
1

GPU Programming on Apple Silicon Using C++

Prepared by Ayman Alheraki

simplifycpp.org

April 2025

Contents

Contents 2

Author's Introduction 11

Introduction 13
The Importance of GPU Programming in the Modern World 14
Why Apple Silicon GPUs Matter . 16
Who Is This Book For? . 18

1 What is a GPU? 20
1.1 A Simplified Explanation of the GPU’s Role 20
1.2 CPU vs GPU – Core Differences . 22
1.3 What is a Compute Shader? . 25

2 Apple Silicon GPU – An Internal Overview 27
2.1 Introducing Apple M1 / M2 / M3 / M4 GPUs 27

2.1.1 Apple M1 GPU . 27
2.1.2 Apple M2 GPU . 28
2.1.3 Apple M3 GPU . 28
2.1.4 Apple M4 GPU . 28

2

3

2.1.5 Unified Features Across M-Series GPUs 29
2.1.6 Conclusion . 30

2.2 Key Features and Strengths of Apple’s GPU 31
2.2.1 Unified Memory Architecture . 31
2.2.2 Highly Integrated System . 31
2.2.3 Performance per Watt . 32
2.2.4 Scalability . 32
2.2.5 Hardware-Accelerated Features . 32
2.2.6 Metal API for High-Performance Graphics and Compute 33
2.2.7 Optimized for Creative and Professional Applications 33
2.2.8 Conclusion . 33

2.3 Unified Memory Architecture Explained 34
2.3.1 What is Unified Memory? . 34
2.3.2 How Unified Memory Works . 34
2.3.3 Benefits of Unified Memory for GPU Programming 35
2.3.4 Practical Implications for Developers 36
2.3.5 Challenges and Considerations . 36
2.3.6 Conclusion . 37

3 Comparison with Intel, AMD, and NVIDIA GPUs 38
3.1 Architectural and Performance Differences 38

3.1.1 CPU and GPU Integration vs. Discrete Architectures 38
3.1.2 Core Architecture and Parallelism 39
3.1.3 Performance per Watt . 40
3.1.4 Specialized Features and Hardware Acceleration 41
3.1.5 Conclusion . 41

3.2 Why NVIDIA Leads in Gaming, AI, LLM, Encryption, and Crypto 43
3.2.1 Gaming: The Power of RTX and CUDA 43

4

3.2.2 Artificial Intelligence and Machine Learning 44
3.2.3 Large Language Models (LLM) and NLP 44
3.2.4 Encryption and Security . 45
3.2.5 Cryptocurrency Mining . 46
3.2.6 Conclusion . 46

3.3 Can Apple GPUs be a Serious Alternative? 47
3.3.1 Performance Capabilities . 47
3.3.2 Software Ecosystem and Developer Support 48
3.3.3 Niche Advantages and Use Cases 49
3.3.4 Limitations and Challenges . 50
3.3.5 Conclusion . 50

4 Setting Up the Development Environment on macOS 54
4.1 Tools Needed: Xcode, Metal, C++ . 54

4.1.1 Xcode: The Foundation for macOS Development 54
4.1.2 Metal: Apple’s Graphics and Compute API 55
4.1.3 C++: The Core Programming Language 56
4.1.4 Conclusion . 57

4.2 Creating a Project from Scratch . 58
4.2.1 Launch Xcode and Create a New Project 58
4.2.2 Add Metal Framework to Your Project 58
4.2.3 Set Up Your C++ Code for Metal Integration 59
4.2.4 Writing a Simple Compute Shader 60
4.2.5 Compiling and Running the Project 61
4.2.6 Next Steps . 61
4.2.7 Conclusion . 62

4.3 Installation Steps and Configuration . 63
4.3.1 Installing Xcode . 63

5

4.3.2 Installing Homebrew . 63
4.3.3 Installing CMake (Optional but Recommended) 64
4.3.4 Verifying Metal Support . 65
4.3.5 Setting Up Environment Variables for C++ and Metal

Development . 65
4.3.6 Configuring Your Project for Metal and C++ 66
4.3.7 Installing Additional Tools (Optional) 67
4.3.8 Conclusion . 67

5 Introduction to the Metal API 68
5.1 What is Metal and Why Use It Over OpenGL or CUDA? 68

5.1.1 What is Metal? . 68
5.1.2 Why Use Metal Over OpenGL? . 69
5.1.3 Why Use Metal Over CUDA? . 70
5.1.4 When Should You Use Metal? . 71

5.2 Core Concepts: Compute Shaders and GPU Pipelines 72
5.2.1 What is a Compute Shader? . 72
5.2.2 GPU Pipelines in Metal . 73
5.2.3 How Compute Shaders Fit into the GPU Pipeline 74
5.2.4 Advantages of Using Compute Shaders in Metal 75
5.2.5 Conclusion . 75

5.3 How Metal Works with C++ . 77
5.3.1 Using Metal in C++ Projects . 77
5.3.2 Why Use Metal with C++? . 79
5.3.3 Conclusion . 80

6 Your First GPU Program in C++ on macOS 82
6.1 Hands-on Project: Matrix Addition on the GPU 82

6

6.1.1 Why Matrix Addition? . 82
6.1.2 Setting Up the Project . 83
6.1.3 Conclusion . 87

6.2 Code Walkthrough and Explanation . 88
6.2.1 Step 1: Initializing the Data . 88
6.2.2 Step 2: Setting Up Metal for GPU Operations 89
6.2.3 Step 3: Writing the Metal Compute Shader 90
6.2.4 Step 4: Compiling and Executing the Shader 91
6.2.5 Step 5: Retrieving the Results . 93
6.2.6 Conclusion . 93

6.3 Analyzing Performance Gain . 94
6.3.1 Step 1: Measuring Execution Time on the CPU 94
6.3.2 Step 2: Measuring Execution Time on the GPU 95
6.3.3 Step 3: Comparing CPU and GPU Performance 96
6.3.4 Step 4: Identifying Bottlenecks . 96
6.3.5 Step 5: Evaluating Real-World Gains 97
6.3.6 Step 6: Optimizing Performance 97
6.3.7 Conclusion . 98

7 Practical Project – Image Filter on GPU 100
7.1 Image Processing Using Apple’s GPU . 100

7.1.1 Understanding Image Processing on the GPU 100
7.1.2 Steps for Image Processing on the GPU 101
7.1.3 Benefits of Using Apple’s GPU for Image Processing 104
7.1.4 Conclusion . 104

7.2 Building a Basic Image Filter (e.g., Grayscale or Blur) 106
7.2.1 Overview of the Filters . 106
7.2.2 Setting Up the Project . 106

7

7.2.3 Setting Up Metal in C++ . 109
7.2.4 Conclusion . 110

7.3 Comparing CPU vs GPU Processing Times 111
7.3.1 CPU Processing Times . 111
7.3.2 GPU Processing Times . 111
7.3.3 Performance Comparison . 112
7.3.4 Real-World Example . 113
7.3.5 Factors Affecting Performance . 113
7.3.6 Conclusion . 114

8 Using the GPU in AI & Machine Learning 115
8.1 Apple’s CoreML and Metal Performance Shaders (MPS) 115

8.1.1 CoreML: Apple’s Machine Learning Framework 115
8.1.2 Metal Performance Shaders (MPS): A GPU-Accelerated Framework 116
8.1.3 Integration of CoreML and MPS 117
8.1.4 Key Benefits of Using CoreML and MPS 117
8.1.5 Conclusion . 118

8.2 Integrating a Simple ML Model into a C++ Workflow 119
8.2.1 Step 1: Preparing the Machine Learning Model 119
8.2.2 Step 2: Setting Up the C++ Project 120
8.2.3 Step 3: Loading the Model in C++ 121
8.2.4 Step 4: Running Inference on the Model 122
8.2.5 Step 5: Optimizing for GPU Performance 123
8.2.6 Conclusion . 123

8.3 Real-World Use Case with Performance Boost 124
8.3.1 Use Case: Image Classification with Deep Learning 124
8.3.2 Scenario: Classifying a Batch of Images 124
8.3.3 Performance Comparison . 125

8

8.3.4 Benefits Beyond Speed: Efficiency and Power Consumption 126
8.3.5 Real-World Applications . 126
8.3.6 Conclusion . 127

9 Optimizing Performance and Benchmarking 128
9.1 Tools for GPU Performance Measurement 128

9.1.1 Xcode Instruments . 128
9.1.2 Metal Performance Shaders (MPS) Metrics 129
9.1.3 OpenGL and Metal Debugging Tools 130
9.1.4 Third-Party Benchmarking Tools 131
9.1.5 Command Line Tools and Custom Profilers 132
9.1.6 Conclusion . 132

9.2 Tips for Writing Efficient GPU Code . 133
9.2.1 Minimize Data Transfer Between CPU and GPU 133
9.2.2 Optimize GPU Memory Usage . 133
9.2.3 Leverage Parallelism . 134
9.2.4 Minimize Divergence in Shaders . 135
9.2.5 Optimize Shader Code . 135
9.2.6 Optimize Compute Pipeline States 136
9.2.7 Use Profiling and Debugging Tools 136
9.2.8 Leverage Hardware-Specific Features 137
9.2.9 Consider Power Efficiency . 137
9.2.10 Conclusion . 138

9.3 Comparing Results on M3 and M4 Chips 139
9.3.1 Key Differences Between M3 and M4 Chips 139
9.3.2 Benchmarking GPU Performance 140
9.3.3 Performance Scaling . 141
9.3.4 Optimization Considerations for Each Chip 142

9

9.3.5 Conclusion . 142

10 Best Tools and Libraries for GPU on macOS 144
10.1 Overview: Metal, MoltenVK, MPSGraph, Shader Converter 144

10.1.1 Metal . 144
10.1.2 MoltenVK . 145
10.1.3 MPSGraph . 146
10.1.4 Shader Converter . 147
10.1.5 Conclusion . 148

10.2 Compatibility with Vulkan and Cross-Platform Options 149
10.2.1 Vulkan on macOS with MoltenVK 149
10.2.2 Pros and Considerations . 150
10.2.3 Cross-Platform Alternatives . 150
10.2.4 Conclusion . 151

10.3 Choosing the Right Library for Your Use Case 152
10.3.1 For Native macOS and Maximum Performance: Metal 152
10.3.2 For Portability Across Platforms: MoltenVK with Vulkan 152
10.3.3 For High-Level Machine Learning Workflows: MPSGraph or

CoreML . 153
10.3.4 For Multi-API Development or Game Rendering: bgfx or SDL

with Vulkan . 153
10.3.5 Summary and Recommendation . 154

Appendices 155
Appendix A: Glossary of Technical Terms . 155
Appendix B: Common Beginner Mistakes and How to Fix Them 157
Appendix C: Useful Links to Documentation, Tutorials, and GitHub

Repositories . 158

10

References and Resources 159

Author’s Introduction

With the rise of Apple Silicon and the increasing power of integrated GPUs in modern
Mac systems, GPU programming on macOS has taken on new relevance. As someone
who has worked extensively in C++ and explored GPU technologies across different
platforms, I was drawn to how Apple has streamlined access to GPU power through
tools like Metal, MPS, and Core ML.

This book was born out of a desire to bridge a noticeable gap: while Apple provides
robust documentation for its platforms, there are few clear and accessible resources
focused specifically on programming the GPU using C++ on Apple Silicon. Most
available materials are either highly abstract or focused purely on Swift. For C++
developers—especially those coming from other platforms—getting started with GPU
acceleration on macOS can feel unfamiliar and fragmented.

My aim with this book is to offer a focused, practical guide that helps developers tap
into the power of Apple’s GPU technology using C++. I have structured the chapters
to gradually introduce each concept, with real code examples and straightforward
explanations. Whether you're looking to accelerate image processing, implement
machine learning workflows, or simply understand how Metal integrates with C++, this
book is written to give you a strong starting point.

If this book finds its audience and proves helpful, I hope to follow it with more
advanced content—diving deeper into optimization techniques, shader development, and

11

12

large-scale GPU-based systems.
Thank you for choosing this book. I hope it becomes a useful part of your journey into
GPU programming on Apple platforms.

Stay Connected
For more discussions and valuable content about GPU Programming on Apple Silicon
Using C++

I invite you to follow me on LinkedIn:
https://linkedin.com/in/aymanalheraki
You can also visit my personal website:
https://simplifycpp.org

Ayman Alheraki

https://linkedin.com/in/aymanalheraki
https://simplifycpp.org

Introduction

The world of software development is evolving rapidly, and with it, the hardware
capabilities available to programmers are reaching new heights. Among the most
significant advancements in recent years is the shift toward parallel computing, powered
largely by the capabilities of modern GPUs. Whether used for rendering, machine
learning, scientific computing, or high-performance simulations, GPUs have become
central to solving complex computational problems efficiently.
Apple Silicon represents a major architectural transformation in modern computing.
With its unified memory design and tightly integrated GPU cores, Apple’s M-series
chips offer a unique environment that blends power efficiency with performance.
However, many developers—especially those coming from a traditional CPU-based C++
background—are unfamiliar with how to fully leverage the GPU capabilities offered by
these systems.
This book is a practical guide tailored for C++ developers who want to explore GPU
programming specifically on Apple Silicon. It focuses on teaching the fundamentals of
GPU computing using a language they already know—C++—while also introducing
them to Apple’s GPU programming models and tools. The goal is to bridge the gap
between traditional C++ development and modern parallel processing on Apple devices,
enabling readers to write efficient, high-performance code that runs smoothly on macOS
and iOS platforms.

13

14

The Importance of GPU Programming in the Modern World

Appendix C: Useful Links to Documentation, Tutorials, and GitHub Repositories In
today’s technology-driven landscape, the demand for faster, more efficient computation
continues to grow. From real-time graphics rendering in games and simulations to
AI model training, scientific research, and video processing, the need for parallel
computation has become essential. CPUs, while versatile, are not optimized for
handling thousands of simultaneous operations. This is where GPUs excel.

GPUs are designed to handle multiple tasks concurrently, making them ideal for
workloads that involve large data sets or repetitive calculations. Unlike CPUs that
typically have a few cores optimized for sequential performance, GPUs feature hundreds
or even thousands of smaller cores that work in parallel. This architecture enables them
to perform tasks such as matrix multiplications, image transformations, and neural
network computations far more efficiently than CPUs.

The growing importance of GPU programming is not limited to specialized fields.
Everyday technologies like photo editing, augmented reality, and even web browsers
now utilize GPU acceleration to enhance user experience. Furthermore, cloud
computing providers increasingly offer GPU-powered instances for clients who need fast
and scalable processing power.

With the shift toward mobile computing and energy-efficient devices, the way we
approach performance optimization must adapt. Apple Silicon exemplifies this shift, as
it combines powerful GPU cores directly on the same chip as the CPU. Understanding
how to program these GPUs effectively means gaining access to a vast amount of
performance potential that is otherwise left untapped.

For C++ developers, this represents a new frontier. Learning GPU programming opens
the door to a range of applications and career opportunities. It is no longer a niche skill
reserved for graphics engineers—it is a valuable asset for any developer who wants to

15

write efficient, scalable, and future-ready software.

16

Why Apple Silicon GPUs Matter

Apple Silicon has redefined how hardware and software interact. Unlike traditional
desktop and laptop architectures that separate the CPU and GPU with distinct
memory spaces and slower communication channels, Apple’s M-series chips feature
a unified architecture where CPU, GPU, and Neural Engine share a common pool of
memory. This unified memory architecture significantly reduces latency and allows data
to move more efficiently between processing units.

What makes Apple Silicon GPUs particularly important is not just their integration,
but their optimization. Apple has full control over the hardware and software stack—
from the design of the silicon itself to the operating system APIs that expose GPU
functionality. This vertical integration means developers can write code that runs
more predictably and efficiently across all Apple platforms, from iPhones and iPads to
MacBooks and desktops.

In terms of performance, the Apple Silicon GPU is not merely a graphics processor.
It’s a general-purpose computing engine capable of accelerating a wide range of
tasks beyond rendering. This includes machine learning, image and video processing,
physics simulations, and even real-time analytics. The GPU is built with hundreds to
thousands of execution units, making it highly capable for parallel computation. For
C++ developers, this opens the door to writing software that can scale in performance
without needing to rely on external or discrete graphics cards.

Another important reason Apple Silicon GPUs matter is their energy efficiency. With
mobile and battery-powered devices becoming the norm, energy-efficient performance
is more valuable than raw speed alone. The GPU cores on Apple Silicon deliver
impressive computational power while maintaining low energy consumption. This
allows developers to build high-performance applications that still preserve battery
life—a critical factor for mobile and portable computing.

17

By learning how to program directly for the Apple Silicon GPU, developers can take
full advantage of this modern hardware architecture. It’s not just about writing faster
code; it’s about writing smarter, more efficient code that aligns with how today’s
devices are designed to work. For developers targeting Apple platforms, understanding
how to tap into GPU power is no longer optional—it’s becoming essential.
This book aims to demystify that process and help C++ programmers unlock the full
potential of Apple Silicon GPUs, creating applications that are both powerful and
efficient from the ground up.

18

Who Is This Book For?

This book is written for anyone who wants to learn GPU programming on Apple
Silicon, with a focus on C++ developers and curious beginners. You don’t need to be
an expert in graphics programming or parallel computing to benefit from it. Instead,
this book starts with the fundamentals and builds up your understanding step by
step, helping you gain both the concepts and the practical skills needed to write GPU-
accelerated code on Apple devices.

If you are already familiar with C++, this book will guide you in applying what you
know to a new area—GPU programming—without overwhelming you with jargon
or unnecessary theory. The examples are written clearly, using C++ as the primary
language, and gradually introduce key GPU concepts such as parallel execution,
memory access patterns, and compute kernels. The goal is to show how to harness the
GPU in a way that feels natural to someone with a C++ background.

For beginners—especially those with a basic understanding of programming or those
studying computer science—this book offers a clear path into a field that is often seen
as complex or specialized. We avoid assuming prior knowledge in GPU development or
advanced mathematics. Instead, each chapter builds on the last, encouraging hands-on
experimentation and learning through practice.

This book is also ideal for developers interested in building applications for macOS,
iOS, or other Apple platforms who want to improve performance, reduce battery usage,
or take advantage of the GPU for tasks beyond graphics. Whether you’re working on
machine learning, image processing, simulations, or simply want to understand how
Apple’s hardware can speed up your code, this book will help you get there.

In short, this is a book for learners. It’s for programmers who are ready to explore
a new domain, who want practical tools they can use right away, and who are eager
to unlock more performance from the devices they develop for. Whether you're an

19

experienced C++ developer or just starting your programming journey, you’ll find
guidance, clarity, and actionable knowledge in the chapters that follow.

Chapter 1

What is a GPU?

1.1 A Simplified Explanation of the GPU’s Role

To understand how GPU programming works, we first need to understand what a GPU
is and what role it plays in a computer system. The term GPU stands for Graphics
Processing Unit. As the name suggests, it was originally designed to handle graphics-
related tasks—things like rendering images, animations, and visual effects. Over time,
however, its role has expanded far beyond that.

At its core, a GPU is a processor, just like the CPU (Central Processing Unit), but it’s
built for a different kind of work. The CPU is great at handling a small number of
tasks quickly and in sequence. It’s designed to deal with complex logic, decisions, and
general-purpose instructions—what most programs rely on for normal operation. The
GPU, on the other hand, is designed to handle many simple tasks at the same time. It
focuses on doing a lot of things in parallel, rather than one at a time.

Imagine you need to apply a color filter to every pixel in a large image. A CPU might
go pixel by pixel, processing each one individually. A GPU, however, can divide this

20

21

task across hundreds or thousands of smaller processing units, handling many pixels at
once. This makes it extremely fast for certain kinds of repetitive, data-heavy tasks.
In modern computing, the GPU is no longer used just for drawing pictures on the
screen. It’s used for all kinds of parallel workloads—like video editing, image processing,
scientific calculations, financial modeling, and machine learning. These tasks involve
processing large amounts of data in similar ways, which is exactly what a GPU is
designed to do well.
In the context of Apple Silicon, the GPU plays an even more central role. It’s tightly
integrated into the system, sharing memory with the CPU and other parts of the
chip. This allows for faster communication and more efficient use of resources, which
is especially important on devices like laptops, tablets, and phones where both speed
and power efficiency matter.
So, in simple terms, the GPU is a powerful helper inside your computer. It doesn’t
replace the CPU, but it works alongside it—taking on tasks that are best handled
through parallel processing. And for developers, learning how to program the GPU
opens the door to writing faster, more efficient software that can take full advantage
of the hardware capabilities available today.

22

1.2 CPU vs GPU – Core Differences

To appreciate why GPUs are so effective at certain tasks, it's important to understand
how they differ from CPUs—not just in name or function, but in design and purpose.
Both are processors, but they are optimized for very different kinds of work.
The CPU, or Central Processing Unit, is often called the “brain” of the computer. It
handles a wide range of instructions, manages system tasks, and runs the general logic
behind most programs. CPUs are designed for sequential processing—that means they
focus on doing one or a few tasks at a time, but doing them very well. A modern CPU
usually has a small number of powerful cores (often between 4 and 16), each capable of
handling complex operations and switching between different tasks quickly.
The GPU, or Graphics Processing Unit, is designed for parallel processing. It contains
hundreds or even thousands of smaller cores that are individually much simpler than
CPU cores, but work together on the same type of operation across large sets of data.
This makes the GPU ideal for tasks that require repeating the same calculation over
and over—such as processing pixels in an image, applying filters to video frames, or
performing mathematical operations in a simulation or machine learning model.
Here’s a simple way to think about the difference:

• A CPU is like a skilled worker who can handle any task, one at a time, with great
precision and adaptability.

• A GPU is like a large team of workers who can all do the same task at once,
handling massive workloads quickly—as long as the task can be divided into many
similar pieces.

Core differences at a glance:

23

Feature CPU GPU
Core Count Few (typically 4 to 16) Hundreds to thousands
Core
Complexity

High (complex, general-
purpose cores)

Low (simple, specialized cores)

Task Focus Sequential and varied tasks Parallel and uniform tasks
Flexibility High Lower, but optimized for specific

types of workloads
Best For General program logic, OS

operations
Graphics, image/video
processing, data-parallel
workloads

On Apple Silicon, both CPU and GPU exist on the same chip and share the same
memory, which reduces the overhead of transferring data between them. This means
that programmers can more efficiently split work between CPU and GPU, allowing each
to do what it does best.

