folding: multiply by 0.5 may fuse into FMA or be represented as *
0x3fe0000000000000.

• Strength reduction: address computation uses scaled index addressing.

• Loop distribution/fusion: not applicable here; confirm preserved single hot
loop.

652

• Math‐library lowering: sqrt for vectors may map to hardware vsqrtpd or a
vector helper depending on target and flags.

Decision visibility:

• -fopt-info-vec should explicitly state whether sqrt vectorization is applied via
hardware instruction or internal vector libcall.

H.5 Stage 4 — RTL Emission (Pre/Post RA)

Artifacts: case.cpp.expand, case.cpp.final.
What to confirm in expand:

• Loads from a[i] as MEM[base + index*8] with vector width if vectorized.

• Temporary virtual regs for vector accumulators.

• Canonical loop control with compare + branch based on vector iteration count
and a scalar epilogue.

What to confirm in final:

• Register allocation stability: vector regs bound to ymm/zmm (target-dependent),
minimal spills.

• Addressing modes legalized (no out-of-range displacements).

• Peephole/sched patterns: fused compare+branch; hoisted invariants (scale,
constants).

653

H.6 Stage 5 — Final Assembly and Relocation Dump

Generate annotated assembly and relocations:

objdump -dr -Mintel app.opt | less
readelf -rW app.opt

Disassembly expectations (AVX2 example):

.Lloop:
vmovupd ymm1, YMMWORD PTR [rdi+rax*8] ; load 4 doubles
vmulpd ymm2, ymm1, ymm1 ; x*x
vaddpd ymm2, ymm2, YMMWORD PTR [.LC1] ; +1.0
vsqrtpd ymm2, ymm2 ; sqrt
vmulpd ymm2, ymm2, YMMWORD PTR [.LC05] ; *0.5
vaddpd ymm0, ymm0, ymm2 ; accumulate
add rax, 4
cmp rax, rsi
jb .Lloop

Relocations:

• For a non-PIC executable, expect minimal dynamic relocations; constants likely in
.rodata without GOT indirection.

• For PIE/-fPIC, loads of constants via RIP-relative addressing/GOT as
appropriate.

H.7 Stage 6 — Runtime Performance Trace (perf)

Test driver (generate input, call reduce_sum):

654

#include <vector>
#include <random>
extern "C" double reduce_sum(const double*, std::size_t);

int main() {
std::vector<double> a(20'000'000);
std::mt19937_64 rng(0);
std::uniform_real_distribution<double> U(0.0, 10.0);
for (auto& x : a) x = U(rng);
volatile double s = reduce_sum(a.data(), a.size());
(void)s;
return 0;

}

Measure:

perf stat -d ./app.opt
perf record -g ./app.opt
perf annotate

Readouts to correlate:

• IPC near 1.2–2.0 for a balanced vector kernel on a modern core.

• L1/L2 miss rates low for streaming access with unit stride.

• idq_uops_not_delivered small if front-end not starved.

• uops_issued.any proportional to vector body; check that spill traffic is
negligible.

• Annotate: verify hot basic block aligns with vector loop; instruction with highest
sample share should be vmovupd/vsqrtpd/vaddpd in a balanced ratio.

If AVX-512 is available and enabled, note possible frequency changes; still expect higher
per-iteration work.

655

H.8 Stage 7 — ABI Verification (readelf -Ws)

readelf -Ws app.opt | grep -E 'reduce_sum|transform'

Expected:

• reduce_sum exported as a global default symbol with unmangled C name (due
to extern "C").

• No visible transform symbol if fully inlined; if present (e.g., under different
build), its visibility should be local/hidden or eliminated.

Call signature (System V AMD64):

• const double* in RDI, size_t in RSI.

• Return in XMM0.

Check readelf -lW for segment permissions: .text RX, .rodata R, .data/.bss RW;
confirm PIE vs non-PIE as intended.

H.9 Cross-Stage Consistency Matrix

Question Where to verify Expected signal

Was transform inlined? optimized dump; symbol
table

Body merged into loop;
symbol removed or local

Was the loop vectorized? vect dump, assembly Vector width lanes;
vaddpd/vsqrtpd

656

Question Where to verify Expected signal

Any missed optimization
due to aliasing?

ssa (TBAA notes), perf No extra reloads; high IPC

Register pressure
acceptable?

rtl.final, perf annotate No spills in hot block

ABI stable at boundary? readelf -Ws, disassembly
prologue/epilogue

SysV AMD64 calling
convention intact

H.10 Optional Variant — PGO + LTO

Rebuild with profile feedback:

g++ -O3 -flto -fprofile-generate -march=native -o app.gen case.cpp driver.cpp
./app.gen
g++ -O3 -flto -fprofile-use -fno-peel-loops -march=native -o app.pgo case.cpp

driver.cpp↪→

What should change:

• Block layout: hot path reordered; cold exit checks sink out of I-cache footprint.

• Inlining: cross-TU inlining (if multiple TUs).

• Vector epilogue: may be simplified if profile indicates favorable n % VL.

Validate with -fopt-info-vec -fopt-info-inline and compare perf stat deltas.

H.11 Minimal Troubleshooting Guide

• Vectorization refused: Check vect dump for “dependence” or
“misaligned/unknown step”. Enforce alignment with assume_aligned or adjust
data layout.

657

• High branch-misses: Ensure loop is branchless; guard conditions hoisted out.
Consider masking rather than branching for special cases.

• Low IPC with high L1 misses: Confirm contiguous layout and that
prefetchers can engage; avoid gathers; consider SoA refactor.

• Spills visible: Reduce live range pressure (split accumulators), or limit width
(-mprefer-vector-width=256) where AVX-512 causes register pressure.

H.12 Outcome

This case study ties together:

• AST → GIMPLE/SSA → RTL → Assembly: each stage inspected and
matched to the final code.

• Optimization reasoning: explicit acceptance evidenced by -fopt-info-* and
dumps.

• Measured reality: perf counters confirm that structural changes improve
microarchitectural utilization.

• ABI invariants: symbol forms and calling conventions verified to remain stable.

