
1

Modern C++ Algorithms: A Graduate-Level
Companion

Prepared by Ayman Alheraki

simplifycpp.org

August 2025

Contents

Contents 2

Author’s Preface 26

I Foundations (C++-centric) 28

1 Preface & How to Use This Book 30
1.1 Target Audience and Prerequisites (C++17/20/23) 30

1.1.1 Prerequisites . 32
1.1.2 Positioning of This Book . 33

1.2 Coding Standards Used in Examples (formatter, naming, header structure) 34
1.2.1 Code Formatting and Style . 34
1.2.2 Naming Conventions . 35
1.2.3 Header and Source Structure . 38
1.2.4 Modern C++ Practices . 41

1.3 Build & Run: CMake Minimal Template, Compiler Flags, Sanitizers, and
Test Runner Setup . 42
1.3.1 Minimal CMake Template . 42
1.3.2 Recommended Compiler Flags . 43

2

3

1.3.3 Sanitizers . 44
1.3.4 Test Runner Setup . 45
1.3.5 Recommended Workflow . 46

2 Algorithmic Thinking with C++ 47
2.1 What is an Algorithm? C++ Examples as First-Class Citizens 47

2.1.1 Defining Algorithms . 47
2.1.2 Algorithms as First-Class Citizens in C++ 48
2.1.3 Algorithmic Thinking in C++ . 50
2.1.4 Summary . 51

2.2 Complexity Notation (Big-O / Θ / Ω) Illustrated with C++
Microbenchmarks . 53
2.2.1 Introduction to Complexity Notation 53
2.2.2 Microbenchmarks in C++ . 54
2.2.3 Visualizing Complexity . 56
2.2.4 Space Complexity . 56
2.2.5 Modern C++ Techniques for Complexity Analysis 57
2.2.6 Key Takeaways . 58

2.3 Practical Measurement: chrono, std::execution, CPU Cycles, and
Pitfalls . 59
2.3.1 Measuring Time with <chrono> . 59
2.3.2 Parallel Execution with std::execution 60
2.3.3 Measuring CPU Cycles . 61
2.3.4 Common Measurement Pitfalls . 62
2.3.5 Recommended Workflow for Reliable Benchmarks 63
2.3.6 Summary . 64

4

3 Essential C++ Tools for Algorithm Developers 65
3.1 The Standard Library Overview Relevant to Algorithms (Containers,

Iterators, Algorithms Header) . 65
3.1.1 Containers . 66
3.1.2 Iterators . 68
3.1.3 The <algorithm> Header . 69
3.1.4 Best Practices for Algorithm Developers 70

3.2 Modern C++ Features That Change Algorithm Design: ranges,
concepts, span, string_view . 72
3.2.1 Ranges (std::ranges) . 72
3.2.2 Concepts (std::concepts) . 73
3.2.3 std::span . 74
3.2.4 std::string_view . 75
3.2.5 Combined Modern Patterns . 76
3.2.6 Summary . 77

3.3 Unit Testing & Benchmarking in C++: GoogleTest, Catch2, benchmark
Library, valgrind, Sanitizers . 78
3.3.1 Unit Testing . 78
3.3.2 Benchmarking . 80
3.3.3 Memory and Runtime Analysis . 81
3.3.4 Integrating Testing and Benchmarking 83
3.3.5 Key Takeaways . 83

II Linear & Basic Structures (with C++ implementations) 84

4 Arrays & Vectors 86
4.1 Static Array vs std::vector — Memory and Performance Tradeoffs . . . 86

5

4.1.1 Static Arrays . 86
4.1.2 std::vector . 88
4.1.3 Memory Layout and Cache Effects 89
4.1.4 Performance Tradeoffs . 90
4.1.5 Guidelines for Algorithm Developers 91
4.1.6 Summary . 92

4.2 In-Place Algorithms: Sliding Window, Two Pointers, Partitioning in C++ 93
4.2.1 Sliding Window Technique . 93
4.2.2 Two-Pointer Technique . 94
4.2.3 Partitioning (In-Place Reordering) 96
4.2.4 Best Practices for In-Place Algorithms 98
4.2.5 Summary . 98

4.3 Exercises: In-Place Rotation, Subarray Sums, Prefix/Suffix Arrays 100
4.3.1 In-Place Array Rotation . 100
4.3.2 Subarray Sums . 101
4.3.3 Prefix and Suffix Arrays . 103
4.3.4 Suggested Exercises . 104
4.3.5 Summary . 105

5 Linked Lists 106
5.1 Single/Doubly Linked List Implementations in Modern C++ (Smart

Pointers vs Raw Pointers) . 106
5.1.1 Singly Linked List . 106
5.1.2 Doubly Linked List . 109
5.1.3 Raw Pointers vs Smart Pointers — Tradeoffs 112
5.1.4 Summary . 113

5.2 Common Algorithms: Reverse, Detect Cycle (Floyd), Merge Lists,
Remove Nth Node from End . 114

6

5.2.1 Reversing a Singly Linked List . 114
5.2.2 Cycle Detection (Floyd’s Tortoise and Hare Algorithm) 115
5.2.3 Merging Two Sorted Linked Lists 117
5.2.4 Removing the N-th Node from the End 118
5.2.5 Summary of Common Linked List Algorithms 120

5.3 Exercises and Tests: Memory-Leak Free Implementations, Iterator Support 121
5.3.1 Memory-Leak Free Implementations 121
5.3.2 Iterator Support . 123
5.3.3 Testing Linked Lists . 125
5.3.4 Suggested Exercises . 126
5.3.5 Summary . 126

6 Stacks, Queues, Deques, and Priority Queues 128
6.1 STL Wrappers vs Custom Implementations: std::stack, std::queue,

std::deque, std::priority_queue . 128
6.1.1 STL Wrappers Overview . 129
6.1.2 Example: std::stack . 129
6.1.3 Example: std::queue . 130
6.1.4 Example: std::deque . 131
6.1.5 Example: std::priority_queue 132
6.1.6 Custom Implementations . 132
6.1.7 When to Use STL vs Custom . 134
6.1.8 Summary . 135

6.2 Use-Cases and Algorithmic Patterns (Expression Parsing, BFS, Sliding
Window Optimums) . 136
6.2.1 Expression Parsing with Stacks . 136
6.2.2 Breadth-First Search (BFS) with Queues 137
6.2.3 Sliding Window Optimizations with Deques 139

7

6.2.4 Priority Queues in Algorithmic Patterns 140
6.2.5 Summary of Patterns and Use-Cases 141

6.3 Exercises: Monotonic Queue, K-Largest Using Heaps 143
6.3.1 Monotonic Queue Exercise . 143
6.3.2 K-Largest Elements Using Heaps 145
6.3.3 Suggested Exercises . 146
6.3.4 Key Takeaways . 147

7 Hashing and Unordered Containers 148
7.1 std::unordered_map/set Internals, Collision Behavior, Custom Hashers . 148

7.1.1 Internals of std::unordered_map and std::unordered_set 148
7.1.2 Collision Behavior . 149
7.1.3 Custom Hash Functions . 150
7.1.4 Load Factor and Rehashing . 151
7.1.5 Performance Considerations . 152
7.1.6 Summary . 153

7.2 Hash-Based Algorithms: Frequency Counting, Two-Sum, Caching
Strategies . 154
7.2.1 Frequency Counting . 154
7.2.2 Two-Sum Problem . 155
7.2.3 Caching Strategies (Memoization & LRU Cache) 156
7.2.4 Best Practices . 157
7.2.5 Summary . 158

7.3 Exercises: Implement LRU Cache, Robin-Hood/Linear-Probing Sketch . . 159
7.3.1 Exercise: Implement LRU Cache 159
7.3.2 Exercise: Robin-Hood and Linear-Probing Sketch 161
7.3.3 Suggested Exercises . 164
7.3.4 Summary . 164

8

III Trees & Balanced Trees 165

8 Binary Trees & Tree Traversals 167
8.1 Node Representation, Recursive vs Iterative Traversal, Iterator Adapters . 167

8.1.1 Node Representation . 167
8.1.2 Recursive Traversal . 169
8.1.3 Iterative Traversal . 170
8.1.4 Iterator Adapters for Trees . 171
8.1.5 Summary . 173

8.2 Algorithms — Preorder/Inorder/Postorder, Level-Order, Tree
Serialization/Deserialization . 174
8.2.1 Depth-First Traversals . 174
8.2.2 Breadth-First Traversal (Level-Order) 177
8.2.3 Tree Serialization & Deserialization 178
8.2.4 Summary . 180

8.3 Exercises — Reconstruct Tree from Traversals, Subtree Checks 182
8.3.1 Reconstructing a Tree from Traversals 182
8.3.2 Subtree Checks . 185
8.3.3 Suggested Exercises . 187
8.3.4 Summary . 188

9 Binary Search Trees & Augmented Trees 189
9.1 BST Operations, Invariants, Performance Edge Cases 190

9.1.1 The BST Invariant . 190
9.1.2 Core BST Operations . 191
9.1.3 Performance Considerations . 193
9.1.4 Edge Cases to Address in Implementations 195
9.1.5 Summary . 195

9

9.2 Augmented Trees for Range Queries and Order Statistics (order_of_key) 196
9.2.1 Motivation for Augmented Trees 196
9.2.2 Core Augmentation: Subtree Size 196
9.2.3 Order Statistics . 197
9.2.4 Range Queries . 199
9.2.5 Handling Duplicates . 199
9.2.6 Performance Considerations . 200
9.2.7 Practical Applications . 201
9.2.8 Summary . 201

9.3 Exercises — kth Smallest, Interval Trees 202
9.3.1 Exercise: K-th Smallest Element in a BST 202
9.3.2 Exercise: Interval Trees . 204
9.3.3 Testing and Benchmarking . 206
9.3.4 Summary . 207

10 Self-Balancing Trees (AVL, Red-Black) 208
10.1 AVL Rotations in C++ — Code Walkthrough 208

10.1.1 Balance Factor and Rotation Trigger 208
10.1.2 Node Structure in Modern C++ 209
10.1.3 Single Rotations . 210
10.1.4 Double Rotations . 211
10.1.5 Rotation Integration in Insertions 212
10.1.6 Walkthrough Example . 213
10.1.7 Key Insights . 214
10.1.8 Exercises . 214

10.2 Red-Black Tree Principles and Relation to std::map / std::set 215
10.2.1 Red-Black Tree Properties . 215
10.2.2 Core Operations and Rebalancing 215

10

10.2.3 Relation to std::map and std::set 216
10.2.4 C++ Implementation Highlights 217
10.2.5 Rotations in Red-Black Trees . 218
10.2.6 Comparison with AVL Trees . 218
10.2.7 Practical Takeaways . 219

10.3 Exercises — Implement an AVL with Unit Tests; Compare Against
std::set Performance . 219
10.3.1 Exercise 1: Implement an AVL Tree 220
10.3.2 Exercise 2: Unit Testing . 221
10.3.3 Exercise 3: Performance Comparison Against std::set 222
10.3.4 Optional Extensions . 224
10.3.5 Summary . 224

11 B-Trees and External-Memory Structures 225
11.1 B-Tree Node Layout, Block I/O Considerations (C++ Structures for

Disk-Backed Nodes) . 225
11.1.1 B-Tree Node Structure . 225
11.1.2 Disk Block Considerations . 226
11.1.3 Advantages of This Layout . 227
11.1.4 C++ Considerations . 228
11.1.5 Summary . 229

11.2 Practical Uses — Simple On-Disk Key-Value Store Prototype 230
11.2.1 Design Overview . 230
11.2.2 Disk Node Structure . 231
11.2.3 Basic Operations . 231
11.2.4 Performance Considerations . 234
11.2.5 Extensions . 234
11.2.6 Summary . 234

11

11.3 Exercise — Small B-Tree Library Sketch with Tests 236
11.3.1 Library Structure . 236
11.3.2 Key Operations . 237
11.3.3 Unit Testing . 239
11.3.4 Optional Extensions . 240
11.3.5 Learning Outcomes . 240

IV Graphs (Implemented in C++) 241

12 Graph Representations in C++ 243
12.1 Adjacency list/matrix, edge lists, compressed sparse row (CSR) for

performance . 243
12.1.1 Adjacency List . 243
12.1.2 Edge List . 245
12.1.3 Compressed Sparse Row (CSR) . 246
12.1.4 Comparison Table . 248
12.1.5 Choosing the Right Representation 249

12.2 Weighted graphs, directed/undirected, memory-oriented designs 250
12.2.1 Weighted Graphs . 250
12.2.2 Directed vs. Undirected Graphs . 252
12.2.3 Memory-Oriented Graph Designs 253
12.2.4 Performance and Trade-Offs . 254

13 Traversal & Search 256
13.1 Depth-First Search (DFS) & Breadth-First Search (BFS) with

Iterator-Based C++ APIs . 256
13.1.1 Depth-First Search (DFS) . 256
13.1.2 Breadth-First Search (BFS) . 259

12

13.1.3 Iterator-Based API Design for Traversal 260
13.1.4 Comparison: Recursive vs Iterative DFS vs BFS 261
13.1.5 Best Practices in Modern C++ . 262

13.2 Applications of Graph Traversal . 263
13.2.1 Connected Components . 263
13.2.2 Cycle Detection . 265
13.2.3 Topological Sort . 267
13.2.4 Summary of Applications . 269

14 Shortest Paths 271
14.1 Dijkstra’s Algorithm . 271

14.1.1 Basic Dijkstra Algorithm . 271
14.1.2 Priority Queue Optimization . 272
14.1.3 Iterators and Modern C++ Features 275
14.1.4 Performance Considerations . 275
14.1.5 Example Usage . 276

14.2 Bellman-Ford, SPFA Notes, and C++ Pitfalls 278
14.2.1 Bellman-Ford Algorithm . 278
14.2.2 SPFA (Shortest Path Faster Algorithm) 280
14.2.3 C++ Pitfalls to Avoid . 281
14.2.4 Comparison of Bellman-Ford vs SPFA 282
14.2.5 Best Practices in Modern C++ . 283

14.3 A* Algorithm with C++ Heuristics and Custom Comparators 284
14.3.1 Algorithm Overview . 284
14.3.2 Basic C++ Implementation Using std::priority_queue 284
14.3.3 Custom Comparators in C++ . 287
14.3.4 Heuristic Design in C++ . 287
14.3.5 Performance and Pitfalls in C++ 288

13

14.3.6 Example: A* on a 2D Grid . 289
14.3.7 Best Practices in Modern C++ . 289

14.4 Exercises — Multi-Source SSSP and Path Reconstruction Templates . . . 290
14.4.1 Multi-Source Single-Source Shortest Paths (SSSP) 290
14.4.2 Path Reconstruction Templates . 293
14.4.3 Additional Exercises . 294
14.4.4 Best Practices in Modern C++ . 295

15 Minimum Spanning Trees & Union-Find 296
15.1 Kruskal’s Algorithm with Efficient DSU 296

15.1.1 Algorithm Overview . 296
15.1.2 Efficient DSU Implementation . 297
15.1.3 Kruskal’s Algorithm Using DSU . 299
15.1.4 Example Usage . 300
15.1.5 Best Practices in Modern C++ . 301
15.1.6 Exercises . 302

15.2 Prim’s Algorithm — Binary Heap vs Fibonacci Heap 303
15.2.1 Prim’s Algorithm Overview . 303
15.2.2 Prim Using Binary Heap (Standard Approach) 304
15.2.3 Fibonacci Heap: Theoretical Advantage 305
15.2.4 Comparison: Binary Heap vs Fibonacci Heap 306
15.2.5 C++ Implementation Notes and Best Practices 307
15.2.6 Exercises . 307

15.3 Exercises — MST Variants and Dynamic Connectivity 308
15.3.1 MST Variants . 308
15.3.2 Dynamic Connectivity . 309
15.3.3 Best Practices and C++ Tips . 311
15.3.4 Additional Exercises for Mastery 312

14

16 Network Flow & Advanced Graphs 313
16.1 Ford-Fulkerson, Edmonds-Karp, Dinic — C++ Implementations and

Performance Tradeoffs . 314
16.1.1 Ford-Fulkerson Method . 314
16.1.2 Edmonds-Karp Algorithm . 316
16.1.3 Dinic’s Algorithm . 318
16.1.4 Performance Trade-offs . 321
16.1.5 Exercises . 322

16.2 Matching Algorithms and Min-Cost Max-Flow 324
16.2.1 Bipartite Matching — Hopcroft–Karp Algorithm 324
16.2.2 Flows with Capacities and Costs — Min-Cost Max-Flow (MCMF) 329
16.2.3 Performance Trade-offs . 332
16.2.4 Exercises . 333

16.3 Exercises — Bipartite Matching and Project Allocation Simulation 334
16.3.1 Bipartite Matching Exercises . 334
16.3.2 Project Allocation Simulation . 335
16.3.3 Advanced Extensions . 338
16.3.4 Suggested Exercise Sequence . 338

V Design Paradigms & Algorithmic Techniques 339

17 Divide and Conquer 341
17.1 Merge Sort, Quicksort, and Recursion Patterns in C++ 341

17.1.1 Merge Sort . 341
17.1.2 Quicksort . 343
17.1.3 Recursion Patterns in C++ . 345
17.1.4 Comparative Summary . 347

15

17.1.5 Exercises . 347
17.2 Parallel Divide-and-Conquer with std::execution and Thread Pools . . . 348

17.2.1 Parallel Divide-and-Conquer: Conceptual Overview 348
17.2.2 std::execution in Parallel Divide-and-Conquer 348
17.2.3 Thread Pools in Divide-and-Conquer 349
17.2.4 Hybrid Approach: Execution Policies + Custom Thread Pools . . . 352
17.2.5 Performance Considerations . 353
17.2.6 Exercises . 353
17.2.7 Summary . 354

17.3 Exercises — Median of Medians, Parallel Mergesort 355
17.3.1 Exercise: Median of Medians . 355
17.3.2 Exercise: Parallel Merge Sort . 357
17.3.3 Summary . 360

18 Dynamic Programming (DP) 361
18.1 Memoization vs. Tabulation — Idiomatic C++ Patterns 362

18.1.1 Memoization (Top-Down Dynamic Programming) 362
18.1.2 Tabulation (Bottom-Up Dynamic Programming) 363
18.1.3 Comparing Memoization vs. Tabulation in C++ 365
18.1.4 Advanced Idiomatic Patterns . 365
18.1.5 Summary . 367

18.2 DP on Sequences, Trees, and Graphs — Common Templates and
Optimizations (Space Reduction) . 368
18.2.1 DP on Sequences . 368
18.2.2 DP on Trees . 370
18.2.3 DP on Graphs . 371
18.2.4 Space Reduction Techniques . 373
18.2.5 Summary . 374

16

18.3 Exercises: Knapsack Variants, Longest Increasing Subsequence with
Patience Sorting (O(n log n)) . 375
18.3.1 Knapsack Variants . 375
18.3.2 Longest Increasing Subsequence (LIS) 377
18.3.3 C++ Patterns for Efficiency . 378
18.3.4 Exercises . 378

19 Greedy Algorithms & Matroid Concepts 380
19.1 Greedy Correctness Proofs and C++ Greedy Idioms 380

19.1.1 Greedy Algorithm Correctness Proofs 381
19.1.2 C++ Greedy Idioms . 382
19.1.3 Typical Greedy Patterns in Practice 384
19.1.4 Key Takeaways for Graduate-Level Readers 385

19.2 Huffman Coding with Heaps and std::priority_queue Customization . . 386
19.2.1 Problem Setting . 386
19.2.2 Greedy Insight . 386
19.2.3 Heap-Based Algorithm . 387
19.2.4 C++ Implementation with std::priority_queue 387
19.2.5 Performance Analysis . 390
19.2.6 C++ Idioms and Customization 390
19.2.7 Broader Connections . 391
19.2.8 Key Takeaways . 391

19.3 Exercises: Activity Selection, Interval Scheduling 393
19.3.1 Activity Selection Problem . 393
19.3.2 Interval Scheduling Problem . 395
19.3.3 Exercises for the Reader . 397
19.3.4 Key Takeaways . 398

17

20 Randomized Algorithms & Probabilistic Methods 399
20.1 Random Number Generation in C++ (<random>), Reproducible

Experiments, Seeds . 399
20.1.1 Engines: Generating Pseudo-Randomness 400
20.1.2 Distributions: Mapping Randomness 401
20.1.3 Seeds: Ensuring Reproducibility . 402
20.1.4 Idiomatic Patterns in C++ . 402
20.1.5 Reproducible Experiments in Algorithm Design 403
20.1.6 Summary . 403

20.2 QuickSelect, Hashing with Randomness, Monte Carlo Estimators 404
20.2.1 QuickSelect: Randomized Selection 404
20.2.2 Hashing with Randomness . 406
20.2.3 Monte Carlo Estimators . 407
20.2.4 Idiomatic C++ Considerations . 408
20.2.5 Key Takeaways . 409

20.3 Exercises: Randomized Algorithms for Median, Bloom Filter Sketch 410
20.3.1 Randomized Median Selection . 410
20.3.2 Bloom Filter Sketch . 411
20.3.3 Learning Objectives . 414
20.3.4 Suggested Practice . 415

21 Approximation Algorithms & NP-Hard Problems 416
21.1 Common Approximation Strategies Implemented in C++ 416

21.1.1 Greedy Approximation . 417
21.1.2 Linear Programming Relaxation . 418
21.1.3 Randomized Rounding . 419
21.1.4 Local Search Heuristics . 419
21.1.5 PTAS / FPTAS Approaches . 420

18

21.1.6 Idiomatic C++ Patterns for Approximation 421
21.1.7 Exercises . 421
21.1.8 Key Takeaways . 422

21.2 Local Search, Greedy Approximation, PTAS Examples Where Applicable . 423
21.2.1 Local Search Heuristics . 423
21.2.2 Greedy Approximation . 425
21.2.3 Polynomial-Time Approximation Schemes (PTAS) 426
21.2.4 Idiomatic C++ Patterns . 427
21.2.5 Exercises . 428
21.2.6 Key Takeaways . 428

21.3 Exercises: Vertex Cover Approximation, Traveling Salesman Heuristics . . 429
21.3.1 Vertex Cover Approximation Exercises 429
21.3.2 Traveling Salesman Problem (TSP) Heuristics 431
21.3.3 Learning Objectives . 434
21.3.4 Suggested Practice . 434

VI Performance, Concurrency & Low-level Concerns (C++
focused) 435

22 Memory & Cache-aware Algorithm Design 437
22.1 Data Layout, Locality, and Structure-of-Arrays vs Array-of-Structures . . . 437

22.1.1 Memory Locality and Cache Basics 438
22.1.2 Array-of-Structures (AoS) . 438
22.1.3 Structure-of-Arrays (SoA) . 439
22.1.4 Performance Implications . 440
22.1.5 Hybrid Approaches . 441
22.1.6 C++ Techniques for Cache Awareness 441

19

22.1.7 Exercises . 442
22.1.8 Key Takeaways . 442

22.2 Algorithms Optimized for Cache (Blocking, Tiling) with C++ Examples . 444
22.2.1 Cache Optimization Principles . 444
22.2.2 Blocking / Tiling Technique . 444
22.2.3 Example: Matrix Multiplication . 445
22.2.4 Tiling for Multi-Dimensional Arrays 446
22.2.5 C++ Idiomatic Patterns . 447
22.2.6 Exercises . 448
22.2.7 Key Takeaways . 448

23 Parallel & Concurrent Algorithms 449
23.1 Threading Primitives in C++ (std::thread, Atomics, Mutexes) and

Lock-Free Ideas . 449
23.1.1 The Role of Threads in Modern C++ 449
23.1.2 Synchronization Primitives . 450
23.1.3 Lock-Free and Wait-Free Ideas . 454
23.1.4 Guidelines for Using Concurrency Primitives 455
23.1.5 Summary . 456

23.2 Parallel Algorithms (std::execution) and Work-Stealing Patterns 457
23.2.1 Parallel Algorithms in C++17 and Beyond 457
23.2.2 Benefits of Parallel STL . 458
23.2.3 Limitations and Considerations . 459
23.2.4 Work-Stealing Patterns . 459
23.2.5 Example: Work-Stealing in Practice 460
23.2.6 Combining Parallel STL and Work-Stealing 461
23.2.7 Guidelines for Use . 461
23.2.8 Summary . 462

20

23.3 Exercises: Parallel Prefix Sum, Concurrent Queues 463
23.3.1 Parallel Prefix Sum (Scan) . 463
23.3.2 Concurrent Queues . 465
23.3.3 Exercise Variations . 468
23.3.4 Summary . 468

24 Metaprogramming & Compile-time Algorithms 470
24.1 Template Metaprogramming Basics for Algorithmic Tasks 471

24.1.1 Compile-Time Computation with Templates 471
24.1.2 Type Lists: Computation with Types 473
24.1.3 Applications of Template Metaprogramming 475
24.1.4 Modern TMP vs Historical TMP 475
24.1.5 Summary . 475

24.2 Concepts & constexpr Algorithms in C++20/23 (constexpr Sorting,
Compile-time DP) . 477
24.2.1 Concepts and Constrained Algorithms 477
24.2.2 Expanded constexpr in C++20/23 478
24.2.3 Example: constexpr Sorting . 478
24.2.4 Compile-time Dynamic Programming 480
24.2.5 Practical Applications of constexpr Algorithms 481
24.2.6 Limitations and Best Practices . 481

24.3 Exercises: Static-Sequence Algorithms, consteval Usage 483
24.3.1 Static-Sequence Algorithms . 483
24.3.2 consteval Usage . 485
24.3.3 Exercise Ideas . 486
24.3.4 Best Practices for Exercises . 487

21

25 Profiling, Benchmarking & Optimization Workflow 488
25.1 Using Profilers (gprof, perf), Sanitizers (ASAN, UBSAN), and Compiler

Flags . 488
25.1.1 Profilers . 488
25.1.2 Sanitizers . 490
25.1.3 Compiler Flags . 491
25.1.4 Recommended Workflow . 493

25.2 Micro-optimizations vs Algorithmic Improvements — Case Studies in C++ 494
25.2.1 Micro-optimizations . 494
25.2.2 Algorithmic Improvements . 495
25.2.3 Case Study: Searching in C++ . 496
25.2.4 Case Study: Matrix Multiplication 497
25.2.5 Guiding Principles . 497

25.3 Exercises — Profile and Improve Small C++ Projects 499
25.3.1 Exercise: Profiling a Naive Sorting Benchmark 499
25.3.2 Exercise: Memory Leak Detection with ASAN 500
25.3.3 Exercise: Cache-Aware Optimization 500
25.3.4 Exercise: Micro-Optimization vs Algorithmic Improvement 501
25.3.5 Exercise: Multithreaded vs Single-Threaded Performance 502
25.3.6 Project: Profile-and-Improve a Small CLI Tool 502
25.3.7 Recommended Workflow for Each Exercise 503

VII Capstone Projects 505

26 Project A — High-performance Graph Library 507
26.1 Design Goals, API, Iterators, Memory Layout (CSR) 507

26.1.1 Design Goals . 508

22

26.1.2 API Design . 509
26.1.3 Iterators . 510
26.1.4 Memory Layout: Compressed Sparse Row (CSR) 511

26.2 Implementations — SSSP, MST, Centrality Measures 514
26.2.1 Single-Source Shortest Path (SSSP) 514
26.2.2 Minimum Spanning Tree (MST) 516
26.2.3 Centrality Measures . 517
26.2.4 Performance Considerations . 518

26.3 Tests & Benchmarks Against Common Datasets 520
26.3.1 Testing Strategy . 520
26.3.2 Benchmarking Strategy . 521
26.3.3 Example Benchmarking Workflow 522
26.3.4 Automation and Reproducibility 524
26.3.5 Example Observations . 524

27 Project B — Mini Compiler / Interpreter 525
27.1 Lexing and Parsing with Modern C++ (Recursive Descent, Parser

Combinators) . 525
27.1.1 Lexical Analysis (Lexer) . 525
27.1.2 Syntax Analysis (Parser) . 528
27.1.3 Modern C++ Features Applied . 531
27.1.4 Best Practices . 531

27.2 AST Transformations, Control-Flow Algorithms, Simple Optimization
Passes . 533
27.2.1 AST Representation . 533
27.2.2 AST Transformations . 534
27.2.3 Control-Flow Algorithms . 535
27.2.4 Simple Optimization Passes . 536

23

27.2.5 Modern C++ Techniques Applied 537
27.3 Exercises — Generate Three-Address Code, Simple Register Allocation . . 539

27.3.1 Three-Address Code (TAC) Generation 539
27.3.2 Simple Register Allocation . 541
27.3.3 Combined Exercise Workflow . 543
27.3.4 Learning Outcomes . 543

28 Project C — Algorithmic Trading Backtester (example of time-series
algorithms) 545
28.1 Streaming Data Algorithms, Sliding Windows, Online Learning Sketches . 545

28.1.1 Streaming Data Algorithms . 546
28.1.2 Sliding Window Techniques . 547
28.1.3 Online Learning Sketches . 548
28.1.4 Integrating Streaming Algorithms into the Backtester 550
28.1.5 Summary . 551

28.2 Backtesting Engine Design and Performance Constraints 552
28.2.1 Core Design Goals . 552
28.2.2 Engine Architecture . 553
28.2.3 Performance Constraints . 555
28.2.4 Modern C++ Techniques Applied 556
28.2.5 Example Engine Loop . 556
28.2.6 Summary . 557

28.3 Exercises — Implement Moving Average Crossover Strategy, Evaluate
Latency . 558
28.3.1 Moving Average Crossover Strategy 558
28.3.2 Integrating with the Backtesting Engine 559
28.3.3 Evaluating Latency . 560
28.3.4 Advanced Extensions . 561

24

28.3.5 Learning Outcomes . 561

VIII Testing, Reproducibility & Research Practices 563

29 Testing Algorithm Correctness in C++ 565
29.1 Property-Based Testing, Fuzzing Inputs, Determinism in Tests 565

29.1.1 Property-Based Testing . 565
29.1.2 Fuzzing Inputs . 567
29.1.3 Determinism in Tests . 569
29.1.4 Advantages of Property-Based Testing and Fuzzing 569
29.1.5 Summary . 570

29.2 Using GoogleTest / QuickCheck-Style Libraries, CI Integration 571
29.2.1 GoogleTest for Unit Testing . 571
29.2.2 QuickCheck-Style Property-Based Testing 572
29.2.3 Continuous Integration (CI) Integration 573
29.2.4 Combining Unit Tests and Property-Based Tests 574
29.2.5 Summary . 575

30 Reproducible Experiments & Data Sets 576
30.1 Dataset Management, Synthetic Data Generators (C++), Seeding, and

Reporting Standards . 576
30.1.1 Dataset Management . 577
30.1.2 Synthetic Data Generators in C++ 578
30.1.3 Seeding and Determinism . 579
30.1.4 Reporting Standards . 580
30.1.5 Summary . 581

30.2 Publishing Code and Experiments — Packaging with CMake, Docker,
and Minimal Reproducibility Checklist . 583

25

30.2.1 Packaging C++ Experiments with CMake 583
30.2.2 Containerization with Docker . 584
30.2.3 Minimal Reproducibility Checklist 586
30.2.4 Best Practices for Publishing . 587
30.2.5 Summary . 587

Appendices 588
Appendix A – C++ Cheat Sheet for Algorithm Developers 588
Appendix B – Common Code Templates . 597
Appendix C – Advanced Data Structures . 603
Appendix D – CMake Template and CI Example 610
Appendix E – Recommended Reading & Research Papers 616
Appendix F – Solution Sketches & Sample Outputs 623

Author’s Preface

The design and efficiency of algorithms lie at the heart of every powerful software
system. Understanding algorithms not only refines a programmer’s logic but also
strengthens their ability to craft optimized, elegant, and scalable solutions.
Modern C++ Algorithms: A Graduate-Level Companion is written for advanced
learners who seek to master algorithmic thinking and its implementation using
Modern C++. It is not an introductory text on programming; rather, it serves as a
comprehensive companion for graduate-level students, researchers, and professional
developers who already possess a strong foundation in C++ and aim to deepen their
knowledge of both the theoretical foundations and practical design of algorithms.
This book bridges the gap between abstract algorithmic theory and real-world
implementation, illustrating how the expressive power of Modern C++ — through
templates, generic programming, and the STL — enables elegant and efficient solutions
to complex computational problems.
It is my hope that this work inspires readers to think algorithmically, write efficiently,
and innovate with confidence in the ever-evolving landscape of software development.
The book is still undergoing careful review and testing of every part. It remains subject
to correction, and this is a draft version intended for those who wish to contribute by
sharing their opinions, pointing out any inaccuracies, or suggesting improvements.
For more discussions and valuable content about
Modern C++ Algorithms: A Graduate-Level Companion,

26

27

I invite you to follow me on LinkedIn:
https://linkedin.com/in/aymanalheraki
You can also visit the company website:
https://simplifycpp.org
Wishing everyone success and prosperity.

Ayman Alheraki

https://linkedin.com/in/aymanalheraki
https://simplifycpp.org

Part I

Foundations (C++-centric)

28

Chapter 1

Preface & How to Use This Book

1.1 Target Audience and Prerequisites
(C++17/20/23)

This book is written for advanced learners who seek to master algorithmic thinking and
its implementation using Modern C++. It is not an introductory text on programming;
rather, it is designed as a companion for graduate-level students, researchers, and
professional developers who already have a solid foundation in C++ and wish to deepen
their expertise in both theoretical and practical aspects of algorithms.
The target audience includes:

1. Graduate and postgraduate students in computer science, mathematics,
or engineering

• These readers will benefit from the rigorous approach to algorithm design,
analysis, and implementation, especially in areas involving optimization,
graph theory, and parallelization.

30

31

• The book is designed to complement advanced coursework, seminar projects,
and thesis research.

2. Researchers and academics

• Those conducting research in areas such as high-performance computing,
numerical optimization, computational geometry, or machine learning
systems will find ready-to-use C++ implementations alongside theoretical
insights.

• The focus on Modern C++ standards ensures that the techniques are
relevant for current and future research.

3. Professional software developers and systems engineers

• Developers working in domains like finance, scientific computing, embedded
systems, or large-scale distributed software will find value in mastering
efficient algorithm design with Modern C++ idioms.

• Emphasis on efficiency, concurrency, and real-world constraints prepares
readers for the challenges of production-level codebases.

4. Enthusiasts of Modern C++

• Readers who are already proficient in earlier C++ standards and want to
transition their thinking to C++17, C++20, and C++23 idioms will gain a
structured path toward adopting concepts, ranges, coroutines, and modules
in algorithmic contexts.

32

1.1.1 Prerequisites

To maximize the benefit from this book, readers are expected to meet the following
prerequisites:

1. C++ Knowledge

• A strong understanding of C++ up to at least the C++17 standard is
required.

• Familiarity with advanced constructs like templates, smart pointers, lambda
expressions, and move semantics is assumed.

• Exposure to C++20/23 features such as concepts, ranges, coroutines,
and the expanded standard library is highly recommended. These features
will be used throughout the book to simplify and modernize algorithm
implementation.

2. Mathematical Foundations

• Readers should have working knowledge of discrete mathematics, linear
algebra, probability, and basic number theory.

• Understanding of asymptotic notation (Big-O, Big-Theta, Big-Omega) and
algorithmic complexity is essential.

3. Computer Science Foundations

• Prior coursework or experience with data structures (arrays, linked
lists, stacks, queues, trees, graphs, hash tables) and their trade-offs
is assumed.

• Basic familiarity with recursion, dynamic programming, and divide-and-
conquer strategies is necessary.

33

4. Development Tools

• Readers should be comfortable with compilers supporting C++20/23,
such as GCC, Clang, or MSVC.

• Basic familiarity with CMake or modern build systems is assumed, as the
examples will make use of such tools for modular compilation and testing.

5. Optional but Helpful Background

• Knowledge of parallel programming models (threads, OpenMP, or GPU
programming) will be helpful in later chapters dealing with concurrency and
performance.

• Familiarity with software engineering practices such as version control, unit
testing, and benchmarking will make it easier to apply the book’s lessons in
practical contexts.