Understanding these core differences is essential for effective GPU programming. By
knowing when to use the GPU and when to rely on the CPU, developers can write
applications that are both fast and resource-efficient—especially on platforms like
macOS and iOS, where performance and battery life are tightly linked.

CPU vs GPU – architectural and functional comparison

24

CPU vs GPU

25

1.3 What is a Compute Shader?

As GPU programming evolved beyond graphics, new tools were introduced to allow
developers to harness the power of the GPU for more than just visual output. One of
the most important of these tools is the compute shader.
A compute shader is a special type of program that runs on the GPU. Unlike
traditional shaders used in graphics pipelines (such as vertex or fragment shaders),
compute shaders are not tied to rendering images. Instead, they are designed for
general-purpose computing tasks—performing calculations, processing data, and solving
problems that benefit from massive parallel execution.
You can think of a compute shader as a way to send custom instructions to the GPU
and tell it:
”Take this data, divide it up, and process each part in parallel, as fast as possible.”
This opens up many possibilities. You can use compute shaders to:

• Process large datasets in parallel

• Apply filters to images or video frames

• Simulate physics, particles, or fluid dynamics

• Perform matrix and vector operations used in machine learning

• Accelerate parts of your application that require heavy computation

In simple terms, a compute shader turns the GPU into a general-purpose accelerator.
You define what kind of work you want done, break it into small pieces, and the GPU
handles each piece at the same time using its many cores.
In Apple’s ecosystem, compute shaders are supported through Metal, Apple's low-level
graphics and compute API. Metal provides direct access to GPU resources, allowing

26

developers to write compute shaders using a specialized shading language. This book
will show you how to use these shaders through C++ by preparing the right data,
organizing workloads, and interacting with the GPU using Metal’s API on Apple
Silicon.
It’s important to remember that while compute shaders are powerful, they are most
effective for tasks that can be split into many small, similar jobs. If your task fits that
model, compute shaders can dramatically increase performance, especially on Apple
Silicon where the GPU is tightly integrated with the rest of the system.

Chapter 2

Apple Silicon GPU – An Internal Overview

2.1 Introducing Apple M1 / M2 / M3 / M4 GPUs

When Apple announced the transition from Intel processors to its own Apple Silicon
line, it marked a major shift not only in CPU architecture but also in how the GPU is
designed, integrated, and used. Apple Silicon chips—starting from the M1 and moving
through M2, M3, and now M4—represent a unified architecture where CPU, GPU,
Neural Engine, and memory are brought together on a single chip. This design has had
a deep impact on how developers can access and leverage GPU power.
Let’s briefly introduce what makes the GPUs in the Apple M-series unique.

2.1.1 Apple M1 GPU

The M1 GPU was the first of its kind for Apple Silicon in consumer Macs. It
introduced an architecture optimized for both performance and power efficiency.
With up to 8 GPU cores, the M1 GPU delivered strong graphics performance while
maintaining a low power footprint. More importantly, it introduced developers to a

27

28

shared memory system—CPU and GPU access the same memory space, reducing the
overhead of copying data and improving performance.

2.1.2 Apple M2 GPU

The M2 GPU built on the foundation of the M1 with more cores (up to 10), higher
bandwidth, and better energy efficiency. While it kept the same unified memory design,
it offered faster performance per watt and improved capabilities for tasks like video
editing, rendering, and real-time image processing. For compute tasks, the M2 GPU
enabled more complex operations to run efficiently using Metal and compute shaders.

2.1.3 Apple M3 GPU

The M3 chip introduced a significant leap in GPU technology by bringing hardware-
accelerated ray tracing and mesh shading to the platform. These features, commonly
seen in high-end gaming and visual effects, made the GPU much more capable for
advanced rendering techniques. M3 also came with architectural improvements to
scheduling and memory access, improving the performance of both graphics and
compute workloads.

2.1.4 Apple M4 GPU

With the M4, Apple continues to evolve its GPU design for even greater efficiency
and responsiveness. While technical details are still emerging, the M4 emphasizes AI
workloads, better task distribution across GPU cores, and deeper integration with the
CPU and Neural Engine. The result is a GPU that not only supports real-time graphics
but also handles general-purpose compute tasks faster and more intelligently.

29

2.1.5 Unified Features Across M-Series GPUs

What ties all of these GPU generations together is the unified memory architecture and
deep integration between components. This allows developers to write GPU programs
without worrying about manually moving data between the CPU and GPU—everything
is shared in a single memory pool. For C++ developers using Apple’s Metal API, this
architecture allows more direct and efficient access to GPU power than traditional
discrete GPU systems.

Unified Memory Architecture

Apple Silicon Unified Memory Architecture

30

2.1.6 Conclusion

As this book will demonstrate, understanding the design and capabilities of Apple’s M-
series GPUs gives you the tools to write high-performance, GPU-accelerated code in
C++ for macOS and iOS platforms.

31

2.2 Key Features and Strengths of Apple’s GPU

Apple’s GPUs, as part of the Apple Silicon lineup, offer several key features that
set them apart from traditional discrete GPUs. These features enable developers
to take full advantage of the power and efficiency of Apple’s integrated hardware.
Understanding these features is essential for writing high-performance GPU-accelerated
applications, particularly for macOS and iOS platforms.

2.2.1 Unified Memory Architecture

One of the standout features of Apple’s GPUs is the unified memory architecture.
Unlike traditional systems, where the CPU and GPU each have separate memory pools,
Apple Silicon uses a shared memory pool that both the CPU and GPU access. This
results in faster data access and reduces the need for copying data back and forth
between CPU and GPU memory, which is common in other systems. The ability
for both processors to access the same memory seamlessly allows for smoother, more
efficient workflows, especially in compute-heavy tasks like rendering and AI processing.

2.2.2 Highly Integrated System

Apple Silicon integrates the CPU, GPU, Neural Engine, and other components into
a single chip. This integration means lower latency and higher bandwidth between
components. The tight integration between the GPU and other parts of the chip (such
as the CPU and Neural Engine) makes it easier for developers to optimize applications
that use multiple processing units simultaneously. For example, AI models running on
the Neural Engine can quickly access data stored in the GPU's memory for processing,
making applications faster and more responsive.

32

2.2.3 Performance per Watt

Another strength of Apple’s GPUs is their energy efficiency. While traditional desktop
GPUs often consume large amounts of power, Apple’s design focuses on delivering high
performance while maintaining excellent power efficiency. This is particularly important
for mobile devices, such as the iPhone, iPad, and MacBook, where battery life is crucial.
The M-series GPUs balance the demands of high-performance graphics and compute
tasks with the need to conserve battery life, making Apple Silicon devices ideal for
mobile professionals and creatives who need power without draining their batteries.

2.2.4 Scalability

The GPU architecture in Apple Silicon chips is highly scalable. Starting with the M1’s
8-core GPU, moving to the 10-core GPU in the M2, and now evolving further in the M3
and M4, the GPU cores increase in number to meet the growing demand for graphics
and compute power. The ability to scale across different chip models ensures that
developers can target a wide range of devices—from ultra-portable laptops to high-end
workstations—while benefiting from consistent performance improvements with each
new chip generation.

2.2.5 Hardware-Accelerated Features

Apple’s GPUs come with hardware acceleration for specific tasks, such as ray tracing
and machine learning. In the M3 and beyond, Apple has introduced hardware-
accelerated ray tracing, which is a key feature for rendering realistic lighting effects
in graphics-heavy applications like video games and 3D simulations. Additionally, the
Neural Engine can be used alongside the GPU for accelerating machine learning tasks,
providing a powerful combination of general-purpose computing and specialized AI

33

processing. These hardware-accelerated features make Apple’s GPUs particularly well-
suited for professional creative work, gaming, and AI-driven applications.

2.2.6 Metal API for High-Performance Graphics and Compute

Apple’s Metal API is designed specifically for low-level access to the GPU. It offers
developers control over hardware resources and allows for highly optimized graphics and
compute workflows. Metal is Apple’s answer to GPU programming, and it provides a
framework to maximize the potential of Apple Silicon GPUs. With Metal, developers
can write compute shaders, leverage GPU parallelism, and access advanced GPU
features like ray tracing and mesh shading. The Metal API’s efficiency and tight
integration with the hardware give developers the tools they need to push the limits
of Apple’s GPUs.

2.2.7 Optimized for Creative and Professional Applications

Apple’s GPUs are particularly well-suited for creative professionals and developers
working on applications like video editing, 3D rendering, music production, and graphic
design. With powerful GPU cores and the ability to process complex graphics, Apple
Silicon chips are capable of handling demanding tasks such as 4K video playback, real-
time editing, and rendering intricate visual effects—all while maintaining efficiency.

2.2.8 Conclusion

Apple’s GPUs bring together a combination of high performance, energy efficiency,
and specialized hardware support that is unmatched in most traditional systems. For
developers, the key to taking full advantage of these strengths lies in understanding the
unique design of Apple Silicon and how to write optimized code that leverages these
capabilities.

34

2.3 Unified Memory Architecture Explained

One of the most important innovations in Apple Silicon, including the M1, M2, M3,
and M4 chips, is the unified memory architecture (UMA). This feature plays a critical
role in the efficiency and performance of Apple’s GPUs and is a key aspect that
differentiates Apple’s approach from traditional systems.

2.3.1What is Unified Memory?

In most computers, the CPU and GPU have their own dedicated memory pools. The
CPU accesses its memory, and the GPU accesses its memory. This requires copying
data between the two, which can introduce overhead and reduce performance. Apple’s
unified memory architecture eliminates this problem by creating a single pool of
memory that both the CPU and GPU can access directly.
In essence, unified memory allows the CPU and GPU to share the same physical
memory, meaning they can both read and write to it without needing to copy data
back and forth. This shared memory space is managed efficiently by the Apple Silicon
chips, allowing both processors to work more fluidly with large datasets, such as images,
videos, or computational data, without bottlenecks.

2.3.2 How Unified Memory Works

The idea behind UMA is to create a more efficient system by removing the barriers
between the CPU and GPU's memory. Traditionally, when data needs to be transferred
from the CPU to the GPU (or vice versa), the process can be slow and energy-intensive
because data has to travel between separate memory areas. In contrast, with UMA, the
memory is physically shared between both processors, allowing them to directly access
the same data without needing a separate transfer process.

35

For developers, this means that:

• Faster Data Access: The CPU and GPU can access data without waiting for it
to be copied between memory pools. This reduces latency and improves overall
speed.

• Simplified Programming: Developers don’t have to manage separate memory for
the CPU and GPU. The memory management is handled by the system, which
simplifies the programming model.

• More Efficient Resource Utilization: Since the CPU and GPU can share the
memory, the system can allocate resources dynamically. For example, if the
CPU is not using all of the memory, the GPU can use it for its own tasks. This
flexibility ensures that memory is utilized efficiently across the entire chip.

2.3.3 Benefits of Unified Memory for GPU Programming

1. Improved Performance: Since the CPU and GPU don’t need to copy data back
and forth, performance improves significantly for tasks that involve large datasets
or require frequent communication between the two processors. For example, in
machine learning, video editing, and scientific computing, the ability to share
memory between the CPU and GPU leads to faster computations and lower
overhead.

2. Lower Power Consumption: Transferring data between separate memory pools
requires energy. By eliminating this step with UMA, Apple Silicon chips can
reduce power consumption, contributing to longer battery life in laptops and
mobile devices while still offering high-performance computing.

3. Better Optimization: Unified memory helps optimize how data is stored and
accessed. The memory is not divided into chunks for the CPU and GPU, so both

36

processors can use the entire memory pool as needed. This means that developers
can allocate memory dynamically and use it more efficiently for demanding tasks.

4. Enhanced Graphics and Compute Performance: For GPU tasks, especially
those requiring significant data manipulation (such as 3D rendering or machine
learning), UMA provides a seamless experience. The GPU doesn’t need to wait
for data to be copied to its own memory; it can start processing immediately,
taking full advantage of its parallel architecture for faster execution.

2.3.4 Practical Implications for Developers

For developers working with Apple Silicon, UMA makes writing GPU-accelerated
applications simpler and more efficient. When programming with Metal, Apple’s
graphics and compute API, the system automatically handles memory management,
allowing developers to focus on writing code that optimizes performance rather than
worrying about memory transfers.
In C++, for example, you can allocate memory once and have both the CPU and GPU
access and modify it without needing to perform separate memory copy operations.
This dramatically reduces the complexity of programming for the GPU and increases
the likelihood of achieving optimal performance.

2.3.5 Challenges and Considerations

While unified memory offers numerous advantages, developers should still be mindful
of how they manage memory. Although Apple Silicon chips make it easier to access
memory, large memory allocations or inefficient memory usage can still lead to
performance bottlenecks. For GPU-intensive applications, such as those using large
datasets for AI or 3D rendering, proper memory management remains essential to
ensure that the memory is being utilized optimally without overloading the system.

37

2.3.6 Conclusion

Unified memory is a fundamental feature of Apple’s GPU design, offering improved
performance, lower power consumption, and easier development for GPU programming.
As Apple continues to refine this architecture, it will likely remain a key advantage for
developers working with Apple Silicon chips.

Chapter 3

Comparison with Intel, AMD, and NVIDIA
GPUs

3.1 Architectural and Performance Differences

Apple Silicon’s GPU architecture presents several unique features that distinguish
it from the more traditional GPUs produced by Intel, AMD, and NVIDIA. These
differences not only influence the performance of each GPU but also impact the way
developers write and optimize GPU-accelerated code. To better understand these
differences, it’s essential to compare Apple’s approach with the architectures of Intel,
AMD, and NVIDIA GPUs.

3.1.1 CPU and GPU Integration vs. Discrete Architectures

One of the most significant differences between Apple Silicon and traditional GPUs is
the integration of the CPU and GPU within the same chip. Apple’s unified architecture
blends the CPU, GPU, and other processing units (such as the Neural Engine) into

38

39

a single SoC (System on Chip). This tight integration provides a more efficient, low-
latency system, where all components can share resources, such as memory, with
minimal overhead.
In contrast, Intel, AMD, and NVIDIA typically use discrete GPU architectures. These
GPUs are often separate components that communicate with the CPU via a system
bus. While some of Intel's and AMD's recent chips, like Intel’s integrated graphics and
AMD's APUs (Accelerated Processing Units), are somewhat closer to Apple's design,
the discrete nature of traditional GPUs means they don't benefit from the same level of
system-level integration.
This difference affects how data is shared between the CPU and GPU. In Apple
Silicon’s unified memory architecture, both the CPU and GPU can access the same
memory pool, which leads to more efficient data handling and faster processing times,
especially for tasks that require heavy interaction between the two processors. On Intel,
AMD, and NVIDIA systems, memory often resides separately for the CPU and GPU,
which necessitates transferring data between them and introducing extra latency.

3.1.2 Core Architecture and Parallelism

Apple Silicon’s GPU is built around a highly parallel architecture. The M1 chip,
for instance, features up to 8 GPU cores, with the more recent M2 and M3 chips
scaling up to 10 cores. This architecture is designed to handle a wide range of tasks
simultaneously, making it ideal for compute-heavy operations like machine learning,
video rendering, and 3D graphics. The number of cores directly correlates with the
processing power for parallel tasks, and Apple's custom cores are tightly optimized for
low power consumption while maintaining high performance.
Intel’s integrated graphics are typically built around fewer execution units (EU) in
comparison, which limits their ability to perform complex, parallel workloads efficiently.
AMD’s RDNA and RDNA 2 architectures, which power the latest GPUs in both

40

desktop and mobile configurations, feature larger numbers of compute units for better
scalability in handling parallel tasks. NVIDIA's Ampere architecture, on the other
hand, offers a massive number of CUDA cores, making it particularly well-suited for
tasks like deep learning, scientific computing, and ray tracing.
Apple's architecture, however, emphasizes efficiency by limiting the number of cores
while ensuring that the cores are finely tuned for the tasks most commonly needed
by its ecosystem. This balance of performance and efficiency allows Apple Silicon
GPUs to achieve strong performance while consuming less power compared to discrete
alternatives from Intel, AMD, or NVIDIA.

3.1.3 Performance per Watt

Apple’s focus on performance-per-watt is another area where it significantly differs from
its competitors. Apple Silicon’s GPUs are designed to operate efficiently within the
thermal constraints of portable devices such as MacBooks and iPads. This is achieved
through a combination of architectural innovations and advanced process technologies
like 5nm fabrication. The result is that Apple’s GPUs can deliver impressive graphical
and computational performance without generating significant heat, which is essential
for maintaining battery life in mobile devices.
By contrast, Intel and AMD’s discrete GPUs often consume more power and produce
more heat, especially during intensive workloads. This makes them better suited for
desktops and high-performance workstations, where power efficiency is less of a concern.
NVIDIA’s high-end GPUs, like those found in the RTX 30-series, are designed for
maximum performance, but their power requirements are significantly higher than
Apple Silicon’s, especially in gaming and deep learning tasks. While this performance
is unmatched in certain tasks, the power consumption and heat dissipation are not as
efficient as Apple’s approach.

41

3.1.4 Specialized Features and Hardware Acceleration

Apple’s GPUs are not just designed for traditional graphics rendering; they also
feature specialized hardware for tasks like machine learning, ray tracing, and video
encoding/decoding. The Neural Engine, present in every Apple Silicon chip, is
optimized for AI and machine learning workloads, enabling faster processing of tasks
like image recognition and natural language processing without relying entirely on the
GPU.
Intel, AMD, and NVIDIA GPUs, on the other hand, are more generalized and often
rely on the CPU or dedicated accelerators (such as NVIDIA’s Tensor Cores) for
machine learning tasks. AMD has made strides with its RDNA 2 architecture, offering
better support for ray tracing, while NVIDIA is widely known for its CUDA cores and
Tensor Cores, which are specifically designed for parallel computing and deep learning
tasks.
In terms of raw graphics power, NVIDIA still leads the way in real-time ray tracing
with its RTX line of GPUs, which incorporates hardware specifically designed for
ray tracing calculations. While Apple’s GPUs are not yet on the same level in this
area, they offer a balanced approach for developers focusing on mobile and integrated
systems, with less emphasis on high-end gaming and rendering.

3.1.5 Conclusion

In conclusion, Apple’s GPU architecture presents a different approach from Intel,
AMD, and NVIDIA. While Intel and AMD often focus on raw performance with
discrete components, Apple emphasizes tight integration between CPU, GPU, and other
processing units within a single SoC. This integration provides significant advantages
in terms of efficiency, memory management, and performance per watt. However, for
developers focusing on high-end gaming or intensive ray tracing workloads, traditional

42

discrete GPUs from NVIDIA or AMD may still offer superior performance.

43

3.2 Why NVIDIA Leads in Gaming, AI, LLM, Encryption, and
Crypto

NVIDIA has firmly established itself as the dominant player in several high-
performance computing domains, including gaming, artificial intelligence (AI), large
language models (LLM), encryption, and cryptocurrency mining. The company’s
success can be attributed to a combination of hardware innovations, specialized
technologies, and a strategic focus on the needs of these fields. Let’s explore why
NVIDIA is a leader in these areas and how its GPUs outperform competitors like Intel
and AMD.

3.2.1 Gaming: The Power of RTX and CUDA

NVIDIA has long been synonymous with gaming graphics. The company’s GeForce
GPU series, especially the RTX line, is built to meet the demands of modern gaming,
offering exceptional performance for both high-end gaming and game development.
The success of NVIDIA’s gaming GPUs comes from their ability to handle demanding
graphics workloads, such as ray tracing and real-time rendering, that are crucial for
delivering lifelike visuals in games.
Ray tracing, which simulates the behavior of light in a virtual environment, requires
enormous computational power to perform in real-time. NVIDIA was the first to
introduce hardware-accelerated ray tracing with the RTX 20 series and has continued
to improve this capability with each successive generation. This advancement gives
NVIDIA a significant advantage in gaming, where the demand for more immersive
graphics continues to rise.
Additionally, NVIDIA’s CUDA cores, which are designed for parallel computing, play
a crucial role in accelerating the rendering of complex scenes and in enabling faster

44

frame rates. With a large number of cores, NVIDIA GPUs can handle the parallel tasks
required in gaming, leading to smoother gameplay and higher-quality graphics.

3.2.2 Artificial Intelligence and Machine Learning

NVIDIA's dominance in the AI and machine learning (ML) space is rooted in the
company's development of specialized hardware tailored for training and inference
of neural networks. NVIDIA’s Tensor Cores, introduced in the Volta architecture,
are specifically designed for deep learning tasks. These cores accelerate matrix
multiplication and other operations commonly used in training neural networks, making
them ideal for AI workloads.
NVIDIA’s GPUs are widely adopted in data centers and by researchers working on AI
and ML projects because of their ability to scale efficiently and handle large datasets.
The company’s CUDA programming platform is another reason for its success in AI.
CUDA provides a powerful and flexible way for developers to harness the massive
parallel computing power of NVIDIA GPUs for a variety of AI applications, from image
recognition to natural language processing.
Moreover, NVIDIA’s DGX systems, which integrate their GPUs with high-performance
computing systems, have become a standard for many AI researchers and companies
working on cutting-edge AI models. This combination of hardware and software
innovation has solidified NVIDIA’s position as a leader in the AI space.

3.2.3 Large Language Models (LLM) and NLP

In the rapidly evolving field of natural language processing (NLP) and large language
models (LLMs), such as GPT-3 and BERT, NVIDIA GPUs are a cornerstone of
the infrastructure needed to train and deploy these massive models. LLMs require
enormous computational resources, both in terms of memory and processing power.

45

NVIDIA’s GPUs, with their high core count and Tensor Core optimizations, provide
the computational horsepower required to train these models more efficiently than any
other GPU manufacturer.
The NVIDIA A100 GPU, in particular, is widely regarded as one of the most powerful
GPUs for training large-scale AI models. With support for mixed precision training,
which allows for faster training without sacrificing accuracy, the A100 has become a
staple in the training of LLMs. Additionally, NVIDIA’s DGX A100 systems offer a
complete AI computing solution, making them a popular choice for companies building
LLMs and other advanced AI systems.
The ability to handle large-scale model training with reduced time and cost has made
NVIDIA indispensable in the world of LLMs, further strengthening its position in the
AI sector.