Use this template to evaluate any performance-critical kernel: keep the dumps, the
annotated disassembly, and the perf reports together. The correspondence between
compiler theory, binary facts, and runtime behavior is the basis for reliable, high-
performance C++ system construction on GCC for Linux x86-64.

658

Appendix I - Experimental and Research Extensions

This appendix summarizes advanced mechanisms for extending, instrumenting, and
experimentally modifying the GNU compilation pipeline. These topics are intended for
compiler researchers, performance engineers, and system architects who require beyond-
standard transformations, cross-toolchain interoperability, or runtime compilation
strategies. All material reflects GCC behavior and capabilities available in post-2020
versions (GCC 10+ and libgccjit 10+), with relevance to Linux x86-64 environments.

I.1 GCC Plugin Interface and Custom Optimization Passes

GCC exposes a plugin API that allows external modules to register new passes, inspect
or transform intermediate representations, and participate in compilation workflows.
Plugins operate on GIMPLE or RTL, depending on the insertion point, and are
integrated via dynamic loading (-fplugin=<path>).
Key components:

• Registration via plugin_init(struct plugin_name_args*, struct
plugin_gcc_version*).

• Pass insertion with register_callback targeting PLUGIN_PASS_MANAGER_SETUP.

• IR hooks to traverse:

– GIMPLE statements (gimple_stmt_iterator, FOR_EACH_BB_FN),

– SSA use-def chains (ssa_name, def->use chain),

– RTL insns (FOR_EACH_INSN).

Use cases:

659

• Automatic insertion of diagnostic assertions for correctness validation.

• Experimental optimization strategies (e.g., domain-specific strength reduction).

• IR instrumentation (e.g., branch frequency logging).

Plugins must respect GCC’s phase ordering constraints: transformations must maintain
SSA validity and dominance relationships when applied at the GIMPLE level, and
register constraints when operating on RTL.

I.2 Cross-Toolchain Comparison via LLVM Interchange

GCC can interoperate with LLVM at the LTO level via:

• Emission of LLVM bitcode for selected units,

• Symbol table and type metadata correlation via DWARF,

• Comparative passes for code-generation or scheduling differences.

Research workflow:

1. Build shared input corpus with stable command-line configuration.

2. Compile with GCC (-flto) and LLVM (-flto or -emit-llvm).

3. Compare:

• GIMPLE vs LLVM IR structure,

• Inlining heuristics,

• Loop and vectorization transformations,

• Register allocation outcomes via annotated disassembly.

660

Objective:

• Identify optimization inefficiencies or structural advantages in either pipeline,

• Selectively port pass logic to GCC plugins or backend tunings.

I.3 Source-Based Coverage Instrumentation

GCC supports non-intrusive profiling through:

• -fprofile-generate / -fprofile-use

• -fprofile-update=atomic for thread-safe counters,

• -fprofile-values for indirect-call target histograms.

For precise research measurement:

• Use coverage to derive branch probability, loop trip distributions, and call
frequency.

• Extract histograms from .gcda using gcov or direct binary parsing.

This enables:

• Cost model tuning for vectorization and inlining,

• Feedback-driven function layout,

• Adaptive specialization strategies compatible with the static binary ABI.

661

I.4 Automated Code Layout Optimization via Block Reordering

Post-2020 GCC includes improved support for function reordering and hot/cold text
partitioning, influenced by PGO data. Researchers may augment this by:

• Modifying block reordering passes to align hot paths with I-cache residency
constraints,

• Coalescing contiguous hot regions into .text.hot,

• Pushing cold blocks to .text.unlikely for reduced branch pressure.

Evaluation metrics:

• Front-end stall cycles (idq_uops_not_delivered),

• Instruction-cache misses (icache.misses),

• BTB mispredict frequency under highly biased calls.

This strategy is architecture-sensitive and should be validated per microarchitecture
class.

I.5 Runtime Compilation Using libgccjit

libgccjit enables dynamic generation of machine code using GCC’s code generator.
Instead of interpreting IR, it constructs GCC-internal representations programmatically
and emits executable code that adheres to:

• System V AMD64 ABI,

• Standard alignment and calling conventions,

662

• GCC’s backend instruction scheduler.

Use cases:

• JIT specialization based on runtime data distribution,

• Runtime code synthesis in simulation frameworks,

• Micro-benchmarks comparing static vs dynamic optimization outcomes.

Constraints:

• No access to full midend pipeline; transformations available are lower-level.

• Intended for JIT research, not general-purpose compilation replacement.

I.6 Research Workflow Integration Model

Objective Appropriate Mechanism Expected Output

Inspect/Modify IR GCC Plugin
(GIMPLE/RTL)

Selective rewriting of
transformation passes

Cross-compiler
benchmarking

LLVM Interop +
disassembly correlation

Structural optimization
comparison

Dynamic performance
feedback loops

-fprofile-*
instrumentation + PGO

Performance-informed
inlining and block layout

Code layout
optimization

Hot/cold partitioning,
custom linker scripts

I-cache residence
improvement

663

Objective Appropriate Mechanism Expected Output

Runtime specialization libgccjit On-demand optimized code
generation

I.7 Outcome

This appendix establishes research interfaces into the GCC toolchain that:

• Preserve ABI correctness,

• Allow controlled experimentation on IR structures,

• Support cross-backend comparative evaluation,

• Enable runtime adaptation without breaking system linkage conventions.

These mechanisms provide the foundation for:

• Compiler performance research,

• Architecture-aware workload specialization,

• Automated tuning of large C++ systems.

They are suitable for graduate-level study, compiler design experimentation, and high-
end performance engineering.

References

This book draws from authoritative and publicly documented specifications, compiler
implementation sources, operating system standards, and microarchitectural design
literature. The references below represent stable, versioned, and technically primary
sources that define the behaviors, invariants, and semantics discussed throughout the
text. They are listed to enable verification, deeper study, and long-term technical
continuity.
The references are organized by conceptual domain rather than by chapter, reflecting
the layered structure of the compilation and execution environment.

Language and Semantic Foundations

1. ISO/IEC 14882 — Programming Language C++ Standard (C++20 and
later drafts)
Defines core language semantics, name lookup rules, template instantiation,
constexpr evaluation, object lifetime, and concurrency primitives.