1.1.2 Positioning of This Book

Unlike introductory algorithm texts that focus purely on pseudocode or language-
agnostic explanations, this book emphasizes real-world C++ implementations
aligned with the latest standards. Each algorithm is not only presented with its
theoretical foundation but also translated into idiomatic C++17/20/23 code that
leverages modern features for clarity, efficiency, and maintainability.
By setting high prerequisites, the book ensures that the content can dive directly into
graduate-level algorithmic strategies without repeating elementary concepts. This
allows readers to engage with advanced material such as graph flows, optimization
heuristics, and concurrency-aware algorithms at a professional depth.

34

1.2 Coding Standards Used in Examples (formatter,
naming, header structure)

To ensure clarity, consistency, and professionalism across all code examples, this book
adheres to a strict set of coding standards. These conventions are chosen to balance
readability, maintainability, and alignment with modern C++ practices, making it
easier for readers to follow the examples and adopt the same standards in their own
projects.

1.2.1 Code Formatting and Style

All code snippets are formatted using a consistent automated formatter, aligned with
the widely used LLVM/Clang-Format style. The primary goals are readability,
uniformity, and modern conventions.

• Indentation:

– Four spaces are used per indentation level.

– Tabs are not used.

• Line Length:

– Code lines are kept within 100–120 characters to improve readability in both
printed and digital formats.

• Braces:

– Opening braces are placed on the same line as the declaration or statement:

35

if (condition) {
// code

} else {
// alternative

}

• Whitespace:

– One space after keywords (if, for, while, switch).

– Spaces around operators (=, +, -, *, /, &&, ||).

– No trailing whitespace at the end of lines.

• Comments:

– Use // for short, explanatory inline comments.

– Use /** ... */ (Doxygen style) for documenting functions, classes, and
templates, making examples suitable for automatic documentation tools.

1.2.2Naming Conventions

Naming conventions follow widely accepted C++ community standards, with clarity
and semantic meaning prioritized.

• Variables and Functions:

– Use camelCase for function names and local variables.

– Example:

36

int computeDistance(int x, int y);
double averageValue(const std::vector<int>& values);

• Classes, Structs, and Types:

– Use PascalCase for class and struct names.

– Example:

class GraphSolver {
public:

void run();
};

• Constants and Enums:

– Use ALL_CAPS_WITH_UNDERSCORES for global constants.

– Strongly typed enums (enum class) use PascalCase for enumerators.

– Example:

template <typename T>
class Stack { /* ... */ };

• Templates and Generic Parameters:

– Template parameters use PascalCase, often a single uppercase letter or
descriptive word.

37

– Example:

namespace algo::graph {
void dijkstra();

}

• Namespaces:

– Namespaces in C++ organize code and prevent name conflicts. Use concise,
lowercase names for namespaces, and employ nested namespaces for logical
grouping.

– Example:

#include "graph_solver.hpp"
#include <iostream>
#include <vector>
#include <queue>

namespace graph {
namespace solver {

class GraphSolver {
public:

void solve() {
std::cout << "Solving graph..." << std::endl;

}
};

}
}

38

1.2.3Header and Source Structure

Each example adheres to a clean and consistent file organization, ensuring modularity
and easy integration into larger projects.

• Include Order:

Maintain a consistent include order to improve readability and reduce dependency
issues:

1. Corresponding header file (.h or .hpp).

2. Standard library headers.

3. Third-party library headers (if applicable).

4. Project-specific headers.

Example:

#include "graph_solver.hpp" // Corresponding header
#include <iostream> // Standard library
#include <vector>
#include <queue>
#include <boost/graph/adjacency_list.hpp> // Third-party (example)
#include "utils/logger.hpp" // Project-specific

• Header File Structure:

– Use #pragma once to prevent multiple inclusion.

– Keep declarations (interfaces, templates, constants) in header files, and place
definitions in .cpp files whenever possible.

39

Example (graph_solver.hpp):

// graph_solver.hpp
#pragma once
#include <vector>

class GraphSolver {
public:

GraphSolver(int vertices);
void addEdge(int u, int v, int weight);
void runDijkstra(int source);

private:
int vertexCount;
std::vector<std::vector<int>> adjacencyMatrix;

};

Source File Structure:

• Source files should contain the function and method definitions, keeping headers
lean and focused on declarations.

Example:

// graph_solver.cpp
#include "graph_solver.hpp"
#include <queue>
#include <limits>
#include <iostream>

GraphSolver::GraphSolver(int vertices)
: vertexCount(vertices),

40

adjacencyMatrix(vertices, std::vector<int>(vertices, 0)) {}

void GraphSolver::addEdge(int u, int v, int weight) {
adjacencyMatrix[u][v] = weight;

}

void GraphSolver::runDijkstra(int source) {
std::vector<int> dist(vertexCount, std::numeric_limits<int>::max());
dist[source] = 0;

using Node = std::pair<int, int>; // (distance, vertex)
std::priority_queue<Node, std::vector<Node>, std::greater<>> pq;
pq.push({0, source});

while (!pq.empty()) {
int d = pq.top().first;
int u = pq.top().second;
pq.pop();

if (d > dist[u]) continue;

for (int v = 0; v < vertexCount; ++v) {
if (adjacencyMatrix[u][v] > 0) {

int newDist = dist[u] + adjacencyMatrix[u][v];
if (newDist < dist[v]) {

dist[v] = newDist;
pq.push({newDist, v});

}
}

}
}

41

std::cout << "Shortest distances from source " << source << ":\n";
for (int i = 0; i < vertexCount; ++i) {

std::cout << "Vertex " << i << ": ";
if (dist[i] == std::numeric_limits<int>::max())

std::cout << "INF\n";
else

std::cout << dist[i] << "\n";
}

}

1.2.4Modern C++ Practices

To reinforce best practices, all code examples:

• Prefer constexpr, noexcept, [[nodiscard]], and auto where applicable.

• Use RAII (Resource Acquisition Is Initialization) for resource management.

• Favor std::unique_ptr and std::shared_ptr over raw pointers.

• Use ranges, concepts, and structured bindings (C++20/23) when
demonstrating algorithms.

• Avoid deprecated or unsafe constructs (e.g., new/delete in favor of smart
pointers, printf in favor of std::format).

This standardized approach ensures that every code example is:

• Readable and immediately understandable.

• Idiomatic to modern C++ (C++17/20/23).

• Suitable for integration into production or research codebases.

42

1.3 Build & Run: CMake Minimal Template,
Compiler Flags, Sanitizers, and Test Runner
Setup

This book emphasizes not only algorithmic design but also reproducible and
professional software engineering practices. To that end, all examples are structured
around CMake-based builds, with carefully chosen compiler flags, runtime sanitizers,
and lightweight testing frameworks. This ensures that every code sample is easy to
compile, portable across platforms, and robust against common runtime errors.

1.3.1Minimal CMake Template

CMake is the de facto build system generator for modern C++ projects. Its declarative
syntax, wide compiler support, and integration with IDEs make it an ideal choice for
academic and professional work.
A minimal project template used throughout this book looks as follows:

cmake_minimum_required(VERSION 3.20)
project(ModernCppAlgorithms VERSION 1.0 LANGUAGES CXX)

Set the standard explicitly
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

Enable warnings
if (MSVC)

add_compile_options(/W4 /permissive-)
else()

43

add_compile_options(-Wall -Wextra -Wpedantic -Werror)
endif()

Define an executable
add_executable(example main.cpp)

Link libraries (if needed)
target_link_libraries(example PRIVATE some_library)

This template enforces the C++23 standard, though examples are compatible with
C++17 and C++20 as well. Extensions are disabled to maintain portability and
encourage standard-compliant code.

1.3.2 Recommended Compiler Flags

Compiler warnings and optimizations are crucial for producing reliable code. The
following flags are encouraged throughout the book:

• Clang/GCC:

– -Wall -Wextra -Wpedantic -Werror — enables strict warnings and treats
them as errors.

– -O2 or -O3 — enables optimizations.

– -g — includes debug symbols.

– -fsanitize=address,undefined (when enabled) — runtime sanitizers.

• MSVC:

– /W4 — high warning level.

– /permissive- — enforces strict ISO compliance.

44

– /std:c++20 or /std:c++latest — ensures correct language version.

Build configurations are typically separated into Debug (with sanitizers and debug
symbols) and Release (with optimizations).
Example workflow:

cmake -S . -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
./build/example

1.3.3 Sanitizers

To minimize undefined behavior and catch subtle runtime issues, examples in this book
make extensive use of sanitizers. These are runtime checks supported by Clang and
GCC that detect memory and logic errors:

• AddressSanitizer (ASan): Detects memory leaks, buffer overflows, and use-
after-free.

• UndefinedBehaviorSanitizer (UBSan): Catches undefined behavior such as
division by zero, invalid casts, or signed integer overflow.

• ThreadSanitizer (TSan): Helps detect data races in multithreaded algorithms.

CMake configuration snippet for sanitizers:

if (CMAKE_CXX_COMPILER_ID MATCHES "Clang|GNU")
add_compile_options(-fsanitize=address,undefined -fno-omit-frame-pointer)
add_link_options(-fsanitize=address,undefined -fno-omit-frame-pointer)

endif()

45

For multithreaded sections of the book, ThreadSanitizer can be enabled separately:

add_compile_options(-fsanitize=thread)
add_link_options(-fsanitize=thread)

1.3.4 Test Runner Setup

Every algorithm in this book can be validated with small, reproducible tests. To
provide structure and reproducibility, the CTest framework (bundled with CMake)
is used as the default test runner.
Minimal testing setup in CMakeLists.txt:

enable_testing()

add_executable(test_example test_example.cpp)
add_test(NAME ExampleTest COMMAND test_example)

Test code can be simple assert-based programs:

#include <cassert>
#include "algorithm.hpp"

int main() {
assert(computeDistance(0, 3) == 3);
assert(computeDistance(-1, 2) == 3);
return 0;

}

For more advanced examples, lightweight frameworks such as Catch2 or GoogleTest
can be integrated. However, the book defaults to minimal test runners to keep the focus
on algorithms, not external dependencies.

46

1.3.5 Recommended Workflow

1. Clone or write the example code.

2. Configure the build system:

cmake -S . -B build -DCMAKE_BUILD_TYPE=Debug

3. Compile the code:

cmake --build build

4. Run the example:

./build/example

5. Run the test suite:

ctest --test-dir build

This workflow ensures every algorithm is validated in a reproducible, portable, and
professional way.

Chapter 2

Algorithmic Thinking with C++

2.1What is an Algorithm? C++ Examples as
First-Class Citizens

An algorithm is a finite, well-defined sequence of steps designed to solve a specific
problem or perform a computation. In computer science, algorithms are the blueprint
for any computational process, serving as the bridge between theoretical problem-
solving and practical implementation.
In the context of C++, algorithms are first-class citizens, meaning they are not
merely abstract concepts but entities that can be directly represented, manipulated,
and executed in code. Modern C++ provides multiple mechanisms—functions, function
objects, templates, ranges, and lambdas—to encode algorithms in a clear, type-safe, and
reusable manner.

2.1.1Defining Algorithms

At its core, an algorithm has several defining characteristics:

47

48

1. Input: One or more well-defined values or data structures.

2. Output: A result that is produced after finite steps.

3. Determinism: Given the same input, the output is predictable and repeatable.

4. Finiteness: An algorithm must terminate after a finite number of steps.

5. Effectiveness: Each step must be executable using a finite, well-defined
operation.

Example in C++: computing the factorial of a number recursively:

#include <iostream>

int factorial(int n) {
if (n <= 1) return 1;
return n * factorial(n - 1);

}

int main() {
int value = 5;
std::cout << "Factorial of " << value << " is " << factorial(value) << '\n';

}

Here, factorial is a complete, self-contained algorithm: it has input (n), output (the
factorial), determinism, and a finite number of steps.

2.1.2Algorithms as First-Class Citizens in C++

C++ allows algorithms to be represented and manipulated in ways that treat them as
first-class entities:

49

• Functions: The most basic building blocks of algorithms.

int add(int a, int b) { return a + b; }

• Function Objects (Functors): Objects that behave like functions, allowing
stateful algorithms.

struct Multiply {
int factor;
Multiply(int f) : factor(f) {}
int operator()(int x) const { return x * factor; }

};

• Lambdas: Inline, anonymous algorithms, widely used with modern STL
containers and algorithms.

auto square = [](int x) { return x * x; };
std::cout << square(4); // outputs 16

• Templates and Generic Algorithms: C++ templates allow algorithms to
operate on any compatible type.

template <typename T>
T sum(T a, T b) { return a + b; }

• STL Algorithms: The Standard Template Library provides pre-built, high-
performance algorithms such as std::sort, std::accumulate, std::transform,
and std::find, which treat algorithms as generic, composable entities.

50

#include <vector>
#include <algorithm>
#include <numeric>
#include <iostream>

int main() {
std::vector<int> v{1, 2, 3, 4, 5};
int total = std::accumulate(v.begin(), v.end(), 0);
std::cout << "Sum: " << total << '\n';

std::sort(v.begin(), v.end(), [](int a, int b){ return b < a; }); //
descending↪→

}

By treating algorithms as first-class citizens, C++ enables a high degree of
reusability, composability, and abstraction. Functions, templates, and STL
algorithms can be passed, stored, and invoked like data, allowing flexible algorithm
design and higher-level program reasoning.

2.1.3Algorithmic Thinking in C++

Algorithmic thinking is the practice of designing, analyzing, and implementing
algorithms efficiently. In C++, this involves:

1. Choosing the right data structure: Efficient algorithms rely on data
organization, e.g., arrays for random access, linked lists for dynamic insertion,
hash tables for fast lookup.

2. Deciding the approach: Whether to use recursion, iteration, divide-and-
conquer, or dynamic programming.

51

3. Leveraging Modern C++ features: Using ranges, concepts, lambdas, and
STL algorithms to simplify implementation while maintaining performance.

4. Evaluating complexity: Understanding the time and space complexity of an
algorithm and optimizing where necessary.

Example: Using std::transform with a lambda for element-wise operation:

#include <vector>
#include <algorithm>
#include <iostream>

int main() {
std::vector<int> data{1, 2, 3, 4, 5};
std::vector<int> squared(data.size());

std::transform(data.begin(), data.end(), squared.begin(),
[](int x) { return x * x; });

for (auto val : squared)
std::cout << val << " "; // Output: 1 4 9 16 25

}

Here, std::transform abstracts iteration, and the lambda defines the algorithm
concisely. This demonstrates how Modern C++ elevates algorithms to first-class,
composable, and reusable entities.

2.1.4 Summary

• An algorithm is a well-defined, finite sequence of steps to solve a problem.

• C++ enables algorithms to be first-class citizens via functions, lambdas,
templates, and STL utilities.

52

• Modern C++ encourages reusable, composable, and type-safe algorithmic
design.

• Algorithmic thinking in C++ combines problem-solving, data structures, language
features, and complexity analysis to implement efficient and maintainable
solutions.

By mastering this mindset, readers are prepared to engage with both classical and
advanced algorithmic patterns presented in later chapters.

53

2.2 Complexity Notation (Big-O / Θ / Ω) Illustrated
with C++ Microbenchmarks

Understanding algorithmic complexity is fundamental to algorithmic thinking.
Complexity notations provide a formal framework to measure, compare, and
reason about algorithm performance in terms of time and space. In C++, these
theoretical concepts can be experimentally validated using microbenchmarks,
bridging the gap between theory and practice.

2.2.1 Introduction to Complexity Notation

Algorithmic complexity describes how an algorithm’s resource usage grows with
input size. The most common measures are:

1. Big-O Notation (O):

• Represents the upper bound on runtime or space.

• Provides a worst-case guarantee: the algorithm will not exceed this growth
rate.

• Example: Insertion sort has O(n²) worst-case complexity.

2. Big-Theta Notation (Θ):

• Represents the tight bound, where the growth rate is both an upper and
lower bound.

• Provides an exact asymptotic behavior.

• Example: Merge sort has Θ(n log n) complexity in both average and worst
cases.

54

3. Big-Omega Notation (Ω):

• Represents the lower bound, i.e., the minimum amount of work an
algorithm will do.

• Example: Searching an unordered list has Ω(1) for best-case scenario (if the
target is first).

These notations help abstract away machine-specific constants, focusing on the
scalability of algorithms as input size increases.

2.2.2Microbenchmarks in C++

Microbenchmarks provide empirical evidence of complexity. In Modern C++, we can
leverage <chrono> to measure execution time precisely.
Example 1: Linear Search (O(n) worst-case)

#include <iostream>
#include <vector>
#include <chrono>
#include <algorithm>

int linearSearch(const std::vector<int>& v, int key) {
for (size_t i = 0; i < v.size(); ++i) {

if (v[i] == key) return static_cast<int>(i);
}
return -1;

}

int main() {
const int N = 1'000'000;
std::vector<int> data(N);

55

std::iota(data.begin(), data.end(), 0);

auto start = std::chrono::high_resolution_clock::now();
int index = linearSearch(data, N - 1); // worst-case
auto end = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = end - start;
std::cout << "Index: " << index << ", Time: " << elapsed.count() << "s\n";

}

• Observed runtime increases linearly with N.

• Matches theoretical O(n) behavior.

Example 2: Binary Search (O(log n) worst-case)

#include <iostream>
#include <vector>
#include <chrono>
#include <algorithm>

int main() {
const int N = 1'000'000;
std::vector<int> data(N);
std::iota(data.begin(), data.end(), 0);

auto start = std::chrono::high_resolution_clock::now();
int index = std::binary_search(data.begin(), data.end(), N - 1) ? N - 1 : -1;
auto end = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = end - start;
std::cout << "Found: " << index << ", Time: " << elapsed.count() << "s\n";

}

56

• Time grows logarithmically with N.

• Demonstrates how algorithm choice dramatically affects performance.

2.2.3Visualizing Complexity

Readers are encouraged to plot runtime vs input size to visually validate complexity.
Example workflow:

1. Vary N (input size) over multiple orders of magnitude.

2. Measure execution time using <chrono>.

3. Plot N on the x-axis and runtime on the y-axis.

4. Compare linear, logarithmic, quadratic, and cubic algorithms to understand their
growth curves.

This practice highlights practical differences between O(n), O(log n), and O(n²)
algorithms, showing how even small asymptotic differences can dominate performance
for large inputs.

2.2.4 Space Complexity

C++ algorithms are also evaluated in terms of memory usage. Common examples:

• In-place algorithms: Modify the input array, minimal extra space (e.g., in-place
quicksort, O(log n) space for recursion).

• Auxiliary-space algorithms: Require additional structures (e.g., merge sort,
O(n) extra space).

57

Microbenchmarks can include memory profiling using tools such as Valgrind or
AddressSanitizer to detect excessive allocations or leaks.

2.2.5Modern C++ Techniques for Complexity Analysis

• std::chrono: High-resolution timing.

• std::vector and other STL containers: Provide predictable performance
characteristics.

• Lambdas and std::function: Facilitate benchmarking multiple algorithms
concisely.

Example: Comparing two algorithms using a lambda-based timer:

auto measure = [](auto func) {
auto start = std::chrono::high_resolution_clock::now();
func();
auto end = std::chrono::high_resolution_clock::now();
return std::chrono::duration<double>(end - start).count();

};

double linear_time = measure([&] { linearSearch(data, N - 1); });
double binary_time = measure([&] { std::binary_search(data.begin(), data.end(), N -

1); });↪→

std::cout << "Linear: " << linear_time << "s, Binary: " << binary_time << "s\n";

This approach promotes reproducible, maintainable benchmarks, consistent with
professional C++ standards.

58

2.2.6Key Takeaways

• Big-O, Θ, and Ω notations provide formal tools to describe algorithm
performance.

• C++ enables direct empirical validation of complexity through
microbenchmarks.

• Modern C++ features such as lambdas, STL algorithms, and <chrono> make
complexity analysis concise and reproducible.

• Understanding both theoretical and practical behavior is essential for algorithmic
thinking and for selecting the right algorithm for real-world problems.

59

2.3 Practical Measurement: chrono, std::execution,
CPU Cycles, and Pitfalls

In algorithmic development, practical measurement complements theoretical
complexity analysis. While Big-O notation predicts scaling behavior, actual
performance depends on hardware, compiler optimizations, and memory hierarchy.
Modern C++ offers tools to measure execution time precisely, leverage parallel
execution policies, and analyze low-level CPU usage.

2.3.1Measuring Time with <chrono>

The <chrono> library provides high-resolution clocks to measure execution time with
precision. Typical usage involves capturing timestamps before and after a function call:

#include <chrono>
#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> v(1'000'000);
std::iota(v.begin(), v.end(), 0);

auto start = std::chrono::high_resolution_clock::now();
std::sort(v.begin(), v.end(), std::greater<>()); // sample algorithm
auto end = std::chrono::high_resolution_clock::now();

std::chrono::duration<double, std::milli> elapsed = end - start;
std::cout << "Sorting took: " << elapsed.count() << " ms\n";

}

60

Key points:

• high_resolution_clock provides maximum available precision.

• duration can be expressed in seconds, milliseconds, microseconds, or
nanoseconds.

• Always warm up the CPU cache before measuring to avoid skewed results.

2.3.2 Parallel Execution with std::execution

C++17 introduced parallel algorithms in the Standard Library. Execution policies
allow simple parallelization without explicit threads:

#include <vector>
#include <algorithm>
#include <execution>
#include <numeric>
#include <iostream>

int main() {
std::vector<int> data(10'000'000, 1);

auto start = std::chrono::high_resolution_clock::now();
int sum = std::reduce(std::execution::par, data.begin(), data.end());
auto end = std::chrono::high_resolution_clock::now();

std::cout << "Parallel sum: " << sum
<< ", Time: "
<< std::chrono::duration<double, std::milli>(end - start).count()
<< " ms\n";

}

61

• std::execution::seq — sequential execution (default).

• std::execution::par — parallel execution using multiple threads.

• std::execution::par_unseq — parallel and vectorized execution.

Note: The effectiveness of parallel execution depends on input size and system
hardware; small datasets may see worse performance due to threading overhead.

2.3.3Measuring CPU Cycles

For low-level performance analysis, measuring CPU cycles can reveal precise
computational cost. On x86 architectures, the RDTSC instruction or high-level wrappers
(e.g., std::chrono::steady_clock with cycle calibration) are used.
Example using <chrono> to approximate cycles:

#include <chrono>
#include <iostream>

int main() {
constexpr long N = 10'000'000;
auto start = std::chrono::steady_clock::now();

volatile long sum = 0;
for (long i = 0; i < N; ++i) sum += i;

auto end = std::chrono::steady_clock::now();
auto elapsed = std::chrono::duration<double>(end - start).count();

std::cout << "Elapsed time: " << elapsed << " s\n";
}

Tips:

62

• volatile prevents the compiler from optimizing away loops.

• For precise CPU cycle counting on multiple platforms, consider <x86intrin.h>
(__rdtsc) on x86.

• Always run multiple iterations to smooth out noise from context switches or
thermal throttling.

2.3.4 Common Measurement Pitfalls

1. Compiler Optimizations:

• Aggressive optimization may remove entire code sections (dead code
elimination).

• Mitigation: Use volatile or store results in variables used after the loop.

2. Caching Effects:

• Memory hierarchy (L1/L2/L3 cache, RAM) dramatically affects runtime.

• Solution: Repeat measurements, shuffle input, or warm up caches before
measurement.

3. Context Switching and Background Processes:

• Multitasking can skew results; run benchmarks in isolated environments.

4. Small Sample Sizes:

• Measuring very fast algorithms may produce noise due to timer resolution.

• Solution: Repeat the function many times and average results.

63

5. Incorrect Use of Parallel Algorithms:

• Parallel execution policies introduce thread overhead; small arrays may
perform worse than sequential.

• Always profile for your dataset size.

2.3.5 Recommended Workflow for Reliable Benchmarks

1. Choose the right clock: high_resolution_clock or steady_clock for
monotonic time measurement.

2. Warm up caches: Run the function once before timing.

3. Repeat measurements: Use loops or microbenchmark libraries (Google
Benchmark) for averaging.

4. Record system info: CPU frequency, cores, OS, and compiler optimizations for
reproducibility.

5. Compare algorithm variants: Sequential vs parallel, naive vs optimized, in-
place vs extra memory.

Example: averaging multiple runs:

double measure(auto func, int runs = 10) {
double total = 0.0;
for (int i = 0; i < runs; ++i) {

auto start = std::chrono::high_resolution_clock::now();
func();
auto end = std::chrono::high_resolution_clock::now();
total += std::chrono::duration<double, std::milli>(end - start).count();

}

64

return total / runs;
}

2.3.6 Summary

• <chrono> provides high-precision timing for empirical performance evaluation.

• std::execution enables safe and concise parallelization of STL algorithms.

• CPU cycles offer low-level insight into algorithm cost but require careful handling.

• Awareness of pitfalls—compiler optimizations, caching, and background
processes—is critical for reliable measurement.

• Combining theoretical complexity analysis with practical benchmarks
equips C++ developers to make informed algorithmic choices in real-world
applications.

Chapter 3

Essential C++ Tools for Algorithm
Developers

3.1 The Standard Library Overview Relevant to
Algorithms (Containers, Iterators, Algorithms
Header)

A deep understanding of the C++ Standard Library is essential for algorithm
developers. Modern C++ offers a rich ecosystem of containers, iterators, and
algorithmic functions that allow developers to implement complex operations
efficiently and safely. Leveraging these facilities enables higher productivity and clearer,
more maintainable code while adhering to best practices.

65

66

3.1.1 Containers

Containers are data structures provided by the Standard Library that store collections
of objects. Choosing the right container is critical for algorithm performance and
complexity guarantees.
1.1 Sequence Containers

• std::vector

– Dynamic array with contiguous memory.

– O(1) random access; amortized O(1) insertion at the end.

– Ideal for algorithms requiring indexing or contiguous memory access.

std::vector<int> v{1, 2, 3, 4, 5};
v.push_back(6);

• std::deque

– Double-ended queue supporting O(1) insertion at both ends.

– Slightly less cache-friendly than vector due to segmented memory.

• std::list

– Doubly linked list with O(1) insertion/deletion anywhere, O(n) traversal.

– Rarely used in modern C++ unless frequent mid-list modifications are
necessary.

• std::array

67

– Fixed-size array known at compile time.

– Offers stack allocation and compile-time bounds checking.

std::array<int, 5> arr = {1, 2, 3, 4, 5};

1.2 Associative Containers

• Provide fast lookup, insertion, and deletion based on keys.

– std::set / std::map

∗ Balanced binary tree implementations.
∗ O(log n) insert, search, delete.

std::set<int> s{1, 3, 5};
s.insert(2);

– std::unordered_set / std::unordered_map

∗ Hash-table-based containers.
∗ O(1) average-case access; O(n) worst-case.
∗ Useful for constant-time lookups.

1.3 Container Selection Guidelines

• Random access and iteration → vector, array.

• Frequent insertions/deletions in the middle → list.

• Unique sorted elements → set / map.

• Fast average-case lookup → unordered_set / unordered_map.

68

3.1.2 Iterators

Iterators are abstractions that allow algorithms to access and traverse containers
uniformly, decoupling the algorithm from container type.
2.1 Iterator Categories

Category Capabilities Common Containers

InputIterator Read-only, single-pass istream_iterator

OutputIterator Write-only, single-pass ostream_iterator

ForwardIterator Multi-pass, read/write forward_list, unordered_set

BidirectionalIterator Forward + backward
traversal

list, set

RandomAccessIterator Constant-time access by
index

vector, deque, array

2.2 Example Usage

std::vector<int> v{1, 2, 3, 4, 5};
for (auto it = v.begin(); it != v.end(); ++it) {

*it *= 2;
}

• Iterators provide a uniform interface for algorithms like std::sort, std::find,
or std::accumulate, allowing them to operate on any compatible container.

69

3.1.3 The <algorithm> Header

The <algorithm> header provides a vast collection of generic algorithms that
work with iterators. These algorithms are highly optimized, type-safe, and often
parallelizable (C++17 onward with execution policies).
3.1 Categories of Algorithms

1. Non-modifying sequence operations

• std::all_of, std::any_of, std::none_of

• std::find, std::find_if

• Example:

std::vector<int> v{1, 2, 3, 4};
if (std::any_of(v.begin(), v.end(), [](int x){ return x % 2 == 0; })) {

std::cout << "Contains even number\n";
}

2. Modifying sequence operations

• std::copy, std::transform, std::fill, std::remove

• Example:

std::vector<int> v{1,2,3,4,5};
std::transform(v.begin(), v.end(), v.begin(), [](int x){ return x*x; });

3. Sorting and related operations

• std::sort, std::stable_sort, std::partial_sort, std::nth_element

70

4. Set operations (require sorted ranges)

• std::set_union, std::set_intersection

5. Numeric operations

• std::accumulate, std::inner_product, std::adjacent_difference

3.2 Modern C++ Enhancements

• C++17: parallel execution policies (std::execution::par) for std::for_each,
std::sort, std::transform.

• C++20: ranges library (std::ranges) allows cleaner algorithm expressions with
pipelines and views:

#include <ranges>
#include <vector>
#include <iostream>

int main() {
std::vector<int> v{1,2,3,4,5};
for (int x : v | std::ranges::views::transform([](int n){ return n*n; })) {

std::cout << x << ' ';
}

}

3.1.4 Best Practices for Algorithm Developers

1. Prefer STL algorithms over writing custom loops; they are well-tested and
optimized.

71

2. Always pair algorithms with appropriate iterators to maximize flexibility.

3. Use execution policies and ranges in modern C++ to write clear and
potentially parallel code.

4. Choose containers that match algorithm access patterns to avoid unnecessary
complexity or overhead.

By mastering containers, iterators, and <algorithm> utilities, algorithm developers can
implement high-performance, maintainable solutions while leveraging the full power of
Modern C++.

72

3.2Modern C++ Features That Change Algorithm
Design: ranges, concepts, span, string_view

Modern C++ (C++17, C++20, and C++23) introduces a set of powerful features that
fundamentally change how algorithms are written, composed, and optimized.
These features improve abstraction, safety, and performance without sacrificing
the fine-grained control that C++ developers expect.

3.2.1 Ranges (std::ranges)

Introduced in C++20, ranges provide a composable abstraction for sequences of
elements. Unlike traditional iterator-based algorithms, ranges enable pipeline-style
operations that are more readable and expressive.
Key advantages:

• Concise syntax: algorithms can be chained as pipelines.

• Lazy evaluation: operations like filter or transform are evaluated only when
iterated.

• Improved safety: eliminates common iterator errors.

Example: filtering and transforming a vector

#include <ranges>
#include <vector>
#include <iostream>

int main() {
std::vector<int> v{1, 2, 3, 4, 5, 6};

73

auto even_squares = v
| std::ranges::views::filter([](int x){ return x % 2 == 0; })
| std::ranges::views::transform([](int x){ return x * x; });

for (int x : even_squares)
std::cout << x << " "; // Output: 4 16 36

}

Impact on algorithm design:

• Eliminates manual loops for transformations.

• Supports composable and modular algorithm pipelines.

• Encourages functional programming patterns in C++.

3.2.2 Concepts (std::concepts)

Concepts, introduced in C++20, provide compile-time constraints on template
parameters, allowing algorithms to be self-documenting and safer.
Example: constraining a generic sum function

#include <concepts>
#include <vector>
#include <numeric>
#include <iostream>

template <std::integral T>
T sum_elements(const std::vector<T>& v) {

return std::accumulate(v.begin(), v.end(), T{0});
}

74

int main() {
std::vector<int> v{1, 2, 3};
std::cout << sum_elements(v); // Output: 6

}

Impact on algorithm design:

• Prevents incorrect template instantiations.

• Improves compile-time diagnostics, making errors easier to understand.

• Encourages type-safe generic algorithms.

3.2.3 std::span

std::span (C++20) represents a non-owning view over a contiguous sequence
of elements. It allows algorithms to operate on arrays, vectors, or subarrays without
copying data.
Example: passing a subarray to an algorithm

#include
#include <vector>
#include <algorithm>
#include <iostream>

void double_elements(std::span<int> s) {
for (int &x : s) x *= 2;

}

int main() {
std::vector<int> v{1, 2, 3, 4, 5};

75

double_elements(v); // doubles all elements
for (int x : v) std::cout << x << " "; // Output: 2 4 6 8 10

int arr[] = {10, 20, 30};
double_elements(arr); // works with C-style arrays

}

Impact on algorithm design:

• Algorithms can accept generic contiguous sequences.

• Reduces copying overhead and improves memory efficiency.

• Integrates seamlessly with STL algorithms.

3.2.4 std::string_view

std::string_view (C++17) is a non-owning, lightweight view of a string. It
allows string algorithms to work on substrings without copying.
Example: splitting and searching substrings efficiently

#include <string_view>
#include <iostream>

void print_words(std::string_view sv) {
size_t start = 0, end;
while ((end = sv.find(' ', start)) != std::string_view::npos) {

std::cout << sv.substr(start, end - start) << '\n';
start = end + 1;

}
std::cout << sv.substr(start) << '\n';

}

76

int main() {
std::string text = "Modern C++ algorithms are powerful";
print_words(text);

}

Impact on algorithm design:

• Avoids unnecessary string copying.

• Allows safe, read-only access to substrings.

• Optimizes string-intensive algorithms like parsing, searching, and tokenization.

3.2.5 Combined Modern Patterns

Modern C++ features often work together to simplify algorithm design:

#include <ranges>
#include <string_view>
#include <vector>
#include <iostream>
#include <algorithm>

int main() {
std::vector<std::string> words{"Modern", "C++", "algorithms", "are", "powerful"};

auto filtered = words
| std::ranges::views::filter([](const auto& w){ return w.size() > 3; })
| std::ranges::views::transform([](std::string_view sv){ return sv.substr(0,

3); });↪→

77

for (auto w : filtered)
std::cout << w << " "; // Output: Mod algo pow

}

• std::string_view avoids copying strings.

• ranges compose transformations and filters cleanly.

• Concepts (if applied in templates) can enforce constraints on element types.

3.2.6 Summary

Modern C++ features fundamentally change algorithm design by:

1. Ranges: Enabling composable, pipeline-style operations.

2. Concepts: Enforcing compile-time constraints for safer templates.

3. Span: Allowing generic, non-owning views of contiguous sequences.

4. String_view: Optimizing string handling and parsing algorithms.

By adopting these features, algorithm developers can write concise, efficient, and
type-safe algorithms that leverage the full power of C++17, C++20, and beyond.

78

3.3Unit Testing & Benchmarking in C++:
GoogleTest, Catch2, benchmark Library, valgrind,
Sanitizers

Reliable algorithms require rigorous testing and performance evaluation. Modern
C++ developers rely on unit testing frameworks, benchmarking libraries, and runtime
analysis tools to ensure correctness, efficiency, and safety. This section provides an
overview of essential tools and best practices.

3.3.1Unit Testing

Unit tests verify that individual components of an algorithm behave as expected. In
C++, popular frameworks include GoogleTest and Catch2.
1.1 GoogleTest (gtest)
GoogleTest is widely adopted for enterprise-grade C++ projects. Key features:

• Assertions: EXPECT_EQ, ASSERT_TRUE, EXPECT_NEAR for floating-point
comparisons.

• Test Fixtures: Reusable setup/teardown for complex objects.

• Parameterized Tests: Test algorithms with multiple inputs systematically.

Example: Testing a sorting algorithm

#include <gtest/gtest.h>
#include <vector>
#include <algorithm>

79

std::vector<int> sort_vector(std::vector<int> v) {
std::sort(v.begin(), v.end());
return v;

}

TEST(SortTest, HandlesUnsortedInput) {
std::vector<int> input{4, 2, 5, 1};
std::vector<int> expected{1, 2, 4, 5};
EXPECT_EQ(sort_vector(input), expected);

}

int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

1.2 Catch2
Catch2 is a header-only testing library suitable for lightweight projects.
Advantages:

• No separate build required for the framework.

• Simple syntax for assertions: REQUIRE, CHECK.

• Supports BDD-style testing with SCENARIO and GIVEN/WHEN/THEN.

Example:

#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>
#include <vector>
#include <algorithm>

80

std::vector<int> sort_vector(std::vector<int> v) {
std::sort(v.begin(), v.end());
return v;

}

TEST_CASE("SortVector correctly sorts integers") {
std::vector<int> input{4, 2, 5, 1};
std::vector<int> expected{1, 2, 4, 5};
REQUIRE(sort_vector(input) == expected);

}

Best practices:

• Unit tests should be small, isolated, and deterministic.