3.2.4 Encryption and Security

NVIDIA’s GPUs also play a significant role in the field of encryption and cryptography.
Encryption tasks, such as those required in blockchain and cryptocurrency mining,
benefit from the parallel processing capabilities of GPUs. NVIDIA’s GPUs are
optimized for these types of calculations, which involve the computation of complex
cryptographic algorithms.
The rise of blockchain technology and cryptocurrency mining has led to a significant
demand for high-performance GPUs capable of performing these encryption operations
efficiently. NVIDIA’s GPUs, especially those in the GeForce and Quadro series, are well-
suited for tasks like Bitcoin mining, Ethereum proof-of-work, and the secure validation
of transactions in distributed networks.
Additionally, NVIDIA’s CUDA and Tensor Cores can be leveraged to speed up
encryption algorithms and hash functions used in cryptographic processes, making
NVIDIA GPUs a preferred choice for secure computing environments.

46

3.2.5 Cryptocurrency Mining

Cryptocurrency mining has become one of the most notable use cases for GPUs,
particularly in the context of Ethereum and other blockchain-based currencies.
NVIDIA's GPUs are well-suited for the parallelizable nature of cryptocurrency mining,
where thousands of operations need to be performed simultaneously to solve complex
mathematical problems that validate blockchain transactions.
NVIDIA has capitalized on this trend by designing GPUs with performance
optimizations for mining. However, the company also had to address concerns regarding
the demand for GPUs in the mining community. To combat shortages and keep gaming
GPUs available for gamers, NVIDIA introduced the CMP (Cryptocurrency Mining
Processor) line of products, which is specifically designed for mining and doesn't include
features necessary for gaming.
Despite this, NVIDIA’s GPUs continue to dominate the mining space due to their raw
power, energy efficiency, and optimization for high-throughput parallel processing tasks.

3.2.6 Conclusion

In conclusion, NVIDIA’s dominance in gaming, AI, LLM, encryption, and crypto
comes down to its advanced hardware tailored to the needs of these demanding
industries. The company’s GPU architecture, including CUDA cores, Tensor Cores, and
hardware-accelerated ray tracing, makes its products indispensable for developers and
industries that rely on high performance. Whether it’s gaming, machine learning, or
cryptocurrency mining, NVIDIA GPUs provide the power and scalability required to
drive innovation in these fields.

47

3.3 Can Apple GPUs be a Serious Alternative?

As Apple continues to push the boundaries with its custom-designed Apple Silicon
chips, including the M1, M2, M3, and future generations, an important question arises:
Can Apple GPUs become a serious alternative to the offerings from Intel, AMD, and
NVIDIA?
Historically, Apple’s GPUs were considered secondary to those of NVIDIA and
AMD in terms of high-performance computing, gaming, and specialized fields like AI
and cryptography. However, the shift to Apple Silicon has changed this landscape,
offering a fresh opportunity for Apple to compete in these areas. To evaluate whether
Apple’s GPUs can be a serious alternative, it's essential to examine several key factors:
performance, software ecosystem, and niche advantages.

3.3.1 Performance Capabilities

Apple’s GPUs, integrated into its Apple Silicon chips, are built from the ground up
to work seamlessly with the company's hardware and software ecosystem. These
GPUs leverage unified memory architecture, which allows the CPU, GPU, and other
components to share a common pool of memory. This architecture enables faster data
access and reduces latency, which can significantly improve the overall performance of
GPU-intensive tasks.
While Apple GPUs may not yet reach the same raw computational power as high-
end NVIDIA GPUs, especially in domains like gaming, machine learning, and
cryptocurrency mining, they are still highly optimized for general-purpose computing
tasks. The performance of Apple GPUs is particularly impressive when running native
applications designed for macOS and optimized for Apple Silicon, such as video editing,
3D rendering, and machine learning tasks.
Additionally, Apple’s GPUs are highly efficient in terms of power consumption, a

48

feature that has become increasingly important as users demand higher performance
without sacrificing battery life. Apple’s approach to GPU design, focusing on efficiency
and optimization, makes its GPUs an attractive option for developers targeting mobile
applications and energy-efficient computing.

3.3.2 Software Ecosystem and Developer Support

One of the standout advantages of Apple’s GPUs is the tight integration with macOS,
iOS, and other Apple platforms. The company has built a powerful set of developer
tools, such as Metal, its high-performance graphics and compute API, which provides
developers with low-level access to the GPU for creating optimized applications. This
API allows for fine-tuned control over graphics rendering and parallel compute tasks,
making it ideal for tasks such as machine learning inference, image processing, and AI
model deployment.
In contrast to NVIDIA and AMD, which have their own software ecosystems (CUDA
and ROCm, respectively), Apple’s Metal API is specifically tailored for its hardware,
ensuring better synergy and performance. While Metal has been primarily geared
towards graphics and gaming, Apple is increasingly promoting it for more compute-
oriented workloads, positioning it as a strong alternative to CUDA for certain use cases.
For developers already familiar with Apple’s ecosystem, Metal offers a streamlined path
to developing GPU-accelerated applications with minimal overhead.
Furthermore, with the introduction of the Core ML framework, Apple is making strides
in the machine learning space. Apple GPUs work efficiently with Core ML, allowing for
on-device AI processing, which is becoming crucial for privacy-conscious applications.
The tight integration between hardware and software on Apple’s platform ensures that
machine learning tasks can be executed with both speed and energy efficiency.

49

3.3.3 Niche Advantages and Use Cases

Apple’s GPUs are not yet positioned to challenge NVIDIA or AMD in every area, but
they do provide several unique advantages for specific use cases:

• Mobile and Integrated Systems: Apple’s integrated GPUs, like those found in
the M1, M2, and M3 chips, excel in mobile computing. The combination of CPU
and GPU in a single chip allows for compact, efficient, and powerful systems that
are ideal for Apple’s laptops, desktops, and mobile devices. While they may not
match the raw performance of discrete GPUs in desktop gaming or AI research,
they strike a balance that is ideal for everyday consumer and professional use in a
portable form factor.

• Creative Industries: Apple has long been the go-to platform for creative
professionals, including those working in video editing, music production, and
graphic design. The performance of Apple GPUs in Final Cut Pro, Logic Pro,
and other creative applications has been optimized to take full advantage of the
integrated architecture, offering a smooth and responsive experience for content
creators.

• Power Efficiency: Apple’s focus on power efficiency means that Apple GPUs are
particularly attractive in scenarios where battery life is critical, such as in laptops
or mobile devices. For users looking for a balance between performance and
energy efficiency, especially in the context of macOS and iOS devices, Apple’s
GPUs present a competitive option.

• Privacy and Security: Another niche where Apple’s GPUs excel is in on-device
AI and secure processing. Apple emphasizes privacy by design, and many of its
machine learning and data processing tasks are done locally on the device rather
than in the cloud. This focus on privacy, combined with the hardware-software

50

integration of the Apple Silicon architecture, gives Apple a unique advantage
in certain industries, such as healthcare and finance, where data security is
paramount.

3.3.4 Limitations and Challenges

While Apple’s GPUs are impressive, they are still somewhat limited in certain areas
when compared to NVIDIA and AMD. High-end gaming and specialized tasks like AI
training require significant GPU resources, and at present, Apple GPUs lag behind
NVIDIA’s RTX series and AMD’s RDNA 2 architecture in these domains. Additionally,
Apple’s closed ecosystem limits the ability to use these GPUs in non-Apple hardware,
unlike NVIDIA and AMD, which offer GPUs for a wide range of platforms, including
custom-built PCs and servers.
Furthermore, the lack of broad support for CUDA in the Apple ecosystem remains a
significant limitation for developers accustomed to NVIDIA’s ecosystem. CUDA has
become a de facto standard in AI and ML, and many machine learning libraries and
frameworks are optimized for NVIDIA GPUs. While Apple’s Metal and Core ML are
strong alternatives, they are not yet as widely adopted or supported by all the same
tools and frameworks as CUDA.

3.3.5 Conclusion

Apple’s GPUs are making strong strides in the world of high-performance computing,
but they are still evolving. They offer a compelling option for developers working
within the Apple ecosystem, particularly in areas like mobile computing, creative
applications, and on-device AI. While they may not yet match the sheer power of
NVIDIA or AMD GPUs in areas like gaming or high-performance AI training, they
represent a serious alternative in areas where power efficiency, tight hardware-software

51

integration, and user privacy are of utmost importance. For users and developers
already entrenched in the Apple ecosystem, the Apple Silicon GPUs are an attractive
and capable choice.

52

Comparison Table: Apple vs Intel vs AMD vs NVIDIA

Feature
/Aspect

Apple Silicon
(M-Series)

Intel (Core
/Arc)

AMD (Ryzen
/Radeon)

NVIDIA
(GeForce
/RTX)

Architecture ARM-based
unified
architecture

x86-based,
discrete GPUs

x86-based,
discrete GPUs

CUDA-based
discrete GPUs

Integrated
GPU

High-
performance
(Metal-
optimized)

Present, lower
performance

Present, mid-
performance

Not primary
focus

Unified
Memory

Yes (shared
CPU-GPU
memory)

No (separate
memory)

No (separate
memory)

No (separate
memory)

GPU API
Support

Metal (native),
OpenCL
(limited)

DirectX,
OpenCL,
Vulkan

DirectX,
Vulkan,
OpenCL

CUDA,
Vulkan,
OpenCL

Machine
Learning
Support

CoreML, MPS,
Neural Engine

OneAPI,
OpenVINO
(limited)

ROCm
(limited),
ONNX

TensorRT,
CUDA
libraries

Developer
Tools

Xcode, Metal
Shading
Language

Visual Studio,
Intel VTune

Radeon GPU
Profiler,
CodeXL

Nsight, CUDA
Toolkit

Cross-Platform
Flexibility

Limited
outside Apple
ecosystem

High High High

53

Feature/Aspect Apple Silicon
(M-Series)

Intel
(Core/Arc)

AMD
(Ryzen/Radeon)

NVIDIA
(GeForce/RTX)

Power
Efficiency

Excellent Moderate Moderate to
high

Varies
(generally
power-hungry)

Real-time
Graphics

Strong
(especially for
macOS/iOS)

Varies by
model

Strong (with
Radeon GPUs)

Industry leader

Best Use Cases macOS/iOS
GPU apps,
ML, rendering

General
computing,
entry GPU
work

Gaming,
workstation
GPU tasks

AI, ML, 3D
rendering,
simulations

Chapter 4

Setting Up the Development Environment on
macOS

4.1 Tools Needed: Xcode, Metal, C++

To begin developing GPU-accelerated applications on Apple Silicon using C++,
there are a few essential tools you need to set up your development environment on
macOS. These tools provide the infrastructure for building, debugging, and deploying
applications that make full use of the GPU’s capabilities.

4.1.1 Xcode: The Foundation for macOS Development

Xcode is Apple’s integrated development environment (IDE) and serves as the
cornerstone of macOS and iOS application development. It provides all the necessary
tools for creating software, from writing code to compiling and debugging. Xcode is
indispensable for C++ development on Apple Silicon, as it includes:

• Clang Compiler: Xcode uses Clang as its default C++ compiler, which is

54

55

optimized for macOS and supports modern C++ standards (C++11, C++14,
C++17, and beyond). This ensures that your C++ code can be compiled
efficiently for the Apple Silicon architecture.

• Debugging Tools: Xcode offers powerful debugging tools, such as the LLDB
debugger, which allow you to step through your C++ code and inspect variables,
memory, and GPU usage in real time.

• Simulator: Xcode’s simulator can emulate different macOS and iOS devices,
making it easier to test your application on various platforms without needing
the physical hardware.

You can download Xcode for free from the Mac App Store. It is regularly updated
to include the latest features, SDKs, and optimizations for the Apple Silicon chips,
ensuring a seamless development experience.

4.1.2 Metal: Apple’s Graphics and Compute API

To take full advantage of the GPU on Apple Silicon, you’ll need to use Metal, Apple’s
high-performance graphics and compute API. Metal provides direct access to the
GPU, enabling you to leverage its parallel processing power for rendering graphics and
running compute shaders.
Metal is crucial for GPU programming because it gives you low-level control over the
GPU’s capabilities, such as:

• Graphics Rendering: Metal allows you to create high-performance 3D graphics
applications, useful for gaming, simulations, and visualizations.

• Compute Shaders: Metal also supports compute shaders, which enable general-
purpose computations on the GPU. These can be used for tasks such as image
processing, machine learning inference, and scientific simulations.

56

In addition to its high-level capabilities, Metal’s design ensures that the API is tightly
integrated with Apple’s hardware, maximizing the performance of GPU tasks on Apple
Silicon. To get started with Metal, you’ll need to:

• Learn the Metal shading language, which is similar to C++ and optimized for
GPU computations.

• Utilize Metal’s command buffers, pipelines, and textures to build your GPU-
accelerated applications.

Apple’s Metal Performance Shaders (MPS) framework can also help simplify GPU
programming by providing pre-optimized functions for tasks like matrix multiplications,
neural network operations, and image filtering, making it easier to integrate GPU
capabilities into your applications.

4.1.3 C++: The Core Programming Language

While Metal is the primary API for GPU programming on Apple Silicon, C++ remains
the core programming language for the majority of the logic and computation in your
application. C++ is widely used for performance-critical tasks due to its low-level
memory control and high execution speed. For GPU programming, C++ can be used
in conjunction with Metal to:

• Handle General Application Logic: C++ is ideal for implementing the main
algorithms and logic of your program, from loading data to managing application
flow.

• Integrate with Metal: C++ provides the foundation for interacting with Metal’s
API. You'll write the bulk of your application in C++ and use Metal for GPU-
accelerated tasks.

57

• Optimize Performance: C++ allows you to write efficient, low-level code,
optimizing both CPU and GPU interactions for maximum performance.

You will need a good understanding of C++ concepts like pointers, memory
management, and object-oriented programming (OOP) to take full advantage of the
GPU’s capabilities through Metal. The combination of C++ and Metal allows you to
write efficient, high-performance applications that make full use of the Apple Silicon
GPU.

4.1.4 Conclusion

To start GPU programming on Apple Silicon using C++, you need three main tools:
Xcode, Metal, and C++. Xcode provides the environment for building, testing,
and debugging your applications, while Metal offers the low-level API necessary for
GPU-accelerated rendering and compute tasks. C++ serves as the backbone of your
application, ensuring that your code runs efficiently on both the CPU and GPU. Once
these tools are set up, you’ll be ready to start developing high-performance applications
for Apple Silicon that can leverage the full potential of the GPU.

58

4.2 Creating a Project from Scratch

Once you have all the necessary tools installed and your development environment set
up, it’s time to create a new project to start your GPU programming journey. In this
section, we’ll walk through the steps of setting up a simple GPU-accelerated project
from scratch using Xcode, Metal, and C++. By the end of this section, you will have a
basic project that integrates C++ with Metal, ready to use the GPU for compute tasks.

4.2.1 Launch Xcode and Create a New Project

To begin, open Xcode. If you haven't already installed it, you can download it from the
Mac App Store. Once Xcode is installed and running, follow these steps:

• From the Xcode welcome screen, click on Create a new Xcode project.

• In the project template window, choose macOS as the platform and select the
Command Line Tool template. This template is ideal for a simple project where
you can focus on programming logic without needing a graphical user interface.

• Enter your project name and set the language to C++. Make sure to choose C++
for both the language and the project’s main file. This will ensure that you’re
working in C++ from the start.

• Choose a location to save your project and click Create.

At this point, Xcode will generate a basic project structure with a main.cpp file as the
entry point. This is where we will write the C++ code for the project.

4.2.2 Add Metal Framework to Your Project

Since we’re aiming to use Metal for GPU programming, we need to link the Metal
framework to our project. To do this:

59

• In Xcode, select the project file from the left-hand sidebar to open the project
settings.

• Under the Build Settings tab, locate the Link Binary With Libraries section.

• Click the + button, search for Metal.framework, and add it to the project.

• Metal.framework contains the necessary APIs for interacting with the GPU, so
including it ensures that we can access its powerful features.

4.2.3 Set Up Your C++ Code for Metal Integration

Now that we’ve set up the basic project and linked Metal, it’s time to integrate C++
with Metal. This step involves writing code that sets up a Metal device, creates
command buffers, and prepares GPU resources for computation.
Start by modifying the main.cpp file to include the necessary Metal headers. In this
case, you’ll need to interact with the Metal API through Objective-C++ syntax, which
allows C++ code to work with Objective-C-based frameworks like Metal.
Here’s a simple outline of the necessary code to initialize Metal:

#import <Metal/Metal.h>
#import <Foundation/Foundation.h>

int main() {
// Initialize a Metal device
id<MTLDevice> device = MTLCreateSystemDefaultDevice();
if (!device) {

std::cerr << ”Metal is not supported on this device.” << std::endl;
return -1;

}

// Create a Metal command queue

60

id<MTLCommandQueue> commandQueue = [device newCommandQueue];

// Check if the command queue is created successfully
if (!commandQueue) {

std::cerr << ”Failed to create command queue.” << std::endl;
return -1;

}

std::cout << ”Metal device and command queue successfully initialized.” << std::endl;

return 0;
}

In this example:

• The MTLDevice represents the GPU on the system.

• The MTLCommandQueue is used to enqueue commands that will be sent to the
GPU for execution.

By using Objective-C++ syntax (mixing C++ and Objective-C), we can leverage Metal
while keeping the rest of the code in C++.

4.2.4Writing a Simple Compute Shader

At this point, we have a basic setup to interact with the GPU using Metal. Next,
you’ll want to write a compute shader, which will run on the GPU. A compute
shader performs computations like data processing, image manipulation, or physics
simulations.
Here’s a simple example of a compute shader written in Metal Shading Language
(MSL), which is used by Metal:

61

#include <metal_stdlib>
using namespace metal;

kernel void addOne(const device float *in [[buffer(0)]],
device float *out [[buffer(1)]],
uint id [[thread_position_in_grid]]) {

out[id] = in[id] + 1.0f;
}

This shader takes an input buffer of floating-point values, adds 1.0 to each element, and
stores the result in an output buffer.

4.2.5 Compiling and Running the Project

Once you’ve written the necessary C++ code and Metal shader, you can compile and
run the project by clicking the Run button in Xcode. If everything is set up correctly,
the application will execute and use the GPU to perform the computations defined in
the compute shader.
You can observe the output and debug any issues in the Xcode Debugger. If needed,
use Xcode’s debugging tools to step through the code and ensure that the GPU is
working as expected.

4.2.6 Next Steps

At this stage, you’ve successfully created a simple project that uses C++ and Metal
to interface with the GPU. From here, you can expand your project by adding more
complex compute shaders, handling larger data sets, or incorporating more advanced
Metal features like textures, buffers, and synchronization.
In the next chapters, you’ll dive deeper into specific GPU programming techniques,
including optimizing compute shaders and handling more advanced GPU tasks.

62

4.2.7 Conclusion

Creating a project from scratch is the first step in getting started with GPU
programming on Apple Silicon. By following these simple steps, you’ve set up a
foundation for developing high-performance GPU applications using C++ and Metal.
With this knowledge, you can begin exploring the power of Apple Silicon GPUs and
unlock new capabilities for your applications.

63

4.3 Installation Steps and Configuration

Before diving into GPU programming, it's crucial to set up the right tools and configure
your system to ensure a smooth development experience. In this section, we'll walk you
through the installation and configuration process for the necessary software, including
Xcode, Homebrew, and any additional components required to start GPU programming
on Apple Silicon with C++.

4.3.1 Installing Xcode

The first tool you’ll need is Xcode, Apple’s integrated development environment (IDE),
which includes the necessary compilers, frameworks, and tools for building software on
macOS. Xcode also includes Metal, Apple's framework for GPU programming.
To install Xcode:

1. Open the Mac App Store on your Mac.

2. Search for Xcode and click Get, then Install.

3. Once the installation is complete, launch Xcode to ensure it is working correctly.

After launching Xcode, you'll be prompted to install additional components. Click
Install to complete the setup process. This installation includes the Xcode Command
Line Tools, which are essential for compiling C++ code and working with the Metal
framework.

4.3.2 Installing Homebrew

Homebrew is a package manager for macOS that simplifies the installation of
development tools and libraries. While Xcode provides most of the tools you’ll need for

64

GPU programming, Homebrew can be useful for installing any additional dependencies
you may need.
To install Homebrew:

1. Open the Terminal application.

2. Run the following command to install Homebrew:

/bin/bash -c ”$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)”↪→

3. Follow the on-screen instructions to complete the installation.

Once Homebrew is installed, you can use it to install other tools and libraries, such
as CMake for building C++ projects or OpenGL if you need to work with graphics
programming.

4.3.3 Installing CMake (Optional but Recommended)

CMake is a cross-platform build system that helps manage the compilation process for
larger C++ projects. While Xcode comes with its own build system, many developers
prefer to use CMake due to its flexibility and cross-platform support.
To install CMake using Homebrew:

1. Open Terminal.

2. Run the following command:

brew install cmake

CMake will now be available on your system. If you plan to work with large or complex
projects, it's highly recommended to install and use CMake for managing your builds.

65

4.3.4 Verifying Metal Support

Before starting development, it’s important to verify that your system supports Metal
and is ready for GPU programming. Apple Silicon (M1, M2, M3, etc.) devices come
with native Metal support, so this step will help ensure everything is set up correctly.

1. Open System Information by clicking the Apple logo in the top left corner and
selecting About This Mac.

2. Click System Report.

3. In the sidebar, scroll down to Graphics/Displays.

4. Under the Metal section, verify that it lists Apple Metal with your device's GPU
model (e.g., Apple M1).

If Metal is listed, your system is ready for GPU programming. If it’s not, ensure
your Mac is using Apple Silicon (M1 or later), as Intel-based Macs do not have Metal
support.

4.3.5 Setting Up Environment Variables for C++ and Metal
Development

When setting up your environment for development, it’s important to ensure that the
necessary environment variables are set correctly. This is especially important if you're
using custom build tools like CMake.