2. ISO/IEC 9899 — Programming Language C Standard (C17 / C23)
Serves as foundational reference for C++’s low-level and memory semantics.

3. C++ Core Guidelines (Stroustrup, Sutter, and WG21 contributors)

664

665

Describes best practices in type safety, resource management, concurrency, and
API stability, consistent with modern C++ compilation behavior.

Compiler Internals and Intermediate
Representations

1. GCC Internals Manual (GCC 10 and later)
Formal reference for GCC front-end lowering, GIMPLE IR, SSA construction,
RTL definition, pass sequencing, and backend instruction emission.

2. GIMPLE and SSA Form Framework Specification (GCC Developer
Documentation)
Defines correctness rules for SSA dominance, phi node placement, range
propagation, and GIMPLE canonicalization invariants.

3. RTL Machine Description Language Reference
Documents instruction patterns, operand constraints, register classes, and target
backend code generation rules.

ABI and Binary Interface Specifications

1. System V AMD64 ABI
Defines calling conventions, stack alignment, argument passing rules, VTable
layout, exception propagation structures, and typeinfo object shape.

2. Itanium C++ ABI
Specifies class layout, RTTI format, virtual dispatch tables, construction vtables,
thunks, and exception personality functions.

666

3. ELF Object File Format Specification
Describes section layout, program headers, relocation records, and dynamic
linking metadata structures.

4. DWARF Debugging Information Format
Defines symbol tables, call frame information (CFI), unwind tables, and line
number mappings for debugging and exception unwinding.

Runtime and Operating System Interfaces
1. glibc Runtime Behavior and Loader Internals (dynamic loader and

startup code)
Reference for GOT/PLT resolution, dynamic relocation, TLS models,
constructor/destructor registration, and process startup sequence.

2. Linux Kernel System Call ABI Documentation
Defines user–kernel transition models and calling conventions for syscall entry and
return flows.

Microarchitectural and Performance Analysis
Sources

1. Intel 64 and IA-32 Architectures Optimization Reference Manual
Describes pipeline topology, execution port mapping, µop scheduling, instruction
throughput/latency, branch prediction behavior, and memory hierarchy costs.

2. AMD Architecture Programmer’s Manual (Zen µArch families)
Reference for cache hierarchies, TLB behavior, SIMD execution characteristics,
and port utilization constraints.

667

3. perf Event Reference for Linux Performance Counters
Defines hardware counter groups, stall classification models, IPC computation,
and event correlation for pipeline attribution.

Toolchain, Debugging, and Profiling

1. GDB Internals and Python API Reference
Covers frame reconstruction, symbol resolution, reverse execution, automated
pretty-printing, and runtime heap state inspection.

2. binutils (objdump, readelf, nm, ld) Technical Documentation
Defines binary inspection workflow and static linking control.

Research and Extension Interfaces

1. GCC Plugin API Specification
Describes registration hooks, GIMPLE passes, IR transformations, and custom
analysis integration.

2. libgccjit JIT Compilation Interface
Enables runtime generation of GIMPLE and machine code for dynamic and
adaptive workloads.

20.6 Purpose of Reference Structure

This reference list is intentionally primary-source oriented:

• Every cited work defines behavior rather than describes or interprets it.

668

• All specifications are stable or versioned to ensure reproducibility.

• The list avoids tutorial and secondary commentary sources to maintain technical
exactness.

The reader is encouraged to use these references not as introductory material, but
as precise verification anchors when inspecting compiler output, debugging complex
runtime behavior, or designing performance-critical system components.

	Contents
	Author's Introduction
	Preface
	I THE GNU COMPILATION MODEL AND SYSTEM CONTRACTS
	The Compiler as the System's Formal Execution Specification
	The Compiler Defines Semantics, Not the Source Language
	Source Code is Not Executable Specification
	Semantic Lowering and Transformation Phases
	The Role of Undefined and Implementation-Defined Behavior
	The Compiler as the Formal Boundary of Program Reality
	Consequence for System-Level C++ Engineering

	The Toolchain as the System's Deterministic Behavioral Model
	Determinism Through Standardized Execution Contracts
	Determinism at the Code Generation and Linking Boundary
	Runtime Enforcement of Toolchain Semantics
	Implications for System-Level C++ Engineering
	Summary

	Visibility, Inspectability, and Reproducibility as Engineering Requirements
	Visibility into the Compilation Pipeline
	Inspectability at the Binary Interface Level
	Reproducibility as a Deterministic Execution Property
	Stability Under Optimization and Microarchitectural Change
	Engineering Outcome

	Stability Contracts Across CPU Generations and OS Versions
	ABI as a Fixed External Contract
	Microarchitectural Variation Without Semantic Change
	Runtime Library and Kernel Interface Continuity
	Compiler Evolution Under Stability Constraints
	Practical Engineering Implication

	Examples: ABI Continuity Analysis Across GCC Major Versions
	Stable Class Layout and Virtual Dispatch Across Versions
	Name Mangling and Symbol Binding Stability
	Exception Propagation Compatibility Across Toolchain Versions
	Function Call Boundary Invariance Under Optimization Evolution
	Summary of Findings

	The Linux Execution Stack and Boundary Interfaces
	CPU → Kernel → Loader → Runtime → Application Execution Path
	CPU Architectural Preconditions
	Kernel: Process and Address Space Construction
	Loader: Dynamic Linking and Relocation (ld.so)
	Runtime: libgcc + glibc + C++ Initialization
	Application Execution Under Compiler-Defined Semantics
	Summary

	System Call ABI Calling Convention and Register Assignments
	Register Assignment for System Calls
	 The syscall Instruction and Privilege Transition Sequence
	System Call ABI vs. User-Space ABI
	Consequences for Compiler Lowering and Optimization
	Engineering Implications

	The syscall Instruction and VDSO Acceleration Layer
	Execution Semantics of the syscall Instruction
	Performance Characteristics on Post-2020 x86-64 CPUs
	VDSO: User-Space Execution of Kernel-Managed Functions
	Loader and Runtime Binding Behavior
	Implications for System-Level C++ Execution