• Use fixtures to reduce code duplication for shared data.

• Integrate with CI/CD pipelines to ensure automated testing.

3.3.2 Benchmarking

Measuring performance is critical to validate algorithm efficiency beyond asymptotic
complexity.
2.1 Google Benchmark Library
The benchmark library by Google allows fine-grained measurement of function
execution time.
Example: Benchmarking vector sorting

#include <benchmark/benchmark.h>
#include <vector>

81

#include <algorithm>
#include <numeric>

static void BM_SortVector(benchmark::State& state) {
std::vector<int> v(state.range(0));
std::iota(v.begin(), v.end(), 0);

for (auto _ : state) {
std::shuffle(v.begin(), v.end(), std::mt19937{std::random_device{}()});
benchmark::DoNotOptimize(v);
std::sort(v.begin(), v.end());

}
}

BENCHMARK(BM_SortVector)->Range(8, 1<<20);
BENCHMARK_MAIN();

• Supports parameterized benchmarks and reporting average, min, max,
and standard deviation.

• Provides DoNotOptimize to prevent compiler optimizations from invalidating
results.

2.2 Manual Microbenchmarking
For small-scale experiments, <chrono> can be used as described in earlier chapters, but
libraries like Google Benchmark provide repeatability, statistical significance, and
integration.

3.3.3Memory and Runtime Analysis

Ensuring algorithms are memory-safe and free from undefined behavior is as important
as correctness.

82

3.1 Valgrind

• Popular on Linux for memory leak detection and undefined behavior
analysis.

• Typical usage:

valgrind --leak-check=full ./my_program

• Reports allocations that were not freed, helping detect memory leaks in
complex algorithmic implementations.

3.2 Sanitizers
Modern compilers (Clang/GCC) provide runtime sanitizers:

• AddressSanitizer (ASan): Detects buffer overflows, use-after-free, and invalid
memory access.

• UndefinedBehaviorSanitizer (UBSan): Catches undefined behavior such as
signed integer overflow or invalid type casting.

• ThreadSanitizer (TSan): Detects data races in concurrent algorithms.

Example: Compile and run with AddressSanitizer:

g++ -fsanitize=address -fno-omit-frame-pointer -O1 main.cpp -o main
./main

Sanitizers are particularly valuable when benchmarking parallel algorithms or
working with manual memory management.

83

3.3.4 Integrating Testing and Benchmarking

• Combine unit tests (GoogleTest/Catch2) with benchmarking to verify
correctness and performance.

• Use sanitizers during development to catch memory or concurrency errors before
production.

• Structure your project to separate algorithm implementations from test
and benchmark code, enabling maintainable and reproducible results.

Project Layout Example:

/src -> algorithm implementations
/tests -> unit tests (gtest or Catch2)
/bench -> benchmarks (Google Benchmark)
/CMakeLists.txt -> separate targets for building tests and benchmarks

3.3.5Key Takeaways

• Unit testing ensures algorithm correctness and prevents regressions.

• Benchmarking verifies performance expectations against theoretical
complexity.

• Tools like Valgrind and sanitizers catch memory errors and undefined behavior
early.

• Modern C++ testing and benchmarking libraries are highly integrated with
contemporary workflows, making them essential for algorithm developers.

By combining these tools, developers can produce robust, efficient, and
maintainable algorithms, ready for real-world applications.

Part II

Linear & Basic Structures (with
C++ implementations)

84

Chapter 4

Arrays & Vectors

4.1 Static Array vs std::vector — Memory and
Performance Tradeoffs

In C++, both static arrays and std::vector are foundational linear containers.
Choosing between them requires understanding memory layout, performance
characteristics, and flexibility tradeoffs. This section provides a detailed
comparison, highlighting when each container is appropriate for algorithm
implementation.

4.1.1 Static Arrays

A static array is a fixed-size, contiguous block of memory allocated either on the
stack or as a global/static variable.
Syntax example:

86

87

int arr[5] = {1, 2, 3, 4, 5};

Characteristics:

• Fixed size: Must be known at compile time (for stack allocation).

• Contiguous memory: Elements are stored sequentially, optimizing cache usage.

• No overhead: Minimal metadata; access and iteration are very fast.

• Stack vs heap allocation:

– Stack arrays: fast allocation/deallocation, limited by stack size (~1MB
typical).

– Heap arrays (dynamic allocation): new int[N] allows runtime sizing but
requires manual memory management.

Performance considerations:

• Access speed: O(1) due to contiguous memory and no bounds checking.

• Insertion/deletion: Expensive for elements in the middle; requires manual
shifting.

• Memory footprint: Minimal; no extra allocation overhead.

Example: Sum of static array elements

int sum = 0;
for (int i = 0; i < 5; ++i) sum += arr[i];

Limitations:

88

• Fixed size prevents dynamic growth.

• No built-in resizing or automatic memory management.

• Unsafe if size is exceeded (undefined behavior).

4.1.2 std::vector

std::vector is a dynamic array container from the C++ Standard Library that
manages memory automatically.
Syntax example:

#include <vector>
std::vector<int> v{1, 2, 3, 4, 5};
v.push_back(6); // dynamically resizes if needed

Characteristics:

• Dynamic resizing: Automatically grows as elements are added.

• Contiguous memory: Like arrays, elements are sequentially stored, which
benefits cache locality.

• Automatic memory management: Allocates and deallocates memory on the
heap.

• Rich interface: Provides iterators, size/empty queries, and STL-compatible
algorithms.

Performance considerations:

• Access speed: O(1) random access, similar to static arrays.

89

• Insertion/deletion at end: Amortized O(1) thanks to exponential capacity
growth.

• Insertion/deletion elsewhere: O(n), as elements may need to shift.

• Memory overhead: Extra metadata (size, capacity) and potential over-
allocation to optimize resizing.

Example: Dynamic resizing impact

std::vector<int> v;
for (int i = 0; i < 1000; ++i) v.push_back(i); // vector automatically resizes

• Each resize may allocate a new block (usually 2× current capacity) and copy
elements.

• Amortized cost remains O(1) for push_back, but worst-case for individual
insertions is O(n).

4.1.3Memory Layout and Cache Effects

Feature Static Array std::vector

Memory
location

Stack (fast) / Heap (manual) Heap (automatic)

Contiguous Yes Yes

Metadata None Stores size, capacity, allocator
pointer

90

Feature Static Array std::vector

Cache
friendliness

Excellent Excellent (mostly)

Overhead Minimal Slight overhead for capacity
management

Resizing Not supported Supported, may trigger
reallocations

Cache considerations:

• Both containers benefit from sequential access, optimizing prefetching.

• Excessive push_back causing repeated reallocation can introduce cache misses.

4.1.4 Performance Tradeoffs

1. Static arrays:

• Best for fixed-size, high-performance scenarios where memory overhead
must be minimal.

• Example: low-level numerical algorithms, embedded systems.

2. std::vector:

• Best for dynamic-size scenarios, generic programming, or when using STL
algorithms.

• Example: data structures requiring flexible growth, such as queues, stacks, or
graphs.

91

Microbenchmark insight:

• Iterating over static arrays is slightly faster than std::vector due to the absence
of metadata.

• For large, dynamically changing datasets, std::vector often outperforms manual
heap arrays due to automated allocation strategies and exception safety.

4.1.5Guidelines for Algorithm Developers

• Use static arrays when:

– Size is known at compile time.

– Maximum performance and minimal memory overhead are critical.

– Avoiding dynamic memory allocation is important (e.g., embedded systems).

• Use std::vector when:

– Dataset size varies at runtime.

– STL algorithms or iterator-based generic code are desired.

– Safety and maintainability are more important than the tiny static overhead.

• Hybrid approach:

– Use std::array (fixed-size STL array, stack-allocated) for known sizes.

– Use std::vector when dynamic growth or integration with STL algorithms
is required.

92

4.1.6 Summary

• Static arrays: minimal overhead, fixed size, optimal cache performance.

• std::vector: dynamic, safe, STL-compatible, slightly more overhead but far
more flexible.

• Choosing the right container is a tradeoff between memory efficiency,
performance, and flexibility.

• Understanding these tradeoffs is essential when implementing linear structures or
algorithms in Modern C++.

93

4.2 In-Place Algorithms: Sliding Window, Two
Pointers, Partitioning in C++

In-place algorithms are techniques that manipulate arrays or vectors without
allocating significant extra memory, making them ideal for high-performance
applications. Common in algorithmic problem solving, these methods maximize
efficiency by reducing memory usage while maintaining linear or near-linear time
complexity. This section examines sliding window, two-pointer, and partitioning
techniques in C++ with practical examples.

4.2.1 Sliding Window Technique

The sliding window approach is used to process a subset of elements
in a contiguous sequence efficiently. It is widely applied in sum,
maximum/minimum, and substring problems.
Core idea: Maintain a window of elements, updating it incrementally rather than
recomputing values repeatedly.
Example: Maximum Sum of a Subarray of Size k

#include <vector>
#include <iostream>

int maxSubarraySum(const std::vector<int>& v, int k) {
int n = v.size();
if (n < k) return -1;
int sum = 0;
for (int i = 0; i < k; ++i) sum += v[i];

int maxSum = sum;

94

for (int i = k; i < n; ++i) {
sum += v[i] - v[i - k]; // slide window forward
if (sum > maxSum) maxSum = sum;

}
return maxSum;

}

int main() {
std::vector<int> v{1, 2, 3, 4, 5, 6};
std::cout << "Max sum of size 3: " << maxSubarraySum(v, 3) << "\n"; // Output:

15↪→

}

Key points:

• Time complexity: O(n)

• Space complexity: O(1)

• Efficient for large arrays where recomputation is expensive

Applications: maximum sum subarrays, minimum window substring, dynamic range
queries.

4.2.2 Two-Pointer Technique

The two-pointer method is commonly used for sorted arrays or sequences to find
pairs, triplets, or subarrays satisfying a condition.
Core idea: Use two indices to traverse the array from different directions.
Example: Finding a pair with a given sum in a sorted vector

95

#include <vector>
#include <iostream>
#include <algorithm>

bool hasPairWithSum(std::vector<int>& v, int target) {
std::sort(v.begin(), v.end()); // ensure sorted
int left = 0, right = v.size() - 1;

while (left < right) {
int sum = v[left] + v[right];
if (sum == target) return true;
else if (sum < target) ++left;
else --right;

}
return false;

}

int main() {
std::vector<int> v{2, 4, 3, 5, 7};
std::cout << std::boolalpha << hasPairWithSum(v, 10) << "\n"; // Output: true

}

Key points:

• Time complexity: O(n) for sorted arrays (sorting O(n log n) if needed)

• Space complexity: O(1)

• Can be extended to triplets or sliding windows in subarray problems

Applications: two-sum, three-sum, moving average, subarray problems, interval
overlap detection.

96

4.2.3 Partitioning (In-Place Reordering)

Partitioning rearranges elements in an array based on a pivot or condition. It is
foundational in quick sort, Dutch National Flag problem, and other in-place
algorithms.
3.1 Lomuto Partition Scheme (for quicksort)

#include <vector>
#include <iostream>
#include <algorithm>

int lomutoPartition(std::vector<int>& v, int low, int high) {
int pivot = v[high];
int i = low - 1;

for (int j = low; j < high; ++j) {
if (v[j] <= pivot) {

++i;
std::swap(v[i], v[j]);

}
}
std::swap(v[i + 1], v[high]);
return i + 1;

}

void quickSort(std::vector<int>& v, int low, int high) {
if (low < high) {

int pi = lomutoPartition(v, low, high);
quickSort(v, low, pi - 1);
quickSort(v, pi + 1, high);

}
}

97

int main() {
std::vector<int> v{10, 7, 8, 9, 1, 5};
quickSort(v, 0, v.size() - 1);
for (int x : v) std::cout << x << " "; // Output: 1 5 7 8 9 10

}

3.2 Dutch National Flag Problem (Three-Way Partitioning)

• Useful when categorizing array elements into three groups (e.g., 0, 1, 2).

#include <vector>
#include <iostream>

void dutchNationalFlag(std::vector<int>& v) {
int low = 0, mid = 0, high = v.size() - 1;

while (mid <= high) {
if (v[mid] == 0) std::swap(v[low++], v[mid++]);
else if (v[mid] == 1) ++mid;
else std::swap(v[mid], v[high--]);

}
}

int main() {
std::vector<int> v{2, 0, 2, 1, 1, 0};
dutchNationalFlag(v);
for (int x : v) std::cout << x << " "; // Output: 0 0 1 1 2 2

}

Key points:

• Time complexity: O(n)

98

• Space complexity: O(1)

• Efficient for in-place sorting or categorization problems

4.2.4 Best Practices for In-Place Algorithms

1. Minimize extra memory allocation: Use in-place swaps and indices instead of
auxiliary arrays.

2. Validate bounds: Off-by-one errors are common; always check index boundaries.

3. Combine techniques: Sliding window + two-pointers or partitioning can solve
complex problems efficiently.

4. Leverage STL utilities: Functions like std::partition, std::rotate, and
std::stable_partition simplify in-place operations while remaining efficient.

Example using STL partition:

#include <vector>
#include <algorithm>
#include <iostream>

int main() {
std::vector<int> v{1, 4, 2, 5, 3};
std::partition(v.begin(), v.end(), [](int x){ return x % 2 == 0; });
for (int x : v) std::cout << x << " "; // Output: 4 2 1 5 3 (evens first)

}

4.2.5 Summary

• Sliding window: Optimizes range-based computations with O(1) space.

99

• Two pointers: Efficiently processes sorted sequences or paired conditions.

• Partitioning: Reorders arrays in-place, foundational for quicksort and
classification problems.

• In-place design: Reduces memory usage, improves cache locality, and often
increases performance for large datasets.

Understanding and applying these in-place techniques equips developers to
implement high-performance algorithms on arrays and vectors with minimal memory
overhead.

100

4.3 Exercises: In-Place Rotation, Subarray Sums,
Prefix/Suffix Arrays

Practical exercises solidify the understanding of arrays and vectors while reinforcing in-
place algorithm techniques. This section presents hands-on C++ exercises covering
rotation, subarray sums, and prefix/suffix arrays, including hints, explanations,
and sample implementations.

4.3.1 In-Place Array Rotation

Problem: Rotate an array of size n by k positions to the right in-place.
Example:
Input: [1, 2, 3, 4, 5], k = 2 → Output: [4, 5, 1, 2, 3]
Solution Concept:

• Reverse the whole array.

• Reverse the first k elements.

• Reverse the remaining n-k elements.

C++ Implementation:

#include <vector>
#include <algorithm>
#include <iostream>

void rotateArray(std::vector<int>& v, int k) {
int n = v.size();
k %= n; // handle k > n
std::reverse(v.begin(), v.end());

101

std::reverse(v.begin(), v.begin() + k);
std::reverse(v.begin() + k, v.end());

}

int main() {
std::vector<int> v{1, 2, 3, 4, 5};
rotateArray(v, 2);
for (int x : v) std::cout << x << " "; // Output: 4 5 1 2 3

}

Key Takeaways:

• Time complexity: O(n)

• Space complexity: O(1) (in-place)

• Reversing subarrays is a common in-place technique.

4.3.2 Subarray Sums

Problem: Compute the sum of all contiguous subarrays efficiently.
Example:
Input: [1, 2, 3] → Subarray sums: [1, 3, 6, 2, 5, 3]
C++ Implementation (Naive):

#include <vector>
#include <iostream>

void allSubarraySums(const std::vector<int>& v) {
int n = v.size();
for (int start = 0; start < n; ++start) {

int sum = 0;

102

for (int end = start; end < n; ++end) {
sum += v[end];
std::cout << sum << " ";

}
}

}

int main() {
std::vector<int> v{1, 2, 3};
allSubarraySums(v); // Output: 1 3 6 2 5 3

}

Optimized Approach Using Prefix Sum:

#include <vector>
#include <iostream>

std::vector<int> computePrefixSum(const std::vector<int>& v) {
std::vector<int> prefix(v.size() + 1, 0);
for (size_t i = 0; i < v.size(); ++i) prefix[i + 1] = prefix[i] + v[i];
return prefix;

}

int main() {
std::vector<int> v{1, 2, 3};
auto prefix = computePrefixSum(v);

for (size_t start = 0; start < v.size(); ++start) {
for (size_t end = start; end < v.size(); ++end) {

int sum = prefix[end + 1] - prefix[start];
std::cout << sum << " "; // Output: 1 3 6 2 5 3

}

103

}
}

Key Takeaways:

• Prefix sums reduce repeated computation of subarray sums.

• Time complexity: O(n²) for all subarrays, O(n) to compute prefix sum.

• Space complexity: O(n) for prefix array.

4.3.3 Prefix and Suffix Arrays

Prefix and suffix arrays are widely used to accelerate cumulative calculations and
range queries.
Problem: Compute prefix and suffix sums of an array.
C++ Implementation:

#include <vector>
#include <iostream>

int main() {
std::vector<int> v{1, 2, 3, 4, 5};
int n = v.size();

std::vector<int> prefix(n), suffix(n);

prefix[0] = v[0];
for (int i = 1; i < n; ++i) prefix[i] = prefix[i - 1] + v[i];

suffix[n - 1] = v[n - 1];
for (int i = n - 2; i >= 0; --i) suffix[i] = suffix[i + 1] + v[i];

104

std::cout << "Prefix sums: ";
for (int x : prefix) std::cout << x << " "; // Output: 1 3 6 10 15

std::cout << "\nSuffix sums: ";
for (int x : suffix) std::cout << x << " "; // Output: 15 14 12 9 5

}

Applications:

• Range sum queries

• Sliding window problems

• Dynamic programming optimizations

Key Takeaways:

• Prefix and suffix arrays allow O(1) range sum queries after O(n)
preprocessing.

• Crucial for algorithm optimization in competitive programming and real-world
datasets.

4.3.4 Suggested Exercises

1. Rotate array left by k positions in-place.

2. Find the maximum subarray sum of size k using sliding window technique.

3. Compute prefix product array (similar to prefix sum but with
multiplication).

105

4. Range query exercise: Given a prefix array, compute sums of multiple ranges
efficiently.

5. In-place rotation of subarray: Rotate a portion of the array without
additional memory.

4.3.5 Summary

• In-place rotation teaches efficient index manipulation and array reversal
techniques.

• Subarray sums introduce naive and prefix-sum optimizations, highlighting
tradeoffs between computation and memory.

• Prefix and suffix arrays provide a foundation for cumulative computations and
range queries, widely used in advanced algorithms.

• Practicing these exercises strengthens algorithmic thinking while reinforcing
memory-efficient, in-place C++ programming.

Chapter 5

Linked Lists

5.1 Single/Doubly Linked List Implementations in
Modern C++ (Smart Pointers vs Raw Pointers)

Linked lists are fundamental dynamic data structures that support efficient
insertion and deletion operations, especially when compared to contiguous containers
like arrays or vectors. Modern C++ provides tools to implement linked lists safely
and efficiently using raw pointers or smart pointers. This section explores both
approaches, highlighting trade-offs and best practices.

5.1.1 Singly Linked List

A singly linked list consists of nodes where each node contains data and a pointer
to the next node.
Node structure with raw pointers:

106

107

struct Node {
int data;
Node* next;
Node(int val) : data(val), next(nullptr) {}

};

Basic operations using raw pointers:

#include <iostream>

struct Node {
int data;
Node* next;
Node(int val) : data(val), next(nullptr) {}

};

// Insert at head
void insertHead(Node*& head, int val) {

Node* newNode = new Node(val);
newNode->next = head;
head = newNode;

}

// Print list
void printList(Node* head) {

while (head) {
std::cout << head->data << " ";
head = head->next;

}
}

int main() {

108

Node* head = nullptr;
insertHead(head, 3);
insertHead(head, 2);
insertHead(head, 1);
printList(head); // Output: 1 2 3

}

Considerations with raw pointers:

• Manual memory management (delete) is required to avoid leaks.

• Error-prone in complex algorithms or exception-prone code.

• High performance, minimal overhead.

Singly linked list with std::unique_ptr (smart pointers):
Modern C++ encourages automatic memory management using smart pointers,
especially std::unique_ptr for exclusive ownership.

#include <memory>
#include <iostream>

struct Node {
int data;
std::unique_ptr<Node> next;
Node(int val) : data(val), next(nullptr) {}

};

void insertHead(std::unique_ptr<Node>& head, int val) {
auto newNode = std::make_unique<Node>(val);
newNode->next = std::move(head);
head = std::move(newNode);

109

}

void printList(const std::unique_ptr<Node>& head) {
Node* current = head.get();
while (current) {

std::cout << current->data << " ";
current = current->next.get();

}
}

int main() {
std::unique_ptr<Node> head = nullptr;
insertHead(head, 3);
insertHead(head, 2);
insertHead(head, 1);
printList(head); // Output: 1 2 3

}

Advantages of smart pointers:

• Automatic cleanup, eliminates memory leaks.

• Exception-safe, avoids dangling pointers.

• std::unique_ptr enforces single ownership, aligning with RAII principles.

5.1.2Doubly Linked List

A doubly linked list (DLL) allows traversal in both directions. Each node contains
data, a pointer to the next node, and a pointer to the previous node.
DLL with raw pointers:

110

struct DNode {
int data;
DNode* next;
DNode* prev;
DNode(int val) : data(val), next(nullptr), prev(nullptr) {}

};

void insertHead(DNode*& head, int val) {
DNode* newNode = new DNode(val);
newNode->next = head;
if (head) head->prev = newNode;
head = newNode;

}

Key operations: insertion, deletion, and bidirectional traversal are slightly more
complex due to the extra prev pointer.
DLL with smart pointers (std::unique_ptr + raw prev pointer):
Smart pointers simplify memory management but require care with backward links.
A common pattern is:

• Use std::unique_ptr for next (exclusive ownership).

• Use raw or std::weak_ptr for prev to avoid cyclic references.

#include <memory>
#include <iostream>

struct DNode {
int data;
std::unique_ptr<DNode> next;
DNode* prev;

111

DNode(int val) : data(val), next(nullptr), prev(nullptr) {}
};

void insertHead(std::unique_ptr<DNode>& head, int val) {
auto newNode = std::make_unique<DNode>(val);
newNode->next = std::move(head);
if (newNode->next) newNode->next->prev = newNode.get();
head = std::move(newNode);

}

void printList(const std::unique_ptr<DNode>& head) {
DNode* current = head.get();
while (current) {

std::cout << current->data << " ";
current = current->next.get();

}
}

int main() {
std::unique_ptr<DNode> head = nullptr;
insertHead(head, 3);
insertHead(head, 2);
insertHead(head, 1);
printList(head); // Output: 1 2 3

}

Key points:

• Using unique_ptr for next ensures safe automatic deallocation.

• prev must remain a raw pointer to avoid circular ownership and memory leaks.

• Doubly linked lists require careful handling during insertions and deletions.

112

5.1.3 Raw Pointers vs Smart Pointers — Tradeoffs

Feature Raw Pointers Smart Pointers
(unique_ptr)

Memory safety Manual, error-prone Automatic, RAII-compliant

Performance Minimal overhead Slight overhead for ownership
semantics

Exception safety Low High

Ownership Programmer-managed Enforced by unique_ptr

Cyclic references Easy Must avoid cycles (use
weak_ptr)

Use cases Low-level/high-performance Most modern C++ code, safer
algorithms

Best Practices:

• Prefer smart pointers for most modern C++ code.

• Use raw pointers only when ownership is explicit or performance-critical.

• Always handle edge cases (empty list, single-node list) in both implementations.

• When designing library-like structures, consider exposing iterators rather than
raw node pointers.

113

5.1.4 Summary

• Singly linked lists: simpler, unidirectional, easy to implement with smart
pointers.

• Doubly linked lists: support bidirectional traversal, require careful handling of
prev pointers.

• Raw pointers: minimal overhead but manual memory management is error-
prone.

• Smart pointers: automatic memory management, exception-safe, recommended
in modern C++.

• Understanding these trade-offs is critical for high-performance and safe
algorithm design.

114

5.2 Common Algorithms: Reverse, Detect Cycle
(Floyd), Merge Lists, Remove Nth Node from
End

Linked lists are a versatile linear data structure, and mastering common algorithms
is essential for efficient manipulation and problem solving. This section covers in-place
reversal, cycle detection using Floyd’s algorithm, merging sorted lists, and
removing the N-th node from the end in modern C++, with practical examples
and performance analysis.

5.2.1 Reversing a Singly Linked List

Problem: Reverse the order of nodes in a singly linked list in-place.
Algorithm: Iterate through the list, reversing next pointers one by one while
maintaining previous and current pointers.

#include <memory>
#include <iostream>

struct Node {
int data;
std::unique_ptr<Node> next;
Node(int val) : data(val), next(nullptr) {}

};

std::unique_ptr<Node> reverseList(std::unique_ptr<Node> head) {
std::unique_ptr<Node> prev = nullptr;
while (head) {

std::unique_ptr<Node> next = std::move(head->next);

115

head->next = std::move(prev);
prev = std::move(head);
head = std::move(next);

}
return prev;

}

void printList(const std::unique_ptr<Node>& head) {
Node* current = head.get();
while (current) {

std::cout << current->data << " ";
current = current->next.get();

}
}

int main() {
auto head = std::make_unique<Node>(1);
head->next = std::make_unique<Node>(2);
head->next->next = std::make_unique<Node>(3);

head = reverseList(std::move(head));
printList(head); // Output: 3 2 1

}

Time Complexity: O(n)
Space Complexity: O(1) — in-place operation
Applications: Undo operations, stack emulation, algorithmic challenges.

5.2.2 Cycle Detection (Floyd’s Tortoise and Hare Algorithm)

Problem: Detect if a singly linked list contains a cycle.
Algorithm:

116

• Use two pointers, slow and fast.

• slow moves one step at a time, fast moves two steps.

• If slow and fast meet, a cycle exists.

struct NodeRaw {
int data;
NodeRaw* next;
NodeRaw(int val) : data(val), next(nullptr) {}

};

bool hasCycle(NodeRaw* head) {
NodeRaw* slow = head;
NodeRaw* fast = head;
while (fast && fast->next) {

slow = slow->next;
fast = fast->next->next;
if (slow == fast) return true;

}
return false;

}

int main() {
NodeRaw* a = new NodeRaw(1);
NodeRaw* b = new NodeRaw(2);
NodeRaw* c = new NodeRaw(3);
a->next = b; b->next = c; c->next = a; // cycle

std::cout << std::boolalpha << hasCycle(a) << "\n"; // Output: true
}

Time Complexity: O(n)

117

Space Complexity: O(1)
Applications: Detect loops in linked lists, memory leak detection, graph traversal
analogues.

5.2.3Merging Two Sorted Linked Lists

Problem: Merge two sorted singly linked lists into a single sorted list.
Algorithm: Iteratively compare nodes of both lists and append the smaller node to
the merged list.

#include <memory>
#include <iostream>

struct Node {
int data;
std::unique_ptr<Node> next;
Node(int val) : data(val), next(nullptr) {}

};

std::unique_ptr<Node> mergeSortedLists(std::unique_ptr<Node> l1,
std::unique_ptr<Node> l2) {↪→

auto dummy = std::make_unique<Node>(0);
Node* tail = dummy.get();

while (l1 && l2) {
if (l1->data < l2->data) {

tail->next = std::move(l1);
tail = tail->next.get();
l1 = std::move(tail->next);

} else {
tail->next = std::move(l2);
tail = tail->next.get();

118

l2 = std::move(tail->next);
}

}
tail->next = l1 ? std::move(l1) : std::move(l2);
return std::move(dummy->next);

}

Time Complexity: O(n + m) — linear in total number of nodes
Space Complexity: O(1) — in-place node re-linking
Applications: Merge sort on linked lists, priority queues, data stream merging.

5.2.4 Removing the N-th Node from the End

Problem: Remove the N-th node from the end of a singly linked list in a single pass.
Algorithm:

• Use two pointers separated by n nodes.

• Move both pointers together until the fast pointer reaches the end.

• Remove the target node using pointer manipulation.

struct NodeRaw {
int data;
NodeRaw* next;
NodeRaw(int val) : data(val), next(nullptr) {}

};

NodeRaw* removeNthFromEnd(NodeRaw* head, int n) {
NodeRaw dummy(0);
dummy.next = head;

119

NodeRaw* first = &dummy;
NodeRaw* second = &dummy;

for (int i = 0; i <= n; ++i) first = first->next;

while (first) {
first = first->next;
second = second->next;

}

NodeRaw* toDelete = second->next;
second->next = second->next->next;
delete toDelete;
return dummy.next;

}

int main() {
NodeRaw* head = new NodeRaw(1);
head->next = new NodeRaw(2);
head->next->next = new NodeRaw(3);
head->next->next->next = new NodeRaw(4);
head = removeNthFromEnd(head, 2);

for (NodeRaw* cur = head; cur; cur = cur->next)
std::cout << cur->data << " ";

// Output: 1 2 4

}

Time Complexity: O(n)
Space Complexity: O(1) — single-pass, constant extra memory
Applications: Linked list manipulations in real-time systems, competitive

120

programming.

5.2.5 Summary of Common Linked List Algorithms

Algorithm Time
Complexity

Space
Complexity

Notes

Reverse List O(n) O(1) In-place reversal, iterative or
recursive variants

Detect Cycle
(Floyd)

O(n) O(1) Tortoise and Hare algorithm,
fast/slow pointers

Merge Sorted
Lists

O(n + m) O(1) Efficient merging by re-linking nodes,
in-place

Remove N-th
Node

O(n) O(1) Single-pass with two-pointer
technique

Key Takeaways:

• Many linked list operations can be implemented in-place to optimize memory
usage.

• Two-pointer techniques recur in multiple algorithms, from reversal to cycle
detection and deletion.

• Using smart pointers can ensure safe memory management, while raw
pointers may be preferred for performance-critical code.

121

5.3 Exercises and Tests: Memory-Leak Free
Implementations, Iterator Support

Building robust linked list implementations in modern C++ requires not only
correctness but also memory safety and ease of traversal. This section provides
exercises and guidance to ensure memory-leak free designs using smart pointers and
implementing iterators for standard-compliant traversal.

5.3.1Memory-Leak Free Implementations

Memory management is a critical concern with linked lists. Using raw pointers
without careful deletion can easily lead to memory leaks or dangling pointers.
Modern C++ provides smart pointers (std::unique_ptr) to automatically manage
ownership and cleanup.
Exercise 1: Implement a singly linked list using std::unique_ptr
Requirements:

• Implement push_front, push_back, pop_front, and pop_back operations.

• Ensure no manual delete is needed.

• Write tests to verify memory is released when nodes are removed.

#include <memory>
#include <iostream>

struct Node {
int data;
std::unique_ptr<Node> next;

122

Node(int val) : data(val), next(nullptr) {}
};

class SinglyLinkedList {
std::unique_ptr<Node> head;

public:
void push_front(int val) {

auto newNode = std::make_unique<Node>(val);
newNode->next = std::move(head);
head = std::move(newNode);

}

void pop_front() {
if (head) head = std::move(head->next);

}

void print() const {
Node* current = head.get();
while (current) {

std::cout << current->data << " ";
current = current->next.get();

}
std::cout << "\n";

}
};

int main() {
SinglyLinkedList list;
list.push_front(10);
list.push_front(20);
list.push_front(30);
list.print(); // Output: 30 20 10

123

list.pop_front();
list.print(); // Output: 20 10

}

Key Points:

• No manual delete is required.

• Memory automatically deallocates when head goes out of scope.

• Using unique_ptr ensures exception safety.

5.3.2 Iterator Support

Providing iterator support allows linked lists to integrate with range-based for
loops and standard algorithms (std::for_each, std::find_if).
Exercise 2: Add iterator support to a singly linked list

#include <memory>
#include <iostream>

struct Node {
int data;
std::unique_ptr<Node> next;
Node(int val) : data(val), next(nullptr) {}

};

class SinglyLinkedList {
std::unique_ptr<Node> head;

public:
void push_front(int val) {

124

auto newNode = std::make_unique<Node>(val);
newNode->next = std::move(head);
head = std::move(newNode);

}

struct Iterator {
Node* current;
Iterator(Node* node) : current(node) {}
int& operator*() { return current->data; }
Iterator& operator++() { current = current->next.get();
return *this;

}
bool operator!=(const Iterator& other) const { return current !=

other.current; }↪→

};

Iterator begin() { return Iterator(head.get()); }
Iterator end() { return Iterator(nullptr); }

};

int main() {
SinglyLinkedList list;
list.push_front(10);
list.push_front(20);
list.push_front(30);

for (int val : list) std::cout << val << " ";

// Output: 30 20 10
}

Benefits of Iterator Support:

125

• Seamless integration with C++ standard algorithms.

• Enables range-based for loops.

• Improves code readability and maintainability.

5.3.3 Testing Linked Lists

Exercise 3: Unit testing linked list operations

• Use Catch2 or GoogleTest for verifying correctness.

• Include tests for:

1. push_front and pop_front

2. Iterator traversal

3. Memory safety (tools like valgrind or sanitizers)

Example GoogleTest Skeleton:

#include <gtest/gtest.h>
#include "SinglyLinkedList.h"

TEST(SinglyLinkedListTest, PushFrontPopFront) {
SinglyLinkedList list;
list.push_front(10);
list.push_front(20);

int vals[] = {20, 10};
int idx = 0;
for (int val : list) EXPECT_EQ(val, vals[idx++]);

126

list.pop_front();
vals[0] = 10;
idx = 0;
for (int val : list) EXPECT_EQ(val, vals[idx++]);

}

Memory Leak Checks:

• Compile with sanitizers: -fsanitize=address -fno-omit-frame-pointer

• Use valgrind on Linux/macOS for runtime memory leak detection.

5.3.4 Suggested Exercises

1. Implement a doubly linked list with unique_ptr for next and raw pointer for
prev, ensuring proper cleanup.

2. Add reverse iteration support for doubly linked lists.

3. Implement a merge operation with iterator compatibility.

4. Test all operations using unit tests and sanitizers to ensure memory safety.

5. Implement copy and move constructors for linked list classes while
maintaining proper ownership semantics.

5.3.5 Summary

• Memory-leak free implementations: Use smart pointers (unique_ptr) to
automate resource management.

• Iterator support: Provides standard-compliant traversal and improves
integration with STL algorithms.

127

• Testing: Always verify correctness and memory safety using unit tests and
runtime tools.

• Mastering these practices ensures that linked lists in modern C++ are robust,
efficient, and maintainable.

Chapter 6

Stacks, Queues, Deques, and
Priority Queues

6.1 STL Wrappers vs Custom Implementations:
std::stack, std::queue, std::deque,
std::priority_queue

Linear data structures such as stacks, queues, deques, and priority queues
are essential building blocks in algorithms. Modern C++ provides both custom
implementation options and STL wrappers, offering flexibility depending
on performance, safety, and development requirements. This section examines
STL containers, their behavior, and trade-offs compared to hand-crafted
implementations.

128

129

6.1.1 STL Wrappers Overview

The C++ Standard Template Library (STL) provides container adapters for linear
structures:

Adapter Underlying Container Description

std::stack std::deque (default) LIFO (Last-In-First-Out) access

std::queue std::deque (default) FIFO (First-In-First-Out) access

std::priority_queuestd::vector (default) Max-heap / Min-heap priority ordering

Key Characteristics:

• Designed for ease of use and exception safety.

• Provide restricted interfaces: no random access for stack or queue.

• Underlying containers can be replaced (e.g., std::list or std::vector).

• Highly optimized for common operations.

6.1.2 Example: std::stack

#include <stack>
#include <iostream>

int main() {
std::stack<int> stk;
stk.push(10);
stk.push(20);
stk.push(30);

130

while (!stk.empty()) {
std::cout << stk.top() << " "; // Output: 30 20 10
stk.pop();

}
}

Properties:

• LIFO ordering: top element is always the last pushed.

• push, pop, top — O(1) operations.

• Safe and concise compared to manual linked-list stack implementation.

6.1.3 Example: std::queue

#include <queue>
#include <iostream>

int main() {
std::queue<int> q;
q.push(1);
q.push(2);
q.push(3);

while (!q.empty()) {
std::cout << q.front() << " "; // Output: 1 2 3
q.pop();

}
}

131

Properties:

• FIFO ordering.