1. Open the Terminal.

2. To set environment variables, you can add them to your shell profile file. If you're
using the default zsh shell (the default on newer macOS versions), run:

66

nano ~/.zshrc

3. Add the following lines to the file to ensure that the Metal framework is linked
correctly:

export CPLUS_INCLUDE_PATH=”/Applications/Xcode.app/Contents/Developer
/Toolchains/XcodeDefault.xctoolchain/usr/ include/c++/v1:$CPLUS_INCLUDE_PATH”↪→

export LIBRARY_PATH=”/Applications/Xcode.app/Contents/Developer
/Toolchains/XcodeDefault.xctoolchain/usr /lib:$LIBRARY_PATH”↪→

4. Save the changes by pressing Ctrl + X, followed by Y, and then hit Enter.

5. Apply the changes by running:

source ~/.zshrc

4.3.6 Configuring Your Project for Metal and C++

Now that your environment is set up, you can configure your project to use Metal and
C++. If you’re using Xcode, you don’t need to worry about configuring Metal directly
in the command line, as it’s integrated into the IDE. However, if you're building a
project using CMake or other build systems, you may need to link the Metal framework
manually.
For example, when configuring a CMake project, ensure that the Metal framework is
included in your CMakeLists.txt:

find_library(METAL_FRAMEWORK Metal)
target_link_libraries(YourTargetName PRIVATE ${METAL_FRAMEWORK})

This will ensure that the Metal framework is linked during the build process.

67

4.3.7 Installing Additional Tools (Optional)

Depending on your development needs, you may want to install additional libraries or
tools. Here are a few recommendations:

• OpenCL: If you plan to work with OpenCL alongside Metal, you can install
OpenCL libraries via Homebrew.

• LLVM/Clang: These are essential for compiling C++ code. Xcode provides them
by default, but you may want to install newer versions using Homebrew if needed.

You can install OpenCL with Homebrew by running:

brew install opencl

4.3.8 Conclusion

Setting up your macOS development environment for GPU programming involves
installing Xcode, Homebrew, and additional tools like CMake. By following these steps,
you’ll be ready to start developing high-performance GPU applications using C++ and
Metal on Apple Silicon. Once your environment is set up and verified, you can move on
to writing and running your first GPU-accelerated programs.

Chapter 5

Introduction to the Metal API

5.1 What is Metal and Why Use It Over OpenGL or CUDA?

Metal is Apple’s proprietary low-level graphics and compute API designed specifically
for its hardware, including the powerful Apple Silicon chips. Unlike higher-level
graphics APIs such as OpenGL, or CUDA, which are primarily associated with NVIDIA
GPUs, Metal provides a closer-to-the-metal experience, allowing developers to fully
leverage the performance and capabilities of Apple’s integrated GPUs.

5.1.1What is Metal?

Metal is a high-performance, low-level graphics and compute API created by Apple.
It provides developers with the tools to directly access and manage the graphics
processing unit (GPU) on Apple devices. Metal is designed for maximum efficiency,
enabling developers to achieve near-metal performance by offering fine-grained control
over GPU resources.
The Metal API is not limited to rendering graphics; it also supports parallel

68

69

computation tasks, making it highly suitable for general-purpose GPU (GPGPU)
programming. This flexibility allows developers to create a wide range of applications,
from graphically intensive games to machine learning models that benefit from GPU
acceleration.

5.1.2Why Use Metal Over OpenGL?

OpenGL has long been the go-to API for cross-platform graphics programming, but
there are several reasons why Metal is often preferred for macOS and iOS development,
especially on Apple Silicon devices.

1. Better Performance and Efficiency:
Metal is designed to provide developers with lower overhead and more control
over GPU resources. Unlike OpenGL, which abstracts many details and
introduces additional overhead to make it cross-platform, Metal is optimized
for Apple’s hardware. This leads to significant performance improvements,
particularly in graphics rendering and compute tasks.

2. Modern API Design:
OpenGL, while still widely used, has become somewhat outdated. It is a
relatively older API that was not initially built for modern GPUs or modern
development practices. In contrast, Metal was designed with the latest hardware
capabilities in mind, including Apple Silicon chips like the M1, M2, and beyond.
This results in better optimization and support for the features unique to Apple’s
ecosystem, such as unified memory.

3. Access to Metal-Specific Features:
Metal offers support for advanced features like Metal Shading Language (MSL),
compute shaders, and efficient multithreading. These capabilities allow developers

70

to fully tap into the hardware's potential. Metal also includes better support
for ray tracing, a feature that OpenGL struggles with due to its more abstract
design.

4. Future-Proof:
Apple is heavily invested in the Metal API, ensuring it is continuously updated
and optimized for its hardware. OpenGL, on the other hand, is not seeing the
same level of active development and may not fully support future advancements
in Apple’s GPU architecture.

5.1.3Why Use Metal Over CUDA?

CUDA, developed by NVIDIA, is a parallel computing platform and programming
model that allows developers to use NVIDIA GPUs for general-purpose computing
tasks. While CUDA excels in high-performance computing, especially for machine
learning and scientific computations, it is primarily designed to work with NVIDIA
hardware. This presents limitations for developers targeting Apple devices, especially
those using Apple Silicon chips.

1. Cross-Platform Support:
CUDA is optimized for NVIDIA GPUs and, as such, cannot be used effectively on
Apple hardware, particularly on Apple Silicon devices. Since CUDA is proprietary
to NVIDIA, it does not work with the integrated GPUs on macOS or iOS devices.
In contrast, Metal is built specifically for Apple devices, including both Intel-
based and Apple Silicon Macs, as well as iPhones and iPads.

2. Tight Integration with macOS and iOS:
Metal is tightly integrated with the Apple ecosystem, providing seamless access
to all of Apple’s hardware features, including the unified memory architecture

71

and support for advanced GPU features. It also integrates well with other Apple
APIs, such as Core ML for machine learning, and Core Graphics for rendering.
CUDA, however, is not integrated with Apple's system, making it less convenient
for developers who rely on the full spectrum of Apple's tools.

3. Unified Memory Architecture:
One of Metal’s standout features is its Unified Memory Architecture (UMA),
which allows both the CPU and GPU to access the same memory pool, improving
efficiency and reducing the need for memory copying. This feature is particularly
beneficial for Apple Silicon chips, such as the M1, which were designed to take
full advantage of UMA. CUDA does not provide this type of memory architecture
on macOS and is primarily tailored for NVIDIA’s GPUs with different memory
management models.

5.1.4When Should You Use Metal?

Given the benefits mentioned above, Metal is the clear choice for developers targeting
Apple devices. It provides the best performance, integration, and access to hardware
features, especially on Apple Silicon. Whether you’re developing a game, a machine
learning model, or a general-purpose GPU application, Metal is the most efficient and
effective way to harness the power of the Apple GPU.
In summary, Metal offers a combination of high performance, flexibility, and deep
integration with the Apple ecosystem, making it a superior choice over OpenGL and
CUDA when developing for Apple platforms. By leveraging Metal, developers can take
full advantage of the capabilities of Apple Silicon, unlocking the potential for faster,
more efficient GPU computing.

72

5.2 Core Concepts: Compute Shaders and GPU Pipelines

To fully harness the power of Metal for GPU programming, it’s essential to understand
some key concepts. Two fundamental aspects of Metal that enable developers to
perform high-performance computations are compute shaders and the GPU pipeline.
These concepts form the backbone of how Metal handles graphics and general-purpose
GPU tasks.

5.2.1What is a Compute Shader?

A compute shader is a program that runs on the GPU to perform general-purpose
computations. Unlike traditional shaders used for rendering graphics (like vertex or
fragment shaders), compute shaders are designed to handle non-graphics computations.
They are an essential feature for running parallel tasks on the GPU, such as
simulations, data processing, and machine learning operations.

In Metal, compute shaders allow developers to leverage the vast parallel processing
power of the GPU. When you write a compute shader, it operates on large datasets
in parallel, meaning that each thread of execution can process a portion of the data
simultaneously. This is particularly useful for tasks like image processing, scientific
calculations, or any operation that benefits from performing many similar tasks at the
same time.

The structure of a compute shader in Metal follows the Metal Shading Language
(MSL), which is similar to C++ or C, but tailored to the GPU’s architecture. You
define the operations and how data is processed in parallel, which Metal’s GPU
executes efficiently.

73

5.2.2 GPU Pipelines in Metal

The GPU pipeline in Metal refers to the series of stages through which data flows in
the graphics processing unit (GPU). Each stage performs a specific function, and Metal
allows developers to control and optimize each stage for both graphics and compute
tasks. These pipelines are central to how Metal handles graphical rendering and general-
purpose computations.
In a graphics application, the pipeline typically involves stages like:

1. Vertex Processing:
This stage takes input vertices (points, lines, or triangles), applies transformations
(such as rotation, scaling, and translation), and prepares the data for the next
stages in the pipeline.

2. Fragment Processing:
After the vertex data has been processed, it is used to generate pixels (fragments)
for the screen. The fragment shader computes the color and other properties of
each pixel.

However, when working with compute shaders, the GPU pipeline is more flexible and
focused on tasks that go beyond just rendering graphics. Compute shaders bypass the
traditional graphics stages and operate directly on data buffers. This allows developers
to use the GPU for tasks like:

• Data parallelism: Where the same operation is applied to multiple pieces of data
simultaneously.

• Compute-heavy tasks: Such as machine learning, physics simulations, or image
transformations.

74

5.2.3 How Compute Shaders Fit into the GPU Pipeline

In Metal, compute shaders do not use the typical graphics pipeline stages (like vertex
and fragment shaders). Instead, they operate independently on the data, often in
what’s called the compute pipeline. This allows developers to optimize the GPU’s
resources for specific, non-graphics tasks. The compute pipeline in Metal consists of the
following stages:

1. Dispatching the Compute Shader:
A compute shader is dispatched to the GPU, where it is executed on the data
provided by the developer. The dispatch process divides the work into small tasks
(called ”threads”), which are then processed in parallel.

2. Thread Execution:
The GPU executes the shader code in parallel across multiple threads, with each
thread handling a portion of the data. This is where the performance benefits
of GPU programming are realized, as many threads can run simultaneously,
speeding up computations drastically.

3. Memory Management:
Compute shaders often need to work with large datasets stored in GPU memory.
Metal provides control over how data is managed, ensuring that it’s processed
efficiently. Using unified memory architecture, the GPU and CPU can share the
same memory pool, which reduces the time it takes to transfer data between
them.

4. Writing Results Back:
After the compute shader has processed the data, the results are written back to
memory, where they can be used for further processing or output.

75

5.2.4 Advantages of Using Compute Shaders in Metal

1. Parallel Processing:
One of the most significant advantages of using compute shaders is the ability to
perform massive parallel computations. This allows tasks that would normally
take much longer on the CPU to be processed in a fraction of the time on the
GPU.

2. Flexibility:
Compute shaders allow developers to perform non-graphics computations. This
flexibility is ideal for a wide range of applications beyond just graphics rendering,
including machine learning, simulations, and scientific computing.

3. Optimized Resource Usage:
Metal’s design allows for efficient use of GPU resources, enabling you to manage
memory and computation more effectively than with higher-level APIs. This
results in improved performance, especially for data-intensive tasks.

4. Fine-Grained Control:
Metal provides low-level access to GPU features, enabling developers to control
how the GPU performs tasks. This allows for fine-tuning performance and
optimization, ensuring that each part of the computation pipeline runs as
efficiently as possible.

5.2.5 Conclusion

In Metal, compute shaders and the GPU pipeline work together to provide developers
with the tools needed to harness the full potential of the Apple Silicon GPUs. By using
compute shaders, you can offload compute-intensive tasks to the GPU, accelerating
everything from graphics rendering to machine learning. The flexibility of the GPU

76

pipeline, combined with Metal's fine-grained control over memory and execution, makes
it a powerful tool for anyone looking to take their GPU programming skills to the next
level. Whether you're working on a game, performing complex simulations, or using
machine learning models, understanding compute shaders and GPU pipelines is key to
optimizing your performance on Apple Silicon.

77

5.3 How Metal Works with C++

When working with Metal for GPU programming, it’s important to understand
how Metal interacts with C++. Metal is a low-level API designed for maximum
performance on Apple devices, and while it is primarily designed to be used with
Objective-C or Swift, it can also be integrated seamlessly with C++. This section
will guide you through how to set up and use Metal with C++ in your development
projects.

5.3.1 Using Metal in C++ Projects

Although Metal is an Objective-C-based framework, you can still use it effectively in
C++ projects by taking advantage of C++'s ability to interact with other languages
and APIs. Metal can be called from C++ through Objective-C++—a variant of
Objective-C that allows you to mix C++ code with Objective-C classes. Objective-C++
enables you to leverage both C++ and Metal in the same project without having to
give up the advantages of either language.

1. Objective-C++: A Bridge Between C++ and Objective-C

Objective-C++ is an extension of Objective-C that allows you to write C++ code
alongside Objective-C code. This means that, while Metal itself is built with
Objective-C, you can use it in your C++ codebase without any major hurdles.
The key benefit of this approach is that it lets you maintain the performance and
memory management advantages of C++ while still having full access to Metal's
features for GPU programming.

For instance, you can declare Metal objects such as MTLDevice,
MTLCommandQueue, and MTLBuffer in Objective-C++ files, and then use them

78

directly in C++ functions. Metal’s API objects can be managed in an Objective-
C++ wrapper, which then allows the C++ code to interact with them seamlessly.

2. Key Steps to Integrate Metal with C++

(a) Set Up Objective-C++ Files:
To work with Metal in C++, you’ll need to create .mm files instead of .cpp
files. These .mm files are Objective-C++ files, which allow you to mix C++
and Objective-C code within the same file. The rest of the C++ code can
remain in .cpp files, and they can interact with the .mm files as needed.

(b) Include the Metal Framework:
In your Objective-C++ files, include the necessary Metal headers. For
example:

#include <Metal/Metal.h>

(c) Initialize Metal Objects:
To begin using Metal, you will first need to create a MTLDevice object,
which represents the GPU. This device object is then used to allocate
resources like buffers, textures, and command queues. In Objective-C++,
you can instantiate and interact with Metal objects as follows:

id<MTLDevice> device = MTLCreateSystemDefaultDevice();

(d) Write C++ Functions to Interact with Metal:
You can now write C++ functions that work with Metal resources. For
example, you can write functions that allocate memory on the GPU, manage
buffers, and dispatch compute or rendering commands. Here's an example of
allocating a Metal buffer in C++:

id<MTLBuffer> buffer = [device newBufferWithLength:length
options:MTLResourceStorageModeShared];↪→

79

(e) Managing Metal Resources:
Metal provides a range of objects for managing data on the GPU, including
buffers, textures, and command queues. In C++, you will use these objects
to manage your GPU workloads. For example, to create a command queue:

id<MTLCommandQueue> commandQueue = [device newCommandQueue];

(f) Calling Metal Functions in C++:
After setting up Metal objects in your Objective-C++ code, you can create
functions in C++ that use these objects. For example, you might write a
C++ function to run a compute shader:

void runComputeShader(id<MTLDevice> device) {
// Set up command buffer, compute command encoder, etc.
// Dispatch the compute shader on the GPU

}

(g) Handling Metal’s Memory Management:
One of the key features of Metal is its control over memory management.
While Metal handles a lot of this behind the scenes, as a C++ developer,
you have control over how memory is allocated on the GPU. Using C++,
you can manage buffers and other resources efficiently, taking advantage
of both C++'s memory management features and Metal’s GPU-specific
optimizations.

5.3.2Why Use Metal with C++?

While you can use other APIs like OpenGL, CUDA, or Vulkan for GPU programming,
Metal offers several unique advantages when working on Apple devices. The integration
of Metal with C++ allows you to take full advantage of Apple’s hardware while still
using the powerful features of C++. Here are a few reasons why using Metal with C++
can be advantageous:

80

1. Performance:
Metal is designed to offer low-level, high-performance access to the GPU, making
it the best choice for applications where performance is critical. By integrating
it with C++, you can further optimize performance, as C++ is known for its
efficiency and speed.

2. Platform Optimization:
Metal is optimized for Apple devices, including iPhones, iPads, and Macs. Using
Metal ensures that your GPU code is tailored to Apple’s hardware, providing
performance benefits and leveraging unique hardware features that other APIs
may not fully support.

3. Access to Advanced GPU Features:
Metal gives you fine-grained control over GPU resources, something that is
particularly valuable in fields like machine learning, video editing, and gaming.
Integrating Metal with C++ lets you directly access these features, while also
providing you with the power and flexibility of C++ programming.

4. Unified Development Environment:
Metal works seamlessly with Apple's development environment, making it easier
to develop high-performance applications on macOS and iOS. Using C++ with
Metal allows you to maintain consistency across your codebase, especially if you
are already using C++ for other parts of your application.

5.3.3 Conclusion

Incorporating Metal into your C++ projects allows you to tap into the powerful GPU
capabilities of Apple Silicon, while still using the familiar syntax and performance
advantages of C++. By using Objective-C++ to bridge the gap between C++ and
Metal, you can efficiently write high-performance GPU code that runs on Apple devices.

81

This integration opens up a wide range of possibilities for everything from graphics
rendering to machine learning, giving C++ developers an easy way to leverage the full
power of Apple’s hardware.

Chapter 6

Your First GPU Program in C++ on macOS

6.1 Hands-on Project: Matrix Addition on the GPU

In this section, we will walk through a simple, hands-on project: matrix addition on
the GPU using C++ and Metal. Matrix addition is a great starting point for GPU
programming because it involves basic parallel processing, which is well-suited to GPU
hardware. This example will introduce you to some of the key concepts and tools
needed to work with Metal in C++.

6.1.1Why Matrix Addition?

Matrix addition is a common operation in many fields such as machine learning,
graphics, and scientific computing. By learning how to implement it on the GPU,
you'll understand how to structure data for parallel execution and use GPU resources
effectively. Since GPUs excel at performing the same operation on many pieces of
data simultaneously, matrix addition provides a perfect opportunity to leverage these
capabilities.

82

83

6.1.2 Setting Up the Project

Before we dive into the code, let's ensure the environment is properly set up. Follow
the steps from previous chapters to create a project using Objective-C++ and Metal,
ensuring that Xcode and the necessary Metal frameworks are ready to use.

• Step 1: Define the Problem

We will add two matrices, A and B, to produce a resulting matrix C. Each matrix
will have a size of n × n where n is a defined constant. Here’s what the basic
equation looks like:

C[i][j] = A[i][j] + B[i][j]

The challenge is to perform this operation on the GPU efficiently by breaking the
task into smaller, parallel operations. Each element of the resulting matrix can be
computed independently, making this operation perfect for GPU execution.

• Step 2: Initialize Data

We will start by defining our matrices in C++. These matrices will be created
and initialized on the CPU first, and then we’ll transfer the data to the GPU for
processing.

#define MATRIX_SIZE 512

float A[MATRIX_SIZE][MATRIX_SIZE];
float B[MATRIX_SIZE][MATRIX_SIZE];
float C[MATRIX_SIZE][MATRIX_SIZE];

// Initialize matrices with some values
for (int i = 0; i < MATRIX_SIZE; i++) {

84

for (int j = 0; j < MATRIX_SIZE; j++) {
A[i][j] = static_cast<float>(i + j);
B[i][j] = static_cast<float>(i - j);

}
}

• Step 3: Set Up Metal for GPU Operations

Now, let’s set up Metal objects to interact with the GPU. First, we need to create
a MTLDevice to represent the GPU, followed by buffers for the matrices and the
result.

// Create Metal device
id<MTLDevice> device = MTLCreateSystemDefaultDevice();

// Create buffers for the matrices
id<MTLBuffer> bufferA = [device newBufferWithLength:MATRIX_SIZE * MATRIX_SIZE *

sizeof(float) options:MTLResourceStorageModeShared];↪→

id<MTLBuffer> bufferB = [device newBufferWithLength:MATRIX_SIZE * MATRIX_SIZE *
sizeof(float) options:MTLResourceStorageModeShared];↪→

id<MTLBuffer> bufferC = [device newBufferWithLength:MATRIX_SIZE * MATRIX_SIZE *
sizeof(float) options:MTLResourceStorageModeShared];↪→

// Copy data to buffers
memcpy([bufferA contents], A, MATRIX_SIZE * MATRIX_SIZE * sizeof(float));
memcpy([bufferB contents], B, MATRIX_SIZE * MATRIX_SIZE * sizeof(float));

• Step 4: Create a Compute Shader for Matrix Addition

A compute shader is responsible for performing the matrix addition operation
on the GPU. We’ll write a simple Metal shader in GLSL (OpenGL Shading
Language) to add corresponding elements from the two input matrices and store
the result in the output matrix.

85

#include <metal_stdlib>
using namespace metal;

kernel void matrix_add(device const float *A [[buffer(0)]],
device const float *B [[buffer(1)]],
device float *C [[buffer(2)]],
uint id [[thread_position_in_grid]]) {

uint row = id / MATRIX_SIZE;
uint col = id % MATRIX_SIZE;
C[id] = A[id] + B[id];

}

This shader takes each element from matrices A and B, adds them together, and
stores the result in matrix C. The id parameter is the index of the current thread
in the GPU grid, which maps directly to the elements of the matrices.

• Step 5: Compile and Execute the Compute Shader

Next, we need to compile the shader and create a MTLComputePipelineState to
execute it. This pipeline will handle the scheduling and execution of the shader
on the GPU.