	Userspace Loader (ld.so) as a Policy Engine
	Loader Responsibilities as Defined by ELF Semantics
	The Loader as the Enforcement Point for Symbol Resolution Policy
	Loader as the Authority for PIE and ASLR Execution Layout
	TLS Model Selection and Enforcement
	Loader as the Gatekeeper for Runtime Feature Dispatch
	Summary

	Examples: Disassembling _start → __libc_start_call_main
	_start: Entry Point Defined by the Linker
	__libc_start_main: Runtime Coordinator
	__libc_start_call_main: Invocation of C++ Static Initializers
	Validation of Constructor Execution Ordering
	Summary of Verified Invariants

	Toolchain Component Topology and Internal Data Flow
	GCC → as → ld → ld.so → glibc → Application
	GCC: Language Semantics → Machine-Oriented IR → Assembly
	as: Assembly Encoding into ELF Relocatable Objects
	ld: Symbol Resolution, Address Assignment, and Relocation Planning
	ld.so: Runtime Relocation and Execution Environment Realization
	glibc: Runtime Subsystem Activation and C++ Static Object Initialization
	Application: Execution Under Compiler-Defined Semantics
	Summary

	Where Optimization Happens and Where It Cannot
	Optimization in the High-Level SSA Domain (GIMPLE)
	Optimization in the Machine-Constraint Domain (RTL)
	Where Optimization Cannot Occur: Assembler and Linker Phases
	Where Optimization Is Explicitly Prohibited
	Engineering Consequence

	How Debug Symbols Propagate Through the Pipeline
	GCC: Generation of DWARF Symbol Information
	as: Preservation Without Semantic Modification
	ld: Relocation, Folding, and Consolidation of Debug Sections
	Handling of Unwind Metadata
	Separate Debug Information Model
	Debug Symbol Visibility in Final Execution State

	How the Loader Chooses and Resolves Libraries
	Library Selection Process
	DT_NEEDED and Dependency Graph Construction
	Symbol Lookup Scope and Resolution Rules
	Lazy vs. Immediate Resolution
	Versioned Symbols and Compatibility Stability
	Summary

	Examples: Full Symbol Resolution Trace for a Shared C++ Binary
	Source: Shared Library and Executable
	Inspecting Dynamic Dependency Graph
	Symbol Resolution Trace Using LD_DEBUG
	PLT/GOT Binding Inspection
	Versioned glibc Symbol Resolution
	Summary of Verified Resolution Behavior

	II GCC FRONTEND: C++ LANGUAGE LOWERING ENGINE
	C++ Name Semantics, Lookup, and Instantiation Model
	Unqualified, ADL, and Two-Phase Name Lookup
	Unqualified Name Lookup
	Argument-Dependent Lookup (ADL)
	Two-Phase Name Lookup in Template Contexts
	Failure Modes and GCC Diagnostic Behavior
	Practical Implications for System-Level C++ Development
	Summary

	Template Pattern Matching and Partial Specialization Ordering
	Primary Templates and Explicit Specializations
	Partial Specializations and Pattern Matching
	Partial Ordering: Determining the Most Specialized Match
	Interaction with Function Template Partial Specialization
	Constraint-Based Ordering (C++20 Concepts)
	Failure Modes and GCC Diagnostic Context
	Summary

	Constraint Subsumption Rules in Concepts
	Constraint Normalization
	Constraint Implication and Subsumption
	Example: Ordered Constraints
	Example: Incomparable Constraints
	Interaction with Function Overload Resolution
	Replacement of SFINAE-based Partial Ordering
	Summary

	Pure Compile-Time Execution in constexpr Interpreter
	Execution Model: Abstract Machine for Constant Evaluation
	Eligibility Rules for constexpr Evaluation
	Persistent Object Representation at Compile Time
	Distinction Between constexpr and consteval
	Interaction with Template Instantiation
	Engineering Significance
	Summary

	Examples: GCC AST Graph Analysis with -fdump-tree-original-raw
	Example Source
	Relevant Dump Segments (Simplified for Presentation)
	Observations on Name Resolution and Semantic Binding
	Using AST Dumps for Diagnostic Analysis
	Limitations and Interpretation Boundaries
	Summary

	Semantic Graph to GIMPLE Transformation Pipeline
	Canonicalization of Expressions and Control Flow
	Expression Canonicalization
	Control-Flow Canonicalization
	Side-Effect Isolation
	Exception Flow and the EH Graph
	Canonical Form Guarantees
	Summary

	Temporary Lifetime Folding and Value Category Lowering
	Value Category Normalization
	Materialization Points and Temporary Storage Creation
	Lifetime Folding and Elision
	Destructor Scheduling and Region Boundaries
	Move/Copy Lowering and Value Propagation
	Result of Lifetime Folding Before SSA Form
	Summary

	Lambda Closures, Captures, and Object Lifetime IR Representation
	Closure Type Synthesis
	Capture Lowering and Storage Identity
	Construction and Destruction of Closure Objects
	Lowering operator() and Call Sites
	Escaped Closures and Heap Promotion
	Interaction with SSA and Optimization
	Summary

	Inline and Devirtualization Decision Models at GIMPLE Level
	Inlining Candidate Identification
	Visibility and Interposition Constraints
	Devirtualization Pre-Conditions
	GIMPLE-Level Transformation Form
	Profile-Guided and Cost-Driven Inline Decisions
	When Inlining and Devirtualization Are Prohibited
	Summary

	Examples: GIMPLE CFG Dissection with Dominator Tree Reconstruction
	Example Source
	CFG Block Structure
	Dominator Tree Construction
	Post-Dominator Relationships
	Dominance Relevance to Optimization
	CFG and Dominator Diagnostics
	Summary

	III GIMPLE/SSA MIDEND AND OPTIMIZATION THEORY
	SSA Form Construction and Value Flow Algorithms
	Phi-Node Insertion Rules and SSA Dominance Frontier
	Reaching Definition Conflicts
	Dominance Frontier Definition
	Algorithm for Minimal φ-Node Insertion
	Example Control Structure
	SSA Name Binding and Use-Chain Maintenance
	Cases Where φ Insertion Is Suppressed
	Summary