• Supports push, pop, front, back.

• Internally uses deque by default for efficient insertion/removal.

6.1.4 Example: std::deque

A double-ended queue allows insertion and deletion at both ends.

#include <deque>
#include <iostream>

int main() {
std::deque<int> dq;
dq.push_back(1);
dq.push_front(2);
dq.push_back(3);

for (int val : dq) std::cout << val << " "; // Output: 2 1 3
}

Properties:

• Random access supported: dq[i] — O(1).

• Insertions/removals at both ends — O(1) amortized.

• Ideal as an underlying container for stack or queue.

132

6.1.5 Example: std::priority_queue

Max-heap priority queue implementation.

#include <queue>
#include <vector>
#include <iostream>

int main() {
std::priority_queue<int> pq; // max-heap
pq.push(10);
pq.push(5);
pq.push(20);

while (!pq.empty()) {
std::cout << pq.top() << " "; // Output: 20 10 5
pq.pop();

}
}

Notes:

• For min-heap, use: std::priority_queue<int, std::vector<int>,
std::greater<int>>.

• Internally implemented using std::vector and heap operations (push_heap /
pop_heap).

• push and pop — O(log n), top — O(1).

6.1.6 Custom Implementations

While STL containers are robust, custom implementations provide:

133

• Fine-grained control over memory (e.g., node-based stack or queue).

• Custom features (e.g., size-limited stack, lock-free queue).

• Optimizations for real-time or embedded systems.

Custom Stack Example (Linked List Based):

struct Node {
int data;
Node* next;
Node(int val) : data(val), next(nullptr) {}

};

class Stack {
Node* topNode = nullptr;

public:
void push(int val) {

Node* newNode = new Node(val);
newNode->next = topNode;
topNode = newNode;

}
void pop() {

if (!topNode) return;
Node* temp = topNode;
topNode = topNode->next;
delete temp;

}
int top() { return topNode->data; }
bool empty() { return topNode == nullptr; }

};

Trade-offs vs STL:

134

• Manual memory management is error-prone.

• Can be optimized for memory layout or cache locality.

• Provides deeper understanding of underlying algorithms.

6.1.7When to Use STL vs Custom

Criterion STL Adapter Custom Implementation

Development
speed

Very fast Slower

Safety Exception-safe, leak-free Requires careful handling

Flexibility Limited to interface Fully customizable

Performance
tuning

Slight overhead possible Fine-grained control

Use in teaching Can hide complexity Good for learning internals

Real-time
constraints

Less predictable Optimizable for deterministic behavior

Rule of Thumb:

• Use STL adapters for most applications to save time and ensure safety.

• Use custom structures when performance profiling indicates bottlenecks,
memory layout control is critical, or teaching/learning purposes.

135

6.1.8 Summary

• STL wrappers (stack, queue, deque, priority_queue) provide safe, fast, and
standard-compliant implementations.

• Custom implementations offer educational value and fine-grained control,
but require careful memory management.

• Understanding both approaches equips the C++ programmer with flexibility to
choose the right solution for algorithmic challenges.

136

6.2Use-Cases and Algorithmic Patterns (Expression
Parsing, BFS, Sliding Window Optimums)

Linear data structures like stacks, queues, deques, and priority queues are
not only foundational for basic storage but also critical in algorithmic patterns.
Mastering their use-cases helps leverage these structures for real-world problem solving
in modern C++. This section explores classic applications and patterns: expression
parsing, breadth-first search (BFS), and sliding window optimizations.

6.2.1 Expression Parsing with Stacks

Stacks are widely used for parsing mathematical expressions, converting infix to
postfix (Reverse Polish Notation), and evaluating expressions efficiently.
Example: Evaluating a postfix expression

#include <stack>
#include <string>
#include <sstream>
#include <iostream>

int evaluatePostfix(const std::string& expr) {
std::stack<int> stk;
std::istringstream iss(expr);
std::string token;

while (iss >> token) {
if (isdigit(token[0])) {

stk.push(std::stoi(token));
} else {

int b = stk.top(); stk.pop();

137

int a = stk.top(); stk.pop();
if (token == "+") stk.push(a + b);
else if (token == "-") stk.push(a - b);
else if (token == "*") stk.push(a * b);
else if (token == "/") stk.push(a / b);

}
}
return stk.top();

}

int main() {
std::string expr = "3 4 + 2 * 7 /"; // ((3+4)*2)/7
std::cout << evaluatePostfix(expr); // Output: 2

}

Key Points:

• Stack maintains operands temporarily.

• Operators apply to top elements.

• Time complexity: O(n), Space complexity: O(n).

• Extends naturally to parentheses matching and syntax validation.

6.2.2 Breadth-First Search (BFS) with Queues

Queues are essential in graph traversal algorithms, particularly BFS, which explores
nodes level by level.
Example: BFS traversal of an adjacency list graph

138

#include <iostream>
#include <vector>
#include <queue>

void BFS(int start, const std::vector<std::vector<int>>& adj) {
std::vector<bool> visited(adj.size(), false);
std::queue<int> q;

visited[start] = true;
q.push(start);

while (!q.empty()) {
int node = q.front(); q.pop();
std::cout << node << " ";

for (int neighbor : adj[node]) {
if (!visited[neighbor]) {

visited[neighbor] = true;
q.push(neighbor);

}
}

}
}

int main() {
std::vector<std::vector<int>> adj = {

{1, 2}, {0, 3}, {0, 3}, {1, 2} // graph with 4 nodes
};
BFS(0, adj); // Output: 0 1 2 3

}

Key Points:

139

• Queue maintains nodes to explore.

• Ensures level-order traversal.

• Time complexity: O(V + E), Space complexity: O(V).

• Variants include shortest path in unweighted graphs.

6.2.3 Sliding Window Optimizations with Deques

Deque (double-ended queue) enables efficient sliding window computations,
commonly used in problems like maximum/minimum in a window, subarray
sums, and monotonic queues.
Example: Maximum in sliding window of size k

#include <iostream>
#include <deque>
#include <vector>

std::vector<int> maxSlidingWindow(const std::vector<int>& nums, int k) {
std::deque<int> dq;
std::vector<int> result;

for (int i = 0; i < nums.size(); ++i) {
while (!dq.empty() && dq.front() <= i - k)
{

dq.pop_front();
}
while (!dq.empty() && nums[i] >= nums[dq.back()])
{

dq.pop_back();
}
dq.push_back(i);

140

if (i >= k - 1) result.push_back(nums[dq.front()]);
}
return result;

}

int main() {
std::vector<int> nums = {1, 3, -1, -3, 5, 3, 6, 7};
int k = 3;
auto res = maxSlidingWindow(nums, k);
for (int v : res) std::cout << v << " "; // Output: 3 3 5 5 6 7

}

Key Points:

• Deque maintains candidate indices for max values.

• Each element enters and exits deque at most once, giving O(n) time.

• Widely applicable in streaming data, online algorithms, and moving
averages.

6.2.4 Priority Queues in Algorithmic Patterns

Priority queues (heaps) solve problems requiring dynamic retrieval of maximum or
minimum elements:

• Dijkstra’s algorithm: min-priority queue to select node with smallest distance.

• Task scheduling: retrieve highest priority task efficiently.

• Median maintenance: two heaps (max-heap, min-heap).

141

Example: Top-k elements in a stream

#include <queue>
#include <vector>
#include <iostream>

std::vector<int> topK(const std::vector<int>& nums, int k) {
std::priority_queue<int, std::vector<int>, std::greater<>> minHeap;

for (int n : nums) {
minHeap.push(n);
if (minHeap.size() > k) minHeap.pop();

}

std::vector<int> result;
while (!minHeap.empty()) {

result.push_back(minHeap.top());
minHeap.pop();

}
return result;

}

int main() {
std::vector<int> nums = {5, 1, 9, 3, 14, 7};
auto res = topK(nums, 3); // Output: 5 9 14
for (int v : res) std::cout << v << " ";

}

Time Complexity: O(n log k), Space Complexity: O(k)

6.2.5 Summary of Patterns and Use-Cases

142

Data
Structure

Common Patterns Use-Cases

Stack Expression evaluation, parenthesis
matching, DFS (recursive
emulation)

Parsing, compilers, undo/redo
stacks

Queue BFS, level-order traversal Graph traversal, scheduling,
streaming

Deque Sliding window
maximum/minimum, two-pointer
algorithms

Moving window problems,
online algorithms

Priority
Queue

Dijkstra, top-k elements, task
scheduling

Heaps, greedy algorithms,
event-driven simulation

Takeaways:

• Selecting the right linear data structure is critical to algorithm efficiency.

• Stacks and queues control flow, deques enable sliding window
optimizations, and priority queues manage dynamic ordering.

• Modern C++ STL adapters provide safe, efficient implementations, while
custom structures allow fine-tuned control for specialized use-cases.

143

6.3 Exercises: Monotonic Queue, K-Largest Using
Heaps

This section provides hands-on exercises designed to reinforce key algorithmic
patterns using deques and priority queues. These exercises emphasize practical
problem-solving while maintaining efficiency and memory safety in modern C++.

6.3.1Monotonic Queue Exercise

Problem: Maintain a sliding window maximum or minimum efficiently using a
monotonic deque.
Concept:

• A monotonic queue keeps elements in strictly increasing or decreasing order.

• Enables O(n) processing of windowed maximum or minimum by avoiding
redundant comparisons.

Exercise Implementation:

#include <iostream>
#include <deque>
#include <vector>

std::vector<int> slidingWindowMax(const std::vector<int>& nums, int k) {
std::deque<int> dq; // store indices of elements
std::vector<int> result;

for (int i = 0; i < nums.size(); ++i) {
// Remove indices that are out of the current window
while (!dq.empty() && dq.front() <= i - k)

144

{
dq.pop_front();

}

// Remove smaller elements to maintain decreasing order
while (!dq.empty() && nums[i] >= nums[dq.back()]) {

dq.pop_back();
}

dq.push_back(i);

if (i >= k - 1) result.push_back(nums[dq.front()]);
}
return result;

}

int main() {
std::vector<int> nums = {1, 3, -1, -3, 5, 3, 6, 7};
int k = 3;
auto res = slidingWindowMax(nums, k);
for (int v : res) std::cout << v << " "; // Output: 3 3 5 5 6 7

}

Learning Objectives:

• Understand deque-based sliding window optimizations.

• Learn to maintain monotonic properties efficiently.

• Analyze time complexity: O(n), space complexity: O(k).

145

6.3.2K-Largest Elements Using Heaps

Problem: Find the k-largest elements in a stream or array efficiently.
Concept:

• Use a min-heap of size k to track the k largest elements.

• Any new element smaller than the heap top is ignored; larger elements replace the
minimum.

Exercise Implementation:

#include <queue>
#include <vector>
#include <iostream>

std::vector<int> kLargest(const std::vector<int>& nums, int k) {
std::priority_queue<int, std::vector<int>, std::greater<>> minHeap;

for (int n : nums) {
minHeap.push(n);
if (minHeap.size() > k) minHeap.pop();

}

std::vector<int> result;
while (!minHeap.empty()) {

result.push_back(minHeap.top());
minHeap.pop();

}
return result; // smallest to largest of k-largest

}

int main() {

146

std::vector<int> nums = {5, 1, 9, 3, 14, 7};
int k = 3;
auto res = kLargest(nums, k);
for (int v : res) std::cout << v << " "; // Output: 5 9 14

}

Learning Objectives:

• Understand heap-based selection algorithms.

• Learn priority queue operations: push, pop, top.

• Analyze complexity: O(n log k), space complexity: O(k).

• Applicable to stream processing, top-k queries, and event prioritization.

6.3.3 Suggested Exercises

1. Implement sliding window minimum using a monotonic increasing deque.

2. Extend monotonic queue to dynamic window sizes (e.g., variable-length
intervals).

3. Find k-smallest elements using a max-heap.

4. Combine monotonic queue and heap for complex streaming queries (e.g., top-
k in sliding window).

5. Implement unit tests using Catch2 or GoogleTest to verify correctness and
edge cases (empty input, k > n, duplicate values).

147

6.3.4Key Takeaways

• Monotonic queues efficiently compute windowed extremes in linear time.

• Heaps / priority queues provide a dynamic way to track k-largest or k-
smallest elements in streaming data.

• Modern C++ STL containers (std::deque, std::priority_queue) allow safe,
high-performance implementations.

• Combining these structures with algorithmic patterns strengthens problem-
solving skills in competitive programming, data streams, and real-time
systems.

Chapter 7

Hashing and Unordered Containers

7.1 std::unordered_map/set Internals, Collision
Behavior, Custom Hashers

Modern C++ provides unordered associative containers—std::unordered_map
and std::unordered_set—which allow average constant-time access using
hashing techniques. This section explores the internal mechanisms, collision
handling, and the use of custom hash functions to optimize performance and adapt
to specialized data types.

7.1.1 Internals of std::unordered_map and std::unordered_set

• Both containers are implemented using hash tables.

• Key operations—insert, find, erase—typically have O(1) average complexity,
but worst-case can degrade to O(n) if many collisions occur.

• Core components:

148

149

1. Buckets: An array where hashed keys are stored.

2. Hash function: Maps a key to a bucket index. Default: std::hash<Key>.

3. Collision resolution: Usually implemented with chaining (linked lists per
bucket) or open addressing in some STL implementations.

4. Load factor: size() / bucket_count(). Exceeding a threshold triggers
rehashing to maintain performance.

Example: Basic std::unordered_map usage

#include <unordered_map>
#include <string>
#include <iostream>

int main() {
std::unordered_map<std::string, int> map;
map["apple"] = 5;
map["banana"] = 10;

std::cout << map["apple"] << "\n"; // Output: 5
std::cout << map["banana"] << "\n"; // Output: 10

}

7.1.2 Collision Behavior

Collisions occur when two distinct keys hash to the same bucket.
Common strategies in STL:

• Separate chaining (linked lists): Multiple elements share a bucket using a
linked list. Average lookup: O(1 + �), where � = load factor.

150

• Rehashing: On insertion, if load factor exceeds a threshold (typically 1.0), the
table resizes to reduce collisions.

Observations:

• Poor hash functions can degrade performance to O(n).

• std::unordered_map and std::unordered_set rely on quality of std::hash
for primitive types.

• Iteration order is unspecified and can change after rehashing.

7.1.3 Custom Hash Functions

For complex or user-defined types, custom hashers are necessary. Modern C++
allows defining hash functions via function objects or lambdas.
Example: Custom hash for a Point struct

#include <unordered_map>
#include <iostream>

struct Point {
int x, y;
bool operator==(const Point& other) const {

return x == other.x && y == other.y;
}

};

// Custom hash function
struct PointHasher {

std::size_t operator()(const Point& p) const {
std::size_t h1 = std::hash<int>{}(p.x);

151

std::size_t h2 = std::hash<int>{}(p.y);
return h1 ^ (h2 << 1); // Combine hashes

}
};

int main() {
std::unordered_map<Point, std::string, PointHasher> map;
map[{1,2}] = "A";
map[{3,4}] = "B";

std::cout << map[{1,2}] << "\n"; // Output: A
std::cout << map[{3,4}] << "\n"; // Output: B

}

Key Points:

• Always implement operator== for keys.

• Combine hashes carefully to minimize collisions.

• Custom hashers allow efficient storage of tuples, structs, or complex
objects.

7.1.4 Load Factor and Rehashing

• Load factor controls space-time trade-offs.

• Default max load factor: 1.0.

• rehash() and reserve() can preallocate buckets to reduce runtime collisions.

152

std::unordered_map<int, int> map;
map.max_load_factor(0.75f); // Lower threshold triggers rehash sooner
map.reserve(100); // Allocate buckets in advance

Benefits:

• Reduces the cost of repeated insertions.

• Improves cache performance and lookup speed.

7.1.5 Performance Considerations

Factor Impact on Performance

Hash quality Low-quality hashes → collisions → O(n) lookups

Load factor High load factor → more collisions; low load factor →
memory overhead

Bucket count More buckets → fewer collisions, but higher memory usage

Key type Complex keys require efficient custom hashers

Best Practices:

• Use std::hash for primitive types.

• For custom types, define strong hashers and operator==.

• Preallocate with reserve() when size is known.

• Avoid excessive copying; store pointers or references if possible.

153

7.1.6 Summary

• std::unordered_map and std::unordered_set provide hash table–based
O(1) average access.

• Collisions are handled with chaining and rehashing.

• Custom hash functions enable efficient use of complex types as keys.

• Proper tuning of load factor and bucket count ensures optimal performance.

• Mastery of STL unordered containers is essential for algorithmic efficiency in
modern C++.

154

7.2Hash-Based Algorithms: Frequency Counting,
Two-Sum, Caching Strategies

Hash-based algorithms leverage constant-time average lookups to solve a variety
of problems efficiently. Modern C++ provides unordered associative containers
(std::unordered_map, std::unordered_set) which allow fast insertion, search,
and deletion, making them ideal for frequency analysis, pair sum problems, and
caching. This section explores common patterns and practical C++ implementations.

7.2.1 Frequency Counting

Problem: Count the occurrences of elements in an array or stream.
C++ Implementation:

#include <unordered_map>
#include <vector>
#include <iostream>

int main() {
std::vector<int> nums = {1, 3, 2, 1, 3, 1, 4};
std::unordered_map<int, int> freq;

for (int n : nums) {
freq[n]++; // Increment count for each element

}

for (auto &[key, value] : freq) {
std::cout << key << ": " << value << "\n";

}
// Possible Output: 1:3 3:2 2:1 4:1

155

}

Key Points:

• Time complexity: O(n) average.

• Space complexity: O(n) for the map.

• Supports stream processing, e.g., counting events in real-time.

• Can be extended to frequency of strings, tuples, or custom objects using
custom hashers.

7.2.2 Two-Sum Problem

Problem: Given an array and a target sum, find two numbers that add up to the
target.
C++ Implementation:

#include <unordered_map>
#include <vector>
#include <iostream>

std::pair<int, int> twoSum(const std::vector<int>& nums, int target) {
std::unordered_map<int, int> seen; // number -> index

for (int i = 0; i < nums.size(); ++i) {
int complement = target - nums[i];
if (seen.find(complement) != seen.end()) {

return {seen[complement], i};
}
seen[nums[i]] = i;

156

}
return {-1, -1}; // not found

}

int main() {
std::vector<int> nums = {2, 7, 11, 15};
int target = 9;
auto result = twoSum(nums, target);
std::cout << result.first << ", " << result.second; // Output: 0, 1

}

Key Points:

• Hash map stores previously seen numbers for O(1) lookup.

• Time complexity: O(n) average.

• Space complexity: O(n).

• Can be extended to k-sum problems with more sophisticated hash-based
strategies.

7.2.3 Caching Strategies (Memoization & LRU Cache)

Hash-based containers are central to caching and memoization, enabling fast
retrieval of computed results.
Example: Memoization for Fibonacci Sequence

#include <unordered_map>
#include <iostream>

std::unordered_map<int, long long> memo;

157

long long fib(int n) {
if (n <= 1) return n;
if (memo.find(n) != memo.end()) return memo[n];
memo[n] = fib(n-1) + fib(n-2);
return memo[n];

}

int main() {
std::cout << fib(50) << "\n"; // Efficiently computes large Fibonacci

}

LRU Cache Pattern:

• Combine unordered_map with a doubly linked list or deque.

• Map stores key → value; list maintains recency order.

• On access, move key to front; on insertion when full, remove least recently used.

Key Points:

• Hashing enables average O(1) lookup.

• Essential in dynamic programming, online algorithms, and performance-
sensitive systems.

• Custom hashers can optimize cache behavior for complex keys.

7.2.4 Best Practices

• Use unordered_map/unordered_set for frequent insertions and lookups.

158

• For custom types, define robust hash functions and equality operators.

• Monitor load factor and rehashing to maintain consistent performance.

• Combine hash-based containers with other linear structures (stack, deque) for
advanced patterns.

• For large-scale systems, consider memory usage and potential hash collisions.

7.2.5 Summary

• Frequency counting: Simple, efficient, and applicable to data streams and
analytics.

• Two-sum and general pair-sum problems: Hash maps provide O(n) solutions
vs O(n²) brute force.

• Caching and memoization: Hash tables are foundational for storing and
retrieving intermediate results.

• Hash-based algorithms are a cornerstone in modern C++, offering high-
performance solutions for real-world and competitive programming problems.

159

7.3 Exercises: Implement LRU Cache,
Robin-Hood/Linear-Probing Sketch

This section provides practical exercises to solidify understanding of hashing
strategies and cache design. Exercises focus on implementing an LRU
cache and exploring hash table collision handling techniques such as Robin-
Hood hashing and linear probing. These exercises emphasize modern C++
implementations, memory safety, and efficiency.

7.3.1 Exercise: Implement LRU Cache

Problem: Design a Least Recently Used (LRU) cache with O(1) access and
update time.
Key Components:

• std::unordered_map<Key, Iterator> to store key → iterator mapping for fast
access.

• std::list<std::pair<Key, Value>> to maintain recency order (front = most
recent, back = least recent).

• On access, move the element to the front.

• On insertion, if the cache exceeds capacity, remove the least recently used item
from the back.

C++ Implementation Sketch:

160

#include <unordered_map>
#include <list>
#include <iostream>

template <typename Key, typename Value>
class LRUCache {
private:

size_t capacity;
std::list<std::pair<Key, Value>> items; // recency order
std::unordered_map<Key, typename std::list<std::pair<Key, Value>>::iterator> map;

public:
LRUCache(size_t cap) : capacity(cap) {}

Value get(const Key& key) {
auto it = map.find(key);
if (it == map.end()) throw std::runtime_error("Key not found");

// Move accessed item to front
items.splice(items.begin(), items, it->second);
return it->second->second;

}

void put(const Key& key, const Value& value) {
auto it = map.find(key);
if (it != map.end()) {

// Update value and move to front
it->second->second = value;
items.splice(items.begin(), items, it->second);

} else {
if (items.size() >= capacity) {

// Remove least recently used

161

auto last = items.back();
map.erase(last.first);
items.pop_back();

}
items.emplace_front(key, value);
map[key] = items.begin();

}
}

};

int main() {
LRUCache<int, std::string> cache(2);
cache.put(1, "A");
cache.put(2, "B");
std::cout << cache.get(1) << "\n"; // Output: A
cache.put(3, "C"); // Evicts key 2

}

Learning Objectives:

• Combine unordered_map and list for efficient cache operations.

• Understand recency order maintenance.

• Apply modern C++ templates and iterators for generic solutions.

7.3.2 Exercise: Robin-Hood and Linear-Probing Sketch

Problem: Explore open-addressing hash table techniques, focusing on linear
probing and Robin-Hood hashing.
Concepts:

• Linear probing: On collision, sequentially scan next available bucket.

162

• Robin-Hood hashing: On collision, evict element with shorter probe
distance to ensure more uniform access times.

C++ Implementation Sketch:

#include <vector>
#include <optional>
#include <iostream>

template <typename Key, typename Value>
class LinearProbingHashTable {
private:

struct Entry { Key key; Value value; bool occupied = false; };
std::vector<Entry> table;
size_t capacity;

size_t hash(const Key& key) const { return std::hash<Key>{}(key) % capacity; }

public:
LinearProbingHashTable(size_t cap) : capacity(cap), table(cap) {}

void insert(const Key& key, const Value& value) {
size_t idx = hash(key);
size_t start = idx;
while (table[idx].occupied) {

if (table[idx].key == key) {
table[idx].value = value; // update
return;

}
idx = (idx + 1) % capacity;
if (idx == start) throw std::runtime_error("Hash table full");

}
table[idx] = {key, value, true};

163

}

std::optional<Value> find(const Key& key) const {
size_t idx = hash(key);
size_t start = idx;
while (table[idx].occupied) {

if (table[idx].key == key) return table[idx].value;
idx = (idx + 1) % capacity;
if (idx == start) break;

}
return std::nullopt;

}
};

int main() {
LinearProbingHashTable<int, std::string> ht(5);
ht.insert(1, "A");
ht.insert(6, "B"); // Collision handled via linear probing
auto val = ht.find(6);
if (val) std::cout << *val << "\n"; // Output: B

}

Key Points:

• Linear probing reduces pointer overhead compared to chaining.

• Robin-Hood improves variance of probe lengths, balancing access times.

• Requires careful handling of deleted elements and rehashing.

• Illustrates fundamental mechanics behind std::unordered_map.

164

7.3.3 Suggested Exercises

1. Extend LRU cache to support time-based expiration.

2. Implement Robin-Hood hashing with probe distance tracking.

3. Compare linear probing vs separate chaining performance for high load
factors.

4. Write unit tests for edge cases: full capacity, duplicate keys, deletion scenarios.

5. Integrate custom hashers for complex keys in both LRU and open-addressing
implementations.

7.3.4 Summary

• LRU Cache demonstrates combining hash maps and linear containers for
efficient caching.

• Open-addressing hash tables provide insight into collision resolution strategies
like linear probing and Robin-Hood hashing.

• Exercises reinforce memory-safe, high-performance C++ design patterns
relevant for systems programming, real-time processing, and competitive
algorithms.

• Understanding these patterns equips readers to tune hash-based containers
and implement advanced caching strategies effectively.

Part III

Trees & Balanced Trees

165

Chapter 8

Binary Trees & Tree Traversals

8.1Node Representation, Recursive vs Iterative
Traversal, Iterator Adapters

Binary trees are one of the fundamental data structures in computer science,
providing hierarchical organization of data and forming the backbone of advanced
structures such as heaps, search trees, and expression trees. This section
examines node representation, contrasts recursive and iterative traversal
strategies, and introduces iterator adapters in modern C++ for clean and efficient
tree traversal.

8.1.1Node Representation

In modern C++, binary tree nodes can be represented using raw pointers, smart
pointers, or container-based approaches.
a) Raw pointer approach (classic)

167

168

struct Node {
int value;
Node* left = nullptr;
Node* right = nullptr;

Node(int v) : value(v) {}
};

• Simple and familiar.

• Requires manual memory management (risk of leaks).

• Suitable for educational examples and low-level implementations.

b) Smart pointer approach (modern C++ safe alternative)

#include <memory>

struct Node {
int value;
std::unique_ptr<Node> left;
std::unique_ptr<Node> right;

Node(int v) : value(v) {}
};

• std::unique_ptr ensures automatic memory management.

• Prevents dangling pointers and memory leaks.

• Preferred in production-grade C++ code.

169

c) Container-based representation (for compact storage)

#include <vector>
struct Node {

int value;
int left_index = -1;
int right_index = -1;

};

• Useful for static or memory-constrained environments.

• Tree nodes are stored in a vector or array, and children are referenced via indices.

• Enables cache-friendly traversal and easier serialization.

8.1.2 Recursive Traversal

Recursive traversals are simple, expressive, and closely match the mathematical
definition of trees.
Pre-order, In-order, Post-order Traversal (Recursive)

void preorder(const Node* node) {
if (!node) return;
std::cout << node->value << " ";
preorder(node->left.get());
preorder(node->right.get());

}

void inorder(const Node* node) {
if (!node) return;
inorder(node->left.get());
std::cout << node->value << " ";

170

inorder(node->right.get());
}

void postorder(const Node* node) {
if (!node) return;
postorder(node->left.get());
postorder(node->right.get());
std::cout << node->value << " ";

}

Advantages:

• Simple and readable.

• Easy to implement for most problems.

Limitations:

• Recursive depth limited by stack size (risk of stack overflow for deep trees).

• Less control over memory footprint during traversal.

8.1.3 Iterative Traversal

Iterative traversals avoid recursion, using explicit stacks or queues.
Example: Iterative In-order Traversal

#include <stack>

void inorderIterative(const Node* root) {
std::stack<const Node*> st;
const Node* current = root;

171

while (current || !st.empty()) {
while (current) {

st.push(current);
current = current->left.get();

}
current = st.top(); st.pop();
std::cout << current->value << " ";
current = current->right.get();

}
}

Advantages:

• Avoids recursion and stack overflow.

• Can be combined with early termination or custom traversal logic.

Trade-offs:

• Slightly more verbose than recursion.

• Requires explicit stack or queue management.

8.1.4 Iterator Adapters for Trees

Modern C++ encourages iterator-based access to abstract data structures. An
iterator adapter provides range-based traversal without exposing tree internals.
Example: Simple In-order Iterator Skeleton

172

#include <stack>

class InOrderIterator {
std::stack<const Node*> st;
const Node* current;

public:
explicit InOrderIterator(const Node* root) : current(root) {

while (current) { st.push(current); current = current->left.get(); }
advance();

}

const Node* operator*() const { return current; }

InOrderIterator& operator++() { advance(); return *this; }

bool operator!=(const InOrderIterator& other) const { return current !=
other.current; }↪→

private:
void advance() {

if (st.empty()) { current = nullptr; return; }
current = st.top(); st.pop();
const Node* node = current->right.get();
while (node) { st.push(node); node = node->left.get(); }

}
};

% <-- blank line here is required

Benefits:

173

• Enables range-based for loops over trees:

for (auto node : InOrderRange(root)) { /* use node->value */ }

• Encapsulates traversal logic, improving code clarity and reusability.

• Compatible with algorithms in <algorithm>.

8.1.5 Summary

• Node representation can be raw pointers, smart pointers, or index-based
containers.

• Recursive traversal is simple and expressive but limited by stack depth.

• Iterative traversal avoids recursion, providing better control for deep or
unbalanced trees.

• Iterator adapters allow modern C++ idioms like range-based loops and
algorithm compatibility, encouraging safer and more maintainable tree
processing.

• Understanding these patterns is essential for implementing efficient tree
algorithms, balancing performance, safety, and code clarity.

174

8.2Algorithms — Preorder/Inorder/Postorder,
Level-Order, Tree Serialization/Deserialization

Binary tree traversal algorithms form the foundation of tree processing. They
provide structured ways to visit all nodes and are prerequisites for higher-level
algorithms like balancing, searching, or serialization. This section covers the classical
traversals (preorder, inorder, postorder, and level-order) and explains how to
implement serialization and deserialization, enabling binary trees to be stored or
transmitted efficiently.

8.2.1Depth-First Traversals

Depth-first traversals visit nodes by following branches deeply before backtracking.
They can be implemented either recursively or iteratively with an explicit stack.
a) Preorder Traversal (Root → Left → Right)

• Processes the root first, then left subtree, then right subtree.

• Useful for tree cloning, expression construction, and serialization.

void preorder(const Node* node) {
if (!node) return;
std::cout << node->value << " ";
preorder(node->left.get());
preorder(node->right.get());

}

Iterative version with stack:

175

#include <stack>

void preorderIterative(const Node* root) {
if (!root) return;
std::stack<const Node*> st;
st.push(root);

while (!st.empty()) {
auto node = st.top(); st.pop();
std::cout << node->value << " ";
if (node->right) st.push(node->right.get());
if (node->left) st.push(node->left.get());

}
}

b) Inorder Traversal (Left → Root → Right)

• Visits nodes in sorted order for Binary Search Trees.

• Central to algorithms like BST validation and range queries.

void inorder(const Node* node) {
if (!node) return;
inorder(node->left.get());
std::cout << node->value << " ";
inorder(node->right.get());

}

Iterative version uses a stack:

176

void inorderIterative(const Node* root) {
std::stack<const Node*> st;
const Node* current = root;

while (current || !st.empty()) {
while (current) {

st.push(current);
current = current->left.get();

}
current = st.top(); st.pop();
std::cout << current->value << " ";
current = current->right.get();

}
}

c) Postorder Traversal (Left → Right → Root)

• Processes children before the root.

• Used in tree deletion, expression evaluation, and freeing resources.

void postorder(const Node* node) {
if (!node) return;
postorder(node->left.get());
postorder(node->right.get());
std::cout << node->value << " ";

}

Iterative version (using two stacks):

177

void postorderIterative(const Node* root) {
if (!root) return;
std::stack<const Node*> st1, st2;
st1.push(root);

while (!st1.empty()) {
auto node = st1.top(); st1.pop();
st2.push(node);
if (node->left) st1.push(node->left.get());
if (node->right) st1.push(node->right.get());

}

while (!st2.empty()) {
std::cout << st2.top()->value << " ";
st2.pop();

}
}

8.2.2 Breadth-First Traversal (Level-Order)

Level-order traversal processes nodes level by level, using a queue. This is the basis of
BFS algorithms on trees.

#include <queue>

void levelOrder(const Node* root) {
if (!root) return;
std::queue<const Node*> q;
q.push(root);

while (!q.empty()) {

178

auto node = q.front(); q.pop();
std::cout << node->value << " ";
if (node->left) q.push(node->left.get());
if (node->right) q.push(node->right.get());

}
}

Applications:

• Shortest path in unweighted trees.

• Layered computations (e.g., minimum depth).

• Serialization format aligned with breadth-first storage.

8.2.3 Tree Serialization & Deserialization

Serialization converts a tree into a linear representation (string or array).
Deserialization reconstructs the tree from this format.
a) Preorder Serialization (with null markers)

#include <sstream>

void serialize(const Node* node, std::ostringstream& out) {
if (!node) {

out << "# ";
return;

}
out << node->value << " ";
serialize(node->left.get(), out);
serialize(node->right.get(), out);

}

179

std::string serialize(const Node* root) {
std::ostringstream out;
serialize(root, out);
return out.str();

}

b) Preorder Deserialization

#include <sstream>
#include <memory>

std::unique_ptr<Node> deserialize(std::istringstream& in) {
std::string val;
in >> val;
if (val == "#") return nullptr;

auto node = std::make_unique<Node>(std::stoi(val));
node->left = deserialize(in);
node->right = deserialize(in);
return node;

}

std::unique_ptr<Node> deserialize(const std::string& data) {
std::istringstream in(data);
return deserialize(in);

}

c) Level-order Serialization/Deserialization

• Stores nodes level by level with # placeholders.

• More compact for complete/balanced trees, and often used in competitive

180

programming.

std::string serializeLevelOrder(const Node* root) {
if (!root) return "";
std::ostringstream out;
std::queue<const Node*> q;
q.push(root);

while (!q.empty()) {
auto node = q.front(); q.pop();
if (!node) {

out << "# ";
continue;

}
out << node->value << " ";
q.push(node->left.get());
q.push(node->right.get());

}
return out.str();

}

Deserialization follows the same logic, reconstructing child links level by level.

8.2.4 Summary

• Preorder, Inorder, and Postorder traversals enable depth-first exploration,
each serving different algorithmic roles.

• Level-order traversal is essential for BFS and layered processing.

• Serialization and deserialization allow trees to be stored, transmitted, and
reconstructed reliably.

181

• Both recursive and iterative implementations are important: recursion for
clarity, iteration for stack safety in large or skewed trees.

182

8.3 Exercises — Reconstruct Tree from Traversals,
Subtree Checks

Exercises in binary trees often move beyond traversal mechanics and focus on
reconstruction and structural comparisons. Both tasks are fundamental for
algorithm developers: reconstruction exercises deepen understanding of traversal
uniqueness, while subtree checks model real-world problems such as pattern matching
in hierarchical data or subgraph detection.

8.3.1 Reconstructing a Tree from Traversals

Different traversal orders provide complementary information. The most common
problems ask to rebuild a binary tree given two traversals.

• a) Reconstruct from Preorder + Inorder

– Preorder reveals the root immediately (first element).

– Inorder gives the left and right subtree boundaries relative to the root.

Algorithm:

1. Use the preorder sequence to pick the root.

2. Split the inorder sequence into left and right subtrees around the root.

3. Recurse on left and right parts.

#include <vector>
#include <unordered_map>
#include <memory>

183

struct Node {
int value;
std::unique_ptr<Node> left, right;
Node(int v) : value(v) {}

};

std::unique_ptr<Node> buildPreIn(
const std::vector<int>& preorder, int preL, int preR,
const std::vector<int>& inorder, int inL, int inR,
const std::unordered_map<int,int>& inIndex)

{
if (preL > preR || inL > inR) return nullptr;

int rootVal = preorder[preL];
auto root = std::make_unique<Node>(rootVal);

int mid = inIndex.at(rootVal);
int leftSize = mid - inL;

root->left = buildPreIn(preorder, preL + 1, preL + leftSize,
inorder, inL, mid - 1, inIndex);

root->right = buildPreIn(preorder, preL + leftSize + 1, preR,
inorder, mid + 1, inR, inIndex);

return root;
}

std::unique_ptr<Node> buildTreePreIn(
const std::vector<int>& preorder, const std::vector<int>& inorder)

{
std::unordered_map<int,int> inIndex;
for (int i = 0; i < inorder.size(); ++i) {

184

inIndex[inorder[i]] = i;
}
return buildPreIn(preorder, 0, preorder.size() - 1,

inorder, 0, inorder.size() - 1, inIndex);
}

Complexity:

– Time: O(n) using hash map for index lookups.