// Load and compile the shader
NSError *error = nil;
NSString *shaderSource = [NSString stringWithContentsOfFile:@”MatrixAdd.metal”

encoding:NSUTF8StringEncoding error:&error];↪→

MTLLibrary *library = [device newLibraryWithSource:shaderSource options:nil error:&error];
MTLFunction *computeFunction = [library newFunctionWithName:@”matrix_add”];
MTLComputePipelineState *pipelineState = [device

newComputePipelineStateWithFunction:computeFunction error:&error];↪→

// Create a command queue and buffer
id<MTLCommandQueue> commandQueue = [device newCommandQueue];

86

id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];

// Create the compute command encoder
id<MTLComputeCommandEncoder> computeEncoder = [commandBuffer

computeCommandEncoder];↪→

[computeEncoder setComputePipelineState:pipelineState];
[computeEncoder setBuffer:bufferA offset:0 atIndex:0];
[computeEncoder setBuffer:bufferB offset:0 atIndex:1];
[computeEncoder setBuffer:bufferC offset:0 atIndex:2];

// Define thread group sizes
MTLSize gridSize = MTLSizeMake(MATRIX_SIZE * MATRIX_SIZE, 1, 1);
MTLSize threadGroupSize = MTLSizeMake(256, 1, 1); // Launch 256 threads per group
[computeEncoder dispatchThreads:gridSize threadsPerThreadgroup:threadGroupSize];

// End encoding and commit the command
[computeEncoder endEncoding];
[commandBuffer commit];
[commandBuffer waitUntilCompleted];

• Step 6: Retrieve the Result

Once the GPU finishes executing the matrix addition, the result is stored in the
bufferC object. We can copy the result back from the GPU buffer to the CPU
memory and then print or display it as needed.

memcpy(C, [bufferC contents], MATRIX_SIZE * MATRIX_SIZE * sizeof(float));

• Step 7: Verify the Results

Finally, after the GPU has processed the matrix addition, we can verify that the
result is correct by comparing it with the expected output:

for (int i = 0; i < MATRIX_SIZE; i++) {

87

for (int j = 0; j < MATRIX_SIZE; j++) {
if (C[i][j] != A[i][j] + B[i][j]) {

std::cout << ”Error at [” << i << ”][” << j << ”]” << std::endl;
}

}
}

6.1.3 Conclusion

In this hands-on project, we’ve learned how to write a simple matrix addition program
using Metal and C++ on Apple Silicon. This example has covered initializing data on
the CPU, transferring it to the GPU, writing a compute shader, executing the shader,
and retrieving the results. Matrix addition is a fundamental operation that highlights
how you can use the GPU’s parallel processing capabilities to perform computations
efficiently. This serves as a solid foundation for more complex GPU programming tasks.

88

6.2 Code Walkthrough and Explanation

In this section, we will go through the code step by step and explain each part of the
matrix addition program we just built for the GPU using Metal and C++. This will
help you understand the underlying concepts and how each component works together
to execute the operation on the GPU.

6.2.1 Step 1: Initializing the Data

Before we can perform any operations on the GPU, we need to prepare our data. This
includes creating and initializing the matrices A and B with values that we will later
add together, and allocating a matrix C to hold the result.

#define MATRIX_SIZE 512

float A[MATRIX_SIZE][MATRIX_SIZE];
float B[MATRIX_SIZE][MATRIX_SIZE];
float C[MATRIX_SIZE][MATRIX_SIZE];

// Initialize matrices with some values
for (int i = 0; i < MATRIX_SIZE; i++) {

for (int j = 0; j < MATRIX_SIZE; j++) {
A[i][j] = static_cast<float>(i + j);
B[i][j] = static_cast<float>(i - j);

}
}

Here, we define a constant MATRIX_SIZE to set the dimensions of the matrices. We
then initialize two matrices, A and B, with arbitrary values. These values are simple
calculations that make it easy to track and verify the results. For matrix A, the value
at each position is the sum of the row and column indices, and for matrix B, it’s the

89

difference between the row and column indices. Matrix C is allocated but not yet
initialized since it will store the result of the matrix addition.

6.2.2 Step 2: Setting Up Metal for GPU Operations

Next, we need to set up Metal, Apple's low-level graphics API, to perform operations
on the GPU. We begin by creating a MTLDevice, which represents the GPU, and then
create MTLBuffer objects to hold the data for matrices A, B, and C.

// Create Metal device
id<MTLDevice> device = MTLCreateSystemDefaultDevice();

// Create buffers for the matrices
id<MTLBuffer> bufferA = [device newBufferWithLength:MATRIX_SIZE * MATRIX_SIZE *

sizeof(float) options:MTLResourceStorageModeShared];↪→

id<MTLBuffer> bufferB = [device newBufferWithLength:MATRIX_SIZE * MATRIX_SIZE *
sizeof(float) options:MTLResourceStorageModeShared];↪→

id<MTLBuffer> bufferC = [device newBufferWithLength:MATRIX_SIZE * MATRIX_SIZE *
sizeof(float) options:MTLResourceStorageModeShared];↪→

// Copy data to buffers
memcpy([bufferA contents], A, MATRIX_SIZE * MATRIX_SIZE * sizeof(float));
memcpy([bufferB contents], B, MATRIX_SIZE * MATRIX_SIZE * sizeof(float));

1. Creating the Metal device: The first line initializes the MTLDevice, which gives
us access to the GPU. This is crucial because it allows us to send tasks to the
GPU for execution.

2. Creating buffers: The MTLBuffer objects are used to store the matrix data
in memory on the GPU. These buffers are allocated with a size corresponding
to the number of elements in the matrix (in this case, MATRIX_SIZE *

90

MATRIX_SIZE * sizeof(float)), and we use MTLResourceStorageModeShared
to indicate that the data can be shared between the CPU and GPU.

3. Copying data to buffers: After creating the buffers, we copy the data from the
CPU memory (the A and B matrices) into these buffers. The memcpy function is
used here to transfer the data to the GPU.

6.2.3 Step 3: Writing the Metal Compute Shader

At this point, we need to define the compute shader that will be executed on the
GPU. The shader performs the matrix addition operation by taking each element from
matrices A and B and adding them together, storing the result in matrix C.

#include <metal_stdlib>
using namespace metal;

kernel void matrix_add(device const float *A [[buffer(0)]],
device const float *B [[buffer(1)]],
device float *C [[buffer(2)]],
uint id [[thread_position_in_grid]]) {

uint row = id / MATRIX_SIZE;
uint col = id % MATRIX_SIZE;
C[id] = A[id] + B[id];

}

1. Shader function declaration: The function matrix_add is marked as a kernel,
which indicates that it is a function that will be executed in parallel by multiple
threads on the GPU.

2. Input and output parameters: The shader receives three parameters:

• A, B, and C are pointers to the input matrices and the output matrix,
respectively. These are passed as buffers.

91

3. Thread execution: The id parameter represents the unique index of the thread
executing the shader. Each thread will compute one element of the resulting
matrix C. The thread computes its row and column by dividing and taking the
modulus of id with MATRIX_SIZE.

4. Matrix addition: Each thread performs the matrix addition for its corresponding
element in the matrices A and B and stores the result in C.

6.2.4 Step 4: Compiling and Executing the Shader

Once the compute shader is written, we need to compile it and set up a compute
pipeline to execute it. This involves creating a MTLComputePipelineState object,
which represents the compiled shader program that can be executed on the GPU.

// Load and compile the shader
NSError *error = nil;
NSString *shaderSource = [NSString stringWithContentsOfFile:@”MatrixAdd.metal”

encoding:NSUTF8StringEncoding error:&error];↪→

MTLLibrary *library = [device newLibraryWithSource:shaderSource options:nil error:&error];
MTLFunction *computeFunction = [library newFunctionWithName:@”matrix_add”];
MTLComputePipelineState *pipelineState = [device

newComputePipelineStateWithFunction:computeFunction error:&error];↪→

// Create a command queue and buffer
id<MTLCommandQueue> commandQueue = [device newCommandQueue];
id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];

// Create the compute command encoder
id<MTLComputeCommandEncoder> computeEncoder = [commandBuffer

computeCommandEncoder];↪→

[computeEncoder setComputePipelineState:pipelineState];
[computeEncoder setBuffer:bufferA offset:0 atIndex:0];

92

[computeEncoder setBuffer:bufferB offset:0 atIndex:1];
[computeEncoder setBuffer:bufferC offset:0 atIndex:2];

// Define thread group sizes
MTLSize gridSize = MTLSizeMake(MATRIX_SIZE * MATRIX_SIZE, 1, 1);
MTLSize threadGroupSize = MTLSizeMake(256, 1, 1); // Launch 256 threads per group
[computeEncoder dispatchThreads:gridSize threadsPerThreadgroup:threadGroupSize];

// End encoding and commit the command
[computeEncoder endEncoding];
[commandBuffer commit];
[commandBuffer waitUntilCompleted];

1. Compiling the shader: The shader is loaded from a .metal file, then compiled
using MTLCreateSystemDefaultDevice and newLibraryWithSource. This creates
a library containing the Metal function.

2. Creating a command queue: A MTLCommandQueue is created to manage the
sequence of commands that will be executed on the GPU.

3. Encoding the compute command: A MTLComputeCommandEncoder is used to
set up the actual work the GPU will perform. We associate the compute pipeline,
input buffers (matrices A and B), and the output buffer (C) with the command
encoder.

4. Dispatching the threads: The dispatchThreads method is used to launch the
compute shader on the GPU. The total number of threads is specified by gridSize,
and the number of threads per thread group is defined by threadGroupSize.

5. Submitting the command: After setting up the encoder, the command is
committed to the command buffer, which is then sent for execution. The

93

waitUntilCompleted method ensures that the CPU waits for the GPU to finish
processing before moving on.

6.2.5 Step 5: Retrieving the Results

Once the GPU has completed the computation, the results are stored in the buffer
bufferC. We copy the results back to the CPU memory to process or display them.

memcpy(C, [bufferC contents], MATRIX_SIZE * MATRIX_SIZE * sizeof(float));

6.2.6 Conclusion

This code walkthrough has demonstrated the process of writing a simple matrix
addition program using Metal on macOS. From setting up the data to compiling and
executing the shader, each step highlights important concepts in GPU programming
with Metal. By understanding how these components work together, you’re now
equipped to explore more advanced GPU tasks and take advantage of the parallel
processing power that GPUs offer.

94

6.3 Analyzing Performance Gain

Once you have successfully implemented and run a GPU-based program like matrix
addition, the next critical step is analyzing its performance. Understanding how well
the GPU performs compared to a traditional CPU implementation is essential for
appreciating the benefits of parallel processing. In this section, we will discuss how
to analyze the performance gain when using the GPU, focusing on comparing CPU
and GPU execution times, understanding the bottlenecks, and drawing meaningful
conclusions from the performance data.

6.3.1 Step 1: Measuring Execution Time on the CPU

Before you can compare GPU performance, it’s helpful to first measure how long the
matrix addition takes on the CPU. This gives you a baseline to understand how much
faster the GPU can potentially make the task.
You can measure CPU time using the chrono library in C++:

#include <chrono>

auto start = std::chrono::high_resolution_clock::now();

// CPU matrix addition
for (int i = 0; i < MATRIX_SIZE; i++) {

for (int j = 0; j < MATRIX_SIZE; j++) {
C[i][j] = A[i][j] + B[i][j];

}
}

auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<float> duration = end - start;
std::cout << ”CPU Time: ” << duration.count() << ” seconds” << std::endl;

95

In this code:

• We use std::chrono::high_resolution_clock to record the start and end times for
the matrix addition process on the CPU.

• The matrix addition is performed element by element in nested loops, which is the
sequential approach commonly used on the CPU.

• The time taken is then calculated by subtracting the start time from the end time,
and the result is displayed in seconds.

6.3.2 Step 2: Measuring Execution Time on the GPU

Once you have the CPU performance baseline, you can measure the time it takes for
the GPU to perform the same matrix addition. For this, you can use Metal's command
queue, which allows you to track the execution time of commands sent to the GPU.
To measure GPU time, you need to insert a timestamp query:

id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];

// Add a timestamp to measure GPU execution time
MTLTimestamp startTimestamp = commandBuffer.timestamp;
[commandBuffer commit];
[commandBuffer waitUntilCompleted];

MTLTimestamp endTimestamp = commandBuffer.timestamp;
float gpuTime = endTimestamp - startTimestamp;
std::cout << ”GPU Time: ” << gpuTime << ” seconds” << std::endl;

In this code:

• A timestamp is inserted before and after the GPU command is committed to the
command buffer. This allows us to measure the GPU's execution time.

96

• After the GPU completes the task, the timestamps are read to calculate how long
the operation took on the GPU.

6.3.3 Step 3: Comparing CPU and GPU Performance

Once you have both the CPU and GPU execution times, you can compare them to
understand the performance gain.
Typically, the GPU will show a significant performance improvement due to its
ability to perform parallel operations. While a CPU processes tasks sequentially (one
element at a time), the GPU processes many elements simultaneously, leveraging its
thousands of cores. This parallelism leads to much faster execution for tasks that are
parallelizable, like matrix addition.
You can calculate the performance speedup by dividing the CPU time by the GPU
time:

float speedup = cpuTime / gpuTime;
std::cout << ”Performance Speedup: ” << speedup << ”x” << std::endl;

This speedup factor tells you how many times faster the GPU is compared to the CPU
for this specific operation.

6.3.4 Step 4: Identifying Bottlenecks

While measuring execution time is essential, it’s also crucial to understand what might
limit performance. In some cases, the GPU may not perform as well as expected. This
could be due to several factors:

1. Memory Bandwidth: If the data transfer between the CPU and GPU is slow, this
can create a bottleneck. Metal provides methods to analyze the memory usage,
and optimizing the way data is transferred can significantly improve performance.

97

2. Thread Utilization: Not all algorithms are perfectly parallelizable. If the workload
isn’t split evenly across threads, the GPU may not be fully utilized. Analyzing
the thread execution pattern can reveal areas where parallelism could be
improved.

3. Synchronization: If the GPU is waiting for data from the CPU or is waiting
for previous computations to complete, performance can be negatively affected.
Ensuring that commands are properly pipelined can minimize idle times.

6.3.5 Step 5: Evaluating Real-World Gains

While matrix addition is a simple example, the real-world performance gain from
using a GPU depends on the complexity of the task. For highly parallel operations
like image processing, machine learning, or physics simulations, the performance gain
is often substantial. However, for smaller or less parallelizable tasks, the overhead of
transferring data to and from the GPU may outweigh the performance benefits.

6.3.6 Step 6: Optimizing Performance

To maximize GPU performance, there are several optimization strategies you can
consider:

1. Minimize Data Transfer: Avoid frequent data transfers between the CPU and
GPU, as this can introduce significant latency. Instead, aim to keep the data on
the GPU as much as possible.

2. Optimize Thread Groups: Ensure that the number of threads in each group is
optimal for your specific GPU architecture. Metal allows you to experiment with
different group sizes for better performance.

98

3. Use Metal Features: Leverage Metal’s advanced features, such as resource
management and memory optimization, to get the most out of the hardware.

6.3.7 Conclusion

Analyzing the performance gain from using the GPU over the CPU is an essential
step in understanding the effectiveness of parallel processing. By comparing execution
times, identifying bottlenecks, and optimizing your code, you can ensure that you’re
taking full advantage of the GPU’s computational power. This hands-on analysis helps
you refine your approach to GPU programming and unlock the full potential of Apple
Silicon’s GPU for more demanding tasks.

99

Matrix Addition Example

Let’s add two 2× 2 matrices A and B:

A =

[
1 3

2 4

]
, B =

[
5 7

6 8

]

Operation:

C = A+B

Calculation:

C =

[
1 + 5 3 + 7

2 + 6 4 + 8

]
=

[
6 10

8 12

]

Key Notes:

• Matrix addition is element-wise (each corresponding entry is added).

• The matrices must be of the same dimensions.

Chapter 7

Practical Project – Image Filter on GPU

7.1 Image Processing Using Apple’s GPU

Image processing is one of the most common and computationally demanding tasks
that can benefit from the power of GPUs. In this section, we will explore how you
can use Apple’s GPU to accelerate image filtering tasks, such as applying a blur or
edge-detection filter. The goal is to understand how to leverage the parallel processing
capabilities of the GPU to perform these operations more efficiently compared to
traditional CPU processing.

7.1.1 Understanding Image Processing on the GPU

In image processing, each pixel of an image is usually processed individually or in small
groups, making it a task that is highly suitable for parallel processing. The GPU’s
architecture, with thousands of cores designed to handle parallel tasks, allows it to
process large amounts of data simultaneously. By shifting this task to the GPU, you
can achieve substantial performance improvements, especially for high-resolution images

100

101

or real-time processing applications.
In this example, we will focus on implementing a simple image filter using Apple's
Metal API, specifically leveraging the GPU to apply a filter to an image.

7.1.2 Steps for Image Processing on the GPU

1. Preparing the Image Data The first step is to load the image data into memory.
In most applications, images are stored as an array of pixels, each with color
values for red, green, blue (RGB), and possibly alpha (transparency). For
simplicity, we assume the image is represented as a 2D array of pixels.

In this example, we will use a basic grayscale filter. A typical image processing
task on the GPU involves passing the pixel data to the GPU, where it is
processed in parallel.

2. Creating a Metal Shader for Image Processing The key part of image processing
on the GPU is the shader, which is a small program that runs on the GPU. Metal
uses compute shaders to process the image data. Compute shaders allow you to
execute custom code on the GPU, parallelizing the task of applying a filter across
many pixels.

A simple grayscale shader might look like this in Metal’s shading language:

kernel void grayscaleFilter(texture2d<float> inTexture [[texture(0)]],
texture2d<float> outTexture [[texture(1)]],
uint2 gid [[thread_position_in_grid]]) {

float4 color = inTexture.read(gid);
float gray = 0.299 * color.r + 0.587 * color.g + 0.114 * color.b;
outTexture.write(float4(gray, gray, gray, color.a), gid);

}

In this code:

102

• We read the color of the pixel from the input texture (inTexture).

• We calculate the grayscale value based on the luminance formula (weighted
sum of the RGB components).

• We write the resulting grayscale color to the output texture (outTexture).

3. Setting Up Metal in the C++ Program Before we can use the Metal shader, we
need to set up a Metal environment in C++. This includes creating a Metal
device, setting up a Metal command queue, and creating buffers for the image
data. Here’s an outline of the setup process in C++:

// Create Metal device
id<MTLDevice> device = MTLCreateSystemDefaultDevice();

// Create Metal command queue
id<MTLCommandQueue> commandQueue = [device newCommandQueue];

// Load the image into a texture
id<MTLTexture> inputTexture = createTextureFromImage(device, imageData);

// Create an output texture
id<MTLTexture> outputTexture = createOutputTexture(device, imageWidth, imageHeight);

After setting up the Metal device and command queue, we can load the image
into a Metal texture and prepare an output texture where the filtered image will
be stored.

4. Dispatching the Shader to the GPU With the Metal shader written and the image
data loaded, the next step is to dispatch the shader to the GPU. This is done
using a Metal compute command encoder, which sends the image processing task
to the GPU for execution.

Here’s an outline of how to dispatch the compute shader:

103

// Create the compute pipeline
id<MTLComputePipelineState> pipelineState = [device

newComputePipelineStateWithFunction:grayscaleShader];↪→

// Create a command buffer
id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];

// Create a compute command encoder
id<MTLComputeCommandEncoder> computeEncoder = [commandBuffer

computeCommandEncoder];↪→

// Set the input and output textures
[computeEncoder setTexture:inputTexture atIndex:0];
[computeEncoder setTexture:outputTexture atIndex:1];

// Set the compute pipeline
[computeEncoder setComputePipelineState:pipelineState];

// Set the thread group size and grid size
MTLSize gridSize = MTLSizeMake(imageWidth, imageHeight, 1);
MTLSize threadGroupSize = MTLSizeMake(16, 16, 1); // Adjust this based on the GPU

architecture↪→

[computeEncoder dispatchThreads:gridSize threadsPerThreadgroup:threadGroupSize];

// End the encoding and commit the command buffer
[computeEncoder endEncoding];
[commandBuffer commit];
[commandBuffer waitUntilCompleted];

In this code:

• We create a compute pipeline state that links to the grayscale shader.

• We encode the compute command into a buffer and specify the input and

104

output textures.

• The dispatchThreads function sends the task to the GPU, where it processes
the pixels in parallel.

5. Retrieving the Processed Image After the GPU completes the image processing,
we can retrieve the output texture and convert it back into a format that can be
used by the application or displayed to the user.

The final output image will have the grayscale filter applied, and you can now
display or save the filtered image as required.

7.1.3 Benefits of Using Apple’s GPU for Image Processing

Using Apple's GPU for image processing offers several advantages:

• Performance: The GPU’s ability to handle thousands of parallel operations allows
it to process large images or apply complex filters much faster than a CPU could.

• Real-Time Processing: Tasks that previously took too long to run on a CPU can
be executed in real time, making this ideal for applications like video editing,
augmented reality (AR), or real-time imaging.

• Efficiency: With the power of Apple Silicon's integrated architecture, the GPU
is optimized to work alongside the CPU, making data transfers between the two
components more efficient and reducing overhead.

7.1.4 Conclusion

Image processing using Apple’s GPU through the Metal API provides a powerful
way to accelerate tasks like applying filters to images. By leveraging the GPU’s
parallel processing capabilities, you can significantly improve the performance of image

105

processing tasks, making them faster and more efficient. Whether you are working on
simple image filters or complex real-time processing applications, the GPU offers a clear
advantage in handling large datasets and computations in parallel.

106

7.2 Building a Basic Image Filter (e.g., Grayscale or Blur)

In this section, we will walk through the process of building a basic image filter using
Apple’s GPU, specifically focusing on two common filters: grayscale and blur. Both of
these filters are widely used in image processing and serve as good starting points for
understanding GPU-based image manipulation.

7.2.1 Overview of the Filters

1. Grayscale Filter: The grayscale filter converts a colored image into a range of
shades of gray. This is done by removing the color information and using only
the luminance of the image. A common approach is to calculate a weighted sum
of the red, green, and blue channels to get a single intensity value.

2. Blur Filter: The blur filter softens an image by averaging the color values of
neighboring pixels. This is often done using a convolution matrix, or kernel,
that moves over the image and calculates the average color of pixels in its
neighborhood.

Both filters can be efficiently implemented using GPU shaders, taking advantage of the
parallel processing power of Apple’s Metal API.

7.2.2 Setting Up the Project

Before diving into the actual code, ensure that you have set up the Metal environment
and have an image to work with. For both of these filters, the input will be an image
represented as a texture, and the output will be the filtered image, also represented as a
texture.