	Sparse Conditional Constant Propagation (SCCP)
	Value Lattice for SSA Names
	Control-Flow Feasibility Tracking
	SCCP over φ-Nodes
	Instruction Folding Rules
	Elimination of Dead Branches and Blocks
	Resulting IR Guarantees
	Summary

	Range Propagation and Provenance Tracking
	Value Range Lattice
	Sources of Range Information
	Branch-Sensitive Propagation
	Provenance Tracking
	Loop-Carried Range Refinement
	Integration with Optimization Stages
	Summary

	Escape, Escape-Not-Escape, and Escape Set Inference
	Object and Reference Escape Classification
	Escape Source Identification
	Escape Set Construction
	Escape-Not-Escape Refinement
	Relationship with Alias and Memory SSA
	Practical Outcomes of Escape Inference
	Summary

	Examples: SSA Rewrites Under Aggressive Inlining Constraints
	Example Source
	Inlining Transformation Result (Conceptual GIMPLE Before SSA Fixup)
	SSA Rewrite with φ-Node Placement
	Value Propagation and Constant Folding Interaction
	Interaction with Escape and Alias Constraints
	Loop-Carried SSA Transformation Under Inlining
	Summary

	Control Flow Optimization, Loop Analysis, and Polyhedral Modeling
	Loop Induction Variable Classification
	Detection of Basic Induction Variables (BIVs)
	Derived Induction Variables (DIVs)
	Invariants vs. Induction Variables
	Induction Variable Normalization
	Induction Variables in Nested Loops
	Relation to Dependence Testing and Vectorization
	Summary

	Loop Invariant Code Motion and Peeling vs Unrolling
	Loop Invariance Detection
	Correctness Requirements for LICM
	Loop Peeling
	Loop Unrolling
	Peeling vs. Unrolling: Distinct Goals
	Interaction with Scalar Evolution (SCEV)
	Summary

	Alias Analysis and Dependence Graph Construction
	Memory Reference Classification in GIMPLE
	Points-to Set Inference
	Memory SSA Region Graph
	Dependence Classification in Loops
	Dependence Graph Construction
	Application to Loop Interchange, Fusion, and Vectorization
	Summary

	Introduction to Graphite / isl Polyhedral Optimizer
	Polyhedral Representation Model
	Extraction from GIMPLE to Polyhedral IR
	Dependence Testing and Legality
	Transformation Classes Performed by Graphite
	Integration with the Mid-End Optimization Pipeline
	Practical Constraints in Real-World Codebases
	Summary

	Examples: Loop Vectorization Feasibility Prediction Diagnostics
	Example Loop
	Dependence-Inhibited Case
	Non-Affine Access Inhibition
	Masked Vectorization Consideration (Post-GCC 11)
	Failures Due to Floating-Point Semantics
	Summary

	IV RTL BACKEND AND TARGET MICROARCHITECTURE
	RTL Instruction IR and Machine Description Language
	RTL Expression Trees and Operand Constraints
	RTL Expression Structure
	Operand Categories
	Constraint Language for Instruction Operands
	RTL and Machine Modes
	RTL after GIMPLE Lowering and Before Register Allocation
	Summary

	Constraints (M, r, i, s, g, m, …): Register vs Memory Operand Legality
	Constraint Classes and Operand Roles
	Register Operand Constraints (r and Register Classes)
	Memory Operand Constraints (m and Sub-Forms)
	Immediate Operand Constraints (i, n, I, J, …)
	General Operand Constraint (g)
	Symbol Constraints (s)
	Summary

	Machine Pattern Matching and Macro-Op Fusion Candidates
	MD Pattern Identification
	Fusion-Friendly Canonical Forms
	Pattern Matching for Fusable RTL Sequences
	MD Pattern Encoding for Fusion-Aware Selection
	Practical Fusion Limitations
	Summary

	RTL Verification Passes and Semantic Equivalence Rules
	Structural Well-Formedness Checks
	Data-Dependence and Liveness Preservation
	Address Legality and Alignment Rules
	Semantic Equivalence Constraints
	RTL Graph Normalization
	Summary

	Examples: Live RTL → Final x86-64 Assembly Correlation
	Example Source
	Relevant Live RTL (Post-Expand, Pre-RA Simplified)
	Register Allocation Assignments (Typical)
	Final x86-64 Assembly (Representative Output)
	Example With Alias Inhibition vs restrict
	Example With Loop-Carried Induction
	Summary

	Register Allocation, Spill Minimization, and Scheduling
	Graph Coloring Allocation and Coalescing
	Interference Graph Construction
	Register Classes and Architectural Constraints
	Graph Coloring Heuristic
	Copy Coalescing
	Conservative vs Aggressive Coalescing
	Interaction with SSA Form
	Summary

	PBQP Allocation and Hybrid Region Spilling
	PBQP Formulation Overview
	Constrained Allocation Scenarios Requiring PBQP
	Hybrid Region-Based Spilling
	Live-Range Splitting under PBQP
	Interaction with Scheduling and Rematerialization
	Summary

	Scheduler: Port Pressure, Latency, Throughput Tables
	Instruction Latency Constraints
	Execution Port Pressure and Resource Contention
	Throughput-Based Instruction Arrangement
	Scheduling Boundary Constraints
	Example: Scheduling a Hot Loop Body
	Summary

	Skylake-Class µArch Execution Ports (0,1,2,3,4,5,6)
	Execution Port Summary
	ALU and FP Arithmetic Distribution (Ports 0 and 1)
	Load and Store Pipelines (Ports 2, 3, 4, 6)
	Branching and Control Dependencies (Port 5)
	Performance Implications in Loop Kernels
	Summary

	Examples: Stall Origin Detection via Annotated Disassembly
	Example Hot Loop
	Annotated Disassembly with Port Maps and Latency
	Stall Source Classification
	Annotated Analysis with Throughput Model
	Vectorized Case Contrast (AVX2 / AVX-512)
	Summary

	x86-64 SIMD Vectorization and Data Layout
	Vector Instruction Selection (SSE → AVX → AVX2)
	SSE (Streaming SIMD Extensions)
	AVX (Advanced Vector Extensions)
	AVX2 (Integer Vectorization Extension)
	Vector Width and Microarchitectural Throughput
	ISA Transition and Domain Penalties
	Summary