– Space: O(n) recursion depth worst case (skewed tree).

• b) Reconstruct from Postorder + Inorder

– Postorder reveals the root last.

– Inorder provides subtree boundaries as before.

Algorithm is symmetric: choose the last postorder element as root, split inorder,
recurse left and right.

std::unique_ptr<Node> buildPostIn(
const std::vector<int>& postorder, int postL, int postR,
const std::vector<int>& inorder, int inL, int inR,
const std::unordered_map<int,int>& inIndex)

{
if (postL > postR || inL > inR) return nullptr;

int rootVal = postorder[postR];
auto root = std::make_unique<Node>(rootVal);

int mid = inIndex.at(rootVal);

185

int leftSize = mid - inL;

root->left = buildPostIn(postorder, postL, postL + leftSize - 1,
inorder, inL, mid - 1, inIndex);

root->right = buildPostIn(postorder, postL + leftSize, postR - 1,
inorder, mid + 1, inR, inIndex);

return root;
}

• c) Reconstruct from Preorder + Postorder

– Without inorder, reconstruction is ambiguous unless the tree is full (every
node has 0 or 2 children).

– Common in competitive programming exercises.

Key idea:

– Root is first in preorder, last in postorder.

– Divide subtrees by next preorder element’s position in postorder.

8.3.2 Subtree Checks

Subtree problems check whether one tree (T2) is a subtree of another (T1).

• a) Direct Recursive Check

Definition: T2 is a subtree of T1 if either:

– T1 matches T2 entirely, or

– T2 is a subtree of T1->left or T1->right.

186

bool isSame(const Node* a, const Node* b) {
if (!a && !b) return true;
if (!a || !b) return false;
return (a->value == b->value &&

isSame(a->left.get(), b->left.get()) &&
isSame(a->right.get(), b->right.get()));

}

bool isSubtree(const Node* root, const Node* sub) {
if (!sub) return true;
if (!root) return false;
if (isSame(root, sub)) return true;
return isSubtree(root->left.get(), sub) || isSubtree(root->right.get(),

sub);↪→

}

Complexity:

– Worst-case time: O(|T1| * |T2|) (every node of T1 checked against root of
T2).

• b) Optimized Subtree Check with Serialization

Another approach serializes both trees (e.g., preorder with null markers) and
checks whether the string of T2 is a substring of T1.

void serializePreorder(const Node* node, std::ostringstream& out) {
if (!node) { out << "# "; return; }
out << node->value << " ";
serializePreorder(node->left.get(), out);
serializePreorder(node->right.get(), out);

}

187

bool isSubtreeSerialized(const Node* root, const Node* sub) {
std::ostringstream s1, s2;
serializePreorder(root, s1);
serializePreorder(sub, s2);
return s1.str().find(s2.str()) != std::string::npos;

}

Pros:

– Converts structural matching to string matching.

– Can be optimized further with KMP or rolling hash.

8.3.3 Suggested Exercises

1. Reconstruction Tasks

• Build tree from preorder + inorder.

• Build tree from postorder + inorder.

• Handle reconstruction when input traversals represent a skewed tree.

2. Subtree Problems

• Implement isSubtree using recursion.

• Optimize using serialization and substring search.

• Extend to substructure checks (allow partial matches, like prefix trees).

3. Validation Tasks

188

• Write unit tests to validate reconstruction correctness by traversing the built
tree.

• Verify isSubtree with both balanced and skewed examples.

• Measure complexity by testing large random trees.

8.3.4 Summary

• Reconstruction exercises deepen mastery of traversal relationships.

• Subtree checks illustrate the power of recursive structure comparison and
serialization tricks.

• Together, they provide strong foundations for tree-based problem-solving,
with applications in compilers, databases, XML/JSON parsing, and more.

Chapter 9

Binary Search Trees & Augmented
Trees

189

190

9.1 BST Operations, Invariants, Performance Edge
Cases

Binary Search Trees (BSTs) form the backbone of many higher-level data
structures such as balanced trees, order-statistic trees, and interval trees. A BST
organizes elements so that each node satisfies a simple yet powerful invariant, enabling
efficient search, insertion, and deletion. However, performance depends heavily on
maintaining balance; otherwise, operations degrade to linear time.

9.1.1 The BST Invariant

For each node N in the tree:

• All keys in the left subtree are strictly less than N.key.

• All keys in the right subtree are strictly greater than N.key.

This invariant ensures that an inorder traversal yields a sorted sequence of all
elements.
Modern C++ Implementation (Node):

#include <memory>

struct Node {
int key;
std::unique_ptr<Node> left, right;
Node(int k) : key(k) {}

};

We use std::unique_ptr to manage memory automatically, avoiding leaks common in
raw-pointer implementations.

191

9.1.2 Core BST Operations

• a) Search

Searching proceeds by recursively or iteratively comparing the target value to the
current node’s key:

const Node* search(const Node* root, int key) {
if (!root || root->key == key) {

return root;
}
if (key < root->key) {

return search(root->left.get(), key);
}
return search(root->right.get(), key);

}

– Best/Average case: O(log n) in balanced trees.

– Worst case: O(n) in degenerate (skewed) trees.

• b) Insertion

Insert by descending the tree until reaching the correct null position:

void insert(std::unique_ptr<Node>& root, int key) {
if (!root) {

root = std::make_unique<Node>(key);
return;

}
if (key < root->key) insert(root->left, key);
else if (key > root->key) insert(root->right, key);

192

// duplicate keys ignored by this version
}

Invariant preserved:

– The new key is placed in a position consistent with BST ordering.

– No reordering of existing nodes is needed.

• c) Deletion

Deletion is the trickiest operation, requiring different cases:

1. Node is a leaf: Simply remove it.

2. Node has one child: Replace the node with its child.

3. Node has two children: Replace the node with its inorder successor
(smallest in right subtree) or inorder predecessor (largest in left subtree),
then delete that node recursively.

Node* findMin(Node* root) {
while (root && root->left) {

root = root->left.get();
}

return root;
}

void remove(std::unique_ptr<Node>& root, int key) {
if (!root) return;
if (key < root->key) {

remove(root->left, key);
}

193

else if (key > root->key) {
remove(root->right, key);
}
else {

if (!root->left) {
root = std::move(root->right);

} else if (!root->right) {
root = std::move(root->left);

} else {
Node* successor = findMin(root->right.get());
root->key = successor->key;
remove(root->right, successor->key);

}
}

}

9.1.3 Performance Considerations

• a) Balanced vs Unbalanced Trees

– In a balanced BST, height � O(log n), making search/insert/delete
efficient.

– In a skewed BST (e.g., inserting sorted input into an unbalanced tree),
height = O(n), degenerating to linked-list performance.

Example of edge case:

194

// inserting sorted input into a naive BST
for (int i = 1; i <= n; ++i) insert(root, i);
// height = n, all operations degrade to linear

• b) Randomization and Balancing

– To avoid skewness, randomized insertions or self-balancing trees (AVL,
Red-Black) are used in practice.

– Standard Library associative containers like std::set and std::map use
Red-Black Trees, guaranteeing logarithmic performance.

• c) Duplicate Handling

– Simple BSTs often ignore duplicates.

– Variants store a count field or allow duplicates in one subtree (commonly
the right).

– Handling duplicates consistently is crucial for correctness in algorithms such
as frequency counting.

• d) Memory and Cache Behavior

– Each node requires dynamic allocation (new), which can fragment memory.

– Linked structure results in poor cache locality compared to flat arrays or
B-trees.

– Optimized structures (like van Emde Boas layouts or B-trees) mitigate
these issues in high-performance contexts.

195

9.1.4 Edge Cases to Address in Implementations

1. Empty tree operations: Ensure insert, search, and delete handle nullptr
gracefully.

2. Deletion of root node: Requires special care when root has two children.

3. Skewed inputs: Repeated sorted input should trigger awareness of imbalance.

4. Large trees: Recursion depth can exceed stack limits—iterative implementations
are safer for robustness.

5. Duplicate keys: Must define a consistent policy to avoid breaking invariants.

9.1.5 Summary

• BSTs rely on the ordering invariant that left < root < right.

• Operations (search, insert, delete) are conceptually simple but must carefully
maintain the invariant.

• Performance hinges on tree height: balanced trees achieve O(log n), while skewed
trees degrade to O(n).

• Edge cases such as duplicate handling, memory fragmentation, and recursion
depth must be considered in robust implementations.

• Modern C++ encourages safe memory management (unique_ptr) and clean
interfaces for correctness.

196

9.2Augmented Trees for Range Queries and Order
Statistics (order_of_key)

While basic Binary Search Trees (BSTs) support search, insertion, and deletion, many
practical applications require augmented capabilities: efficiently computing order
statistics, supporting range queries, and enabling rank-based lookups. Augmented trees
enrich nodes with additional metadata—such as subtree sizes, counts, or ranges—while
preserving the BST invariant.

9.2.1Motivation for Augmented Trees

In many domains, data structures must answer queries like:

• Order statistics: ”What is the 5th smallest element?”

• Rank queries: ”How many elements are less than key = 42?”

• Range queries: ”How many elements lie between L and R?”

A plain BST cannot answer these queries efficiently because it only stores keys and
relies on traversal for order-related information. Augmented trees embed auxiliary data
in each node to provide these answers in logarithmic time.

9.2.2 Core Augmentation: Subtree Size

Each node is annotated with the size of its subtree (i.e., total number of nodes in the
subtree rooted at that node).
Augmented Node Definition:

197

#include <memory>

struct Node {
int key;
int size; // number of nodes in this subtree
std::unique_ptr<Node> left, right;

Node(int k) : key(k), size(1) {}
};

// utility to get size safely
int getSize(const std::unique_ptr<Node>& n) {

return n ? n->size : 0;
}

// update size after insertion or deletion
void updateSize(Node* n) {

if (n) {
n->size = 1 + getSize(n->left) + getSize(n->right);

}
}

Every insertion or deletion must recompute the size when unwinding the recursion.

9.2.3 Order Statistics

• a) kth_element (find k-th smallest element)

We can navigate using subtree sizes:

– Let leftSize = size(left).

– If k == leftSize + 1, the root is the k-th smallest.

198

– If k <= leftSize, recurse left.

– Otherwise, recurse right with adjusted k.

const Node* kthElement(const Node* root, int k) {
if (!root) return nullptr;
int leftSize = getSize(root->left);
if (k == leftSize + 1) return root;
if (k <= leftSize) return kthElement(root->left.get(), k);
return kthElement(root->right.get(), k - leftSize - 1);

}

Time complexity: O(log n) in balanced trees, O(n) in skewed trees.

• b) order_of_key (rank of a key)

This function computes how many keys are strictly smaller than x.

– If x <= root->key, recurse left.

– If x > root->key, the rank includes 1 + size(left) plus rank in the right
subtree.

int orderOfKey(const Node* root, int x) {
if (!root) return 0;
if (x <= root->key) {

return orderOfKey(root->left.get(), x);
} else {

return 1 + getSize(root->left) + orderOfKey(root->right.get(), x);
}

}

This allows queries like:

199

– ”How many elements < 50?” → orderOfKey(root, 50)

– Works seamlessly with duplicates if the tree stores counts per key.

9.2.4 Range Queries

Range queries extend order_of_key:
Count elements in range [L, R]:

int countInRange(const Node* root, int L, int R) {
return orderOfKey(root, R + 1) - orderOfKey(root, L);

}

This works because:

• order_of_key(R+1) counts all elements � R.

• order_of_key(L) counts all elements < L.

• Difference yields the number in [L, R].

9.2.5Handling Duplicates

Two strategies:

1. Store frequency count in each node

• count field keeps track of duplicates.

• Subtree size includes count.

2. Insert duplicates consistently in right subtree

• Simpler but makes rank calculations less direct.

200

Example with frequency augmentation:

struct Node {
int key, count, size;
std::unique_ptr<Node> left, right;
Node(int k) : key(k), count(1), size(1) {}

};

void updateSize(Node* n) {
if (n) {

n->size = n->count + getSize(n->left) + getSize(n->right);
}

}

This ensures order_of_key and kth_element remain correct in presence of duplicates.

9.2.6 Performance Considerations

• Time Complexity: O(log n) for search, insertion, deletion, kth_element, and
order_of_key in balanced augmented trees.

• Space Overhead: Storing size or count per node adds minimal overhead
(usually one or two integers).

• Balancing: Without self-balancing, performance may degrade to O(n) due to
skewness. In practice, augmentations are usually applied on AVL trees, Red-
Black trees, or Treaps.

• Standard Library: std::set and std::map provide balanced trees, but
not order statistics. Specialized structures (like GNU PBDS in GCC) offer
order_of_key and find_by_order.

201

9.2.7 Practical Applications

• Databases and Indexing: Efficiently retrieve k-th record or count records
within ranges.

• Statistics: Compute percentiles and quantiles in real time.

• Scheduling: Track tasks by deadlines and query positions.

• Competitive Programming: Many problems rely on order-statistics trees for
rank queries.

9.2.8 Summary

Augmented BSTs extend ordinary trees by storing subtree sizes and counts, enabling
powerful operations:

• kth_element(k): retrieve the k-th smallest in O(log n).

• order_of_key(x): count elements smaller than x in O(log n).

• Range queries ([L, R]) follow naturally from rank queries.

These augmentations make BSTs practical for ranked datasets, real-time statistics,
and range-based queries while keeping the same asymptotic complexity. In modern
C++, memory safety can be combined with these classic augmentations by using
unique_ptr and well-structured updates.

202

9.3 Exercises — kth Smallest, Interval Trees
Exercises provide the critical step from theoretical understanding to hands-on mastery.
This section emphasizes two widely useful augmentations: finding the k-th smallest
element in a BST and building interval trees for overlap queries. Both
exercises deepen the reader’s grasp of augmented data structures, order statistics, and
range problems.

9.3.1 Exercise: K-th Smallest Element in a BST

• Problem Statement

Given a Binary Search Tree, implement an efficient function to return the k-th
smallest element (1-indexed). The algorithm must run in logarithmic time on a
balanced BST and correctly handle duplicates.

• Hints

– Augment each node with size = total number of nodes in its subtree.

– On traversing, compare k against the size of the left subtree.

– Adjust k as you recurse into the right subtree.

• Example Walkthrough

Tree:

8
/ \
4 12

/ \ / \
2 6 10 14

203

– k = 4:

∗ Left size of root (8) = 3 (nodes 2,4,6).

∗ Since k = 4 = left_size + 1, answer = 8.

• Implementation Sketch in C++

#include <memory>
#include <iostream>

struct Node {
int key;
int size; // subtree size
std::unique_ptr<Node> left, right;

Node(int k) : key(k), size(1) {}
};

int getSize(const std::unique_ptr<Node>& node) {
return node ? node->size : 0;

}

void updateSize(Node* node) {
if (node) {

node->size = 1 + getSize(node->left) + getSize(node->right);
}

}

const Node* kthSmallest(const Node* root, int k) {
if (!root) return nullptr;
int leftSize = getSize(root->left);
if (k == leftSize + 1) return root;
if (k <= leftSize) return kthSmallest(root->left.get(), k);

204

return kthSmallest(root->right.get(), k - leftSize - 1);
}

• Challenge Extensions

– Modify the code to handle duplicate values by introducing a count field per
node.

– Extend the function to return all k smallest elements up to index k.

– Compare performance with an in-order traversal approach.

9.3.2 Exercise: Interval Trees

• Problem Statement

Design an Interval Tree based on a BST that stores intervals [l, r]. Support
queries of the form:

– ”Does any interval overlap with [L, R]?”

– ”Return all intervals overlapping with [L, R].”

• Conceptual Overview

– Each node stores an interval [l, r].

– The node is augmented with maxEnd = maximum r among all intervals in its
subtree.

– Overlap detection relies on checking whether the current interval intersects
[L, R] and pruning subtrees based on maxEnd.

205

• Example Walkthrough

Intervals: [15,20], [10,30], [17,19], [5,20], [12,15], [30,40]
Query: [14,16]

– The algorithm traverses nodes and finds [10,30] and [12,15] as overlaps.

• Implementation Sketch in C++

struct Interval {
int low, high;

};

struct IntervalNode {
Interval interval;
int maxEnd; // maximum high endpoint in subtree
std::unique_ptr<IntervalNode> left, right;

IntervalNode(int l, int h) : interval{l, h}, maxEnd(h) {}
};

int getMaxEnd(const std::unique_ptr<IntervalNode>& node) {
return node ? node->maxEnd : INT_MIN;

}

void updateMaxEnd(IntervalNode* node) {
if (node) {

node->maxEnd = std::max({node->interval.high,
getMaxEnd(node->left),
getMaxEnd(node->right)});

}
}

206

bool doOverlap(const Interval& a, const Interval& b) {
return (a.low <= b.high && b.low <= a.high);

}

// Query if any overlap exists
const IntervalNode* searchOverlap(const IntervalNode* root, const Interval&

query) {↪→

if (!root) return nullptr;

if (doOverlap(root->interval, query)) return root;

if (root->left && root->left->maxEnd >= query.low)
return searchOverlap(root->left.get(), query);

return searchOverlap(root->right.get(), query);
}

• Challenge Extensions

– Modify the query to return all overlapping intervals instead of just one.

– Implement deletion of intervals and ensure maxEnd is correctly maintained.

– Compare performance with brute-force scanning of all intervals.

9.3.3 Testing and Benchmarking

Students should verify correctness and efficiency by:

• Creating trees with 1e5 random keys or intervals.

• Validating kthSmallest against sorted arrays.

207

• Comparing interval queries against naive linear scans.

Tools like GoogleTest for correctness and Google Benchmark for timing will help
ensure implementations are robust.

9.3.4 Summary

These exercises illustrate the power of augmenting trees:

• kthSmallest demonstrates order-statistics queries using subtree sizes.

• Interval trees highlight range overlap detection using maximum endpoints.

Both are classic examples of how BSTs can be extended into problem-specific data
structures with only modest metadata augmentation, while retaining logarithmic
efficiency.

Chapter 10

Self-Balancing Trees (AVL,
Red-Black)

10.1AVL Rotations in C++ — Code Walkthrough

AVL trees are the earliest form of self-balancing binary search trees, ensuring that
the height difference (balance factor) between the left and right subtrees of any node
never exceeds one. This invariant guarantees logarithmic time for searches, insertions,
and deletions. The heart of maintaining balance lies in rotations — structured pointer
manipulations that rebalance the tree while preserving the Binary Search Tree (BST)
ordering property.

10.1.1 Balance Factor and Rotation Trigger

• Balance Factor (BF):
Defined as height(left) - height(right) for a given node.

208

209

– If BF � {-1, 0, 1}, the node is balanced.

– If BF < -1 → right-heavy imbalance.

– If BF > 1 → left-heavy imbalance.

• Imbalance Cases:

– Left-Left (LL): Single right rotation.

– Right-Right (RR): Single left rotation.

– Left-Right (LR): Left rotation on left child, then right rotation.

– Right-Left (RL): Right rotation on right child, then left rotation.

10.1.2Node Structure in Modern C++

We use std::unique_ptr for automatic memory management to prevent leaks. Heights
are cached for efficiency.

#include <memory>
#include <algorithm>

struct Node {
int key;
int height;
std::unique_ptr<Node> left, right;

Node(int k) : key(k), height(1) {}
};

int getHeight(const std::unique_ptr<Node>& n) {
return n ? n->height : 0;

}

210

int getBalance(const std::unique_ptr<Node>& n) {
return n ? getHeight(n->left) - getHeight(n->right) : 0;

}

void updateHeight(Node* n) {
if (n) {

n->height = 1 + std::max(getHeight(n->left), getHeight(n->right));
}

}

10.1.3 Single Rotations

• Right Rotation (for LL imbalance)

std::unique_ptr<Node> rightRotate(std::unique_ptr<Node> y) {
auto x = std::move(y->left); // x becomes new root
auto T2 = std::move(x->right); // T2 will be moved

x->right = std::move(y); // old root y becomes right child of
x↪→

x->right->left = std::move(T2); // reattach T2

updateHeight(x->right.get());
updateHeight(x.get());
return x; // return new root

}

• Left Rotation (for RR imbalance)

211

std::unique_ptr<Node> leftRotate(std::unique_ptr<Node> x) {
auto y = std::move(x->right); // y becomes new root
auto T2 = std::move(y->left); // T2 will be moved

y->left = std::move(x); // old root x becomes left child of y
y->left->right = std::move(T2); // reattach T2

updateHeight(y->left.get());
updateHeight(y.get());
return y; // return new root

}

10.1.4Double Rotations

• Left-Right (LR) Rotation

– First rotate left on the left child.

– Then rotate right on the root.

std::unique_ptr<Node> leftRightRotate(std::unique_ptr<Node> node) {
node->left = leftRotate(std::move(node->left));
return rightRotate(std::move(node));

}

• Right-Left (RL) Rotation

– First rotate right on the right child.

– Then rotate left on the root.

212

std::unique_ptr<Node> rightLeftRotate(std::unique_ptr<Node> node) {
node->right = rightRotate(std::move(node->right));
return leftRotate(std::move(node));

}

10.1.5 Rotation Integration in Insertions

During insertions, we check the balance factor at each step and apply the appropriate
rotation.

std::unique_ptr<Node> insert(std::unique_ptr<Node> node, int key) {
if (!node) return std::make_unique<Node>(key);

if (key < node->key)
node->left = insert(std::move(node->left), key);

else if (key > node->key)
node->right = insert(std::move(node->right), key);

else
return node; // duplicates not allowed

updateHeight(node.get());

int balance = getBalance(node);

// Left Left
if (balance > 1 && key < node->left->key)

return rightRotate(std::move(node));

// Right Right
if (balance < -1 && key > node->right->key)

return leftRotate(std::move(node));

213

// Left Right
if (balance > 1 && key > node->left->key)

return leftRightRotate(std::move(node));

// Right Left
if (balance < -1 && key < node->right->key)

return rightLeftRotate(std::move(node));

return node; // unchanged if balanced
}

10.1.6Walkthrough Example

Insert sequence: 10, 20, 30

• Insert 10 → root = 10. Balanced.

• Insert 20 → root = 10, right child = 20. Balanced.

• Insert 30 → root = 10, right-heavy (BF = -2).
→ Apply Left Rotation at root.
→ New root = 20, left child = 10, right child = 30.

Insert sequence: 30, 10, 20

• Insert 30 → root = 30.

• Insert 10 → root = 30, left child = 10.

• Insert 20 → root = 30, left child = 10 (with right child 20).
→ root BF = +2 (left-heavy), left child BF = -1.

214

→ Case = Left-Right (LR).
→ Rotate left at 10, then rotate right at 30.
→ Balanced root = 20, left = 10, right = 30.

10.1.7Key Insights

• Rotations are purely pointer manipulations; no keys are reordered beyond
local restructuring.

• Double rotations can always be reduced to two single rotations.

• Smart pointers in modern C++ make ownership clear but require careful use of
std::move.

• Heights must be updated bottom-up after every rotation.

10.1.8 Exercises

1. Implement deletion in an AVL tree and test rebalancing.

2. Instrument the code to count the number of rotations during insertion of n
random keys.

3. Compare AVL insertions against unbalanced BSTs in terms of search path length.

215

10.2Red-Black Tree Principles and Relation to
std::map / std::set

Red-Black Trees (RBTs) are a type of self-balancing binary search tree widely
used in practice because they provide near-optimal logarithmic performance while
being simpler to maintain than AVL trees in terms of insertion and deletion balancing.
They form the underlying implementation for standard C++ associative containers like
std::map and std::set.

10.2.1 Red-Black Tree Properties

A Red-Black Tree enforces the following five properties:

1. Node Color: Each node is either red or black.

2. Root Property: The root is always black.

3. Leaf Property: All leaves (nullptr or sentinel nodes) are black.

4. Red Property: A red node cannot have a red child (no consecutive reds).

5. Black-Height Property: Every path from a node to its descendant leaves
contains the same number of black nodes.

These properties ensure that the longest path from root to leaf is at most twice as
long as the shortest path, guaranteeing O(log n) height.

10.2.2 Core Operations and Rebalancing

Red-Black trees maintain balance through color flips and rotations during insertion
and deletion.

216

• a) Insertion

– Insert new nodes as red to avoid violating the black-height property.

– If the parent is black → done.

– If the parent is red → rebalance using:

∗ Recoloring (if uncle is red).

∗ Rotation(s) (single or double) if uncle is black.

• b) Deletion

– More complex than insertion due to potential double-black violations.

– Requires a combination of:

∗ Recoloring.

∗ Rotations to move black height up the tree.

– Guarantees that tree height remains logarithmic.

10.2.3 Relation to std::map and std::set

The C++ Standard Library uses Red-Black Trees for all ordered associative
containers:

Container Behavior

std::set Stores unique keys in order.

std::multiset Stores keys in order, allows duplicates.

std::map Stores key-value pairs in order by key, unique keys.

std::multimap Stores key-value pairs in order, allows duplicate keys.

217

Key points:

• Insertion, lookup, and deletion are all O(log n) due to RBT properties.

• Self-balancing ensures consistent performance regardless of input order.

• Internal nodes maintain pointers, key, value (for map), color, and sometimes
a parent pointer to facilitate rotations.

10.2.4 C++ Implementation Highlights

While the full RBT implementation is complex, the essential structure includes:

enum class Color { RED, BLACK };

template <typename Key, typename Value>
struct RBNode {

Key key;
Value value;
Color color;
RBNode* parent;
std::unique_ptr<RBNode> left, right;

RBNode(const Key& k, const Value& v, Color c)
: key(k), value(v), color(c), parent(nullptr) {}

};

• parent pointer facilitates upward traversal during rotations.

• unique_ptr ensures proper memory management for left and right subtrees.

• Rotations and recoloring preserve BST ordering and Red-Black properties.

218

10.2.5 Rotations in Red-Black Trees

• Left rotation and right rotation are identical to AVL rotations, except they
may also adjust colors.

• Rotations combined with recoloring resolve violations of Red-Black properties.

Example Scenario:

• Inserting a red node under a red parent with a red uncle triggers recoloring.

• If the uncle is black, a rotation (single or double) is performed, followed by
recoloring.

10.2.6 Comparison with AVL Trees

Feature AVL Tree Red-Black Tree

Height Strictly log(n) � 2 × log(n)

Insert/Delete
Complexity

Slightly slower due to stricter
balancing

Slightly faster due to relaxed
balancing

Rotations per
insertion

Can require multiple rotations Usually fewer rotations

Use Case Lookup-heavy scenarios Insertion-heavy / standard
libraries

Summary:

• AVL trees provide faster lookups because they are more strictly balanced.

219

• Red-Black trees offer faster insertions and deletions on average, which is why
they underpin std::map and std::set.

10.2.7 Practical Takeaways

1. Always expect O(log n) operations with ordered associative containers.

2. std::map and std::set abstract away RBT complexity, but understanding the
underlying structure helps in:

• Predicting performance in edge cases.

• Debugging insertion/deletion anomalies in large datasets.

3. Rotations and recoloring are the key operations ensuring the tree remains
balanced without violating BST properties.

4. Modern C++ encourages safe memory management via unique_ptr and
references, but the parent pointer is often retained for efficient upward
traversal.

10.3 Exercises — Implement an AVL with Unit Tests;
Compare Against std::set Performance

Hands-on exercises are essential to solidify understanding of self-balancing trees.
This section guides the reader through implementing an AVL tree from scratch,
writing unit tests for correctness, and benchmarking against std::set to observe
real-world performance differences.

220

10.3.1 Exercise 1: Implement an AVL Tree

• Objectives

– Create a C++ class representing an AVL tree with:

∗ Insertion
∗ Deletion
∗ Search (contains)
∗ Height balancing via rotations (LL, RR, LR, RL)

– Ensure proper memory safety using std::unique_ptr for child nodes.

• Suggested Interface

#include <memory>
#include <iostream>

class AVLTree {
struct Node {

int key;
int height;
std::unique_ptr<Node> left, right;
Node(int k) : key(k), height(1) {}

};
std::unique_ptr<Node> root;

public:
void insert(int key);
void remove(int key);
bool contains(int key) const;
void inorder() const; // optional, for testing

};

221

• Implementation Hints

– Update subtree height after insertion/deletion.

– Compute balance factor to detect imbalance.

– Apply the appropriate rotation for each imbalance case.

– Use helper functions for rotations and height updates.

10.3.2 Exercise 2: Unit Testing

Unit testing ensures the AVL tree maintains correct BST ordering and balance
properties.

• Recommended Frameworks

– GoogleTest (gtest)

– Catch2

• Example Tests

#include <gtest/gtest.h>
#include "avl_tree.h"

TEST(AVLTreeTest, InsertAndContains) {
AVLTree tree;
tree.insert(10);
tree.insert(20);
tree.insert(5);

EXPECT_TRUE(tree.contains(10));
EXPECT_TRUE(tree.contains(20));

222

EXPECT_TRUE(tree.contains(5));
EXPECT_FALSE(tree.contains(15));

}

TEST(AVLTreeTest, BalanceAfterInsertions) {
AVLTree tree;
for (int k : {30, 20, 40, 10, 25, 35, 50}) {

tree.insert(k);
}
// Check in-order traversal
std::vector<int> result;
tree.inorder(result);
EXPECT_EQ(result, std::vector<int>({10, 20, 25, 30, 35, 40, 50}));

}

• Exercise Goals

– Verify that all rotations maintain BST properties.

– Check that balance factor of each node is in [-1, 1].

– Validate deletion scenarios, including nodes with 0, 1, or 2 children.

10.3.3 Exercise 3: Performance Comparison Against std::set

After implementing a correct AVL tree, measure real-world performance:

• Setup

– Generate a large dataset of n unique integers (e.g., 1e5 to 1e6).

– Insert the same keys into your AVL tree and a std::set<int>.

– Measure the time for:

223

∗ Bulk insertion
∗ Search operations
∗ Deletion operations

• Example Using std::chrono

#include <chrono>
#include <set>
#include "avl_tree.h"

auto start = std::chrono::high_resolution_clock::now();
for (int key : keys) avl.insert(key);
auto end = std::chrono::high_resolution_clock::now();
std::cout << "AVL insertion time: "

<< std::chrono::duration_cast<std::chrono::milliseconds>(end -
start).count()↪→

<< " ms\n";

start = std::chrono::high_resolution_clock::now();
std::set<int> s;
for (int key : keys) s.insert(key);
end = std::chrono::high_resolution_clock::now();
std::cout << "std::set insertion time: "

<< std::chrono::duration_cast<std::chrono::milliseconds>(end -
start).count()↪→

<< " ms\n";

• Expected Observations

– Both AVL and std::set have O(log n) insertion, deletion, and search.

– std::set is highly optimized in standard libraries and often performs
slightly faster due to:

224

∗ Compiler optimizations

∗ Efficient memory allocation

∗ Low-level pointer operations

– Custom AVL tree is valuable for:

∗ Learning rotations and balance maintenance

∗ Extending nodes with additional metadata (augmented trees)

10.3.4 Optional Extensions

1. Augment AVL nodes to store subtree sizes → implement kth_smallest.

2. Compare memory usage between std::set and AVL tree using large datasets.

3. Test edge cases: inserting sorted data, random data, and duplicates.

10.3.5 Summary

This exercise section reinforces:

• The mechanics of AVL rotations and balance maintenance.

• Unit testing as an essential tool for validating correctness.

• Practical benchmarking to understand performance characteristics relative to
std::set.

By completing these exercises, readers gain both theoretical understanding and
hands-on experience, preparing them for more advanced self-balancing structures
like Red-Black Trees or Augmented AVL Trees.

Chapter 11

B-Trees and External-Memory
Structures

11.1 B-Tree Node Layout, Block I/O Considerations
(C++ Structures for Disk-Backed Nodes)

B-Trees are multi-way search trees specifically designed for external memory
storage, such as disks or SSDs. They optimize I/O efficiency by minimizing
the number of block reads/writes required for search, insertion, and deletion.
Understanding node layout and how it maps to disk blocks is crucial for high-
performance implementations.

11.1.1 B-Tree Node Structure

A B-Tree of order t (minimum degree) satisfies:

• Each node contains at most 2t-1 keys.

225

226

• Each node (except root) contains at least t-1 keys.

• Internal nodes have children pointers equal to number of keys + 1.

• All leaf nodes appear at the same depth.

• In-Memory Representation

template <typename Key, typename Value, size_t t>
struct BTreeNode {

size_t nKeys; // current number of keys
Key keys[2*t - 1]; // keys array
Value values[2*t - 1]; // corresponding values
std::unique_ptr<BTreeNode> children[2*t]; // child pointers
bool leaf; // true if node is leaf

BTreeNode(bool isLeaf) : nKeys(0), leaf(isLeaf) {}
};

– Using fixed-size arrays aligns well with disk-block layout.

– leaf flag distinguishes between internal and leaf nodes.

– nKeys tracks the current number of stored keys.

– children array allows up to 2t subtrees.

11.1.2Disk Block Considerations

When designing disk-backed B-Trees, the node structure must align with block I/O:

• Block Size Matching:

– Each node should fit into a single disk block (commonly 4KB or 8KB).

227

– Choosing t (minimum degree) is based on block size:

2t− 1 ≈ block_size
sizeof(Key + Value + pointer)

• Contiguous Memory Layout:

– Keys and values are stored in contiguous arrays for fast block transfer.

– Avoid pointers for on-disk children; instead, store disk offsets or page IDs.

struct DiskBTreeNode {
bool leaf;
uint16_t nKeys;
Key keys[MAX_KEYS];
Value values[MAX_KEYS];
uint64_t childOffsets[MAX_KEYS + 1]; // disk positions instead of in-memory

pointers↪→

};

• On read/write, serialize/deserialize the node to/from disk.

• Little-endian vs big-endian consistency is important if disk data may move
across platforms.

11.1.3Advantages of This Layout

1. Efficient I/O:

• Large fan-out reduces tree height → fewer disk accesses per operation.

2. Cache-Friendly:

228

• Contiguous arrays allow prefetching and reduced cache misses.

3. Predictable Size:

• Each node occupies a fixed block, simplifying memory mapping and file
offsets.

4. Support for Large Datasets:

• B-Trees can scale to millions of keys because disk I/O dominates runtime,
not in-memory traversal.

11.1.4 C++ Considerations

• Smart Pointers vs Disk Offsets:

– In-memory nodes can use std::unique_ptr for safety.

– Disk-backed nodes must use offsets or IDs, with a node cache mapping
offsets to loaded objects.

• Serialization Example:

void writeNodeToDisk(const DiskBTreeNode& node, std::ofstream& file, uint64_t offset)
{↪→

file.seekp(offset);
file.write(reinterpret_cast<const char*>(&node), sizeof(node));

}

DiskBTreeNode readNodeFromDisk(std::ifstream& file, uint64_t offset) {
DiskBTreeNode node;
file.seekg(offset);

229

file.read(reinterpret_cast<char*>(&node), sizeof(node));
return node;

}

• Alignment and Padding:

– Ensure sizeof(DiskBTreeNode) matches block size.

– Use #pragma pack or alignas if necessary.

11.1.5 Summary

• Node layout determines I/O efficiency, crucial for large-scale storage.

• Disk-backed B-Trees store child references as offsets rather than pointers.

• Fixed-size arrays and careful memory alignment reduce unnecessary reads /
writes.

• B-Trees remain the standard for database indexes, filesystem directories, and any
external-memory structure requiring predictable O(log n) access.

230

11.2 Practical Uses — Simple On-Disk Key-Value
Store Prototype

B-Trees are particularly well-suited for disk-backed storage systems, where
minimizing disk I/O is essential. In this section, we illustrate a prototype for a
simple on-disk key-value store using a B-Tree as the underlying index. This
demonstrates how theoretical B-Tree concepts translate to practical, high-performance
storage applications.