1. Grayscale Filter

107

To create a grayscale filter, we need to process each pixel individually, converting
its color to grayscale by applying a simple formula. The most commonly used
formula for converting to grayscale is:

Gray = 0.299 * Red + 0.587 * Green + 0.114 * Blue

This formula gives more weight to the green channel, as it contributes most to the
perceived brightness of the image.

Here is how we can implement this filter using Metal:

kernel void grayscaleFilter(texture2d<float> inTexture [[texture(0)]],
texture2d<float> outTexture [[texture(1)]],
uint2 gid [[thread_position_in_grid]]) {

float4 color = inTexture.read(gid); // Read the pixel color
float gray = 0.299 * color.r + 0.587 * color.g + 0.114 * color.b; // Convert to grayscale
outTexture.write(float4(gray, gray, gray, color.a), gid); // Write the grayscale value

}

In this shader:

• We read the pixel color at the current grid position (gid).

• The pixel color is converted to grayscale using the luminance formula.

• The grayscale value is written to the output texture, keeping the alpha value
intact.

2. Blur Filter

For the blur filter, we typically use a box blur or Gaussian blur. The box blur is
simpler and works by averaging the color values of the pixels surrounding each
pixel. For this example, we will implement a simple box blur using a 3x3 kernel.

108

This means that for each pixel, we will average the colors of the pixel itself and its
eight neighbors.

Here’s how we can write a Metal shader for the blur filter:

kernel void blurFilter(texture2d<float> inTexture [[texture(0)]],
texture2d<float> outTexture [[texture(1)]],
uint2 gid [[thread_position_in_grid]]) {

float4 color = float4(0.0, 0.0, 0.0, 0.0); // Initialize a color accumulator
int2 offsets[9] = {

int2(-1, -1), int2(0, -1), int2(1, -1),
int2(-1, 0), int2(0, 0), int2(1, 0),
int2(-1, 1), int2(0, 1), int2(1, 1)

};

// Loop over the surrounding pixels
for (int i = 0; i < 9; i++) {

int2 neighborPos = gid + offsets[i];
if (neighborPos.x >= 0 && neighborPos.x < inTexture.get_width() &&

neighborPos.y >= 0 && neighborPos.y < inTexture.get_height()) {
color += inTexture.read(neighborPos); // Accumulate color values

}
}

color /= 9.0; // Average the color values
outTexture.write(color, gid); // Write the blurred color to the output texture

}

In this shader:

109

• We define a 3x3 kernel to represent the surrounding pixels.

• We read the color of each neighboring pixel (including the pixel itself).

• We sum the color values and then average them by dividing by 9 (since there
are 9 pixels in the 3x3 kernel).

• Finally, the averaged color is written to the output texture.

7.2.3 Setting Up Metal in C++

Once we have the shaders written, we need to set up Metal in our C++ code to manage
the textures, load the shaders, and dispatch the compute commands to the GPU.
Here is a brief overview of the setup steps in C++:

1. Load the Image: First, we need to load the image into a Metal texture. This can
be done using the MTLTexture API.

2. Create Compute Pipeline: We need to compile the Metal shader into a pipeline
and set it up in the C++ code.

3. Dispatch the Compute Shader: We use the Metal command encoder to dispatch
the compute shader to the GPU, passing the input texture and output texture.

Here’s an example of how to set up the Metal pipeline in C++:

// Create a compute pipeline for grayscale or blur
id<MTLComputePipelineState> pipelineState = [device

newComputePipelineStateWithFunction:shaderFunction];↪→

// Create a command buffer
id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];

// Create a compute command encoder

110

id<MTLComputeCommandEncoder> computeEncoder = [commandBuffer
computeCommandEncoder];↪→

// Set the input and output textures
[computeEncoder setTexture:inputTexture atIndex:0];
[computeEncoder setTexture:outputTexture atIndex:1];

// Set the compute pipeline
[computeEncoder setComputePipelineState:pipelineState];

// Set the thread group size and grid size
MTLSize gridSize = MTLSizeMake(imageWidth, imageHeight, 1);
MTLSize threadGroupSize = MTLSizeMake(16, 16, 1);
[computeEncoder dispatchThreads:gridSize threadsPerThreadgroup:threadGroupSize];

// Commit the command buffer
[computeEncoder endEncoding];
[commandBuffer commit];
[commandBuffer waitUntilCompleted];

7.2.4 Conclusion

By implementing these basic image filters—grayscale and blur—using Metal and
the GPU, we can achieve significant performance improvements compared to CPU-
based image processing. The parallel processing power of the GPU allows us to handle
large images efficiently, making it ideal for applications that require real-time image
processing, such as video editing, augmented reality, or gaming.

111

7.3 Comparing CPU vs GPU Processing Times

One of the primary motivations for using GPU processing, especially in image
processing tasks, is the significant speedup it offers over traditional CPU-based
methods. In this section, we will compare the processing times of image filters when
executed on the CPU versus when they are executed on the GPU. This comparison
will help demonstrate the advantages of GPU computing and provide insight into the
performance gains that can be achieved when offloading work to the GPU.

7.3.1 CPU Processing Times

The central processing unit (CPU) is designed for general-purpose computations and
excels in tasks that require high single-threaded performance and complex branching
logic. However, when it comes to repetitive tasks, such as processing large sets of pixels
in an image, the CPU may struggle with efficiency. This is especially true when the
operations are highly parallelizable, like applying an image filter.
When an image filter is applied on the CPU, each pixel is typically processed
sequentially, one after the other. For instance, when applying a blur filter, the CPU
will iterate over each pixel in the image, compute the average of surrounding pixels, and
then move to the next one. While modern CPUs are equipped with multiple cores, their
ability to parallelize such tasks is still limited compared to the GPU.

7.3.2 GPU Processing Times

On the other hand, a graphics processing unit (GPU) is optimized for parallel
computations, making it much more efficient at handling tasks like image processing.
GPUs consist of hundreds or even thousands of smaller cores designed to perform
simple operations in parallel. When an image filter is applied to an image on the GPU,

112

each pixel can be processed concurrently, significantly reducing the overall computation
time.
In the case of the Metal API on Apple Silicon, the GPU can process thousands of pixels
simultaneously using compute shaders. Each pixel or group of pixels is processed in
parallel, and the GPU can handle the heavy computational load much more efficiently
than the CPU. This is particularly noticeable when working with larger images or more
complex filters, where the GPU’s ability to parallelize the workload becomes a major
advantage.

7.3.3 Performance Comparison

To illustrate the performance difference between the CPU and GPU, let's consider a
scenario where we apply a simple image filter (such as grayscale or blur) to an image of
1920x1080 pixels.

1. CPU Processing Time:
On the CPU, depending on the number of cores and the efficiency of the
algorithm, the processing time can vary. For example, if the filter is applied to
each pixel one by one, the CPU might take several seconds to process the entire
image, especially if the image is large.

2. GPU Processing Time:
With the GPU, the same filter can be applied in parallel across all pixels. The
GPU would typically finish the task in a fraction of the time it takes the CPU to
process the same image. For example, a 1920x1080 image might take less than a
second to process on the GPU, depending on the complexity of the filter.

113

7.3.4 Real-World Example

Let’s say you are applying a simple blur filter to a 1920x1080 image on both the CPU
and GPU.

• CPU:
Using a modern multi-core CPU, it might take around 2-4 seconds to process the
image, as the CPU processes each pixel sequentially or in small batches.

• GPU:
On the Apple Silicon GPU, the same filter might be applied in less than 100
milliseconds. This massive reduction in processing time is due to the parallel
execution of the image processing tasks across thousands of GPU cores.

7.3.5 Factors Affecting Performance

Several factors can influence the exact performance gains you will see when using the
GPU over the CPU, including:

1. Image Size: Larger images have more pixels to process, which means the GPU’s
parallelization advantages become even more pronounced. For smaller images, the
CPU might be able to keep up, but for larger images, the GPU will consistently
outperform the CPU.

2. Filter Complexity: Simple filters (like grayscale or blur) are more easily
parallelizable and show larger performance gains on the GPU. More complex
filters, like edge detection or convolution with large kernels, will still benefit from
GPU acceleration, but the performance difference may be smaller than with
simpler filters.

114

3. Hardware: The performance gain from using the GPU also depends on the
hardware you are using. Apple’s M1, M2, and M3 chips feature powerful
GPUs that are well-optimized for image processing tasks, so the difference in
performance between the CPU and GPU will be even more noticeable.

4. API and Optimizations: The choice of API and how well the program is
optimized for GPU use also plays a role. Using Metal in conjunction with efficient
shader code can significantly reduce the time it takes to apply filters, making full
use of the GPU’s capabilities.

7.3.6 Conclusion

The difference in processing times between the CPU and GPU when applying image
filters is significant, with the GPU offering a substantial speedup. This is due to the
GPU’s ability to perform massively parallel computations, which is ideal for tasks like
image filtering that can be parallelized across many pixels. In practical terms, using
the GPU can turn what would be a slow, seconds-long process on the CPU into a near-
instantaneous operation on the GPU.
For tasks involving real-time image processing or handling large datasets, leveraging
the GPU becomes an essential step in achieving performance that would be difficult
or impossible to match using the CPU alone. By utilizing Metal and Apple Silicon’s
powerful GPU architecture, developers can harness this performance advantage and
bring highly efficient image processing to their applications.

Chapter 8

Using the GPU in AI & Machine Learning

8.1 Apple’s CoreML and Metal Performance Shaders (MPS)

As AI and machine learning (ML) applications grow in complexity, they demand
increased processing power. Apple offers two powerful frameworks, CoreML and Metal
Performance Shaders (MPS), which are designed to harness the power of Apple Silicon
GPUs, such as the M1, M2, and M3 chips. These frameworks enable developers to
efficiently utilize the GPU for accelerating AI and ML tasks, improving the performance
of applications that rely on these technologies.

8.1.1 CoreML: Apple’s Machine Learning Framework

CoreML is Apple’s machine learning framework designed to integrate machine learning
models into applications on iOS, macOS, watchOS, and tvOS. It allows developers
to run pre-trained models for a variety of tasks, including image recognition, natural
language processing, and predictive analysis, all while optimizing performance for Apple
hardware.

115

116

One of the standout features of CoreML is its ability to use the GPU for processing
machine learning models. By leveraging the power of the GPU, CoreML provides
a significant performance boost for tasks like image classification, object detection,
and neural network inference. The GPU can process multiple data points in parallel,
making it ideal for the large-scale computations required by machine learning
algorithms.
CoreML simplifies the integration of machine learning models into apps. With its
support for a variety of model formats like Keras, TensorFlow, and PyTorch, CoreML
makes it easy to convert a model from a popular framework into a format optimized for
use on Apple devices. Once the model is converted, CoreML can efficiently run it on
the CPU, GPU, or even the Neural Engine (Apple’s dedicated hardware for AI tasks),
ensuring that machine learning tasks run as efficiently as possible.

8.1.2 Metal Performance Shaders (MPS): A GPU-Accelerated Framework

While CoreML is designed to handle a wide range of machine learning tasks, Metal
Performance Shaders (MPS) focuses specifically on GPU-accelerated compute
operations. MPS is part of the Metal API, which provides low-level access to the GPU
for high-performance graphics and data computation. MPS contains a collection of pre-
built shaders and functions specifically designed for machine learning, including tools
for matrix multiplication, convolution, image filtering, and more.
MPS can be particularly useful for developers who need fine-grained control over the
GPU while working with machine learning models. By utilizing Metal’s compute
shaders, MPS allows developers to write custom GPU-based algorithms for training and
inference. This is ideal for developers who want to optimize performance beyond what
is available with higher-level frameworks like CoreML.
In addition to general machine learning tasks, MPS includes optimized functions
for common operations used in deep learning, such as convolution operations, which

117

are essential for processing images in convolutional neural networks (CNNs). These
operations can be performed much faster on the GPU than on the CPU, thanks to the
parallel processing capabilities of the GPU.
MPS also supports data pre-processing and augmentation, which are essential steps
in many machine learning pipelines. By offloading these tasks to the GPU, MPS can
significantly reduce the time needed to prepare data for model training or inference.

8.1.3 Integration of CoreML and MPS

One of the powerful aspects of Apple’s ecosystem is the seamless integration between
CoreML and Metal Performance Shaders. While CoreML provides a higher-level
abstraction for machine learning, MPS enables fine-grained control over the GPU for
custom machine learning workloads. Together, they create a comprehensive solution for
AI and ML tasks on Apple devices.
For example, a developer could use CoreML to run a pre-trained model on the GPU,
leveraging MPS to accelerate custom operations like feature extraction or data
augmentation before passing the results into the model. This combination of high-level
and low-level frameworks gives developers the flexibility to achieve optimal performance
while simplifying the process of integrating machine learning into their applications.

8.1.4 Key Benefits of Using CoreML and MPS

1. Efficiency: CoreML and MPS allow developers to take full advantage of the
GPU’s parallel processing power, which speeds up machine learning tasks like
training and inference.

2. Optimized for Apple Silicon: Both frameworks are optimized for Apple’s
hardware, ensuring that machine learning tasks are executed with maximum
performance on devices powered by M1, M2, and M3 chips.

118

3. Ease of Use: CoreML abstracts much of the complexity of working with machine
learning models, making it easier to integrate AI into apps. MPS, on the
other hand, provides more control for developers who need to fine-tune GPU
performance for custom tasks.

4. Comprehensive Machine Learning Support: CoreML supports a wide range of
machine learning models and formats, while MPS provides GPU-accelerated
operations for deep learning tasks. Together, they cover the majority of AI and
ML workloads.

5. Cross-Platform Compatibility: CoreML and MPS are designed to work across all
Apple platforms, including iPhone, iPad, Mac, and Apple Watch. This ensures
that machine learning models can be run efficiently on a variety of devices.

8.1.5 Conclusion

Apple’s CoreML and Metal Performance Shaders (MPS) are powerful tools for
leveraging the GPU in AI and machine learning applications. CoreML provides a high-
level framework that makes it easy to integrate machine learning models into apps,
while MPS offers fine-grained control for custom GPU-accelerated tasks. Together, they
allow developers to build high-performance AI applications that can run efficiently on
Apple Silicon, taking full advantage of the GPU’s processing power. Whether you’re
working with pre-trained models or creating custom machine learning algorithms, these
frameworks provide the necessary tools to accelerate your development process and
improve application performance.

119

8.2 Integrating a Simple ML Model into a C++ Workflow

Integrating a machine learning model into a C++ workflow can be a rewarding way
to bring the power of AI to your applications. With Apple Silicon’s GPU acceleration
capabilities, the process can be made more efficient, particularly when using CoreML
and Metal Performance Shaders (MPS). In this section, we will explore how to integrate
a simple machine learning model into a C++ project, enabling GPU-accelerated
inference on Apple Silicon devices.

8.2.1 Step 1: Preparing the Machine Learning Model

The first step in integrating a machine learning model into a C++ workflow is
obtaining or training the model. You can either use a pre-trained model or train one
using popular machine learning frameworks such as TensorFlow, PyTorch, or Keras.
For the sake of this example, let’s assume that you have a pre-trained model, such as
a simple image classifier, which you wish to integrate into your C++ application.
Once you have a model, the next step is to convert it into a format that CoreML
can use. This typically involves converting the model from its original format (e.g.,
TensorFlow or Keras) to the .mlmodel format, which is optimized for use on Apple
devices.
Apple provides a conversion tool called coremltools, which can convert models from
various frameworks into CoreML format. Here's an example of how you might convert a
Keras model to CoreML:

import coremltools
import tensorflow as tf

Load a pre-trained Keras model
model = tf.keras.applications.MobileNetV2(weights=”imagenet”)

120

Convert the model to CoreML format
coreml_model = coremltools.converters.tensorflow.convert(model)

Save the CoreML model to a file
coreml_model.save('MobileNetV2.mlmodel')

Once your model is in CoreML format, it's ready to be integrated into your C++
application.

8.2.2 Step 2: Setting Up the C++ Project

To begin integrating the CoreML model into a C++ project, you will need to create
a macOS application in Xcode that can interface with CoreML. Start by setting up
a C++ project in Xcode. While Xcode itself does not natively support C++ for UI-
based macOS applications, it does support C++ code for processing, so you will need
to create a hybrid project that utilizes both C++ and Objective-C.

1. Create a New Project in Xcode:

• Open Xcode and create a new macOS project.

• Choose a macOS Command Line Tool project with C++ as the language.

2. Add CoreML Support:

• Make sure that you link the necessary frameworks for CoreML and Metal.
You can add these frameworks by going to your project settings, selecting
the ”Link Binary with Libraries” section, and adding CoreML.framework
and Metal.framework.

3. Include Objective-C++:

121

• For easier integration between C++ and Objective-C (which is required for
CoreML), you will use Objective-C++. This is done by renaming your C++
files with the .mm extension. Objective-C++ allows you to call Objective-C
classes, like CoreML models, within your C++ workflow.

8.2.3 Step 3: Loading the Model in C++

Once the project is set up, the next step is to load the CoreML model into the
application. This is done using the CoreML API, which can be called from Objective-
C++. The model is loaded into memory and prepared for inference.
Here’s a simple code example to load the model into your C++ workflow:

#import <CoreML/CoreML.h>

void loadModel() {
// Load the CoreML model from the app bundle
NSError *error = nil;
MLModel *model = [MLModel modelWithContentsOfURL:[NSURL

fileURLWithPath:@”MobileNetV2.mlmodel”] error:&error];↪→

if (error) {
std::cerr << ”Error loading model: ” << error.localizedDescription.UTF8String << std::endl;

} else {
std::cout << ”Model loaded successfully” << std::endl;

}
}

This code loads the .mlmodel file, which contains the trained machine learning model,
into the C++ workflow using the Objective-C++ syntax.

122

8.2.4 Step 4: Running Inference on the Model

Once the model is loaded, you can now run inference on it. Inference refers to using the
trained model to make predictions based on new data. In this case, we’ll assume the
model takes image data as input.
First, you need to prepare the input data. For image data, you would typically use
Metal to load the image into a GPU-compatible format. Then, you’ll pass the image
to the model and perform the inference.
Here’s an example of how you might run inference on the model in Objective-C++:

#import <CoreML/CoreML.h>
#import <Metal/Metal.h>

void runInference(MLModel *model, id<MTLDevice> device, MTLTexture *inputImage) {
// Convert the MTLTexture to a format suitable for the model (e.g., a buffer)
// This step will depend on your specific model and data type

// Create an MLMultiArray from the image or other input data
MLMultiArray *inputArray = ... // Prepare the input array

// Perform inference on the model
NSError *error = nil;
MLFeatureProvider *prediction = [model predictionFromFeatures:@{ @”input”: inputArray }

error:&error];↪→

if (error) {
std::cerr << ”Error during inference: ” << error.localizedDescription.UTF8String << std::endl;

} else {
// Process the prediction result
std::cout << ”Prediction result: ” << prediction.description.UTF8String << std::endl;

}
}

123

In this example, inputImage would be the image you wish to classify, and the result is
the output of the inference process. The output can be processed further depending on
your use case (e.g., classifying an image or predicting a value).

8.2.5 Step 5: Optimizing for GPU Performance

By default, CoreML tries to select the best hardware for running the model (CPU,
GPU, or Neural Engine). However, if you want to ensure that the model is running on
the GPU, you can explicitly request it by setting the MLModelConfiguration:

MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
config.computeUnits = MLComputeUnitsGPU; // Request GPU execution
NSError *error = nil;
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:config

error:&error];↪→

This code forces the model to run on the GPU, making use of Apple Silicon’s powerful
GPU for faster computation.

8.2.6 Conclusion

Integrating a machine learning model into a C++ workflow on macOS is a seamless
process with the help of Apple’s CoreML framework. By using Objective-C++ and
Metal for GPU acceleration, developers can integrate sophisticated AI models into their
applications, ensuring optimal performance on Apple Silicon devices. This approach
leverages the best of both worlds: the high-performance computing power of the GPU
and the efficiency of C++ for fast, scalable application development.

124

8.3 Real-World Use Case with Performance Boost

In this section, we will explore a real-world use case where leveraging Apple Silicon's
GPU for machine learning leads to a substantial performance boost. The ability to
accelerate AI tasks on the GPU has transformed industries, and by utilizing Apple’s
CoreML and Metal Performance Shaders (MPS), developers can achieve dramatic
improvements in processing times, especially for demanding tasks like image recognition,
natural language processing, and data analytics.

8.3.1 Use Case: Image Classification with Deep Learning

One of the most common and impactful applications of machine learning is image
classification. The goal here is to take an image and predict which category it
belongs to—such as identifying whether a picture contains a cat, dog, or car. Image
classification is computationally intensive, requiring the processing of large amounts of
pixel data through complex neural networks. This is where GPU acceleration becomes
crucial.
Imagine you have a deep learning model like MobileNetV2, a lightweight image classifier
trained to recognize a variety of objects. While running such a model on the CPU
may provide results, the processing time would be significantly slower, especially when
dealing with a high volume of images. However, by utilizing Apple Silicon’s GPU, you
can dramatically accelerate inference times.

8.3.2 Scenario: Classifying a Batch of Images

Let’s consider an example where a developer needs to classify a batch of 1,000 images.
Without GPU acceleration, the model might take several seconds to classify each image
on the CPU. On an Apple Silicon device, this task can be significantly optimized by

125

offloading the computation to the GPU.

1. CPU Processing (Baseline Performance):

• Without GPU acceleration, the task of classifying 1,000 images could
take minutes. Depending on the model complexity and hardware, the
performance could be anywhere between 3 to 10 seconds per image.

2. GPU-Accelerated Processing (Using CoreML and Metal):

• By leveraging CoreML and Metal Performance Shaders, the same task
can be processed on the GPU, reducing the time per image to fractions
of a second. In some cases, this results in a speedup of 4x to 10x or more
compared to CPU-based processing.

8.3.3 Performance Comparison

To illustrate this, let’s break down the performance difference between using the CPU
and the GPU:

• CPU Time per Image:

– If each image takes 5 seconds to classify on the CPU, classifying 1,000
images would take approximately 5,000 seconds, or roughly 83 minutes.

• GPU Time per Image (with Metal):

– On the GPU, the same task could be completed in about 0.5 seconds per
image, reducing the total time for 1,000 images to just 500 seconds, or about
8 minutes.