	Load/Store Alignment Constraints and Gather/Scatter Costs
	Alignment Constraints for SIMD Loads and Stores
	Stride and Interleave Effects on Access Form
	Gather and Scatter Instructions (AVX2)
	Vectorizer Decision Rules for Gather/Scatter Emission
	Hybrid Approaches: Load + Shuffle vs. Gather
	Summary

	Data Structure Layout for Cache-Optimized Iteration
	AoS vs. SoA Transformations
	Padding, Alignment, and Page-Locality Considerations
	Loop Nest and Tile Layout for Cache Blocking
	Struct Reordering and False-Sharing Avoidance
	Alignment Propagation Through the Compiler
	Summary

	ABI Implications of Vector Calling Conventions
	Vector Registers in the x86-64 System V ABI
	Register Save / Restore Semantics
	ABI and State Transition Costs (SSE ↔ AVX)
	Struct and Aggregate Passing Rules
	Cross-Module Optimization Boundary
	Summary

	Examples: Loop Rewritten into Full AVX2 Pipeline
	Original Scalar Code
	GCC Vectorization Conditions
	Representative Vectorized Assembly (Simplified)
	Pipeline Characteristics on Skylake-Class Cores
	Comparison to Scalar Performance
	Observations from Annotated Disassembly
	Summary

	V C++ OBJECT MODEL AND RUNTIME ABI
	Itanium ABI Deep Structure for C++
	Symbol Mangling Encoding Structures
	Top-Level Mangling Prefix
	Name Scoping Encoding
	Type Encoding and Qualifiers
	Template Argument Encoding
	Operator and Special Function Mangling
	Summary

	VTable Encoding, Virtual Base Pointer Offsets, and Thunks
	VTable Structural Layout
	Virtual Base Pointer Offsets (vbpointers)
	Thunks and this Pointer Adjustment
	VTable Reuse and Subobject-Specific VTables
	Summary of Runtime Dispatch Flow
	Summary

	Exception Table Encoding, DWARF CFI, and LSDA
	Zero-Cost Exception Handling Model
	DWARF CFI and .eh_frame
	LSDA: Language-Specific Data Area
	Action and Call-Site Tables
	Interaction with typeinfo and RTTI Objects
	Landing Pads and Control Transfer
	Summary

	RTTI and Dynamic Type Resolution Through Typeinfo Graph
	Typeinfo Object Structure
	Canonical Uniqueness and Linkage Consistency
	Dynamic Type Resolution Algorithm (dynamic_cast)
	Using RTTI in Exception Matching
	Example: Multiple and Virtual Inheritance Type Resolution
	Summary

	Examples: VTable Reverse Reconstruction from Binary
	Sample Class Hierarchy (Source)
	Identifying VTable Regions in the Binary
	Detecting Virtual Base Inheritance
	Recognizing Thunks in Reconstructed Dispatch Table
	Reverse Inferring Class Relationship Structure
	Summary

	glibc Runtime, Static Initialization, and TLS Models
	Startup Code (crt1, crti, crtn) and _start Transition
	Entry: Kernel to User Mode Transition
	_start Symbol in crt1.o
	crti.o and crtn.o: Constructor Frame Wrappers
	__libc_start_main() Coordination
	Static vs. Dynamic Linking Behavior
	Observing _start and CRT Symbols
	Summary

	TLS Model Selection (local-exec, initial-exec, local-dynamic)
	TLS Access Models in the Itanium ABI
	Segment Register and TLS Memory Layout
	Local-Exec Model
	Initial-Exec Model
	Local-Dynamic Model
	General-Dynamic Model
	Compiler and Linker Selection Rules
	Summary

	Constructor Order Resolution and Guard Variable Semantics
	Global and Namespace-Scope Static Initialization
	Dynamic Initialization vs. Static Initialization
	Local Static Initialization and Guard Variables
	Interaction with TLS (thread_local Objects)
	Destructor Ordering and Program Shutdown
	Summary

	Shutdown Ordering and Finalization Guarantees
	Global Object Finalization via __cxa_atexit
	Shared Library Unloading and DSO Handles
	Finalization Ordering Across Translation Units
	Termination vs. Exit Path Semantics
	Thread Exit and TLS Destructors
	Shutdown Ordering Example
	Summary

	Examples: Instrumenting Global Initialization Graphs
	Basic Instrumentation via Constructor Attributes
	Instrumenting Individual Static Objects
	Detecting Cross-Translation-Unit Initialization Dependencies
	Visualizing .init_array Contents
	Full Initialization Graph Extraction
	Runtime Graph Representation
	Summary

	Memory Allocation Internals and Latency Control
	ptmalloc Arena Design and Cache Locality
	Arena Structure Overview
	Multi-Arena Behavior and Thread Locality
	Cache Locality and Allocation Patterns
	Binning and Coalescing Strategy
	Impact on C++ Allocator Behavior
	Practical Diagnosis
	Summary

	Multithreaded Allocator Contention and Arena Replication
	Arena Acquisition and Thread Mapping
	Arena Locking Granularity and Fast Path Behavior
	Fragmentation from Cross-Arena Freeing
	NUMA Effects and Core Affinity
	Contention Diagnostics
	Summary

	Custom Allocators for STL Containers
	Allocator Model Requirements
	Motivations for Custom Allocators in High-Performance Systems
	Pool Allocators for Fixed-Size Objects
	Monotonic and Region-Based Allocation
	Thread-Local Allocators for Concurrency
	Performance Considerations and Trade-offs
	Summary

	Using ASan + Heaptrack to Diagnose Fragmentation
	Why ASan and Heaptrack Are Complementary
	Building and Running with ASan
	Collecting Heaptrack Traces
	Diagnosing Fragmentation Patterns
	Combining ASan and Heaptrack in Diagnostic Workflow
	Summary