11.2.1Design Overview

• Goals

– Store key-value pairs on disk in sorted order.

– Support efficient insertions, lookups, and range queries.

– Minimize disk reads and writes per operation.

– Prototype a single-file store without complex transaction handling.

• Core Components

1. Disk Storage Layer

– Stores serialized nodes in fixed-size blocks.
– Provides readNode(offset) and writeNode(node, offset) operations.

2. B-Tree Index Layer

– Maintains nodes in memory while navigating or modifying the tree.
– Uses node offsets instead of pointers for disk persistence.

3. Cache Layer (Optional)

231

– Maintains frequently accessed nodes in memory.

– Reduces repeated disk accesses for hot keys.

11.2.2Disk Node Structure

struct DiskNode {
bool leaf;
uint16_t nKeys;
int keys[MAX_KEYS];
int values[MAX_KEYS]; // simple integer values for prototype
uint64_t childOffsets[MAX_KEYS+1]; // disk offsets of children

};

• Each node occupies a single fixed-size block (e.g., 4KB).

• leaf indicates if the node has children.

• childOffsets replace in-memory pointers to enable persistence.

11.2.3 Basic Operations

• a) Lookup

– Start at the root node (offset stored in file header).

– Load node from disk using readNode(offset).

– Perform binary search among node’s keys to find target or child index.

– Recursively follow child offsets until key is found or leaf is reached.

232

std::optional<int> findKey(uint64_t nodeOffset, int key) {
DiskNode node = readNode(nodeOffset);
int i = 0;
while (i < node.nKeys && key > node.keys[i]) i++;
if (i < node.nKeys && key == node.keys[i]) return node.values[i];
if (node.leaf) return std::nullopt;
return findKey(node.childOffsets[i], key);

}

• b) Insertion

– Insert key into leaf node.

– If node is full (nKeys == MAX_KEYS), split the node:

1. Allocate a new disk block.
2. Move half of the keys and values into the new node.
3. Push the middle key up to the parent node.

– Recursively handle parent splits up to the root.

void splitChild(DiskNode& parent, int idx, DiskNode& child, std::ofstream&
file) {↪→

DiskNode newNode;
newNode.leaf = child.leaf;
newNode.nKeys = t - 1;
// Copy second half of keys/values
for (int j = 0; j < t-1; ++j) {

newNode.keys[j] = child.keys[j+t];
newNode.values[j] = child.values[j+t];

}
// Copy child pointers if not leaf

233

if (!child.leaf) {
for (int j = 0; j < t; ++j)

newNode.childOffsets[j] = child.childOffsets[j+t];
}
child.nKeys = t - 1;
// Write newNode to disk, update parent pointers, etc.

}

– Ensure all offsets are updated in parent and disk.

– Root may grow by creating a new root node.

• c) Range Queries

– Load nodes recursively in-order.

– Only load blocks containing keys in the requested range.

– Minimizes I/O compared to scanning the entire file.

void rangeQuery(uint64_t nodeOffset, int low, int high, std::vector<int>&
result) {↪→

DiskNode node = readNode(nodeOffset);
int i = 0;
while (i < node.nKeys && node.keys[i] < low) i++;
for (; i < node.nKeys && node.keys[i] <= high; i++) {

if (!node.leaf) rangeQuery(node.childOffsets[i], low, high, result);
result.push_back(node.values[i]);

}
if (!node.leaf) rangeQuery(node.childOffsets[i], low, high, result);

}

234

11.2.4 Performance Considerations

• Block Size Selection:

– Match node size to disk block size (commonly 4KB–8KB).

• Caching:

– Keep frequently accessed nodes in memory to avoid repeated reads.

• Serialization:

– Fixed-size arrays reduce serialization/deserialization overhead.

• Minimized Disk Writes:

– Batch writes when splitting nodes or updating multiple nodes.

11.2.5 Extensions

1. Support larger key and value types (strings, structs).

2. Implement persistence metadata (file headers, free block lists).

3. Add transaction support or journaling for crash safety.

4. Benchmark performance against std::map or SQLite in-memory tables.

11.2.6 Summary

This exercise demonstrates the practical application of B-Trees for external-
memory systems:

235

• Nodes map directly to disk blocks to minimize I/O.

• Child offsets replace pointers, enabling persistence.

• Insertion and lookup algorithms mirror in-memory B-Trees but account for
block I/O costs.

• Even a simple prototype provides insight into databases, key-value stores,
and file systems.

236

11.3 Exercise — Small B-Tree Library Sketch with
Tests

This exercise guides readers through creating a minimal C++ B-Tree library,
emphasizing disk-backed storage, correctness testing, and modular design. The
goal is not production-level completeness but to give a hands-on experience with B-
Tree mechanics, persistence, and test-driven development.

11.3.1 Library Structure

A minimal B-Tree library should include the following components:

1. Node Representation

• In-memory nodes using std::unique_ptr or offsets for disk-backed storage.

• Fixed-size key and value arrays for predictable layout.

template <typename Key, typename Value, size_t t>
struct BTreeNode {

bool leaf;
size_t nKeys;
Key keys[2*t - 1];
Value values[2*t - 1];
std::unique_ptr<BTreeNode> children[2*t];

BTreeNode(bool isLeaf) : leaf(isLeaf), nKeys(0) {}
};

237

1. B-Tree Class Interface

template <typename Key, typename Value, size_t t>
class BTree {

std::unique_ptr<BTreeNode<Key, Value, t>> root;

public:
BTree() : root(std::make_unique<BTreeNode<Key, Value, t>>(true)) {}
void insert(const Key& key, const Value& value);
std::optional<Value> search(const Key& key) const;
void traverse() const; // For in-order verification

};

11.3.2Key Operations

• a) Search

– Recursively search within node keys.

– Descend to child if key is not found and node is not a leaf.

std::optional<Value> searchNode(const BTreeNode<Key, Value, t>* node, const
Key& key) const {↪→

size_t i = 0;
while (i < node->nKeys && key > node->keys[i]) ++i;
if (i < node->nKeys && key == node->keys[i]) return node->values[i];
if (node->leaf) return std::nullopt;
return searchNode(node->children[i].get(), key);

}

• b) Insertion

238

– Insert into leaf if space available.

– Split full child nodes during insertion.

– Promote middle key to parent when splitting.

void splitChild(BTreeNode<Key, Value, t>* parent, int idx) {
auto& child = parent->children[idx];
auto newNode = std::make_unique<BTreeNode<Key, Value, t>>(child->leaf);
newNode->nKeys = t - 1;

// Copy second half of keys and values
for (size_t j = 0; j < t - 1; ++j) {

newNode->keys[j] = child->keys[j + t];
newNode->values[j] = child->values[j + t];

}
if (!child->leaf) {

for (size_t j = 0; j < t; ++j)
newNode->children[j] = std::move(child->children[j + t]);

}
child->nKeys = t - 1;

// Insert newNode into parent's children
for (size_t j = parent->nKeys; j > idx; --j)

parent->children[j + 1] = std::move(parent->children[j]);
parent->children[idx + 1] = std::move(newNode);

// Move middle key to parent
for (size_t j = parent->nKeys; j > idx; --j) {

parent->keys[j] = parent->keys[j - 1];
parent->values[j] = parent->values[j - 1];

}
parent->keys[idx] = child->keys[t - 1];
parent->values[idx] = child->values[t - 1];

239

parent->nKeys++;
}

11.3.3Unit Testing

Unit tests ensure correctness and balance of the tree.

• Recommended Frameworks

– GoogleTest (gtest) or Catch2

• Example Tests

#include <gtest/gtest.h>
#include "btree.h"

TEST(BTreeTest, InsertAndSearch) {
BTree<int, int, 3> tree;
tree.insert(10, 100);
tree.insert(20, 200);
tree.insert(5, 50);

EXPECT_EQ(tree.search(10).value(), 100);
EXPECT_EQ(tree.search(20).value(), 200);
EXPECT_EQ(tree.search(5).value(), 50);
EXPECT_FALSE(tree.search(15).has_value());

}

TEST(BTreeTest, TraversalCheck) {
BTree<int, int, 3> tree;
for (int k : {10, 20, 5, 6, 12}) tree.insert(k, k*10);

240

std::vector<int> result;
tree.traverse(result);
EXPECT_EQ(result, std::vector<int>({5, 6, 10, 12, 20}));

}

11.3.4 Optional Extensions

1. Disk-backed prototype: replace std::unique_ptr with offsets and serialize
nodes to file.

2. Range queries: implement findRange(low, high) using in-order traversal of
relevant nodes.

3. Bulk insert: optimize for large datasets with fewer splits.

4. Performance benchmark: compare in-memory vs disk-backed B-Tree.

11.3.5 Learning Outcomes

By completing this exercise, readers will:

• Understand B-Tree node structure and insertion logic.

• Implement splitting and promotion of keys.

• Use unit tests to verify correctness and tree invariants.

• Prepare to extend the library into disk-backed key-value stores or database
indexing structures.

Part IV

Graphs (Implemented in C++)

241

Chapter 12

Graph Representations in C++

12.1Adjacency list/matrix, edge lists, compressed
sparse row (CSR) for performance

12.1.1Adjacency List

An adjacency list is a space-efficient way to represent a graph, especially when dealing
with sparse graphs. In this representation:

• Structure: Each vertex has a list (or vector) containing its adjacent vertices.

• Implementation: In C++, this is typically implemented using an array of
vectors or lists, where each index corresponds to a vertex, and the associated
vector/list contains its neighbors.

Advantages:

• Space Efficiency: Requires O(V + E) space, where V is the number of vertices
and E is the number of edges.

243

244

• Efficient Iteration: Allows quick iteration over the neighbors of a vertex.

Disadvantages:

• Edge Lookup: Checking if an edge exists between two vertices can take O(d)
time, where d is the degree of the vertex.

• Not Cache-Friendly: Due to non-contiguous memory allocation, it may suffer
from poor cache performance.

Example in C++:

#include <vector>
#include <iostream>

class Graph {
int V;
std::vector<int>* adjList;

public:
Graph(int V) : V(V) {

adjList = new std::vector<int>[V];
}
void addEdge(int v, int w) {

adjList[v].push_back(w);
}
void printGraph() {

for (int v = 0; v < V; ++v) {
std::cout << "\n Vertex " << v << ":";
for (int x : adjList[v])

std::cout << " -> " << x;
std::cout << std::endl;

}
}

};

245

12.1.2 Edge List

An edge list is a simple representation where all edges are stored in a list of pairs (or
tuples):

• Structure: A list of pairs, each representing an edge between two vertices.

• Implementation: In C++, this
is implemented using a std::vector<std::pair<int, int>> for an undirected
graph.

Advantages:

• Simple Structure: Easy to implement and understand.

• Space Efficient: Requires O(E) space.

Disadvantages:

• Inefficient Edge Lookup: Checking if an edge exists takes O(E) time.

• Inefficient Neighbor Lookup: Finding all neighbors of a vertex requires O(E)
time.

Example in C++:

#include <vector>
#include <iostream>

class Graph {
std::vector<std::pair<int, int>> edges;

public:
void addEdge(int u, int v) {

246

edges.push_back(std::make_pair(u, v));
}
void printEdges() {

for (auto& edge : edges)
std::cout << "(" << edge.first << ", " << edge.second << ")\n";

}
};

12.1.3 Compressed Sparse Row (CSR)

The CSR format is a memory-efficient representation, particularly suited for sparse
graphs:

• Structure:

– values[]: Stores the destination vertices of all edges.

– columns[]: Stores the indices of the destination vertices in values[].

– row_ptr[]: Stores the index in values[] where each row starts.

• Implementation: In C++, this can be implemented using three
std::vector<int> arrays: values, columns, and row_ptr.

Advantages:

• Space Efficiency: Requires O(V + E) space.

• Cache-Friendly: Stores data contiguously in memory, leading to better cache
performance.

• Efficient Traversal: Allows efficient traversal of neighbors.

247

Disadvantages:

• Complex Implementation: More complex to implement and manage.

• Fixed Structure: Difficult to modify (e.g., adding/removing edges or vertices).

Example in C++:

#include <vector>
#include <iostream>

class Graph {
std::vector<int> values;
std::vector<int> columns;
std::vector<int> row_ptr;

public:
Graph(int V, int E) {

values.reserve(E);
columns.reserve(E);
row_ptr.reserve(V + 1);
row_ptr.push_back(0);

}
void addEdge(int u, int v) {

values.push_back(v);
columns.push_back(v);
row_ptr[u + 1]++;

}
void finalize() {

for (int i = 1; i < row_ptr.size(); ++i)
row_ptr[i] += row_ptr[i - 1];

}
void printGraph() {

for (int i = 0; i < row_ptr.size() - 1; ++i) {

248

std::cout << "\n Vertex " << i << ":";
for (int j = row_ptr[i]; j < row_ptr[i + 1]; ++j)

std::cout << " -> " << values[j];
std::cout << std::endl;

}
}

};

12.1.4 Comparison Table

Representation Space
Complexity

Edge
Lookup

Neighbor
Lookup

Cache
Efficiency

Use Case

Adjacency List O(V + E) O(d) O(d) Moderate Sparse graphs
with frequent
neighbor
queries

Edge List O(E) O(E) O(E) Low Simple graphs
with few
operations

CSR O(V + E) O(log E) O(d) High Large sparse
graphs with
infrequent
modifications

249

12.1.5 Choosing the Right Representation

• Adjacency List: Best suited for sparse graphs where you need to frequently
access the neighbors of a vertex.

• Edge List: Ideal for simple graphs or when you need to perform operations like
edge enumeration.

• CSR: Optimal for large, sparse graphs where memory efficiency and fast traversal
are critical, and the graph structure remains static.

When implementing graph algorithms in C++, it's essential to choose the
representation that aligns with your specific requirements, balancing between memory
usage, access speed, and complexity.

250

12.2Weighted graphs, directed/undirected,
memory-oriented designs

12.2.1Weighted Graphs

Weighted graphs assign a value (weight) to each edge, representing cost, distance,
capacity, or other metrics. They are crucial for algorithms like Dijkstra’s shortest
path, Prim’s MST, and Bellman-Ford.

12.2.1.1 Representation in C++

Weighted graphs are often represented using:

1. Adjacency List of Pairs

#include <vector>
#include <utility> // for std::pair

class WeightedGraph {
int V;
std::vector<std::pair<int, double>>* adjList; // pair<destination, weight>

public:
WeightedGraph(int V) : V(V) {

adjList = new std::vector<std::pair<int, double>>[V];
}

void addEdge(int u, int v, double w) {
adjList[u].push_back({v, w});

}

251

void printGraph() {
for (int i = 0; i < V; ++i) {

std::cout << "Vertex " << i << ":";
for (auto &p : adjList[i])

std::cout << " -> (" << p.first << ", " << p.second << ")";
std::cout << "\n";

}
}

};

1. Weighted Adjacency Matrix

• Each cell [i][j] stores the weight of the edge from vertex i to vertex j, or a
special value (e.g., INF) if no edge exists.

#include <vector>
#include <limits>

const double INF = std::numeric_limits<double>::infinity();

class WeightedMatrixGraph {
int V;
std::vector<std::vector<double>> adjMatrix;

public:
WeightedMatrixGraph(int V) : V(V) {

adjMatrix.assign(V, std::vector<double>(V, INF));
}

void addEdge(int u, int v, double w) {
adjMatrix[u][v] = w;

}
};

252

12.2.1.2 Advantages and Use Cases

• Adjacency List: Efficient for sparse graphs; O(V + E) memory; efficient
neighbor traversal.

• Adjacency Matrix: Efficient edge lookup (O(1)); O(V²) memory; better for
dense graphs.

12.2.2Directed vs. Undirected Graphs

12.2.2.1Directed Graphs (Digraphs)

• Edges have a direction; an edge (u, v) goes from u to v only.

• Represented in adjacency lists or matrices without duplicating edges.

• Example: Social network follow relationships.

C++ Representation:

adjList[u].push_back(v); // Only u -> v

12.2.2.2Undirected Graphs

• Edges are bidirectional; edge (u, v) implies (v, u).

• In adjacency list: add both directions.

253

adjList[u].push_back(v);
adjList[v].push_back(u);

12.2.2.3Weighted Directed/Undirected Graphs

• Both types can carry weights by storing pairs (destination, weight) in
adjacency lists or weight values in matrices.

12.2.3Memory-Oriented Graph Designs

When designing large-scale graphs in C++, memory layout and efficiency are critical,
especially for:

• Sparse graphs with millions of vertices.

• High-performance algorithms where cache locality matters.

12.2.3.1Key Techniques

1. Contiguous Storage

• Use std::vector or CSR-style arrays for adjacency lists to improve cache
performance.

• Avoid std::list due to pointer overhead and scattered memory.

1. Compressed Sparse Row (CSR) for Weighted Graphs

• Store all weights in a contiguous weights[] array aligned with values[] and
row_ptr[].

254

• Efficient for read-heavy algorithms like BFS/DFS, shortest path, or matrix-vector
operations.

1. Memory-Packed Edge Structures

struct Edge {
int u, v;
double weight;

};
std::vector<Edge> edges; // Compact and cache-friendly

• Best for edge-centric algorithms like Kruskal’s MST or Bellman-Ford.

1. Custom Allocators

• For extremely large graphs, using custom memory pools can reduce fragmentation
and improve allocation/deallocation speed.

12.2.4 Performance and Trade-Offs

Feature Adjacency
List

Adjacency
Matrix

CSR / Packed
Memory

Space Complexity O(V + E) O(V2) O(V + E)

Edge Lookup O(d) O(1) O(d) or O(log d)

Cache Efficiency Moderate High High

255

Feature Adjacency
List

Adjacency
Matrix

CSR / Packed
Memory

Flexibility (Dynamic
Graphs)

Easy Hard Moderate

Best Use Case Sparse,
dynamic

Dense graphs Sparse, static, high-
performance

12.2.4.1 Best Practices in Modern C++

• Prefer std::vector over raw arrays or std::list for adjacency lists.

• For weighted graphs, always use std::pair or structured types to store edges
with weights.

• For extremely large graphs, CSR or edge arrays with contiguous storage maximize
memory locality.

• Separate the graph structure from algorithms to improve modularity,
maintainability, and cache efficiency.

Chapter 13

Traversal & Search

13.1Depth-First Search (DFS) & Breadth-First
Search (BFS) with Iterator-Based C++ APIs

Graph traversal is a fundamental technique for exploring the vertices and edges of a
graph. Depth-First Search (DFS) and Breadth-First Search (BFS) are the most widely
used algorithms, and modern C++ allows flexible implementations using iterators, STL
containers, and generic programming.

13.1.1Depth-First Search (DFS)

DFS explores a graph by starting at a source vertex and visiting as far as possible along
each branch before backtracking. It can be implemented recursively or iteratively.

1. Recursive DFS

• Uses the call stack to maintain the path.

256

257

• Elegant and concise but limited by stack depth in large graphs.

C++ Implementation with Iterator-Based API:

#include <vector>
#include <iostream>

class Graph {
int V;
std::vector<std::vector<int>> adjList;

public:
Graph(int V) : V(V), adjList(V) {}

void addEdge(int u, int v) {
adjList[u].push_back(v);

}

void dfsRecursive(int start, std::vector<bool>& visited) const {
visited[start] = true;
std::cout << start << " ";

for (auto it = adjList[start].cbegin(); it != adjList[start].cend();
++it)↪→

if (!visited[*it])
dfsRecursive(*it, visited);

}

void dfs(int start) const {
std::vector<bool> visited(V, false);
dfsRecursive(start, visited);

}
};

258

int main() {
Graph g(5);
g.addEdge(0, 1); g.addEdge(0, 2);
g.addEdge(1, 3); g.addEdge(2, 4);

g.dfs(0); // Output: 0 1 3 2 4
}

Notes on Iterator Usage:

• cbegin() / cend() provide const iterators over the adjacency list.

• This approach ensures read-only access to the graph during traversal.

2. Iterative DFS

• Uses an explicit stack instead of recursion.

• Useful for large graphs where recursion depth may be exceeded.

#include <stack>

void dfsIterative(int start) const {
std::vector<bool> visited(V, false);
std::stack<int> s;
s.push(start);

while (!s.empty()) {
int v = s.top();
s.pop();

if (!visited[v]) {

259

visited[v] = true;
std::cout << v << " ";

for (auto it = adjList[v].crbegin(); it != adjList[v].crend();
++it)↪→

if (!visited[*it])
s.push(*it);

}
}

}

Iterator Note:

• crbegin() / crend() traverse in reverse, ensuring the order of recursive
DFS is mimicked.

13.1.2 Breadth-First Search (BFS)

BFS explores the graph level by level using a queue. It is commonly used for shortest
path in unweighted graphs, connected component detection, and bipartiteness
checking.

#include <queue>

void bfs(int start) const {
std::vector<bool> visited(V, false);
std::queue<int> q;

visited[start] = true;
q.push(start);

260

while (!q.empty()) {
int v = q.front(); q.pop();
std::cout << v << " ";

for (auto it = adjList[v].cbegin(); it != adjList[v].cend(); ++it)
if (!visited[*it]) {

visited[*it] = true;
q.push(*it);

}
}

}

Iterator Notes:

• cbegin() / cend() provide safe traversal over neighbors.

• Using iterators allows generic traversal over different container types (vector,
list, or set).

13.1.3 Iterator-Based API Design for Traversal

Modern C++ encourages generic and iterator-friendly APIs:

• Template-Based Traversal: Allow the adjacency container type to be generic.

• Const-Correctness: Use cbegin() / cend() for read-only operations.

• Range-Based Loops: Can simplify traversal while keeping iterators behind the
scenes.

Example Template DFS Traversal:

261

template <typename AdjList>
void dfsTemplate(int v, std::vector<bool>& visited, const AdjList& adj) {

visited[v] = true;
std::cout << v << " ";
for (auto it = adj[v].cbegin(); it != adj[v].cend(); ++it)

if (!visited[*it])
dfsTemplate(*it, visited, adj);

}

• Works with any container type (vector, list, deque) for adjacency lists.

• Encourages reusability and abstraction in algorithm design.

13.1.4 Comparison: Recursive vs Iterative DFS vs BFS

Algorithm Data
Structure

Memory
Usage

Use Case

DFS
Recursive

Call stack O(V) Simple traversal, pathfinding

DFS Iterative Explicit stack O(V) Large graphs, stack depth concerns

BFS Queue O(V) Shortest path in unweighted graphs,
level-order exploration

Performance Notes:

• Both DFS and BFS run in O(V + E) for adjacency list representation.

• BFS requires more memory if the branching factor is high (queue can grow large).

262

• Iterator-based implementations improve readability, genericity, and const-
correctness.

13.1.5 Best Practices in Modern C++

1. Prefer std::vector for adjacency lists for cache locality and performance.

2. Use iterators and range-based loops for generic traversal.

3. Separate traversal algorithms from the graph structure to improve modularity.

4. For weighted graphs or other metadata, pass additional structures alongside
DFS/BFS iterators.

5. Consider iterative implementations for very large graphs to avoid stack
overflow.

263

13.2Applications of Graph Traversal
Graph traversal algorithms like DFS and BFS are not just theoretical; they serve as
building blocks for many practical applications in graph analysis. This section focuses
on three fundamental applications:

13.2.1 Connected Components

A connected component in an undirected graph is a maximal set of vertices such
that each pair of vertices is reachable from each other. For directed graphs, strongly
connected components (SCCs) are the analogous concept where every vertex is
reachable from every other vertex in the component.

• Algorithm for Undirected Graphs

– Use DFS or BFS to explore from each unvisited vertex.

– Each traversal marks all vertices in that component.

– Count each traversal as a new connected component.

C++ Implementation Using DFS:

#include <vector>
#include <iostream>

class Graph {
int V;
std::vector<std::vector<int>> adjList;

public:
Graph(int V) : V(V), adjList(V) {}

264

void addEdge(int u, int v) {
adjList[u].push_back(v);
adjList[v].push_back(u); // undirected

}

void dfs(int v, std::vector<bool>& visited) const {
visited[v] = true;
for (int u : adjList[v])

if (!visited[u])
dfs(u, visited);

}

int connectedComponents() const {
std::vector<bool> visited(V, false);
int count = 0;
for (int v = 0; v < V; ++v)

if (!visited[v]) {
dfs(v, visited);
++count;

}
return count;

}
};

Notes:

– Complexity: O(V + E)

– Useful for analyzing network connectivity, clusters in social networks, and
isolated subgraphs.

• Strongly Connected Components (Directed Graphs)

265

– Kosaraju’s Algorithm:

1. Perform DFS and push vertices to a stack in the order of finishing times.

2. Transpose the graph.

3. Pop vertices from the stack and perform DFS on the transposed graph;
each DFS gives an SCC.

– Complexity: O(V + E)

13.2.2 Cycle Detection

Detecting cycles is crucial in graphs to prevent deadlocks, ensure valid dependencies, or
check for invalid configurations.

1. Graphs

• Use DFS while keeping track of the parent vertex.

• If a visited vertex is encountered that is not the parent, a cycle exists.

C++ Implementation:

bool dfsCycle(int v, int parent, std::vector<bool>& visited) const {
visited[v] = true;
for (int u : adjList[v]) {

if (!visited[u]) {
if (dfsCycle(u, v, visited)) return true;

} else if (u != parent) {
return true; // Cycle detected

}
}
return false;

}

266

bool hasCycle() const {
std::vector<bool> visited(V, false);
for (int v = 0; v < V; ++v)

if (!visited[v])
if (dfsCycle(v, -1, visited)) return true;

return false;
}

2. Directed Graphs

• Use DFS with a recursion stack or coloring:

– White: unvisited
– Gray: currently in recursion stack
– Black: fully visited

• A back-edge to a gray vertex indicates a cycle.

C++ Implementation (Coloring Method):

bool dfsCycleDirected(int v, std::vector<int>& color) const {
color[v] = 1; // Gray
for (int u : adjList[v]) {

if (color[u] == 1) return true; // Back-edge found
if (color[u] == 0 && dfsCycleDirected(u, color)) return true;

}
color[v] = 2; // Black
return false;

}

bool hasCycleDirected() const {

267

std::vector<int> color(V, 0);
for (int v = 0; v < V; ++v)

if (color[v] == 0)
if (dfsCycleDirected(v, color)) return true;

return false;
}

• Complexity: O(V + E)

• Applications: Deadlock detection, scheduling validation, and dependency
checks.

13.2.3 Topological Sort

Topological sorting is an ordering of vertices in a directed acyclic graph (DAG)
such that for every edge (u, v), u appears before v in the ordering.

1. DFS-Based Topological Sort

(a) Perform DFS and push each vertex to a stack after all its neighbors are
visited.

(b) Pop vertices from the stack to get the topological order.

C++ Implementation:

#include <stack>

void topologicalSortUtil(int v, std::vector<bool>& visited, std::stack<int>&
Stack) const {↪→

visited[v] = true;

268

for (int u : adjList[v])
if (!visited[u])

topologicalSortUtil(u, visited, Stack);
Stack.push(v);

}

std::vector<int> topologicalSort() const {
std::stack<int> Stack;
std::vector<bool> visited(V, false);

for (int v = 0; v < V; ++v)
if (!visited[v])

topologicalSortUtil(v, visited, Stack);

std::vector<int> order;
while (!Stack.empty()) {

order.push_back(Stack.top());
Stack.pop();

}
return order;

}

2. Kahn’s Algorithm (BFS-Based)

• Compute in-degree of each vertex.

• Repeatedly remove vertices with in-degree 0 and update in-degrees of
neighbors.

• Produces topological order using BFS.

Applications of Topological Sort

269

• Task scheduling and build systems (e.g., make or project compilation).

• Dependency resolution in package managers.

• Prerequisite ordering in courses or workflows.

13.2.4 Summary of Applications

Application Graph
Type

Algorithm /
Approach

Complexity Use Case

Connected
Components

Undirected DFS/BFS O(V + E) Network
clustering,
isolated
subgraphs

Strongly
Connected
Components

Directed Kosaraju / Tarjan O(V + E) Module
detection, SCC
analysis

Cycle Detection Undirected DFS with parent
tracking

O(V + E) Deadlock
prevention,
graph
validation

Cycle Detection Directed DFS with
recursion stack
or coloring

O(V + E) Dependency
checking,
scheduling
validation

270

Application Graph
Type

Algorithm /
Approach

Complexity Use Case

Topological Sort DAG DFS + Stack /
Kahn’s BFS

O(V + E) Task
scheduling,
dependency
resolution

• Best Practices in Modern C++

1. Use iterators and range-based loops for adjacency traversal.

2. Keep graph algorithms separate from the graph data structure.

3. Favor generic templates to allow different adjacency containers (vector,
list, set).

4. Use explicit stacks or queues for iterative solutions to avoid recursion
limits in large graphs.

5. Combine traversal algorithms with metadata arrays (visited, color,
parent) for clarity and performance.

Chapter 14

Shortest Paths

14.1Dijkstra’s Algorithm

Dijkstra’s algorithm is the canonical method for computing the single-source
shortest paths in a weighted graph with non-negative edge weights. Modern C++
implementations can leverage priority queues to optimize performance, with subtle
techniques that maximize efficiency.

14.1.1 Basic Dijkstra Algorithm

Algorithm Overview

1. Initialize distances from the source vertex s to all vertices as infinity (INF), except
s itself, which is 0.

2. Use a priority queue (min-heap) to select the vertex with the smallest tentative
distance.

271

272

3. Relax all outgoing edges of the selected vertex.

4. Repeat until all vertices are processed.

Naive Approach Complexity:

• Using a simple array for selection: O(V²)

• Using a min-heap (priority queue): O((V + E) log V)

14.1.2 Priority Queue Optimization

1. Standard Approach Using std::priority_queue

C++’s std::priority_queue is a max-heap by default, but we can store pairs
(distance, vertex) and reverse the comparison for a min-heap.

#include <vector>
#include <queue>
#include <iostream>
#include <limits>

const int INF = std::numeric_limits<int>::max();

class Graph {
int V;
std::vector<std::vector<std::pair<int,int>>> adjList; // pair<neighbor,

weight>↪→

public:
Graph(int V) : V(V), adjList(V) {}

void addEdge(int u, int v, int w) {
adjList[u].push_back({v, w});

273

}

std::vector<int> dijkstra(int src) {
std::vector<int> dist(V, INF);
dist[src] = 0;

using pii = std::pair<int,int>; // {distance, vertex}
std::priority_queue<pii, std::vector<pii>, std::greater<pii>> pq;

pq.push({0, src});

while (!pq.empty()) {
int u = pq.top().second;
int d = pq.top().first;
pq.pop();

if (d > dist[u]) continue; // Outdated entry

for (auto &[v, w] : adjList[u]) {
if (dist[u] + w < dist[v]) {

dist[v] = dist[u] + w;
pq.push({dist[v], v});

}
}

}

return dist;
}

};

Notes on Optimization:

274

(a) Avoid unnecessary updates by skipping outdated entries (if (d >
dist[u]) continue).

(b) Min-Heap via std::greater: transforms the default max-heap into a min-
heap.

2. Using Custom Comparators

For more advanced cases, like dynamic priority changes or sorting by
secondary criteria:

struct Node {
int vertex;
int distance;
bool operator>(const Node& other) const {

return distance > other.distance;
}

};

std::priority_queue<Node, std::vector<Node>, std::greater<Node>> pq;

• This approach allows attaching additional metadata (e.g., parent pointers,
edge types) to nodes.

3. Pair Optimization: Lazy vs. Indexed Heap

• Lazy Dijkstra: Insert multiple entries for the same vertex; skip outdated
ones (as shown above). Simple, effective, O((V + E) log V).

• Indexed Heap / Decrease-Key: Maintain a heap that supports
decrease-key to avoid duplicates. More complex, but reduces total
operations; requires custom heap or external library.

275

14.1.3 Iterators and Modern C++ Features

• Using range-based loops and structured bindings improves readability:

for (auto &[v, w] : adjList[u]) {
if (dist[u] + w < dist[v]) {

dist[v] = dist[u] + w;
pq.push({dist[v], v});

}
}

• auto & avoids unnecessary copies.

• structured bindings ([v, w]) make edge access expressive.

14.1.4 Performance Considerations

Feature Complexity Notes

Basic Array Selection O(V²) Suitable for dense graphs

Min-Heap via
std::priority_queue

O((V + E)
log V)

Standard approach

Indexed Heap / Fibonacci
Heap

O(E + V log
V)

More efficient for large sparse graphs;
complex implementation

Lazy Insertions O((V + E)
log V)

Simple and effective in practice

Common std::priority_queue Hacks

276

1. Store negative weights: Convert max-heap to min-heap without using
std::greater.

2. Avoid custom comparator overhead: Use std::pair instead of a struct for
simplicity.

3. Skip outdated entries: Use a check if (d > dist[u]) continue to prevent
extra relaxations.

4. Use vector reserve: Preallocate adjacency vectors for performance in large
graphs.

14.1.5 Example Usage

int main() {
Graph g(5);
g.addEdge(0, 1, 10);
g.addEdge(0, 4, 5);
g.addEdge(1, 2, 1);
g.addEdge(4, 1, 3);
g.addEdge(4, 3, 2);
g.addEdge(2, 3, 4);

std::vector<int> dist = g.dijkstra(0);
for (int i = 0; i < dist.size(); ++i)

std::cout << "Distance from 0 to " << i << ": " << dist[i] << "\n";
}

Output:

277

Distance from 0 to 0: 0
Distance from 0 to 1: 8
Distance from 0 to 2: 9
Distance from 0 to 3: 7
Distance from 0 to 4: 5

Best Practices in Modern C++

1. Use std::priority_queue with structured bindings for clean and readable
code.

2. Prefer lazy insertion over implementing decrease-key for simplicity.

3. Reserve memory in adjacency lists and vectors for large graphs.

4. Always guard against outdated entries to maintain correctness.

5. Consider using custom node structs for more complex scenarios (e.g., path
reconstruction or multi-criteria shortest paths).

278

14.2 Bellman-Ford, SPFA Notes, and C++ Pitfalls
While Dijkstra’s algorithm is efficient for graphs with non-negative weights, many
applications involve negative edge weights. Bellman-Ford and its optimization SPFA
(Shortest Path Faster Algorithm) address this, but careful C++ implementation is
essential to avoid common pitfalls.

14.2.1 Bellman-Ford Algorithm

The Bellman-Ford algorithm computes single-source shortest paths for graphs with
negative edge weights and detects negative cycles.

1. Algorithm Overview

(a) Initialize distances from the source s to all vertices as infinity (INF), except
s itself which is 0.

(b) Relax all edges V-1 times.

(c) Check for negative cycles: if any edge can still be relaxed, the graph contains
a negative cycle.

Time Complexity: O(V × E)
Space Complexity: O(V)

2. C++ Implementation

#include <vector>
#include <iostream>
#include <limits>

struct Edge { int u, v, w; };

279

std::vector<int> bellmanFord(int V, const std::vector<Edge>& edges, int src) {
const int INF = std::numeric_limits<int>::max();
std::vector<int> dist(V, INF);
dist[src] = 0;

for (int i = 0; i < V - 1; ++i) {
for (auto& e : edges) {

if (dist[e.u] != INF && dist[e.u] + e.w < dist[e.v]) {
dist[e.v] = dist[e.u] + e.w;

}
}

}

// Negative cycle detection
for (auto& e : edges) {

if (dist[e.u] != INF && dist[e.u] + e.w < dist[e.v]) {
throw std::runtime_error("Graph contains a negative-weight cycle");

}
}

return dist;
}

Notes:

• dist[e.u] != INF is essential to avoid integer overflow.

• Throws an exception if a negative cycle exists.

• Uses a struct Edge for clarity and cache efficiency.

280

14.2.2 SPFA (Shortest Path Faster Algorithm)

SPFA is an optimization over Bellman-Ford:

• Uses a queue to relax only vertices whose distance was updated.

• Often faster in practice for sparse graphs, but worst-case complexity remains O(V
× E).