126

This shows a remarkable reduction in processing time—nearly a tenfold improvement—
simply by utilizing the GPU through CoreML and Metal. This performance boost is
especially significant for real-time applications, where every millisecond counts.

8.3.4 Benefits Beyond Speed: Efficiency and Power Consumption

While speed is a primary factor, GPU acceleration also brings other benefits, such
as improved energy efficiency. Apple Silicon’s GPUs are designed to provide high
performance while consuming less power compared to traditional CPU-based
computation. This allows applications to run faster without draining the device’s
battery, making it ideal for mobile devices and laptops where power consumption is a
critical concern.

8.3.5 Real-World Applications

The performance gains realized by using the GPU for machine learning tasks have
widespread applications across various industries. Some of the areas where this
performance boost is particularly valuable include:

• Healthcare:
In medical imaging, AI models can be used to classify X-rays, MRI scans, and
other medical images. By using GPU acceleration, these models can process
large volumes of images quickly, allowing healthcare professionals to make faster
diagnoses.

• Autonomous Vehicles:
Self-driving cars rely heavily on image classification for object detection, lane
recognition, and navigation. With GPU acceleration, these systems can process
visual data in real time, improving safety and decision-making.

127

• Retail and E-commerce:
AI-powered product recommendations, inventory management, and visual search
rely on fast image processing. By using GPUs, e-commerce platforms can enhance
the customer experience with faster and more accurate services.

• Social Media and Content Creation:
Image and video recognition play a crucial role in moderating content, tagging,
and categorizing media. GPU-accelerated AI models can process user-generated
content quickly, improving the user experience while maintaining high accuracy.

8.3.6 Conclusion

Using Apple Silicon's GPU for machine learning tasks delivers substantial performance
improvements, allowing developers to achieve faster processing times, more efficient
energy use, and enhanced scalability. Whether it's classifying images, analyzing large
datasets, or running real-time AI applications, leveraging GPU acceleration through
CoreML and Metal unlocks the full potential of AI on Apple devices. The real-world
applications of this performance boost are broad, impacting everything from healthcare
to autonomous driving, and demonstrate how GPU programming can drive significant
progress in AI and machine learning workflows.

Chapter 9

Optimizing Performance and Benchmarking

9.1 Tools for GPU Performance Measurement

When developing GPU-accelerated applications, it is crucial to understand how the
system is performing and where potential bottlenecks lie. Measuring GPU performance
allows developers to optimize their code and make the most efficient use of hardware
resources. Fortunately, Apple provides several tools that can help developers assess and
fine-tune GPU performance, ensuring that their applications run efficiently on Apple
Silicon devices.

9.1.1 Xcode Instruments

Xcode Instruments is one of the most powerful tools available for measuring GPU
performance on macOS. It provides a suite of performance analysis tools that can help
developers monitor various aspects of their applications, including CPU and GPU usage,
memory consumption, and more.

• Metal System Trace:

128

129

This tool within Xcode Instruments is designed specifically to track the behavior
of Metal-based applications. It helps developers visualize the performance of
GPU-related tasks in real-time, including the GPU’s workload, command buffer
execution times, and resource usage. By using the Metal System Trace, developers
can identify inefficiencies in how commands are sent to the GPU or how resources
are being used.

• Frame Capture:
The Frame Capture tool allows developers to capture a frame of their application
and analyze every GPU command it executes. This helps developers pinpoint any
issues with rendering, such as unnecessary computations or inefficient use of GPU
resources. It can also be used to optimize shader code and resource allocation.

• GPU Counters:
Instruments also includes GPU counters that measure low-level GPU performance
metrics such as frame rate, GPU load, and memory bandwidth. These counters
can provide insights into how well the GPU is handling the workload and where
optimizations are needed.

9.1.2 Metal Performance Shaders (MPS) Metrics

Apple’s Metal Performance Shaders (MPS) framework includes several built-in
performance measurement tools to assess the efficiency of GPU computations. MPS
can help developers fine-tune machine learning models and image processing pipelines
by providing performance insights.

• MPS Performance Analysis:
MPS provides real-time performance metrics for GPU-accelerated operations
like matrix multiplications, image processing, and deep learning tasks. By

130

integrating MPS with Metal, developers can track GPU utilization and determine
whether certain operations are taking too long or consuming more resources than
necessary.

• MPS Optimization:
MPS also provides guidance on how to optimize GPU operations. For example, it
suggests how to adjust memory management techniques, balance workloads across
GPU threads, and streamline resource handling. This can result in significant
performance improvements when using MPS for tasks like image filters or AI
model inference.

9.1.3 OpenGL and Metal Debugging Tools

While Metal is Apple’s preferred API for GPU programming, many developers may still
use OpenGL in existing projects. For developers working with OpenGL, Apple provides
a set of debugging tools that can be useful for measuring performance and identifying
bottlenecks.

• OpenGL Profiler:
The OpenGL Profiler is a tool included in Xcode that allows developers to
analyze OpenGL-based applications. It helps track GPU usage, memory
consumption, and shader performance. While OpenGL is less efficient than
Metal, this tool remains valuable for optimizing legacy applications that rely on
OpenGL.

• OpenGL Shader Profiler:
This tool focuses on analyzing the performance of OpenGL shaders. It highlights
bottlenecks in the shader pipeline and provides suggestions on how to improve
performance. While the OpenGL Profiler is not as comprehensive as the Metal-

131

specific tools, it can still provide valuable insights when working with OpenGL
applications.

9.1.4 Third-Party Benchmarking Tools

In addition to Apple’s native tools, developers can also leverage third-party
benchmarking tools to measure GPU performance. These tools are typically
more focused on specific tasks or provide more granular control over performance
measurement.

• GLMark2:
GLMark2 is an open-source benchmarking tool that tests the performance
of OpenGL and Metal implementations. It runs a series of graphical tests
to measure GPU rendering performance, such as frame rate and throughput.
While primarily used for OpenGL, it can also be adapted for Metal with some
customization.

• Unigine Heaven Benchmark:
Unigine Heaven is a popular benchmarking tool for testing the graphical
performance of GPUs, particularly in 3D rendering and gaming. Though it’s not
Apple-specific, it can be used to benchmark Metal-based applications on macOS.
It offers high-quality rendering tests that push the GPU to its limits, providing
valuable insights into rendering performance.

• Compute Benchmarking Tools:
For more specific GPU tasks like machine learning or general-purpose GPU
(GPGPU) computations, tools like TensorFlow Benchmark or MLPerf can be
used. These benchmarking tools assess how well a GPU handles specific machine
learning or computational tasks, providing detailed insights into the performance
of AI models or heavy computations.

132

9.1.5 Command Line Tools and Custom Profilers

For developers who prefer a more hands-on approach, command-line tools can offer
detailed performance insights for GPU workloads.

• Activity Monitor:
macOS includes the Activity Monitor tool, which provides a high-level overview
of system performance. It displays the current GPU usage, along with CPU,
memory, and energy consumption. While it doesn't provide the level of detail
available in Xcode Instruments, it’s a good tool for quick checks.

• Custom Profilers:
For developers working on very specific performance optimizations, writing
custom profilers using Metal or OpenCL can be useful. By tracking GPU time
for individual tasks or kernels, developers can gather granular data that is tailored
to their specific application’s needs.

9.1.6 Conclusion

Measuring GPU performance is a critical step in optimizing GPU-accelerated
applications. By using tools such as Xcode Instruments, Metal Performance Shaders,
OpenGL and Metal Debugging tools, third-party benchmarks, and custom profilers,
developers can gain a deep understanding of how their applications are utilizing the
GPU. Armed with this knowledge, they can make targeted optimizations to ensure
their code runs efficiently, ultimately improving both the performance and the user
experience of their GPU-accelerated applications.

133

9.2 Tips for Writing Efficient GPU Code

Writing efficient GPU code is essential for maximizing performance, especially when
working on tasks that require high computational power, such as image processing,
machine learning, or simulations. Efficient GPU programming not only improves
runtime but also makes the best use of hardware resources, leading to faster processing
times and better power efficiency. Below are key tips for writing optimized GPU code
on Apple Silicon using Metal and C++.

9.2.1 Minimize Data Transfer Between CPU and GPU

One of the main bottlenecks in GPU programming is the transfer of data between the
CPU and GPU. Data transfer is typically slow compared to computations that happen
on the GPU. To optimize performance, reduce the number of transfers and keep data
on the GPU as much as possible. For example:

• Use Unified Memory: Apple Silicon’s Unified Memory Architecture (UMA) allows
both the CPU and GPU to access the same memory. This reduces the need for
copying data between the two processors. Take advantage of UMA by allocating
memory that both the CPU and GPU can share.

• Batch Data Transfers: When transferring data between the CPU and GPU, it’s
better to batch multiple operations into one transfer rather than transferring data
multiple times. This reduces overhead and increases performance.

9.2.2 Optimize GPU Memory Usage

Efficient use of GPU memory is critical to ensuring that your application runs smoothly.
Memory access speed is one of the main factors influencing GPU performance. To
optimize memory usage:

134

• Use Buffers and Textures Efficiently: Store frequently used data in buffers
and textures that are optimized for GPU access. This ensures faster read and
write operations. For example, use MTLBuffer objects for storing vertex data,
constants, and other resources, and MTLTexture for images or texture data.

• Memory Coalescing: Ensure that memory accesses are coalesced, meaning that
adjacent threads access adjacent memory locations. This minimizes memory
latency and improves performance, especially in large-scale computations.

• Avoid Frequent Memory Allocations: Allocate memory for buffers and textures
once, and reuse them throughout the application. Frequent allocations and
deallocations can cause unnecessary overhead and slow down performance.

9.2.3 Leverage Parallelism

GPUs are designed to handle massive parallelism, so taking advantage of this capability
is essential for achieving high performance. To maximize the use of parallelism:

• Write Parallel Code: Ensure that your code is parallelizable. Tasks such as matrix
multiplications or image processing can often be split into smaller independent
tasks that can run simultaneously across many threads. Use Metal’s compute
shaders to execute parallel computations.

• Use Thread Groups Effectively: Metal allows you to organize threads into thread
groups, which are the smallest unit of work executed in parallel. Organize your
threads in such a way that minimizes idle time and maximizes GPU resource
utilization. Make sure that the number of threads in each group aligns with the
GPU’s architecture for better performance.

• Maximize Thread Usage: When launching kernels (functions executed by the
GPU), make sure to utilize the full potential of the GPU’s processing power

135

by launching enough threads. This means using the right number of threads
per thread group and ensuring that the overall workload fits the GPU's parallel
processing capabilities.

9.2.4 Minimize Divergence in Shaders

Branch divergence occurs when threads within the same group take different execution
paths. This leads to inefficiency because the GPU must process all paths for each
thread, which decreases performance. To minimize divergence:

• Avoid Conditional Branches: When possible, avoid using conditionals (if/else
statements) inside shaders that are evaluated by multiple threads at the same
time. If divergence is unavoidable, try to group threads that follow the same path
together.

• Use Predication: If you need to apply a condition, consider using predication,
where the decision is made before the branch, and all threads in the group
execute the same code.

9.2.5 Optimize Shader Code

Shaders are the heart of GPU computation, and efficient shader code is essential for
good performance. Here are a few tips to optimize shader code:

• Minimize Complex Calculations: Avoid performing expensive calculations, such as
trigonometric functions or divisions, inside shaders if possible. Precompute values
on the CPU or cache intermediate results to save time during shader execution.

• Use Precision Wisely: Metal allows developers to specify the precision of variables
in shaders. Use lower precision (e.g., half instead of float) when the extra

136

precision is unnecessary, as this can speed up execution and reduce memory
usage.

• Keep Shaders Small: Small shaders are easier to optimize. Break down large,
complex shaders into smaller, more manageable pieces if possible.

9.2.6 Optimize Compute Pipeline States

When setting up a compute pipeline, ensure that you configure the state objects (like
MTLComputePipelineState) efficiently. Unnecessary state changes or overly complex
pipeline configurations can hurt performance.

• Minimize Pipeline State Changes: Switching between pipeline states is costly.
Minimize the number of state changes during GPU computation. This includes
reducing shader program switches or texture binding changes.

• Optimize Resource Binding: When passing resources such as textures or buffers to
shaders, ensure that they are bound efficiently. For example, group resources in a
way that minimizes the need for frequent bindings during kernel execution.

9.2.7 Use Profiling and Debugging Tools

To continuously optimize your GPU code, use tools to profile and debug performance.
Xcode provides Instruments, which allows you to track GPU usage, memory usage, and
shader performance. Use these tools to identify bottlenecks and inefficiencies in your
code. Focus on areas that show high GPU utilization or memory access delays, and
experiment with optimizations in those areas.

137

9.2.8 Leverage Hardware-Specific Features

Apple Silicon GPUs have specific features that you can take advantage of to enhance
performance. For example:

• Metal Performance Shaders (MPS): Metal provides a set of high-performance
APIs for common GPU tasks, such as matrix operations and image processing.
MPS takes full advantage of hardware acceleration, providing optimized
implementations of these operations. Use these when possible to avoid reinventing
the wheel and ensure better performance.

• Threadgroup Memory: Apple Silicon GPUs feature high-speed threadgroup
memory, which is local memory available for use by threads within a thread
group. Using threadgroup memory can greatly speed up certain operations by
reducing the need for global memory accesses.

9.2.9 Consider Power Efficiency

Efficient GPU code isn’t just about speed—it’s also about power efficiency, especially
on mobile devices. Writing power-efficient code can extend battery life without
sacrificing performance. Here’s how you can improve power efficiency:

• Reduce Idle Time: Avoid unnecessary idle periods in the GPU. Keep the GPU
busy by organizing tasks to ensure that it’s fully utilized when active.

• Lower GPU Frequency: If your application does not require maximum GPU
power, consider reducing the frequency of GPU operations. This can be done
by reducing the workload or utilizing low-power modes, especially on battery-
powered devices.

138

9.2.10 Conclusion

Writing efficient GPU code on Apple Silicon using Metal and C++ requires careful
attention to memory management, parallelism, optimization of shaders, and
performance measurement. By following the tips outlined above, you can ensure that
your applications make the best use of the GPU’s power and resources. This not only
improves performance but also leads to smoother and more efficient applications that
run well on Apple devices.

139

9.3 Comparing Results on M3 and M4 Chips

When optimizing GPU performance for Apple Silicon, it’s essential to understand the
differences between the various chip architectures, such as the M3 and M4 chips. Each
new generation of Apple’s Silicon chips brings enhancements in performance, power
efficiency, and GPU capabilities. Understanding how your code performs on these
different chips is key to fine-tuning your application and taking full advantage of the
hardware improvements.

9.3.1 Key Differences Between M3 and M4 Chips

The M3 and M4 chips, while both part of Apple’s transition to custom Silicon, offer
different performance characteristics due to advancements in architecture. The M3 chip
is the earlier version, while the M4 represents an evolution with more powerful features.

• M3 Chip: The M3 chip, based on Apple's third-generation architecture, offers
significant improvements over previous iterations. It has a larger number of
GPU cores and improved memory bandwidth, which leads to faster processing
for GPU-heavy tasks. However, it is still somewhat limited compared to the M4,
particularly in more intensive tasks like AI and machine learning workloads.

• M4 Chip: The M4 chip builds upon the M3 architecture with enhancements in
multiple areas. It includes more GPU cores, better memory efficiency, and higher
clock speeds. Additionally, the M4 chip features new AI accelerators, making
it particularly well-suited for tasks involving machine learning and complex
computational workloads.

Understanding these differences is important when comparing the performance of GPU
tasks on each chip, especially when considering optimizations and hardware-specific
features.

140

9.3.2 Benchmarking GPU Performance

To compare performance across M3 and M4 chips, it’s useful to run a series of
benchmarks using common tasks, such as image processing, machine learning, or
scientific computations, that make use of the GPU. These benchmarks will help
highlight the performance gains when transitioning from M3 to M4.

1. Running Benchmarks:

To ensure accurate results, it’s essential to run the same set of tests on both chips
using the same code and workloads. The following steps should be followed:

(a) Setup the Testing Environment: Ensure that both the M3 and M4 devices
are running the same version of macOS, Metal, and the same driver versions
to eliminate any software-induced discrepancies.

(b) Define Benchmark Tasks: Use common GPU tasks like matrix multiplication,
image filtering, or machine learning model inference to measure GPU
performance. These tasks will stress the GPU in different ways, allowing you
to get a comprehensive view of its performance.

(c) Use Profiling Tools: Tools such as Xcode Instruments or Metal Performance
Shaders can be used to monitor GPU usage, memory throughput, and
execution times during these benchmarks. These tools help in identifying
bottlenecks and optimizing code for specific hardware.

2. Expected Results:

In most cases, you’ll see a noticeable performance improvement when running
GPU-intensive tasks on the M4 compared to the M3:

• Increased GPU Throughput: The M4’s enhanced GPU architecture allows
for more parallel processing, meaning more threads can be executed

141

simultaneously. This results in higher throughput, especially for tasks that
involve large datasets or heavy parallelization, such as matrix multiplications
or deep learning.

• Improved Memory Bandwidth: The M4 chip includes more efficient memory
subsystems, meaning it can handle higher memory bandwidth. This
improvement translates to faster data transfer rates between the CPU and
GPU and better memory access for large datasets.

• Lower Latency: The M4 typically offers lower latency for GPU-bound
tasks, meaning tasks complete faster even with complex calculations. This
is especially beneficial for real-time applications like gaming or interactive
simulations where quick feedback is essential.

• AI and ML Performance: If your workload involves machine learning or
AI tasks, you will likely see a more substantial performance gain on the
M4. The increased number of GPU cores, along with specialized hardware
optimizations for machine learning, gives the M4 a clear edge in these areas.

9.3.3 Performance Scaling

One of the most important factors when comparing the M3 and M4 is how performance
scales with workload size. While the M3 chip can handle most tasks efficiently, the M4
excels in tasks that require greater computational power, such as large-scale simulations,
advanced graphics rendering, and real-time AI inference.

• Smaller Tasks: For tasks that are not GPU-heavy, such as simple image filters or
light computations, the difference in performance between the M3 and M4 may
not be significant. These tasks will likely perform well on both chips.

• Larger Tasks: As the complexity of the workload increases, particularly with large
datasets or complex machine learning models, the M4 will show a clear advantage

142

in both speed and efficiency. This scaling behavior is crucial to understand when
deciding which chip to target for your application.

9.3.4 Optimization Considerations for Each Chip

While the M4 chip offers a significant performance boost over the M3, it’s important to
note that writing GPU-optimized code is still necessary to fully leverage the power of
either chip. Here are some considerations when developing for the M3 and M4 chips:

• Memory Management: On the M3, careful attention should be paid to how
memory is managed, as the available bandwidth is lower compared to the M4.
Use memory-efficient techniques like memory pooling and reducing data transfer
between CPU and GPU.

• Thread Management: While both chips support massive parallelism, the M4’s
additional GPU cores mean you can launch more threads simultaneously. Ensure
that your code is parallelized efficiently to take full advantage of this scalability.

• Hardware-Specific Optimizations: The M4 chip introduces specialized hardware
for machine learning tasks, such as the Neural Engine. If your application
heavily relies on AI or ML models, the M4’s hardware may provide even
greater performance improvements. For non-ML workloads, the general GPU
improvements in the M4 chip still provide noticeable benefits over the M3.

9.3.5 Conclusion

When comparing GPU performance on the M3 and M4 chips, it’s clear that the M4
brings significant advantages in terms of raw computational power, memory bandwidth,
and AI-specific accelerators. While the M3 chip is already a strong performer, the M4
provides noticeable improvements, especially for GPU-intensive tasks such as deep

143

learning, simulation, and high-quality graphics rendering. As Apple continues to refine
its Silicon chips, developers will benefit from leveraging these improvements to optimize
their applications and achieve higher performance, making the most of the advanced
capabilities of the latest hardware.

Chapter 10

Best Tools and Libraries for GPU on macOS

10.1 Overview: Metal, MoltenVK, MPSGraph, Shader Converter

Apple provides a powerful set of tools and libraries designed to enhance the
performance and flexibility of GPU programming on macOS. These tools help
developers optimize their applications for Apple Silicon chips while ensuring
compatibility with a variety of GPU-based tasks, from rendering to machine learning.
In this section, we will take a look at four important tools: Metal, MoltenVK,
MPSGraph, and Shader Converter. Each of these tools offers unique capabilities that
can make a significant difference in how you leverage the GPU on macOS.

10.1.1 Metal

Metal is Apple's low-level graphics and compute API, designed to provide developers
with direct access to the GPU on macOS, iOS, and other Apple platforms. As a high-
performance API, Metal enables developers to write highly efficient code for rendering
graphics, performing computations, and running complex algorithms directly on the

144

145

GPU.
Key features of Metal include:

• Low-Level Access: Metal allows fine-grained control over GPU resources, enabling
highly optimized rendering and compute operations.

• Parallel Processing: It supports parallel execution of compute shaders, making
it ideal for tasks such as image processing, physics simulations, and machine
learning.

• Cross-Platform Compatibility: Metal works across Apple’s entire ecosystem,
including macOS, iOS, iPadOS, and more, ensuring that applications can take
full advantage of the hardware across different devices.

• Unified Graphics and Compute: Unlike other APIs that separate graphics and
compute tasks, Metal integrates both, which leads to better resource utilization
and improved performance.

For developers focusing on GPU programming on macOS, Metal is an essential tool
for maximizing performance and efficiency. It is ideal for rendering graphics and
performing complex calculations, particularly on the latest Apple Silicon chips.

10.1.2 MoltenVK

MoltenVK is an open-source implementation of the Vulkan API, a popular graphics
and compute API, designed to run on Apple's platforms. Vulkan provides a lower-level
interface than Metal, offering fine-grained control over GPU hardware. However, since
Vulkan was not originally designed for Apple hardware, MoltenVK acts as a bridge,
allowing Vulkan-based applications to run on macOS by translating Vulkan calls into
Metal commands.
Key features of MoltenVK include:

146

• Cross-Platform Compatibility: Vulkan is widely supported on many platforms,
and MoltenVK enables Vulkan applications to run on macOS and iOS. This
makes it possible to port Vulkan applications to Apple devices with minimal
changes to the original code.