	Examples: Optimizing Allocator for std::vector Reuse Patterns
	The Problem: Transient Vectors in Tight Loops
	Using std::pmr::monotonic_buffer_resource
	Pool Allocator for Stable Object Sizes
	Reuse-Aware std::vector Wrapper
	Performance Comparison
	Summary

	VI ELF, LINKER, LOADER, AND BINARY EXECUTION
	ELF Structural Mathematics
	Segment Mapping into Virtual Address Space
	ELF Segments vs. Sections
	Program Header Table (PHT) Structure
	Mapping Behavior and Alignment Constraints
	Address Space Layout and Randomization
	Example: Inspecting Segment Mappings
	Relevance to System-Level C++ Engineering
	Summary

	Section Grouping, Alignment Models, and Relocation Records
	Section Grouping and Logical Composition
	Alignment Requirements
	Relocation Records: Type and Resolution Semantics
	Interaction with Position-Independent Code (PIC)
	Example: Inspecting Relocations
	Summary

	Weak, Local, Hidden, Protected, and Global Symbol Rules
	Symbol Binding Classes
	Visibility Attributes and Link-Time Export Control
	Interaction with Position-Independent Code (PIC)
	Weak Symbols in C++ Object Models
	Symbol Interposition and Dynamic Linking Behavior
	Summary

	DWARF Integration and Line Table Encoding
	DWARF Section Structure
	Line Table Encoding Principles
	Address-to-Line State Machine Encoding
	Debug Information Entries (DIEs)
	Debug vs. Unwind Semantics
	Practical Inspection
	Summary

	Examples: Re-mapping ELF Segments via Custom Linker Script
	Linker Script Core Structure
	Controlling Segment Formation
	Example: Large Page Alignment for Instruction Fetch Efficiency
	Example: Isolating a Hot Data Region Near Executable Code
	Verifying Segment Mapping
	Summary

	Dynamic Loader Algorithm and GOT/PLT Behavior
	Lazy vs Immediate Binding Resolution State Machine
	PLT/GOT Indirection Overview
	Lazy Binding State Transition
	Immediate Binding State Transition
	Performance and Determinism Trade-offs
	C++ Language-Level Effects
	Summary

	IFUNC, Symbol Interposition, and Auditing Interfaces
	IFUNC (Indirection Functions) Resolution Mechanism
	Symbol Interposition and Resolution Ordering Rules
	Protected Visibility and IFUNC Interaction
	LD_AUDIT and Dynamic Linking Auditing Interfaces
	Performance and Security Considerations
	Summary

	RELRO, BIND_NOW, PIE Hardening Behavior
	RELRO: Read-Only Relocation Protection
	BIND_NOW: Immediate Symbol Resolution Enforcement
	PIE: Position Independent Executable and ASLR Enforcement
	Combined Hardening Model
	Summary

	GOT/PLT Entry Address Calculation and Trampoline Jump Flow
	Structural Relationship Between PLT and GOT
	Initial GOT State and Lazy Binding Control Flow
	Immediate Binding Behavior
	Code Generation Constraints: RIP-Relative GOT Access
	PLT[0] and the Dynamic Resolver Interface
	Summary of Trampoline Jump Flow
	Summary

	Examples: Breakpointing PLT Resolver Inside ld.so
	Identifying the Resolver Entry Symbol
	Launching the Example Target
	Attaching a Breakpoint in GDB
	Inspecting Resolver Arguments
	Watching GOT Patching
	Verifying PLT → GOT → Function Flow
	Interpretation
	Summary

	VII DEBUGGING, PROFILING, VERIFICATION, AND PERFORMANCE ENGINEERING
	GDB for C++ ABI State Analysis
	Unwinding Optimized Frames Lacking Symbol Boundaries
	FP and CFA: Distinct Logical Models
	Inlining and Loss of Explicit Call-Site Boundaries
	Tail-Call Elimination and Frame Collapsing
	Register-Allocated Variables and Unwind State Instability
	Recovery Strategies in GDB
	Summary

	On-the-fly Reconstruction of Object Layout
	Object Model Stability vs. Optimization-Induced Fragmentation
	DWARF Location Lists for Field-Level Resolution
	Composite Object Reconstruction in GDB
	Failure Modes and Non-Recoverability Conditions
	Debug Builds for Reliable Object Reconstruction
	Summary

	Reverse Debugging and Record–Replay Execution
	Determinism Requirements and Sources of Non-Reproducibility
	GDB Process Record / Replay Infrastructure
	rr: Deterministic Record–Replay for Multi-Threaded C++ Systems
	Memory Model Visibility and C++ Object State Recovery
	Constraints Under Full Optimization
	Summary

	Python-Driven Structural Introspection Automation
	The Python/GDB Integration Model
	Extracting C++ Class Layout from Debug Information
	Resolving Runtime Object Instances
	Walking VTables and Virtual Hierarchies
	Automating Structural Checks Across Call Frames
	Application: Stable Forensic Snapshots Under Reverse Debugging
	Summary

	Examples: Pretty-printing C++ Polymorphic Hierarchies Automatically
	Dynamic Type Resolution via the Itanium ABI
	Python Pretty-Printer Registration
	Hierarchy Expansion Through Base Class Traversal
	Applying Pretty-Printers Automatically
	Practical Example: Inspecting std::unique_ptr to Base
	Summary

	Performance Profiling and Pipeline Diagnostics
	perf Event Group Models and Event Attribution
	Hardware Performance Counters and Event Domains
	Event Grouping: Coordinated Measurement Guarantees
	Stalled Cycle Attribution and Pipeline Accounting
	Event Group Models for Pipeline Diagnostics
	Attribution to C++ Source Constructs
	Summary

	Branch Mispredict, ROB Stall, RS Full, Store Buffer Full, etc.
	Branch Misprediction and Control-Flow Recovery
	ROB Stall: Reorder Buffer Saturation
	RS Full: Reservation Station Congestion
	Store Buffer Full: Memory Store Commitment Stall
	Integrating Stall Attribution: Top-Down Microarchitectural Analysis
	Summary