C++ Implementation

#include <queue>

std::vector<int> spfa(int V, const std::vector<Edge>& edges, int src) {
const int INF = std::numeric_limits<int>::max();
std::vector<int> dist(V, INF);
std::vector<int> inQueue(V, false);
dist[src] = 0;

std::queue<int> q;
q.push(src);
inQueue[src] = true;

while (!q.empty()) {
int u = q.front(); q.pop();
inQueue[u] = false;

for (auto& e : edges) {
if (e.u == u && dist[u] != INF && dist[u] + e.w < dist[e.v]) {

dist[e.v] = dist[u] + e.w;
if (!inQueue[e.v]) {

q.push(e.v);

281

inQueue[e.v] = true;
}

}
}

}

return dist;
}

Notes:

• SPFA may dequeue a vertex multiple times, but avoids unnecessary
relaxations.

• Using a boolean array inQueue prevents multiple duplicate entries.

14.2.3 C++ Pitfalls to Avoid

1. Integer Overflow

dist[e.u] + e.w < dist[e.v] // If dist[e.u] == INF, can overflow

• Always check dist[e.u] != INF before performing additions.

1. Negative Cycle Detection

• Forgetting to detect negative cycles can result in infinite loops or invalid
distances.

1. Using std::priority_queue with negative edges

282

• Dijkstra cannot handle negative edges, using a priority queue can produce
incorrect results.

1. Queue Management in SPFA

• Forgetting inQueue boolean check can lead to excessive queue growth, slowing
the algorithm or exceeding memory limits.

1. Floating-Point Weights

• When using double or float, beware of rounding errors; consider epsilon
comparisons instead of strict equality.

1. Edge Representation

• Use struct Edge for clarity, avoid storing separate parallel arrays unless memory-
critical.

1. Large Graphs

• Prefer reserve() for adjacency lists and edge vectors to reduce dynamic
allocations.

14.2.4 Comparison of Bellman-Ford vs SPFA

Feature Bellman-
Ford

SPFA

Time Complexity O(V × E) O(V × E) worst-case, often faster in
practice

283

Feature Bellman-
Ford

SPFA

Space Complexity O(V + E) O(V + E)

Negative Cycle Detection Easy Easy (with counter/queue cycle check)

Suitable for Dense Graphs Yes Often better for sparse graphs

Implementation Complexity Simple Slightly more complex due to queue
management

14.2.5 Best Practices in Modern C++

1. Use struct Edge or tuple for clarity and memory locality.

2. Always guard against integer overflow when relaxing edges.

3. Use std::queue with inQueue array in SPFA to avoid duplicate entries.

4. Separate graph data structure from algorithms for modularity.

5. For extremely large graphs, consider memory-efficient representations (CSR,
adjacency list with edge structs).

6. When using floating-point weights, implement comparisons with tolerance to
avoid precision issues.

284

14.3A* Algorithm with C++ Heuristics and Custom
Comparators

The A* algorithm is a widely used best-first search algorithm for finding the
shortest path in a graph, combining the benefits of Dijkstra’s algorithm with a
heuristic function that estimates the cost to reach the goal. Its efficiency depends
heavily on the choice of heuristic and the correct use of priority queues.

14.3.1Algorithm Overview

A* maintains the following:

• g(n): the exact cost from the start node to node n.

• h(n): a heuristic estimate of the cost from n to the goal.

• f(n) = g(n) + h(n): total estimated cost of a solution through n.

The algorithm selects the node with the lowest f(n) from the priority queue at each
step.
Requirements for Heuristics:

• Admissible: never overestimates the true cost (ensures optimality).

• Consistent / Monotone: h(n) � cost(n, n’) + h(n’) for every edge (n,
n’).

14.3.2 Basic C++ Implementation Using std::priority_queue

285

#include <vector>
#include <queue>
#include <unordered_map>
#include <iostream>
#include <cmath>
#include <limits>

struct Node {
int vertex;
double g; // cost from start
double f; // estimated total cost
bool operator>(const Node& other) const { return f > other.f; }

};

class Graph {
int V;
std::vector<std::vector<std::pair<int,double>>> adjList; // {neighbor, weight}

public:
Graph(int V) : V(V), adjList(V) {}

void addEdge(int u, int v, double w) {
adjList[u].push_back({v, w});

}

// Example heuristic: Euclidean distance (requires positions)
double heuristic(int u, int goal, const std::vector<std::pair<double,double>>&

pos) {↪→

double dx = pos[u].first - pos[goal].first;
double dy = pos[u].second - pos[goal].second;
return std::sqrt(dx*dx + dy*dy);

}

286

std::vector<int> aStar(int start, int goal, const
std::vector<std::pair<double,double>>& pos) {↪→

std::vector<double> gScore(V, std::numeric_limits<double>::infinity());
std::vector<int> cameFrom(V, -1);
gScore[start] = 0;

std::priority_queue<Node, std::vector<Node>, std::greater<Node>> pq;
pq.push({start, 0, heuristic(start, goal, pos)});

while (!pq.empty()) {
Node current = pq.top(); pq.pop();
int u = current.vertex;
if (u == goal) break;

for (auto &[v, w] : adjList[u]) {
double tentative_g = gScore[u] + w;
if (tentative_g < gScore[v]) {

gScore[v] = tentative_g;
cameFrom[v] = u;
pq.push({v, tentative_g, tentative_g + heuristic(v, goal, pos)});

}
}

}

// Reconstruct path
std::vector<int> path;
for (int at = goal; at != -1; at = cameFrom[at])

path.push_back(at);
std::reverse(path.begin(), path.end());
return path;

}
};

287

Key Points:

1. Node struct with operator> allows std::priority_queue to function as a min-
heap.

2. gScore stores the cost from start to each vertex.

3. heuristic() provides problem-specific guidance.

4. cameFrom is used for path reconstruction.

14.3.3 Custom Comparators in C++

Sometimes you need more complex comparison than operator>:

• Include secondary criteria, e.g., tie-breaking with depth or other metrics.

• Use lambda functions or functors.

Example with Lambda Comparator:

auto cmp = [](const Node &a, const Node &b) { return a.f > b.f; };
std::priority_queue<Node, std::vector<Node>, decltype(cmp)> pq(cmp);

• This allows flexibility for dynamic criteria, multi-objective heuristics, or
prioritizing nodes with smaller indices in case of ties.

14.3.4Heuristic Design in C++

1. Euclidean / Manhattan Distance: Standard for 2D or 3D grids.

2. Domain-Specific: Can incorporate terrain cost, traffic, or obstacle penalties.

288

3. Dynamic / Learned Heuristics: For AI applications or games, heuristic may
change at runtime.

Tip: Heuristic evaluation should be fast, as it is called many times. Use inline or
precomputed tables when possible.

14.3.5 Performance and Pitfalls in C++

Aspect Notes / Pitfalls

Priority Queue Usage Use std::greater or custom comparator; remember
min-heap vs max-heap defaults

Heuristic Computation Avoid expensive calculations inside loops;
precompute if possible

Floating-Point Precision Use double consistently; beware of small numerical
errors

Path Reconstruction Always maintain cameFrom array or equivalent to
recover optimal path

Memory Allocation Reserve vectors and adjacency lists in advance for
large graphs

Outdated Queue Entries Unlike Dijkstra, may tolerate multiple entries;
gScore check ensures correctness

289

14.3.6 Example: A* on a 2D Grid

int main() {
Graph g(4);
g.addEdge(0, 1, 1); g.addEdge(0, 2, 1.5);
g.addEdge(1, 3, 1); g.addEdge(2, 3, 1);

std::vector<std::pair<double,double>> pos = {{0,0},{1,0},{0,1},{1,1}};
std::vector<int> path = g.aStar(0, 3, pos);

for (int v : path) std::cout << v << " "; // Output: 0 1 3 or 0 2 3 depending on
tie-breaking↪→

}

14.3.7 Best Practices in Modern C++

1. Use structured bindings and range-based loops for adjacency traversal.

2. Define Node structs or tuples with operator> for clarity.

3. For dynamic or multi-criteria heuristics, prefer lambda comparators with
std::priority_queue.

4. Precompute heuristic values when possible to reduce repeated calculations.

5. Always check gScore before pushing to the priority queue to avoid
processing suboptimal paths.

290

14.4 Exercises — Multi-Source SSSP and Path
Reconstruction Templates

This section provides practical exercises for implementing multi-source single-source
shortest paths (SSSP) and designing template-based path reconstruction
utilities in modern C++. These exercises reinforce algorithmic understanding and
demonstrate reusable C++ patterns.

14.4.1Multi-Source Single-Source Shortest Paths (SSSP)

In a multi-source SSSP, shortest paths are computed from multiple starting
vertices to all other vertices in the graph. This is common in applications such as
network routing, resource allocation, and grid navigation with multiple entry points.

1. Problem Statement

• Given a graph G = (V, E) and a set of source vertices S � V, compute the
minimum distance from any vertex in S to every other vertex in V.

• Supports weighted or unweighted graphs; can be implemented via BFS for
unweighted or Dijkstra for weighted graphs.

2. Multi-Source BFS for Unweighted Graphs

#include <vector>
#include <queue>
#include <iostream>

std::vector<int> multiSourceBFS(int V, const std::vector<std::vector<int>>&
adjList, const std::vector<int>& sources) {↪→

const int INF = std::numeric_limits<int>::max();

291

std::vector<int> dist(V, INF);
std::queue<int> q;

for (int s : sources) {
dist[s] = 0;
q.push(s);

}

while (!q.empty()) {
int u = q.front(); q.pop();
for (int v : adjList[u]) {

if (dist[v] == INF) {
dist[v] = dist[u] + 1;
q.push(v);

}
}

}

return dist;
}

Exercise:

• Extend this BFS to track predecessor vertices for path reconstruction.

• Apply this BFS to a grid with multiple starting points to find the nearest
source to each cell.

3. Multi-Source Dijkstra for Weighted Graphs

292

#include <queue>
#include <tuple>

std::vector<int> multiSourceDijkstra(int V, const
std::vector<std::vector<std::pair<int,int>>>& adjList, const
std::vector<int>& sources) {

↪→

↪→

const int INF = std::numeric_limits<int>::max();
std::vector<int> dist(V, INF);
using pii = std::pair<int,int>;
std::priority_queue<pii, std::vector<pii>, std::greater<pii>> pq;

for (int s : sources) {
dist[s] = 0;
pq.push({0, s});

}

while (!pq.empty()) {
auto [d, u] = pq.top(); pq.pop();
if (d > dist[u]) continue;

for (auto &[v, w] : adjList[u]) {
if (dist[u] + w < dist[v]) {

dist[v] = dist[u] + w;
pq.push({dist[v], v});

}
}

}

return dist;
}

Exercise:

293

• Modify this implementation to store cameFrom arrays for each source.

• Use templates to generalize the algorithm for different numeric types (int,
double, float).

14.4.2 Path Reconstruction Templates

In many shortest-path problems, it is not enough to know the distance; reconstructing
the actual path is crucial.

1. Generic Path Reconstruction Template

#include <vector>
#include <algorithm>

template <typename Vertex>
std::vector<Vertex> reconstructPath(Vertex target, const std::vector<Vertex>&

cameFrom) {↪→

std::vector<Vertex> path;
for (Vertex at = target; at != Vertex(-1); at = cameFrom[at])

path.push_back(at);
std::reverse(path.begin(), path.end());
return path;

}

Key Features:

(a) Generic: Works with any vertex type (int, size_t, or user-defined type
with integer indexing).

(b) Reversible: Uses std::reverse for natural ordering from source to target.

(c) Safe Default: Requires cameFrom[source] = -1.

294

2. Exercise: Multi-Source Path Reconstruction

• Implement a multi-source cameFrom map: store a predecessor for each
vertex corresponding to the closest source.

• Reconstruct shortest paths from any vertex to its nearest source:

template <typename Vertex>
std::vector<Vertex> reconstructMultiSourcePath(Vertex target, const

std::vector<Vertex>& cameFrom) {↪→

std::vector<Vertex> path;
for (Vertex at = target; cameFrom[at] != at; at = cameFrom[at])

path.push_back(at);
path.push_back(cameFrom[target]); // Add the source
std::reverse(path.begin(), path.end());
return path;

}

• Exercise: Compare BFS vs Dijkstra versions for correctness and
performance.

14.4.3Additional Exercises

1. Weighted Grid Multi-Source SSSP: Implement Dijkstra with multiple
sources on a 2D grid with terrain costs.

2. SPFA Multi-Source Exercise: Extend SPFA to accept multiple starting
vertices and track predecessor arrays.

3. A* with Multiple Goals: Adapt the A* heuristic to terminate early upon
reaching any of the multiple goal vertices.

295

4. Template-Based Edge Types: Generalize path reconstruction and multi-source
SSSP for graphs with custom edge structs, supporting additional metadata like
weights, labels, or capacity.

14.4.4 Best Practices in Modern C++

1. Use template functions for reusable path reconstruction across graph types and
vertex types.

2. Preallocate dist, cameFrom, and adjacency structures to avoid dynamic allocation
overhead.

3. Prefer structured bindings and range-based loops for clarity.

4. Always initialize cameFrom arrays for multi-source problems to avoid invalid
accesses.

5. Use std::vector indices for predecessor arrays, or std::unordered_map for
non-contiguous/custom vertex types.

Chapter 15

Minimum Spanning Trees &
Union-Find

15.1Kruskal’s Algorithm with Efficient DSU
Kruskal’s algorithm is one of the most widely used algorithms to compute a Minimum
Spanning Tree (MST) of a connected, weighted graph. Its efficiency depends heavily
on the Disjoint Set Union (DSU) or Union-Find data structure, especially when
enhanced with path compression and union by rank.

15.1.1Algorithm Overview

Kruskal’s MST Algorithm:

1. Sort all edges by non-decreasing weight.

2. Initialize a DSU structure where each vertex is its own set.

3. Iterate over sorted edges:

296

297

• If the edge connects two different sets, include it in the MST and union
the sets.

• Otherwise, skip the edge to avoid cycles.

4. Stop when MST contains exactly V - 1 edges.

Time Complexity:

• Sorting edges: O(E log E)

• DSU operations: O(�(V)), where � is the inverse Ackermann function.

• Total: O(E log E + E �(V)) � O(E log E) for practical purposes.

15.1.2 Efficient DSU Implementation

1. Path Compression

• During find(x), recursively update each visited node’s parent to the root.

• Reduces the depth of the tree for future operations.

2. Union by Rank

• Always attach the smaller tree under the root of the larger tree (rank
indicates tree depth).

• Prevents trees from becoming too deep.

3. C++ Template DSU

298

#include <vector>
#include <algorithm>
#include <tuple>
#include <iostream>

template <typename T>
class DSU {

std::vector<T> parent;
std::vector<T> rank;

public:
DSU(T n) : parent(n), rank(n, 0) {

for (T i = 0; i < n; ++i)
parent[i] = i;

}

T find(T x) {
if (parent[x] != x)

parent[x] = find(parent[x]); // path compression
return parent[x];

}

bool unite(T x, T y) {
T px = find(x);
T py = find(y);
if (px == py) return false;

if (rank[px] < rank[py]) {
parent[px] = py;

} else if (rank[px] > rank[py]) {
parent[py] = px;

} else {
parent[py] = px;

299

rank[px]++;
}
return true;

}
};

Key Features:

• Fully generic over vertex type T (e.g., int, size_t).

• Combines path compression and union by rank for near-constant
amortized time per operation.

• unite returns false if the two vertices were already connected.

15.1.3Kruskal’s Algorithm Using DSU

template <typename T>
struct Edge {

T u, v;
int weight;
bool operator<(const Edge& other) const { return weight < other.weight; }

};

template <typename T>
std::vector<Edge<T>> kruskal(int V, std::vector<Edge<T>>& edges) {

std::sort(edges.begin(), edges.end());
DSU<T> dsu(V);
std::vector<Edge<T>> mst;

for (auto& e : edges) {

300

if (dsu.unite(e.u, e.v)) {
mst.push_back(e);

}
if (mst.size() == V - 1) break;

}

return mst;
}

Notes:

1. Sorting edges ensures minimum weight edges are considered first.

2. DSU prevents cycles by only adding edges connecting different sets.

3. Returns a vector of edges representing the MST.

15.1.4 Example Usage

int main() {
int V = 5;
std::vector<Edge<int>> edges = {

{0,1,10}, {0,2,6}, {0,3,5}, {1,3,15}, {2,3,4}
};

auto mst = kruskal(V, edges);

std::cout << "Edges in MST:\n";
for (auto &e : mst)

std::cout << e.u << " - " << e.v << " : " << e.weight << "\n";
}

301

Output:

Edges in MST:
2 - 3 : 4
0 - 3 : 5
0 - 1 : 10

15.1.5 Best Practices in Modern C++

1. Templates:

• Use templates for DSU and Edge to support multiple vertex types and
numeric types.

2. Structured Bindings:

• Can use [u,v,w] with std::tie or C++20 structured bindings when
iterating over edges.

3. Preallocate Vectors:

• Avoid dynamic resizing for parent and rank arrays in DSU for large graphs.

4. Early Termination:

• Stop iterating edges once MST has V-1 edges to save unnecessary iterations.

5. Use std::sort:

• Prefer stable, standard library sort for portability and efficiency.

302

15.1.6 Exercises

1. Extend DSU to support rollback operations for offline dynamic connectivity.

2. Modify Kruskal’s algorithm to handle multi-graphs with parallel edges
efficiently.

3. Implement Kruskal with custom comparators to compute maximum
spanning tree instead of minimum.

4. Compare union by size vs union by rank in practice for large-scale graphs.

303

15.2 Prim’s Algorithm — Binary Heap vs Fibonacci
Heap

Prim’s algorithm is a classic greedy algorithm for computing the Minimum
Spanning Tree (MST) of a connected, weighted graph. Its efficiency depends heavily
on the priority queue structure used to select the next minimum-weight edge.

15.2.1 Prim’s Algorithm Overview

Steps:

1. Start with an arbitrary vertex and mark it as part of the MST.

2. Use a priority queue to maintain candidate edges connecting the MST to non-
MST vertices.

3. Repeatedly select the minimum-weight edge that expands the MST.

4. Continue until all vertices are included in the MST.

Time Complexity:

• Using an array: O(V²) — simple but inefficient for sparse graphs.

• Using a binary heap: O(E log V) — efficient for most practical graphs.

• Using a Fibonacci heap: O(E + V log V) — asymptotically optimal for very
large sparse graphs.

304

15.2.2 Prim Using Binary Heap (Standard Approach)

Binary heaps are implemented via std::priority_queue in C++. While
std::priority_queue is a max-heap by default, it can be converted to a min-heap
using std::greater and std::pair for distances.

C++ Implementation

#include <vector>
#include <queue>
#include <limits>
#include <iostream>

struct Edge {
int to;
int weight;

};

std::vector<int> primBinaryHeap(int V, const std::vector<std::vector<Edge>>& adjList)
{↪→

const int INF = std::numeric_limits<int>::max();
std::vector<int> key(V, INF); // Minimum edge weight to MST
std::vector<int> parent(V, -1); // Parent in MST
std::vector<bool> inMST(V, false);

key[0] = 0;
using pii = std::pair<int,int>; // {key, vertex}
std::priority_queue<pii, std::vector<pii>, std::greater<pii>> pq;
pq.push({0, 0});

while (!pq.empty()) {
int u = pq.top().second;
pq.pop();

305

if (inMST[u]) continue;
inMST[u] = true;

for (auto &e : adjList[u]) {
int v = e.to;
int w = e.weight;
if (!inMST[v] && w < key[v]) {

key[v] = w;
parent[v] = u;
pq.push({key[v], v}); // lazy update

}
}

}

return parent; // contains MST edges
}

Notes:

• Lazy updates may push multiple entries per vertex; correctness is maintained by
inMST check.

• O(E log V) complexity makes this suitable for graphs with up to hundreds of
thousands of edges.

15.2.3 Fibonacci Heap: Theoretical Advantage

Fibonacci heaps improve the decrease-key operation to O(1) amortized, making
Prim’s algorithm asymptotically faster:

• Binary Heap: decrease-key is O(log V), total O(E log V)

• Fibonacci Heap: decrease-key is O(1), total O(E + V log V)

306

When to use:

• Very large, sparse graphs (e.g., E � O(V))

• Performance-critical applications like network optimization or computational
geometry.

Practical Considerations:

• Complex to implement in C++; rarely used in production.

• Binary heap is simpler, cache-friendly, and often faster for small to medium-sized
graphs.

• Libraries like Boost provide Fibonacci heap implementations if needed.

15.2.4 Comparison: Binary Heap vs Fibonacci Heap

Feature Binary Heap Fibonacci Heap

insert O(log V) O(1)

extract-min O(log V) O(log V)

decrease-key O(log V) O(1)

Space Complexity O(V) O(V)

Implementation Complexity Simple Complex

Practical Performance Fast for small/medium
graphs

Only better for very
large sparse graphs

Recommendation: Use binary heap in C++ for most real-world MST problems;
reserve Fibonacci heap for theoretical studies or extreme-scale graphs.

307

15.2.5 C++ Implementation Notes and Best Practices

1. Structured Bindings: Use [v,w] or {to,weight} for adjacency traversal
clarity.

2. Lazy Updates: Avoid explicit decrease-key if using std::priority_queue;
simply push new values and check inMST.

3. Memory Preallocation: Reserve adjacency vectors for large graphs to reduce
allocation overhead.

4. Parent Array: Always maintain a parent array for easy MST edge
reconstruction.

5. Edge Cases: Ensure the graph is connected; otherwise, MST is undefined.

15.2.6 Exercises

1. Implement Prim’s algorithm using an indexed binary heap with explicit
decrease-key.

2. Compare runtime for dense vs sparse graphs using array, binary heap, and
Fibonacci heap implementations.

3. Extend Prim to handle multi-graph scenarios and negative weights.

4. Implement MST edge reconstruction and compute total weight of the MST.

308

15.3 Exercises — MST Variants and Dynamic
Connectivity

This section provides exercises designed to deepen understanding of minimum
spanning trees (MST) and the use of Union-Find (DSU) for dynamic
connectivity problems. These exercises challenge readers to explore MST variants and
advanced applications of union-find in modern C++.

15.3.1MST Variants

MST problems have several interesting variants, each with subtle algorithmic
differences:

1. Maximum Spanning Tree

• Instead of minimizing the sum of edge weights, find a spanning tree that
maximizes the total weight.

• Modification of Kruskal’s algorithm: sort edges in descending order and
apply DSU as usual.

Exercise:

• Implement a template-based Kruskal to handle both minimum and
maximum spanning trees.

• Compare runtime with the standard MST algorithm on graphs with the
same topology but different weight distributions.

2. MST with Constraints

309

• Edge constraints: e.g., include or exclude certain edges.

• Vertex constraints: e.g., only connect a subset of vertices or respect
partitioning.

• Can be handled via preprocessing edges or modifying union rules.

Exercise:

• Implement Kruskal variant that forces specific edges to be included in
the MST while maintaining correctness.

• Handle cases where constraints create disconnected components and
output an error if MST is impossible.

3. Multi-Graph and Parallel Edges

• MST algorithms need to account for parallel edges between vertices.

• Always select the edge with minimal weight in Kruskal or Prim
iterations.

Exercise:

• Implement Kruskal on a multi-graph, handling duplicate edges efficiently.

• Compare MST weight with that of the simple graph to verify correctness.

15.3.2Dynamic Connectivity

Dynamic connectivity deals with graphs where edges are added or removed over
time, and queries ask whether two vertices are connected.

1. Union-Find for Dynamic Connectivity

310

• DSU is naturally suited for incremental connectivity (edge additions).

• Each union operation merges two components efficiently.

• Path compression and union by rank ensure near-constant time
operations.

Exercise:

• Implement a dynamic connectivity tracker using DSU with path
compression.

• Support operations:

– union(u,v): add an edge between u and v

– connected(u,v): check if u and v belong to the same component

template <typename T>
class DynamicConnectivity {

DSU<T> dsu;
public:

DynamicConnectivity(T n) : dsu(n) {}
void addEdge(T u, T v) { dsu.unite(u, v); }
bool connected(T u, T v) { return dsu.find(u) == dsu.find(v); }

};

2. Offline Connectivity Queries

• When edge removals are allowed, simple DSU is insufficient.

• Use offline techniques:

– Reverse Delete: Remove edges in reverse and answer queries.

311

– Euler Tour Trees or Link-Cut Trees: advanced structures for fully
dynamic connectivity.

Exercise:

• Implement a basic offline connectivity query algorithm:

– Given a sequence of edge additions/removals and connectivity queries,
determine which queries are satisfied at each step.

• Optional: Explore Link-Cut Trees for online dynamic connectivity.

3. MST Under Dynamic Updates

• Dynamic MST problem: maintain MST while edges are added or
removed.

• Techniques:

– Recompute MST from scratch (simple but inefficient)

– Use DSU with edge priority structures (incremental updates)

– Advanced structures: Euler Tour Trees, Dynamic Trees

Exercise:

• Implement a DSU-based incremental MST: edges are added one by one,
and MST weight is updated efficiently.

• Optional: measure performance for sparse vs dense graphs.

15.3.3 Best Practices and C++ Tips

1. Use templates for DSU and Edge structures to generalize algorithms for
multiple numeric types and vertex types.

312

2. Preallocate vectors (parent, rank, adjacency lists) to avoid dynamic
memory overhead.

3. Structured bindings: use [u,v,w] or {to,weight} for edge traversal clarity.

4. For dynamic graphs:

• Maintain explicit parent arrays.

• Always check component sizes if implementing union by size.

5. Consider lazy updates for binary heaps or MST updates in dynamic scenarios.

15.3.4Additional Exercises for Mastery

1. Implement maximum spanning tree using Kruskal and compare with the
standard MST.

2. Implement MST with forced edges, verifying correctness when constraints are
impossible.

3. Develop a dynamic connectivity tracker supporting millions of union and
connected queries.

4. Extend MST updates to handle edge deletions, exploring offline techniques for
correctness.

5. Compare performance of binary heap vs Fibonacci heap in incremental MST
updates.

Chapter 16

Network Flow & Advanced Graphs

313

314

16.1 Ford-Fulkerson, Edmonds-Karp, Dinic — C++
Implementations and Performance Tradeoffs

Network flow algorithms are a cornerstone of graph theory with applications
in transportation, communication networks, bipartite matching, and
scheduling. This section covers maximum flow algorithms in modern C++ with
emphasis on performance, trade-offs, and practical implementation.

16.1.1 Ford-Fulkerson Method

1. Algorithm Overview

Ford-Fulkerson computes the maximum flow in a flow network using the
augmenting path approach:

(a) Initialize flow to 0.

(b) While a path exists from source s to sink t in the residual graph, augment
flow along the path.

(c) Update the residual capacities and reverse edges.

(d) Repeat until no augmenting path exists.

2. Complexity

• Depends on maximum flow value F and number of edges E.

• Time Complexity: O(E × F) with naive DFS for augmenting paths.

• Not guaranteed to terminate with irrational capacities.

3. C++ Implementation (DFS-based)

315

#include <vector>
#include <algorithm>

struct Edge {
int to;
int rev;
int capacity;

};

class FlowNetwork {
int V;
std::vector<std::vector<Edge>> adj;

public:
FlowNetwork(int V) : V(V), adj(V) {}

void addEdge(int u, int v, int cap) {
adj[u].push_back({v, (int)adj[v].size(), cap});
adj[v].push_back({u, (int)adj[u].size()-1, 0}); // reverse edge

}

int dfs(int u, int t, int f, std::vector<bool>& visited) {
if (u == t) return f;
visited[u] = true;
for (auto &e : adj[u]) {

if (!visited[e.to] && e.capacity > 0) {
int d = dfs(e.to, t, std::min(f, e.capacity), visited);
if (d > 0) {

e.capacity -= d;
adj[e.to][e.rev].capacity += d;
return d;

}
}

316

}
return 0;

}

int maxFlow(int s, int t) {
int flow = 0, f;
std::vector<bool> visited(V);
while (true) {

std::fill(visited.begin(), visited.end(), false);
f = dfs(s, t, INT32_MAX, visited);
if (f == 0) break;
flow += f;

}
return flow;

}
};

Notes:

• Simple, intuitive implementation.

• Can be inefficient for large capacities or dense networks.

• DFS can lead to non-optimal path selection, increasing iterations.

16.1.2 Edmonds-Karp Algorithm

1. Algorithm Overview

• A specialization of Ford-Fulkerson.

• Uses BFS to find the shortest augmenting path in terms of number of
edges.

317

• Ensures polynomial time: O(V × E²).

2. C++ BFS-based Implementation

#include <queue>

int bfs(int s, int t, std::vector<int>& parent, const
std::vector<std::vector<Edge>>& adj) {↪→

std::fill(parent.begin(), parent.end(), -1);
parent[s] = s;
std::queue<std::pair<int,int>> q;
q.push({s, INT32_MAX});

while (!q.empty()) {
auto [u, flow] = q.front(); q.pop();
for (auto &e : adj[u]) {

if (parent[e.to] == -1 && e.capacity > 0) {
parent[e.to] = u;
int new_flow = std::min(flow, e.capacity);
if (e.to == t) return new_flow;
q.push({e.to, new_flow});

}
}

}
return 0;

}

int edmondsKarp(int s, int t, std::vector<std::vector<Edge>>& adj) {
int flow = 0;
std::vector<int> parent(adj.size());
int new_flow;

while ((new_flow = bfs(s, t, parent, adj)) > 0) {

318

flow += new_flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
for (auto &e : adj[prev]) {

if (e.to == cur) {
e.capacity -= new_flow;
adj[cur][e.rev].capacity += new_flow;
break;

}
}
cur = prev;

}
}
return flow;

}

Advantages:

• Guarantees O(V × E²) complexity.

• Avoids path selection issues from naive DFS.

Disadvantages:

• Still slower on very large sparse networks.

• BFS adds memory overhead for queue and parent arrays.

16.1.3Dinic’s Algorithm

1. Algorithm Overview

Dinic’s algorithm improves performance using:

319

(a) Level Graph: Constructed using BFS to represent shortest path layers
from source.

(b) Blocking Flow: Use DFS to push maximum flow along paths in the level
graph.

(c) Repeat until no more blocking flows exist.

2. Complexity

• O(E × V²) for general graphs.

• O(E × √V) for unit capacity graphs.

• Much faster in practice for dense networks.

3. C++ Implementation

class Dinic {
struct Edge {

int to, rev;
int cap;

};
int V;
std::vector<std::vector<Edge>> adj;
std::vector<int> level, ptr;

bool bfs(int s, int t) {
level.assign(V, -1);
level[s] = 0;
std::queue<int> q;
q.push(s);
while (!q.empty()) {

int u = q.front(); q.pop();
for (auto &e : adj[u]) {

320

if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[u] + 1;
q.push(e.to);

}
}

}
return level[t] != -1;

}

int dfs(int u, int t, int pushed) {
if (u == t || pushed == 0) return pushed;
for (int &i = ptr[u]; i < adj[u].size(); ++i) {

Edge &e = adj[u][i];
if (level[e.to] == level[u] + 1 && e.cap > 0) {

int tr = dfs(e.to, t, std::min(pushed, e.cap));
if (tr > 0) {

e.cap -= tr;
adj[e.to][e.rev].cap += tr;
return tr;

}
}

}
return 0;

}

public:
Dinic(int V) : V(V), adj(V), level(V), ptr(V) {}

void addEdge(int u, int v, int cap) {
adj[u].push_back({v, (int)adj[v].size(), cap});
adj[v].push_back({u, (int)adj[u].size()-1, 0});

}

321

int maxFlow(int s, int t) {
int flow = 0, pushed;
while (bfs(s, t)) {

ptr.assign(V, 0);
while ((pushed = dfs(s, t, INT32_MAX)) > 0)

flow += pushed;
}
return flow;

}
};

Advantages:

• Much faster than Edmonds-Karp for dense or large-capacity graphs.

• Layered BFS ensures efficient blocking flows.

• Works well with unit capacity graphs or highly connected networks.

Disadvantages:

• Slightly more complex to implement.

• Requires additional memory for level and ptr arrays.

16.1.4 Performance Trade-offs

322

Algorithm Time Complexity Memory
Usage

Practical Notes

Ford-
Fulkerson
DFS

O(E × F) Low Simple; inefficient with large
capacities

Edmonds-
Karp BFS

O(V × E²) Medium Guaranteed polynomial;
simple BFS implementation

Dinic O(E × V²) general /
O(E √V) unit

Higher Fastest for dense graphs;
slightly complex

Guidelines:

1. Use Ford-Fulkerson for educational purposes or small integer flows.

2. Use Edmonds-Karp for guaranteed correctness on small to medium graphs.

3. Use Dinic for large, dense, or high-capacity graphs in practice.

16.1.5 Exercises

1. Implement Ford-Fulkerson and test with both DFS and BFS augmenting
paths; compare performance.

2. Implement Dinic’s algorithm and analyze runtime for unit-capacity vs general
graphs.

3. Modify algorithms to handle undirected graphs and multi-edges correctly.

4. Apply Dinic to maximum bipartite matching problem using flow
transformation.

323

5. Benchmark all three algorithms on a grid network and dense random graph,
measuring runtime and memory usage.

324

16.2Matching Algorithms and Min-Cost Max-Flow

This section delves into advanced network flow techniques, covering bipartite
matching using the Hopcroft–Karp algorithm and flows with capacities and
costs, including the Min-Cost Max-Flow problem. We emphasize modern C++
implementations, performance trade-offs, and practical considerations.

16.2.1 Bipartite Matching — Hopcroft–Karp Algorithm

1. Problem Overview

Given a bipartite graph $G = (U \cup V, E)$:

• Find the maximum matching: the largest set of edges with no two edges
sharing a vertex.

• Hopcroft–Karp improves over naive DFS-based matching by finding
multiple augmenting paths simultaneously.

2. Algorithm Steps

(a) Initialize matching M = �.

(b) While an augmenting path exists:

• Construct a layered BFS from unmatched vertices in U.

• Use DFS on layers to find vertex-disjoint augmenting paths.

• Augment all paths simultaneously.

(c) Repeat until no augmenting path exists.

Time Complexity:

325

• O(√V × E), significantly faster than O(V × E) for naive approaches.

3. C++ Implementation

#include <vector>
#include <queue>
#include <algorithm>

class BipartiteMatcher {
int n, m; // sizes of left and right sets
std::vector<std::vector<int>> adj;
std::vector<int> pairU, pairV, dist;

public:
BipartiteMatcher(int n, int m) : n(n), m(m), adj(n), pairU(n, -1), pairV(m,

-1), dist(n) {}↪→

void addEdge(int u, int v) { adj[u].push_back(v); }

bool bfs() {
std::queue<int> q;
for (int u = 0; u < n; u++) {

if (pairU[u] == -1) {
dist[u] = 0;
q.push(u);

} else {
dist[u] = INT32_MAX;

}
}
bool found = false;
while (!q.empty()) {

int u = q.front(); q.pop();
for (int v : adj[u]) {

326

if (pairV[v] == -1) {
found = true;

} else if (dist[pairV[v]] == INT32_MAX) {
dist[pairV[v]] = dist[u] + 1;
q.push(pairV[v]);

}
}

}
return found;

}

bool dfs(int u) {
for (int v : adj[u]) {

if (pairV[v] == -1 || (dist[pairV[v]] == dist[u] + 1 &&
dfs(pairV[v]))) {↪→

pairU[u] = v;
pairV[v] = u;
return true;

}
}
dist[u] = INT32_MAX;
return false;

}

int maxMatching() {
int matching = 0;
while (bfs()) {

for (int u = 0; u < n; u++)
if (pairU[u] == -1 && dfs(u))

matching++;
}
return matching;

327

}
};{ while (!q.empty()) \{}
\NormalTok{ int u = q.front(); q.pop();}
\NormalTok{ for (int v : adj[u]) \{}
\NormalTok#include <vector>
#include <queue>
#include <algorithm>

class BipartiteMatcher {
int n, m; // sizes of left and right sets
std::vector<std::vector<int>> adj;
std::vector<int> pairU, pairV, dist;

public:
BipartiteMatcher(int n, int m) : n(n), m(m), adj(n), pairU(n, -1), pairV(m,

-1), dist(n) {}↪→

void addEdge(int u, int v) { adj[u].push_back(v); }

bool bfs() {
std::queue<int> q;
for (int u = 0; u < n; u++) {

if (pairU[u] == -1) {
dist[u] = 0;
q.push(u);

} else {
dist[u] = INT32_MAX;

}
}
bool found = false;
while (!q.empty()) {

int u = q.front(); q.pop();

328

for (int v : adj[u]) {
if (pairV[v] == -1) {

found = true;
} else if (dist[pairV[v]] == INT32_MAX) {

dist[pairV[v]] = dist[u] + 1;
q.push(pairV[v]);

}
}

}
return found;

}

bool dfs(int u) {
for (int v : adj[u]) {

if (pairV[v] == -1 || (dist[pairV[v]] == dist[u] + 1 &&
dfs(pairV[v]))) {↪→

pairU[u] = v;
pairV[v] = u;
return true;

}
}
dist[u] = INT32_MAX;
return false;

}

int maxMatching() {
int matching = 0;
while (bfs()) {

for (int u = 0; u < n; u++)
if (pairU[u] == -1 && dfs(u))

matching++;
}

329

return matching;
}

};

Notes:

• Efficient for large bipartite graphs (e.g., assignment problems).