• Performance: By leveraging Metal as the backend, MoltenVK ensures that Vulkan
applications on Apple platforms can achieve performance that is on par with
native Metal applications.

• Ecosystem Support: Developers familiar with Vulkan can continue using their
existing knowledge and tools while also benefiting from Apple's hardware
optimizations.

MoltenVK is ideal for developers who are already using Vulkan for cross-platform
development and want to bring their applications to macOS without needing to rewrite
the graphics code for Metal.

10.1.3 MPSGraph

MPSGraph (Metal Performance Shaders Graph) is part of Apple’s Metal Performance
Shaders (MPS) framework, designed specifically for machine learning workloads.
MPSGraph allows developers to create and run neural network models directly on the
GPU using Metal. This tool provides high-performance machine learning capabilities,
making it a great choice for applications that need to perform real-time inference or
training tasks.
Key features of MPSGraph include:

• Machine Learning Optimization: MPSGraph is optimized for running neural
network models on Apple Silicon GPUs, offering high throughput and low latency
for machine learning tasks.

147

• Graph-Based Model Execution: MPSGraph uses a graph-based approach, where
the neural network model is represented as a computational graph. This allows
for efficient execution of operations such as matrix multiplications, convolutions,
and activations on the GPU.

• Integration with CoreML: MPSGraph works seamlessly with Apple’s CoreML
framework, which allows for easy integration of pre-trained models into macOS
and iOS applications.

For developers working on AI and machine learning applications, MPSGraph provides
an efficient way to accelerate model execution on the GPU, significantly reducing
processing times compared to CPU-based computation.

10.1.4 Shader Converter

Shader Converter is a tool that allows developers to convert shaders written in other
shading languages, such as GLSL (OpenGL Shading Language) or HLSL (High-Level
Shading Language), into Metal’s shading language, MSL (Metal Shading Language).
This tool simplifies the process of porting existing shaders from other platforms to
Apple’s ecosystem, ensuring that they can run efficiently on macOS devices.
Key features of Shader Converter include:

• Shader Language Conversion: Shader Converter can automatically translate
shaders from GLSL or HLSL into MSL, reducing the effort required to port
shaders to Metal.

• Compatibility: It ensures that shaders are compatible with Metal’s unique
architecture, providing optimizations specific to the Metal API.

148

• Ease of Use: The tool is designed to be easy to integrate into existing
development workflows, making it a valuable resource for developers transitioning
from other graphics APIs to Metal.

For developers who are working with existing shaders in other languages, Shader
Converter can save significant time by automating the translation process and ensuring
compatibility with Metal’s powerful GPU features.

10.1.5 Conclusion

In summary, Metal, MoltenVK, MPSGraph, and Shader Converter are powerful tools
that every macOS GPU programmer should be familiar with. Metal offers low-level
access to the GPU for both graphics and compute tasks, MoltenVK bridges the gap for
Vulkan users, MPSGraph accelerates machine learning on Apple Silicon, and Shader
Converter simplifies the process of porting shaders to Metal. Together, these tools
provide a comprehensive suite of resources for building high-performance applications
that fully leverage the power of Apple Silicon GPUs.

149

10.2 Compatibility with Vulkan and Cross-Platform Options

When developing GPU-accelerated applications, one of the main concerns for developers
is cross-platform compatibility. While Apple provides the Metal API for its platforms,
Metal is specific to Apple devices and cannot be used directly on Windows or Linux.
For developers targeting multiple platforms, Vulkan offers a practical alternative.
However, using Vulkan on macOS requires an additional layer to bridge the gap
between Vulkan and Metal. This is where compatibility tools like MoltenVK come into
play.

10.2.1 Vulkan on macOS with MoltenVK

Vulkan is a modern, low-level graphics and compute API developed by the Khronos
Group. It is designed to work across platforms, including Windows, Linux, and
Android. However, Apple does not support Vulkan natively. Instead, developers can
use MoltenVK, an open-source Vulkan implementation that translates Vulkan calls into
Metal.
MoltenVK allows developers to write GPU code once using Vulkan, then run it on
macOS and iOS devices without rewriting it in Metal. This enables:

• Cross-platform development with a shared codebase

• Easy porting of existing Vulkan-based engines or applications to macOS

• Continued use of existing Vulkan tools and workflows

MoltenVK is actively maintained and is widely adopted in projects that aim to support
Apple devices without fully switching to Metal.

150

10.2.2 Pros and Considerations

The use of Vulkan via MoltenVK offers clear benefits:

• Portability: Developers can maintain one rendering or compute backend and
deploy it across desktop and mobile platforms.

• Performance: While Metal is faster for some native tasks, MoltenVK provides
performance that is generally acceptable for many real-world applications.

• Ecosystem Support: Game engines like Unity and Unreal Engine use Vulkan as
part of their cross-platform rendering pipelines and often rely on MoltenVK to
run on macOS.

However, there are also some limitations:

• Not all Vulkan features are fully supported through MoltenVK, particularly newer
extensions that may not map cleanly to Metal.

• Debugging and performance tuning might be more complex compared to native
Metal development.

10.2.3 Cross-Platform Alternatives

For developers seeking cross-platform GPU development without directly managing
Vulkan, there are several higher-level engines and libraries that abstract the graphics
API:

• bgfx: A rendering library that supports multiple backends including Metal,
Vulkan, Direct3D, and OpenGL. It automatically selects the appropriate backend
based on the target platform.

151

• SDL with Vulkan: SDL can be combined with Vulkan to support windowing and
input across platforms while keeping GPU code unified.

• ANGLE (Almost Native Graphics Layer Engine): Translates OpenGL ES to
Metal on Apple devices and is used in browsers like Chrome for rendering on
macOS.

These tools make it easier to create GPU applications that run on macOS alongside
other platforms without having to rewrite core rendering code.

10.2.4 Conclusion

While Metal remains the native and most optimized GPU API on macOS, Vulkan
and its compatibility through MoltenVK open the door for cross-platform GPU
programming. This approach is especially useful for teams working on multi-platform
applications or porting existing projects. Combined with other cross-platform tools,
developers can maintain performance and portability while still supporting the unique
features of Apple’s GPU architecture.

152

10.3 Choosing the Right Library for Your Use Case

When developing GPU-accelerated applications on Apple Silicon using C++, selecting
the right tool or library depends heavily on your specific project goals. Different
libraries offer distinct advantages based on performance needs, platform targets,
programming complexity, and the type of workload. Whether you're building a game,
a scientific simulation, or a machine learning pipeline, choosing the appropriate GPU
API or framework can save time, increase performance, and simplify development.

10.3.1 For Native macOS and Maximum Performance: Metal

If your application is intended to run solely on macOS or iOS and demands low-level
access to GPU resources with maximum efficiency, Metal is the natural choice. It is
optimized for Apple hardware and gives you direct control over compute and graphics
operations. Metal is ideal when:

• You are building performance-critical applications such as real-time rendering,
image processing, or simulations.

• You want to leverage Apple’s latest GPU hardware features.

• You are not concerned with cross-platform support.

10.3.2 For Portability Across Platforms: MoltenVK with Vulkan

If your goal is to support macOS alongside other platforms such as Windows and Linux,
MoltenVK allows you to write your application in Vulkan and run it on macOS by
translating Vulkan calls to Metal. This is well-suited for:

• Cross-platform game engines or rendering frameworks.

153

• Applications that already use Vulkan and need to add macOS support.

• Developers who prefer the Vulkan programming model and tools.

MoltenVK provides good performance but may not expose every advanced feature
available in Metal directly.

10.3.3 For High-Level Machine Learning Workflows: MPSGraph or
CoreML

If your use case involves machine learning or neural network computation, and you want
to benefit from GPU acceleration without dealing with low-level GPU programming,
then Metal Performance Shaders (MPSGraph) or CoreML can be more practical:

• Use MPSGraph for GPU-accelerated tensor operations and custom models.

• Use CoreML if you are integrating pre-trained models and need an efficient
runtime on Apple devices.

These options allow you to benefit from Apple’s optimized ML infrastructure with
minimal GPU-specific code.

10.3.4 For Multi-API Development or Game Rendering: bgfx or SDL
with Vulkan

If you're developing a rendering system that might need to adapt to different backends
automatically, bgfx is a useful abstraction. It supports Metal, Vulkan, OpenGL, and
DirectX, allowing you to:

• Write once and run anywhere with reasonable performance.

154

• Focus on rendering logic rather than backend details.

• Target multiple devices with varying GPU APIs.

Similarly, combining SDL with Vulkan offers window and input handling across systems
while maintaining Vulkan for GPU tasks.

10.3.5 Summary and Recommendation

To choose the right library:

• Use Metal when performance and native integration are top priorities.

• Use MoltenVK/Vulkan when your project must be cross-platform.

• Use MPSGraph or CoreML when focusing on machine learning with GPU
acceleration.

• Use bgfx or SDL + Vulkan when working on a flexible rendering engine or game
that must run on several systems.

Choosing the right tool ensures a better development experience and more efficient
execution of your GPU programs. Each of these libraries has a role depending on your
target devices, domain (graphics, compute, or ML), and your project's scope.

Appendices

This section provides essential reference material to help you get the most out of the
book and your journey into GPU programming on Apple Silicon using C++. Whether
you're reviewing technical terms, troubleshooting common problems, or exploring
further resources, the appendices are designed to support your continued learning and
development.

Appendix A: Glossary of Technical Terms

This glossary defines key terms used throughout the book. It serves as a quick reference
for readers who may be new to GPU programming or unfamiliar with certain Metal or
C++ terminology.

• API (Application Programming Interface): A set of functions and tools that
allows software components to communicate.

• Compute Shader: A GPU program designed to perform general-purpose
computations rather than graphics rendering.

• Pipeline: A sequence of steps that define how data is processed by the GPU,
including shader stages and resource bindings.

• Buffer: A memory allocation used to transfer data between the CPU and GPU.

155

156

• Kernel Function: A function executed in parallel on the GPU, often used in
compute shaders.

• Threadgroup: A set of threads that work together in a compute shader and share
memory.

• Latency: The delay between initiating an operation and receiving a response.

• Bandwidth: The rate at which data can be read from or written to memory.

• MPS (Metal Performance Shaders): A high-performance framework for GPU-
accelerated image processing and machine learning.

• MoltenVK: A runtime library that maps Vulkan commands to Metal, allowing
Vulkan applications to run on macOS.

• CoreML: Apple’s machine learning framework that supports model deployment on
macOS and iOS using CPU, GPU, or Neural Engine.

157

Appendix B: Common Beginner Mistakes and How to Fix Them

Learning GPU programming involves working across multiple layers—C++, GPU
concepts, and Apple-specific frameworks. The following are typical beginner mistakes
and ways to address them:

• Not managing memory synchronization: Forgetting to ensure data is correctly
transferred between CPU and GPU memory can cause undefined behavior.
Always use the appropriate synchronization methods provided by Metal.

• Mismatch in buffer sizes: If the GPU expects a certain buffer size or alignment
and the C++ code sends mismatched data, your program may crash or produce
incorrect results. Double-check buffer lengths and memory layout.

• Ignoring error messages from Metal API: It's easy to overlook errors returned by
the API, especially during resource creation. Always check for nil values or error
codes when initializing Metal objects.

• Incorrect shader threadgroup sizing: Setting the wrong number of threads per
threadgroup can result in underutilization or errors. Make sure to calculate
threadgroup sizes based on workload and device limits.

• Trying to use unsupported features on older macOS versions: Some Metal features
require specific macOS versions. Use runtime checks to ensure compatibility.

• Skipping the debug layer: The Metal API includes validation tools that help catch
mistakes during development. Enable these tools to identify issues early.

158

Appendix C: Useful Links to Documentation, Tutorials, and
GitHub Repositories

Below is a curated list of resources for deepening your understanding and keeping up
with the latest developments:
Official Documentation

• Apple Metal Programming Guide

• Metal Shading Language Specification

• CoreML Documentation

• Metal Performance Shaders

Tutorials

• Metal by Example

• Ray Wenderlich Metal Tutorials

• Metal Shader Playground

GitHub Repositories

• MetalExamples – A set of sample Metal projects with detailed comments.

• MoltenVK – Vulkan implementation running on top of Metal.

• Apple’s Sample Code for Metal – Real-world examples provided by Apple.

https://developer.apple.com/metal/
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/metalperformanceshaders
https://metalbyexample.com/
https://github.com/metal-by-example/MetalShaderPlayground
https://github.com/metal-by-example/MetalExamples
https://github.com/KhronosGroup/MoltenVK
https://developer.apple.com/metal/sample-code/

References and Resources

Apple Metal Official Documentation

Apple’s official Metal documentation is the foundational resource for understanding the
full capabilities of the Metal API. It includes comprehensive guides, API references, and
sample code provided by Apple. The documentation covers both graphics and compute
functionality, making it essential for developers working with GPU programming on
macOS and iOS.
Start here: developer.apple.com/metal

Xcode and C++ References

Since Xcode is the primary development environment for macOS and Apple Silicon,
familiarity with its tools, build settings, and debugging features is important. Apple
provides detailed Xcode documentation that covers integration with C++, build system
customization, and GPU debugging tools.
Additionally, standard C++ references such as cppreference.com offer detailed
information on the language itself, including modern C++ features used in Metal-based
applications.

159

https://developer.apple.com/metal

160

Technical Whitepapers and Benchmarks

Apple and third-party researchers occasionally publish whitepapers focused on GPU
performance, architectural enhancements in Apple Silicon, and case studies involving
Metal-based workloads. These documents offer insight into optimization strategies,
power efficiency, and performance benchmarks across chip generations (such as M1, M2,
M3, and M4).
Refer to Apple's developer news, WWDC presentations, and hardware launch
documentation for updates on GPU architecture and performance data.

Open-Source GPU Project Examples on GitHub

Hands-on examples are a great way to understand practical implementation. GitHub
hosts a variety of open-source Metal projects, many of which are well-documented
and maintained. These repositories include examples of compute shaders, rendering
pipelines, image processing, and game engines built using Metal and C++.
Some notable examples:

• Metal-Examples

• Apple’s Metal Sample Code

• MoltenVK for Vulkan compatibility over Metal

Exploring these projects can accelerate learning by showing how others have structured
and optimized GPU code for real applications.

https://github.com/metal-by-example/MetalExamples
https://developer.apple.com/metal/sample-code/
https://github.com/KhronosGroup/MoltenVK

161

AI/ML Integration Guides for Apple Silicon

Apple provides detailed documentation for integrating machine learning models using
Core ML, Metal Performance Shaders (MPS), and the newer MPSGraph framework.
These tools allow developers to leverage GPU acceleration for training and inference
tasks on Apple Silicon.
Core ML documentation offers guidance on model conversion, deployment, and GPU
targeting, while MPSGraph and Metal shaders provide more low-level control for
custom solutions.
Find more here:

• Core ML

• Metal Performance Shaders

• MPSGraph

These integration guides are particularly useful for those blending AI capabilities with
performance-critical GPU workflows.

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/metalperformanceshaders/mpsgraph

	Contents
	Author's Introduction
	Introduction
	The Importance of GPU Programming in the Modern World
	Why Apple Silicon GPUs Matter
	Who Is This Book For?

	What is a GPU?
	A Simplified Explanation of the GPU's Role
	CPU vs GPU – Core Differences
	What is a Compute Shader?

	Apple Silicon GPU – An Internal Overview
	Introducing Apple M1 / M2 / M3 / M4 GPUs
	Apple M1 GPU
	Apple M2 GPU
	Apple M3 GPU
	Apple M4 GPU
	Unified Features Across M-Series GPUs
	Conclusion

	Key Features and Strengths of Apple's GPU
	Unified Memory Architecture
	Highly Integrated System
	Performance per Watt
	Scalability
	Hardware-Accelerated Features
	Metal API for High-Performance Graphics and Compute
	Optimized for Creative and Professional Applications
	Conclusion

	Unified Memory Architecture Explained
	What is Unified Memory?
	How Unified Memory Works
	Benefits of Unified Memory for GPU Programming
	Practical Implications for Developers
	Challenges and Considerations
	Conclusion

	Comparison with Intel, AMD, and NVIDIA GPUs
	Architectural and Performance Differences
	CPU and GPU Integration vs. Discrete Architectures
	Core Architecture and Parallelism
	Performance per Watt
	Specialized Features and Hardware Acceleration
	Conclusion

	Why NVIDIA Leads in Gaming, AI, LLM, Encryption, and Crypto
	Gaming: The Power of RTX and CUDA
	Artificial Intelligence and Machine Learning
	Large Language Models (LLM) and NLP
	Encryption and Security
	Cryptocurrency Mining
	Conclusion

	Can Apple GPUs be a Serious Alternative?
	Performance Capabilities
	Software Ecosystem and Developer Support
	Niche Advantages and Use Cases
	Limitations and Challenges
	Conclusion

	Setting Up the Development Environment on macOS
	Tools Needed: Xcode, Metal, C++
	Xcode: The Foundation for macOS Development
	Metal: Apple's Graphics and Compute API
	C++: The Core Programming Language
	Conclusion

	Creating a Project from Scratch
	Launch Xcode and Create a New Project
	Add Metal Framework to Your Project
	Set Up Your C++ Code for Metal Integration
	Writing a Simple Compute Shader
	Compiling and Running the Project
	Next Steps
	Conclusion

	Installation Steps and Configuration
	Installing Xcode
	Installing Homebrew
	Installing CMake (Optional but Recommended)
	Verifying Metal Support
	Setting Up Environment Variables for C++ and Metal Development
	Configuring Your Project for Metal and C++
	Installing Additional Tools (Optional)
	Conclusion

	Introduction to the Metal API
	What is Metal and Why Use It Over OpenGL or CUDA?
	What is Metal?
	Why Use Metal Over OpenGL?
	Why Use Metal Over CUDA?
	When Should You Use Metal?

	Core Concepts: Compute Shaders and GPU Pipelines
	What is a Compute Shader?
	GPU Pipelines in Metal
	How Compute Shaders Fit into the GPU Pipeline
	Advantages of Using Compute Shaders in Metal
	Conclusion

	How Metal Works with C++
	Using Metal in C++ Projects
	Why Use Metal with C++?
	Conclusion

	Your First GPU Program in C++ on macOS
	Hands-on Project: Matrix Addition on the GPU
	Why Matrix Addition?
	Setting Up the Project
	Conclusion

	Code Walkthrough and Explanation
	Step 1: Initializing the Data
	Step 2: Setting Up Metal for GPU Operations
	Step 3: Writing the Metal Compute Shader
	Step 4: Compiling and Executing the Shader
	Step 5: Retrieving the Results
	Conclusion

	Analyzing Performance Gain
	Step 1: Measuring Execution Time on the CPU
	Step 2: Measuring Execution Time on the GPU
	Step 3: Comparing CPU and GPU Performance
	Step 4: Identifying Bottlenecks
	Step 5: Evaluating Real-World Gains
	Step 6: Optimizing Performance
	Conclusion

	Practical Project – Image Filter on GPU
	Image Processing Using Apple's GPU
	Understanding Image Processing on the GPU
	Steps for Image Processing on the GPU
	Benefits of Using Apple's GPU for Image Processing
	Conclusion

	Building a Basic Image Filter (e.g., Grayscale or Blur)
	Overview of the Filters
	Setting Up the Project
	Setting Up Metal in C++
	Conclusion

	Comparing CPU vs GPU Processing Times
	CPU Processing Times
	GPU Processing Times
	Performance Comparison
	Real-World Example
	Factors Affecting Performance
	Conclusion

	Using the GPU in AI & Machine Learning
	Apple's CoreML and Metal Performance Shaders (MPS)
	CoreML: Apple's Machine Learning Framework
	Metal Performance Shaders (MPS): A GPU-Accelerated Framework
	Integration of CoreML and MPS
	Key Benefits of Using CoreML and MPS
	Conclusion

	Integrating a Simple ML Model into a C++ Workflow
	Step 1: Preparing the Machine Learning Model
	Step 2: Setting Up the C++ Project
	Step 3: Loading the Model in C++
	Step 4: Running Inference on the Model
	Step 5: Optimizing for GPU Performance
	Conclusion

	Real-World Use Case with Performance Boost
	Use Case: Image Classification with Deep Learning
	Scenario: Classifying a Batch of Images
	Performance Comparison
	Benefits Beyond Speed: Efficiency and Power Consumption
	Real-World Applications
	Conclusion

	Optimizing Performance and Benchmarking
	Tools for GPU Performance Measurement
	Xcode Instruments
	Metal Performance Shaders (MPS) Metrics
	OpenGL and Metal Debugging Tools
	Third-Party Benchmarking Tools
	Command Line Tools and Custom Profilers
	Conclusion

	Tips for Writing Efficient GPU Code
	Minimize Data Transfer Between CPU and GPU
	Optimize GPU Memory Usage
	Leverage Parallelism
	Minimize Divergence in Shaders
	Optimize Shader Code
	Optimize Compute Pipeline States
	Use Profiling and Debugging Tools
	Leverage Hardware-Specific Features
	Consider Power Efficiency
	Conclusion

	Comparing Results on M3 and M4 Chips
	Key Differences Between M3 and M4 Chips
	Benchmarking GPU Performance
	Performance Scaling
	Optimization Considerations for Each Chip
	Conclusion

	Best Tools and Libraries for GPU on macOS
	Overview: Metal, MoltenVK, MPSGraph, Shader Converter
	Metal
	MoltenVK
	MPSGraph
	Shader Converter
	Conclusion

	Compatibility with Vulkan and Cross-Platform Options
	Vulkan on macOS with MoltenVK
	Pros and Considerations
	Cross-Platform Alternatives
	Conclusion

	Choosing the Right Library for Your Use Case
	For Native macOS and Maximum Performance: Metal
	For Portability Across Platforms: MoltenVK with Vulkan
	For High-Level Machine Learning Workflows: MPSGraph or CoreML
	For Multi-API Development or Game Rendering: bgfx or SDL with Vulkan
	Summary and Recommendation

	Appendices
	Appendix A: Glossary of Technical Terms
	Appendix B: Common Beginner Mistakes and How to Fix Them
	Appendix C: Useful Links to Documentation, Tutorials, and GitHub Repositories

	References and Resources