	Flame Graph Construction and Cycle Attribution
	Sampling Model and Statistical Accuracy
	Collapsing Stacks into Aggregated Execution Paths
	Flame Graph Rendering Model
	Mapping Optimized Code to High-Level Constructs
	Cycle Attribution and Root-Cause Localization
	Summary

	Performance Bound Classification: Compute vs Memory vs Control
	Compute-Bound Execution
	Memory-Bound Execution
	Control-Bound Execution
	Determining Bound Class: Diagnostic Workflow
	Summary

	Examples: Deriving Stall Source Percentages on Skylake
	Required perf Event Groups for Skylake
	Example Output from Real Execution
	Computing Stall Domain Percentages
	Final Stall Attribution Breakdown
	Interpretation and Optimization Direction
	Summary

	VIII SYSTEM ENGINEERING CASE STUDIES (FULL STACK)
	Linux Kernel Compilation, Boot, and Live Debugging
	Kernel Toolchain Integration
	Kernel-Supported Compiler Feature Subset
	Assembler and Linker Role in Kernel Layout
	Kernel ABI and Syscall Interface Boundaries
	Kernel Configuration and Build System (Kbuild)
	Cross-Compilation and Toolchain Targeting
	Summary

	QEMU + GDB Step-Controlled Boot Path Analysis
	QEMU Execution Environment as a Deterministic CPU Model
	Attaching GDB and Initial Execution Boundary
	Stepping Through the Boot Decompression Phase
	Transition to start_kernel() and Subsystem Bring-Up
	Dissection of Paging Setup and Virtual Memory Transition
	Summary

	System Call Return Path Disassembly
	Return Path Overview
	Tail Section: entry_SYSCALL_64_tail
	Fast vs Slow Return Paths
	Stack and pt_regs Restoration
	Symbol Boundary Verification via Disassembly
	Error Code Propagation and -errno Semantics
	Summary

	Page Table + Virtual Memory Initialization Walkthrough
	Architectural Memory Model Baseline
	Initial Page Table Creation (Early Boot)
	Kernel Virtual Mapping: Text, Data, and BSS
	Direct Physical Memory Map Construction
	Page Attribute Enforcement and Memory Protection Flags
	Debugging Page Table Initialization with QEMU + GDB
	Summary

	Examples: Stepping from startup_64 into Scheduler Initialization
	Establishing Initial Debug Environment
	Breakpoint at startup_64
	Transition to start_kernel()
	Core Initialization Path into Scheduler Bring-Up
	First Context Switch Activation
	Summary

	Bare-Metal C++ Runtime Construction
	Manual CRT (crt0.s) and ABI-Conformant Startup
	Architectural Requirements for Startup Code
	Prototype Startup Assembly (crt0.s)
	__crt_init: BSS Zeroing and Static Constructors
	__crt_fini: Destructor Sequencing
	ABI Conformance Rules That Must Be Preserved
	Summary

	Eliminating glibc and Implementing Runtime Primitives
	Hosted vs Freestanding: What the Compiler Expects
	Required Runtime Symbols
	Implementing new and delete
	Avoiding glibc for System Interaction
	Termination Semantics Without exit()
	Summary

	Console Output + Interrupts + Minimal Heap
	Console Output: Direct Hardware or MMIO Write Path
	Interrupt Descriptor Table (IDT) and Interrupt Gate Setup
	Interrupt Controller Initialization
	Minimal Heap and Allocation Strategy
	Summary

	Static Constructors Without Runtime Support
	How GCC Represents Static Initialization
	Constructing the .init_array Region Manually
	Destruction Without a Runtime: .fini_array
	Aligning Constructor Execution With Memory Model Constraints
	Common Failure Cases and Their Root Causes
	Summary

	Examples: Booting a C++ ELF Directly Under QEMU
	Minimal Linker Script for Bare-Metal ELF
	Minimal Bootable C++ Program
	Startup Assembly (crt0.s)
	Building the ELF
	Running the ELF Under QEMU
	Debugging the Boot Sequence
	Summary

	High-Performance C++ Systems Optimization Project
	Devirtualization → Inlining → Vectorization Pipeline
	Precondition: Alias, Escape, and Type Visibility
	Devirtualization: From Virtual Call to Direct Call
	Inlining: Eliminating Call Boundaries
	Vectorization: SIMD Lowering After Structural Simplification
	Practical Optimization Implications
	Summary

	Memory Layout Re-Factoring for Cache Residency
	Architectural Background: Latency and Bandwidth Constraints
	Array-of-Structs (AoS) vs Struct-of-Arrays (SoA)
	Aligning Data for SIMD and Line Size
	Minimizing Working Set Size Through Compaction
	Traversal Strategy and Prefetch-Favoring Order
	Summary

	PGO + LTO Combined Execution Optimization
	Rationale: Static Heuristics vs Profiled Behavior
	The Two-Phase PGO Workflow
	Internal Optimization Effects
	Example: Virtual Dispatch Collapse Under PGO
	Example: Cross TU Inlining Through LTO
	Combined PGO + LTO Optimization Model
	Summary

	ABI Stability Under Optimized Transformations
	ABI Elements That Must Not Change
	Transformations That Are ABI-Neutral
	Transformations That Are ABI-Sensitive
	Compiler and Linker Coordination Under LTO
	Example: ABI-Preserving Devirtualization in Hot Contexts
	Summary

	Examples: Before/After Disassembly + perf Comparison Trace
	Baseline Code (Unprofiled, No LTO)
	Optimized Build (PGO + LTO + Vectorization)
	Performance Result
	Microarchitectural Reasoning
	Symbol and ABI Boundary Stability
	Summary

	Appedices
	Appendix A - System V AMD64 ABI Reference
	Appendix B - GCC Diagnostic and Dump Infrastructure
	Appendix C - GDB, objdump, readelf, and perf Integration
	Appendix D - Linker Scripts and ELF Structural Control
	Appendix E - Bare-Metal C++ Runtime Templates
	Appendix F - Performance and Microarchitectural Reference
	Appendix G - Verified Object Model Layouts
	Appendix H - Full Compilation and Optimization Case Study
	Appendix I - Experimental and Research Extensions

	References
	Purpose of Reference Structure