• BFS layers reduce redundant searches and improve amortized performance.

16.2.2 Flows with Capacities and Costs — Min-Cost Max-Flow
(MCMF)

1. Problem Overview

• Extend the maximum flow problem to minimize the total cost of
sending flow.

• Each edge (u,v) has:

– Capacity $c(u,v)$

– Cost per unit flow $w(u,v)$

• Goal: Maximize flow from source s to sink t while minimizing total cost.

2. Key Approaches

(a) Successive Shortest Path Algorithm:

• Repeatedly find shortest paths (using edge costs) in residual graph.

• Push flow along these paths until no more augmenting paths exist.

(b) Cycle-Canceling Algorithm:

330

• Start with any feasible flow.

• Repeatedly find negative-cost cycles in residual graph and cancel
them.

(c) Practical Implementation:

• Use Bellman-Ford or Dijkstra with potentials to find shortest
paths efficiently.

3. C++ Implementation Sketch (Successive Shortest Path)

#include <vector>
#include <queue>
#include <limits>
#include <tuple>

struct Edge {
int to, rev;
int capacity;
int cost;

};

class MinCostMaxFlow {
int V;
std::vector<std::vector<Edge>> adj;

public:
MinCostMaxFlow(int V) : V(V), adj(V) {}

void addEdge(int u, int v, int cap, int cost) {
adj[u].push_back({v, (int)adj[v].size(), cap, cost});
adj[v].push_back({u, (int)adj[u].size()-1, 0, -cost});

}

331

std::pair<int,int> minCostMaxFlow(int s, int t) {
int flow = 0, cost = 0;
const int INF = std::numeric_limits<int>::max();
std::vector<int> dist(V), parent(V), parentEdge(V);
while (true) {

std::fill(dist.begin(), dist.end(), INF);
dist[s] = 0;
bool updated = true;
// Bellman-Ford
for (int i = 0; i < V && updated; i++) {

updated = false;
for (int u = 0; u < V; u++) {

if (dist[u] == INF) continue;
for (int k = 0; k < adj[u].size(); k++) {

Edge &e = adj[u][k];
if (e.capacity > 0 && dist[u] + e.cost < dist[e.to]) {

dist[e.to] = dist[u] + e.cost;
parent[e.to] = u;
parentEdge[e.to] = k;
updated = true;

}
}

}
}
if (dist[t] == INF) break;

// Find bottleneck
int pushFlow = INF;
for (int v = t; v != s; v = parent[v])

pushFlow = std::min(pushFlow,
adj[parent[v]][parentEdge[v]].capacity);↪→

332

// Apply flow
for (int v = t; v != s; v = parent[v]) {

Edge &e = adj[parent[v]][parentEdge[v]];
e.capacity -= pushFlow;
adj[v][e.rev].capacity += pushFlow;

}

flow += pushFlow;
cost += pushFlow * dist[t];

}
return {flow, cost};

}
};

Notes:

• Works for moderate graph sizes.

• Can be optimized with Dijkstra + potentials for graphs with non-
negative costs.

• Useful in assignment problems, network routing, and logistics.

16.2.3 Performance Trade-offs

Algorithm Time
Complexity

Memory
Usage

Practical Notes

Hopcroft–Karp (Bipartite) O(
√
V × E) Medium Efficient for large

bipartite graphs

333

Min-Cost Max-Flow
(Bellman–Ford)

O(F ×V ×E) Medium Simple but slow for large
flows

Min-Cost Max-Flow
(Dijkstra with potentials)

O(F ×
E log V)

Higher Fast for sparse graphs
with non-negative costs

Guidelines:

1. Use Hopcroft–Karp for maximum bipartite matching; avoids slow DFS
iterations.

2. Use successive shortest path for MCMF on small/medium graphs.

3. Use Dijkstra + potentials or cycle-canceling optimizations for large graphs
with non-negative edge costs.

16.2.4 Exercises

1. Implement Hopcroft–Karp and test on large random bipartite graphs.

2. Implement MCMF for assignment problem: minimize cost of assigning workers
to jobs.

3. Modify MCMF to handle edges with zero capacity or negative costs;
analyze correctness.

4. Benchmark Bellman-Ford vs Dijkstra potentials for MCMF on sparse vs
dense graphs.

5. Extend Hopcroft–Karp to support weighted bipartite matching using MCMF
transformation.

334

16.3 Exercises — Bipartite Matching and Project
Allocation Simulation

This section provides hands-on exercises to deepen understanding of bipartite
matching, project allocation problems, and the practical application of network
flow algorithms in C++. These exercises are designed to reinforce concepts
introduced in previous sections and challenge readers to implement solutions for real-
world scenarios.

16.3.1 Bipartite Matching Exercises

1. Maximum Matching in Bipartite Graphs

Objective: Implement the Hopcroft–Karp algorithm to find the maximum
matching in a bipartite graph.

Exercise Tasks:

(a) Generate a bipartite graph with sets U and V, and a random set of
edges.

(b) Implement Hopcroft–Karp to compute the maximum matching.

(c) Verify correctness by ensuring:

• No two edges share a vertex.

• The total number of matched edges equals the algorithm output.

(d) Benchmark performance for:

• Sparse graphs (|E| � |V|)

• Dense graphs (|E| � |U| × |V|)

335

Advanced Task: Extend the algorithm to weighted bipartite graphs,
transforming the problem into Min-Cost Max-Flow.

2. Edge Case Handling

• Test cases with:

– Empty sets (no vertices or edges)

– Fully connected bipartite graphs

– Graphs with isolated vertices

• Verify algorithm handles all scenarios without runtime errors.

C++ Tips:

• Use std::vector<int> for adjacency lists.

• Use structured bindings [u,v] for clarity in loops.

• Preallocate vectors for large graphs to reduce memory allocation overhead.

16.3.2 Project Allocation Simulation

1. Problem Overview

The project allocation problem is a common application of bipartite
matching and network flows:

• Objective: Assign n students to m projects based on preferences.

• Each student can have multiple preferred projects.

• Each project may have a capacity constraint (number of students it can
accept).

• Goal: Maximize satisfaction (total number of assigned students).

336

This is a classic application of bipartite matching and Min-Cost Max-
Flow.

2. Modeling the Problem

(a) Represent students as set U and projects as set V.

(b) Each preference forms an edge between a student and a project.

(c) Projects have capacities, represented by edge capacities in a flow network.

(d) Optionally, assign costs to preferences to maximize satisfaction using
MCMF.

3. C++ Implementation Sketch

struct Edge { int to, rev, cap, cost; };

class ProjectAllocation {
int V;
std::vector<std::vector<Edge>> adj;

public:
ProjectAllocation(int V) : V(V), adj(V) {}

void addEdge(int u, int v, int cap, int cost = 0) {
adj[u].push_back({v, (int)adj[v].size(), cap, cost});
adj[v].push_back({u, (int)adj[u].size()-1, 0, -cost});

}

// Min-Cost Max-Flow implementation
std::pair<int,int> allocate(int s, int t) {

// Successive Shortest Path or Dinic-based MCMF
// Returns {totalFlow, totalCost}

}
};

337

Exercise Tasks:

(a) Implement flow network for student-project assignment.

(b) Use Min-Cost Max-Flow to maximize the number of satisfied student
preferences.

(c) Output:

• Assigned students per project

• Total number of assignments

• Total satisfaction score (optional if using costs)

(d) Test with:

• Uniform capacities (all projects accept same number of students)

• Varied capacities

• Random preference distributions

4. Performance Considerations

• Sparse preference networks → simple Edmonds-Karp or DFS-based
MCMF suffices.

• Dense preference networks → Dinic or Dijkstra with potentials improves
performance.

• Preallocate adjacency lists and residual capacities for large-scale
simulations.

• Avoid dynamic memory allocations inside loops; reuse vectors where possible.

338

16.3.3Advanced Extensions

1. Weighted Preferences: Assign numerical scores to student preferences and
maximize total satisfaction.

2. Multiple Assignment Constraints: Students can be assigned to more than
one project; extend flow network with multiple edges per student.

3. Dynamic Updates: Add or remove students/projects and update allocation
dynamically using incremental flow updates.

16.3.4 Suggested Exercise Sequence

1. Implement basic bipartite matching on small graphs.

2. Extend to weighted bipartite matching using MCMF.

3. Simulate project allocation with fixed capacities.

4. Benchmark allocation algorithms on random large-scale student-project
networks.

5. Explore satisfaction optimization with variable edge costs.

Part V

Design Paradigms & Algorithmic
Techniques

339

Chapter 17

Divide and Conquer

17.1Merge Sort, Quicksort, and Recursion Patterns
in C++

Divide and Conquer is a foundational design paradigm where a large problem is
broken into smaller subproblems, solved recursively, and then combined into the final
result. Among the most illustrative algorithms in this category are Merge Sort
and Quicksort. Their implementations demonstrate key recursion patterns in C++,
including tail recursion and iterative transformations for efficiency.

17.1.1Merge Sort

1. Algorithm Overview

• Divide: Split the array into two halves.

• Conquer: Recursively sort both halves.

• Combine: Merge two sorted halves into a single sorted array.

341

342

Time Complexity:

• Best, Average, Worst: O(n log n).
Space Complexity:

• O(n) for auxiliary array.

2. C++ Implementation

#include <vector>
#include <algorithm>

void merge(std::vector<int>& arr, int left, int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;

std::vector<int> L(arr.begin() + left, arr.begin() + mid + 1);
std::vector<int> R(arr.begin() + mid + 1, arr.begin() + right + 1);

int i = 0, j = 0, k = left;
while (i < n1 && j < n2) {

if (L[i] <= R[j]) arr[k++] = L[i++];
else arr[k++] = R[j++];

}
while (i < n1) arr[k++] = L[i++];
while (j < n2) arr[k++] = R[j++];

}

void mergeSort(std::vector<int>& arr, int left, int right) {
if (left >= right) return;
int mid = left + (right - left) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);

343

merge(arr, left, mid, right);
}

3. Notes on Merge Sort in C++

• Stable Sorting: Merge Sort preserves the relative order of equal elements.

• Cache Behavior: Merging involves additional memory, affecting locality.

• Practical Usage: STL’s std::stable_sort is based on optimized Merge
Sort variants.

17.1.2 Quicksort

1. Algorithm Overview

• Divide: Select a pivot and partition elements into two groups:

– Left of pivot: smaller or equal elements.

– Right of pivot: larger elements.

• Conquer: Recursively sort both partitions.

• Combine: Concatenation is implicit—no explicit merging.

Time Complexity:

• Best, Average: O(n log n).

• Worst: O(n²) (poor pivot selection).
Space Complexity:

• O(log n) recursion stack (in-place sorting).

344

2. C++ Implementation

#include <vector>
#include <algorithm>

int partition(std::vector<int>& arr, int low, int high) {
int pivot = arr[high]; // Last element as pivot
int i = low - 1;
for (int j = low; j < high; j++) {

if (arr[j] <= pivot) {
std::swap(arr[++i], arr[j]);

}
}
std::swap(arr[i + 1], arr[high]);
return i + 1;

}

void quickSort(std::vector<int>& arr, int low, int high) {
if (low >= high) return;
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}

3. Pivot Strategies

• Naive (last element): Simple but prone to worst-case O(n²).

• Randomized pivot: Reduce likelihood of worst-case.

• Median-of-three: Choose median of first, middle, last elements—improves
balance.

4. Notes on Quicksort in C++

345

• In-Place Sorting: Requires no additional arrays.

• Unstable: Equal elements may swap order.

• Practical Usage: STL’s std::sort uses introsort (Quicksort + Heapsort
fallback).

17.1.3 Recursion Patterns in C++

1. Standard Recursion

Both Merge Sort and Quicksort rely on recursive function calls. Each recursive
call operates on smaller subproblems until base cases are reached.

2. Tail Recursion

A function is tail recursive if the recursive call is the last operation before
returning.
Example:

void tailRecQuickSort(std::vector<int>& arr, int low, int high) {
while (low < high) {

int pi = partition(arr, low, high);
// Recurse only on the smaller partition (tail recursion elimination)
if (pi - low < high - pi) {

tailRecQuickSort(arr, low, pi - 1);
low = pi + 1; // Tail recursion eliminated

} else {
tailRecQuickSort(arr, pi + 1, high);
high = pi - 1;

}
}

}

346

Advantages:

• Eliminates deep recursion.

• Reduces stack overflow risk on large inputs.

• Modern compilers may optimize tail recursion automatically.

3. Iterative Transformations

Recursive algorithms can be transformed into explicit iterative forms using
stacks:

void iterativeQuickSort(std::vector<int>& arr) {
std::vector<std::pair<int,int>> stack;
stack.push_back({0, (int)arr.size() - 1});

while (!stack.empty()) {
auto [low, high] = stack.back();
stack.pop_back();
if (low < high) {

int pi = partition(arr, low, high);
stack.push_back({low, pi - 1});
stack.push_back({pi + 1, high});

}
}

}

Notes:

• Explicit stack simulates recursion.

• Useful for systems with limited recursion depth.

347

17.1.4 Comparative Summary

Algorithm Time
Complexity

Space
Complexity

Stability Practical Usage

Merge Sort O(n log n)

worst/avg/best
O(n) Stable std::stable_sort

Quicksort O(n log n)

avg, O(n2)

worst

O(log n)

stack
Unstable std::sort (with

introsort hybrid)

17.1.5 Exercises

1. Implement Merge Sort with iterative bottom-up merging instead of recursion.

2. Implement Quicksort with:

• Randomized pivot

• Median-of-three pivot
Compare performance on sorted vs random arrays.

3. Convert recursive Merge Sort into an iterative version using explicit stacks.

4. Demonstrate tail recursion elimination in Quicksort and analyze stack depth
reduction.

5. Compare Merge Sort vs Quicksort on large datasets with different
distributions (random, sorted, reverse-sorted).

348

17.2 Parallel Divide-and-Conquer with
std::execution and Thread Pools

The divide-and-conquer paradigm is inherently parallelizable because subproblems
can often be solved independently. Modern C++ (since C++17 and further improved
in C++20/23) provides standardized tools for parallel execution through the
<execution> library, while thread pools allow fine-grained control over concurrency.
Combining these techniques enables scalable implementations of classic divide-and-
conquer algorithms like Merge Sort, Quicksort, and matrix multiplication.

17.2.1 Parallel Divide-and-Conquer: Conceptual Overview

• Divide: Split the input problem into smaller independent subproblems.

• Conquer: Solve each subproblem in parallel.

• Combine: Merge results.

Why it fits parallelism:

• Independent subproblems → parallel tasks.

• Balanced recursive tree → near logarithmic depth with high parallelism.

• Tail recursion + cutoff thresholds → avoid excessive thread creation.

17.2.2 std::execution in Parallel Divide-and-Conquer

C++17 introduced parallel execution policies in <execution>:

• std::execution::seq: Sequential execution (default).

349

• std::execution::par: Parallel execution (tasks may run on multiple threads).

• std::execution::par_unseq: Parallel + vectorized execution.

1. Example: Parallel Sort

The standard library’s std::sort can be parallelized via execution policies:

#include <algorithm>
#include <execution>
#include <vector>

int main() {
std::vector<int> data = {9, 2, 5, 1, 7, 3};
std::sort(std::execution::par, data.begin(), data.end());

}

Internally, this uses divide-and-conquer parallelism (often introsort with
thread pool support) when std::execution::par is selected.

2. Limitations

• Current <execution> implementations vary across compilers and standard
libraries.

• Fine-grained task control (e.g., custom cutoff thresholds, recursion strategies)
is not directly exposed.

• For advanced workloads, custom thread pools are required.

17.2.3 Thread Pools in Divide-and-Conquer

A thread pool manages a fixed set of worker threads, avoiding the overhead of
creating and destroying threads repeatedly. Divide-and-conquer recursion can submit

350

tasks to the pool, allowing bounded parallelism.

1. Minimal Thread Pool Implementation

#include <vector>
#include <thread>
#include <queue>
#include <mutex>
#include <condition_variable>
#include <functional>
#include <future>

class ThreadPool {
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex mtx;
std::condition_variable cv;
bool stop = false;

public:
ThreadPool(size_t threads) {

for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this] {

while (true) {
std::function<void()> task;
{

std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [this]{ return stop || !tasks.empty();

});↪→

if (stop && tasks.empty()) return;
task = std::move(tasks.front());
tasks.pop();

}

351

task();
}

});
}

}

template<class F, class... Args>
auto enqueue(F&& f, Args&&... args) {

using Ret = std::invoke_result_t<F, Args...>;
auto task = std::make_shared<std::packaged_task<Ret()>>(

std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<Ret> res = task->get_future();
{

std::lock_guard<std::mutex> lock(mtx);
tasks.emplace([task]{ (*task)(); });

}
cv.notify_one();
return res;

}

~ThreadPool() {
{

std::lock_guard<std::mutex> lock(mtx);
stop = true;

}
cv.notify_all();
for (auto& worker : workers) worker.join();

}
};

2. Divide-and-Conquer Example: Parallel Merge Sort

352

void parallelMergeSort(std::vector<int>& arr, int left, int right, ThreadPool&
pool, int depth = 0) {↪→

if (left >= right) return;
int mid = left + (right - left) / 2;

if (depth < 3) { // control parallel recursion depth
auto leftFuture = pool.enqueue([&]{ parallelMergeSort(arr, left, mid,

pool, depth+1); });↪→

parallelMergeSort(arr, mid+1, right, pool, depth+1);
leftFuture.get();

} else {
parallelMergeSort(arr, left, mid, pool, depth+1);
parallelMergeSort(arr, mid+1, right, pool, depth+1);

}

merge(arr, left, mid, right);
}

Features:

• Parallelism is limited by depth to avoid task explosion.

• Workloads naturally balance at higher recursion levels.

• Thread pool amortizes thread management costs.

17.2.4Hybrid Approach: Execution Policies + Custom Thread
Pools

1. Use std::execution for coarse-grained parallel algorithms (sorting,
transformations).

2. Use thread pools for fine-grained recursive control.

353

3. Combine both to scale across different workloads.

Example:

• Parallel merge sort for large datasets.

• Sequential sort for small subarrays (base case).

• Thread pool used internally for recursive task scheduling.

17.2.5 Performance Considerations

• Granularity Control: Avoid spawning threads for small tasks—introduce cutoff
thresholds.

• Load Balancing: Thread pools distribute tasks evenly; uneven partitions
(Quicksort on skewed data) can reduce efficiency.

• Memory Locality: Excessive parallelism may degrade cache performance.

• Synchronization Overhead: Locks, atomics, and futures add overhead—use
them only when necessary.

17.2.6 Exercises

1. Implement parallel quicksort using a custom thread pool. Compare with
sequential quicksort.

2. Use std::execution::par_unseq with std::transform to apply a divide-and-
conquer vector transformation in parallel.

3. Modify parallel
merge sort to use std::stable_sort with std::execution::par for the base
case.

354

4. Extend the thread pool to support work stealing, reducing idle threads when
partitions are unbalanced.

5. Benchmark: Compare performance of

• Sequential Merge Sort

• std::sort(std::execution::par)

• Custom thread pool merge sort

17.2.7 Summary

• Divide-and-conquer is naturally parallelizable, and modern C++ provides
standard execution policies for ease of use.

• For advanced workloads, custom thread pools provide more control over
recursion depth, task granularity, and scheduling.

• A hybrid approach—execution policies for coarse-grained tasks, thread pools for
fine-grained control—delivers robust and scalable divide-and-conquer solutions in
modern C++.

355

17.3 Exercises — Median of Medians, Parallel
Mergesort

Exercises are designed to help students and practitioners internalize divide-and-
conquer strategies by implementing classic algorithms that highlight different aspects
of the paradigm. Two essential problems are explored here: the Median of Medians
algorithm for deterministic selection and a Parallel Merge Sort leveraging modern
C++ parallelism and thread pools.

17.3.1 Exercise: Median of Medians

The Median of Medians algorithm addresses the problem of finding the k-th smallest
element (selection) in an unsorted array in deterministic linear time. Unlike randomized
Quickselect, which has expected linear time but worst-case quadratic time, Median of
Medians guarantees O(n) performance.

1. Divide-and-Conquer Strategy

• Divide: Partition the array into groups of five elements each.

• Conquer: Find the median of each group (via sorting, since the groups are
small).

• Recurse: Use Median of Medians recursively to find the median of the
medians.

• Partition: Use this pivot to split the array into less-than and greater-than
parts.

• Select: Depending on k, recurse into the appropriate partition.

2. Implementation Sketch in Modern C++

356

#include <algorithm>
#include <vector>

int partition(std::vector<int>& arr, int left, int right, int pivotIndex) {
int pivotValue = arr[pivotIndex];
std::swap(arr[pivotIndex], arr[right]);
int storeIndex = left;
for (int i = left; i < right; i++) {

if (arr[i] < pivotValue) {
std::swap(arr[storeIndex++], arr[i]);

}
}
std::swap(arr[right], arr[storeIndex]);
return storeIndex;

}

int medianOfMedians(std::vector<int>& arr, int left, int right, int k) {
if (left == right) return arr[left];

int n = right - left + 1;
std::vector<int> medians;
for (int i = 0; i < n/5; i++) {

std::sort(arr.begin() + left + i*5, arr.begin() + left + i*5 + 5);
medians.push_back(arr[left + i*5 + 2]); // median of 5

}
if (n % 5) {

std::sort(arr.begin() + left + (n/5)*5, arr.begin() + right + 1);
medians.push_back(arr[left + (n/5)*5 + (n%5)/2]);

}

int median = (medians.size() == 1) ? medians[0]
: medianOfMedians(medians, 0, medians.size()-1,

medians.size()/2);↪→

357

// partition around the chosen median
int pivotIndex = std::find(arr.begin()+left, arr.begin()+right+1, median) -

arr.begin();↪→

pivotIndex = partition(arr, left, right, pivotIndex);

if (k == pivotIndex) return arr[k];
else if (k < pivotIndex) return medianOfMedians(arr, left, pivotIndex-1,

k);↪→

else return medianOfMedians(arr, pivotIndex+1, right, k);
}

3. Key Points

• Groups of five ensure balanced partitions, avoiding worst-case quadratic
behavior.

• Time complexity: O(n) (deterministic).

• Exercises:

– Implement the algorithm with different group sizes (e.g., 3, 7) and
compare performance.

– Compare deterministic Median of Medians with randomized Quickselect
for large datasets.

– Extend to multidimensional median finding.

17.3.2 Exercise: Parallel Merge Sort

Merge Sort is a textbook divide-and-conquer algorithm. Its recursive structure
makes it ideal for parallelization. The parallel implementation enhances performance
on multi-core architectures by sorting subarrays concurrently.

358

1. Divide-and-Conquer Strategy

• Divide: Recursively split the array into two halves.

• Conquer: Sort both halves in parallel.

• Combine: Merge sorted halves into a final sorted array.

2. Parallel Merge Sort with Thread Pool

#include <vector>
#include <future>
#include <algorithm>

void merge(std::vector<int>& arr, int left, int mid, int right) {
std::vector<int> leftVec(arr.begin() + left, arr.begin() + mid + 1);
std::vector<int> rightVec(arr.begin() + mid + 1, arr.begin() + right + 1);

int i = 0, j = 0, k = left;
while (i < (int)leftVec.size() && j < (int)rightVec.size()) {

arr[k++] = (leftVec[i] <= rightVec[j]) ? leftVec[i++] : rightVec[j++];
}
while (i < (int)leftVec.size()) arr[k++] = leftVec[i++];
while (j < (int)rightVec.size()) arr[k++] = rightVec[j++];

}

void parallelMergeSort(std::vector<int>& arr, int left, int right, int depth =
0) {↪→

if (left >= right) return;
int mid = left + (right - left) / 2;

if (depth < 3) { // limit recursion depth for parallelism
auto leftFuture = std::async(std::launch::async, [&]{

parallelMergeSort(arr, left, mid, depth+1); });↪→

359

parallelMergeSort(arr, mid+1, right, depth+1);
leftFuture.get();

} else {
parallelMergeSort(arr, left, mid, depth+1);
parallelMergeSort(arr, mid+1, right, depth+1);

}

merge(arr, left, mid, right);
}

3. Modern C++ Execution Policy Variant

C++17 also allows:

#include <algorithm>
#include <execution>

std::sort(std::execution::par, arr.begin(), arr.end());

While concise, this delegates details to the standard library and does not expose
recursion depth or scheduling strategies. The custom implementation above allows
fine-tuned divide-and-conquer parallelism.

4. Exercises

(a) Implement parallel mergesort with:

• std::async

• Custom thread pool
• std::execution::par

Compare performance across methods.

360

(b) Experiment with different parallel recursion cutoffs (depth 2, 3, 4).
Measure trade-offs between task overhead and speedup.

(c) Extend parallel mergesort to external memory sorting (disk-based
mergesort), simulating large datasets that exceed memory capacity.

(d) Combine mergesort with Median of Medians for pivot-based partitioning
experiments.

17.3.3 Summary

• The Median of Medians algorithm demonstrates deterministic selection with
linear-time guarantees, making it a powerful example of the divide-and-conquer
paradigm applied to order statistics.

• Parallel Mergesort illustrates how recursion maps naturally to parallel
execution. With controlled task granularity, it achieves scalable performance on
multi-core systems.

• These exercises strengthen mastery of divide-and-conquer, from deterministic
selection to scalable parallel sorting, ensuring both theoretical understanding and
practical application in modern C++.

Chapter 18

Dynamic Programming (DP)

361

362

18.1Memoization vs. Tabulation — Idiomatic C++
Patterns

Dynamic Programming (DP) is one of the most versatile algorithmic techniques,
widely used to solve problems involving overlapping subproblems and optimal
substructure. At its core, DP can be implemented in two main ways: memoization
(top-down recursion with caching) and tabulation (bottom-up iterative filling). In
modern C++, each style benefits from idiomatic constructs such as unordered_map,
vector, and views for iteration and efficient data representation.

18.1.1Memoization (Top-Down Dynamic Programming)

Memoization augments a recursive solution by storing already-computed results
in a cache, preventing repeated calculations. It retains the recursive problem
decomposition, making code often easier to reason about, but requires careful
handling of recursion limits and cache lookups.

1. Idiomatic C++ Patterns

• Cache with unordered_map: Useful when subproblem states are sparse or
not easily bounded (e.g., memoizing (i, j) states in grid DP).

• Cache with vector: Preferable when the state space is well-bounded and
indexable by integers.

2. Example: Fibonacci with Memoization

#include <unordered_map>
#include <iostream>

363

long long fib(int n, std::unordered_map<int, long long>& memo) {
if (n <= 1) return n;
if (memo.count(n)) return memo[n];
return memo[n] = fib(n-1, memo) + fib(n-2, memo);

}

int main() {
std::unordered_map<int, long long> memo;
std::cout << fib(50, memo) << "\n"; // efficient due to caching

}

3. Pros and Cons

• Pros:

– Natural expression of recursion.

– Flexibility with irregular state spaces.

• Cons:

– Recursion depth can cause stack overflows.

– Overhead from hash lookups (unordered_map) if the state space is
dense.

18.1.2 Tabulation (Bottom-Up Dynamic Programming)

Tabulation iteratively fills in a DP table starting from base cases up to the
desired result. This avoids recursion and typically ensures better constant-factor
performance. It requires knowing the full state space in advance.

1. Idiomatic C++ Patterns

364

• std::vector for dense states: Default choice for array-like DP tables.

• Views (std::ranges::views): Allow expressive iteration and cleaner code
when filling DP tables.

2. Example: Fibonacci with Tabulation

#include <vector>
#include <iostream>

long long fib(int n) {
if (n <= 1) return n;
std::vector<long long> dp(n+1, 0);
dp[1] = 1;
for (int i = 2; i <= n; ++i) {

dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];

}

int main() {
std::cout << fib(50) << "\n"; // fast, no recursion overhead

}

3. Pros and Cons

• Pros:

– Avoids recursion stack issues.
– Often faster for dense, bounded problems.

• Cons:

– Less intuitive for recursive problem formulations.

365

– Requires precomputing and storing the entire table, which can be
memory-intensive.

18.1.3 Comparing Memoization vs. Tabulation in C++

Aspect Memoization Tabulation

Style Top-down recursion with
caching

Bottom-up iterative filling

Data Structure unordered_map, vector vector (dense), sometimes
array

Best For Sparse/unbounded states Dense/bounded states

Performance Slightly higher constant
overhead

Generally faster and cache-
friendly

Ease of
Expression

Mirrors recursive definition More mechanical but stack-safe

Memory Use On-demand (only visited
states)

Allocates full table upfront

18.1.4Advanced Idiomatic Patterns

1. std::optional for Safe Caching

Instead of using unordered_map, a std::vector<std::optional<T>> can
represent uninitialized states efficiently when indices are bounded.

366

#include <vector>
#include <optional>

long long fib(int n, std::vector<std::optional<long long>>& dp) {
if (n <= 1) return n;
if (dp[n]) return *dp[n];
return *(dp[n] = fib(n-1, dp) + fib(n-2, dp));

}

2. Iteration with Views

Using C++20 ranges:

#include <ranges>
#include <vector>
#include <iostream>

int main() {
int n = 10;
std::vector<long long> dp(n+1, 0);
dp[1] = 1;

for (int i : std::views::iota(2, n+1)) {
dp[i] = dp[i-1] + dp[i-2];

}

std::cout << dp[n] << "\n";
}

This improves readability and idiomatic use of modern C++.

367

18.1.5 Summary

• Memoization is best suited for problems with sparse or irregular
subproblems, where caching avoids unnecessary computation. In idiomatic
C++, unordered_map offers flexible caching, while vector provides fast indexable
storage.

• Tabulation excels in dense, bounded state spaces, leveraging vector for
performance and memory locality, with modern enhancements like ranges/views
for expressive iteration.

• Choosing between the two depends on problem characteristics: recursion
friendliness, memory constraints, and whether the state space is known in
advance.

• Both approaches should be part of a C++ programmer’s toolkit for building
efficient and elegant DP solutions.

368

18.2DP on Sequences, Trees, and Graphs —
Common Templates and Optimizations (Space
Reduction)

Dynamic Programming manifests differently depending on whether the problem domain
is a linear sequence, a tree, or a general graph. Each structure imposes unique
recursion patterns, state definitions, and opportunities for optimization. In C++, these
can be expressed cleanly through reusable templates, memory-conscious containers,
and careful space reduction techniques.

18.2.1DP on Sequences

Sequences (arrays, strings, lists) are the most common context for DP. Problems like
Longest Common Subsequence (LCS), Edit Distance, or Knapsack rely on
analyzing prefixes or indices.

1. Template Pattern

Typical DP recurrence:

dp[i][j] = f(dp[i− 1][j], dp[i][j − 1], dp[i− 1][j − 1], . . .)

where i, j are sequence indices.

2. C++ Example: Longest Common Subsequence

#include <vector>
#include <string>
#include <algorithm>

369

int lcs(const std::string& a, const std::string& b) {
int n = a.size(), m = b.size();
std::vector<std::vector<int>> dp(n+1, std::vector<int>(m+1, 0));

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {

if (a[i-1] == b[j-1])
dp[i][j] = dp[i-1][j-1] + 1;

else
dp[i][j] = std::max(dp[i-1][j], dp[i][j-1]);

}
}
return dp[n][m];

}

3. Space Optimization

Because only the previous row is needed, memory can be reduced from O(n*m) to
O(min(n, m)).

int lcsOptimized(const std::string& a, const std::string& b) {
int n = a.size(), m = b.size();
std::vector<int> prev(m+1, 0), curr(m+1, 0);

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {

if (a[i-1] == b[j-1]) curr[j] = prev[j-1] + 1;
else curr[j] = std::max(prev[j], curr[j-1]);

}
std::swap(prev, curr);

}

370

return prev[m];
}

18.2.2DP on Trees

Tree DP solves problems such as subtree sums, diameter, or maximum
independent set on a tree. The structure naturally supports recursion, with
subproblem states defined per node and combined over children.

1. Template Pattern

General recurrence:

dp[u] = g({dp[v] : v ∈ children(u)})

2. C++ Example: Maximum Independent Set on a Tree

#include <vector>
#include <algorithm>

struct TreeDP {
int n;
std::vector<std::vector<int>> adj;
std::vector<std::vector<int>> dp; // dp[u][0]=not taken, dp[u][1]=taken
std::vector<bool> visited;

TreeDP(int n) : n(n), adj(n), dp(n, std::vector<int>(2, 0)),
visited(n,false) {}↪→

void addEdge(int u, int v) {

371

adj[u].push_back(v);
adj[v].push_back(u);

}

void dfs(int u) {
visited[u] = true;
dp[u][0] = 0;
dp[u][1] = 1;
for (int v : adj[u]) {

if (!visited[v]) {
dfs(v);
dp[u][0] += std::max(dp[v][0], dp[v][1]);
dp[u][1] += dp[v][0];

}
}

}
};

3. Optimizations

• Re-rooting DP: Sometimes results must be computed with each node as
root (e.g., subtree sums). Efficient re-rooting transforms allow O(n) overall
complexity.

• Iterative DFS: Avoid recursion depth issues by using explicit stacks.

18.2.3DP on Graphs

DP on graphs is more general and often intertwined with shortest path algorithms
or DAG DP.

1. DAG DP

372

For Directed Acyclic Graphs:

dp[u] = max
(u,v)∈E

(w(u, v) + dp[v])

2. Example: Longest Path in DAG

#include <vector>
#include <stack>
#include <algorithm>

void topoSortUtil(int u, const std::vector<std::vector<int>>& adj,
std::vector<bool>& visited, std::stack<int>& st) {

visited[u] = true;
for (int v : adj[u]) if (!visited[v]) topoSortUtil(v, adj, visited, st);
st.push(u);

}

int longestPathDAG(int n, const std::vector<std::vector<int>>& adj) {
std::stack<int> st;
std::vector<bool> visited(n, false);
for (int i = 0; i < n; i++) if (!visited[i]) topoSortUtil(i, adj, visited,

st);↪→

std::vector<int> dp(n, 0);
while (!st.empty()) {

int u = st.top(); st.pop();
for (int v : adj[u]) {

dp[v] = std::max(dp[v], dp[u] + 1);
}

}
return *std::max_element(dp.begin(), dp.end());

}

373

3. Graph DP Optimizations

• Topological ordering: Ensures linear-time evaluation for DAGs.

• Memoization on cycles: For cyclic graphs, memoization + cycle detection
prevents infinite recursion.

• Bitset compression: For subset-DP problems (e.g., traveling salesman),
bitsets can dramatically reduce memory and enable vectorized operations.

18.2.4 Space Reduction Techniques

1. Rolling Arrays

Only store necessary slices of the DP table (e.g., last row, last column).

2. In-Place DP

Reusing input containers (vector, string) to store states.

3. Bitset Optimizations

Use std::bitset or std::vector<bool> for problems where state is binary (e.g.,
knapsack, subset sums).

#include <bitset>
const int MAXW = 10000;
std::bitset<MAXW+1> knapsack;

4. Sparse State Representation

When the state space is sparse, prefer unordered_map instead of vector to
minimize memory.

374

18.2.5 Summary

• Sequences: Standard tabular DP with opportunities for row/column
compression.

• Trees: Natural recursion templates with subtree aggregation, optimized via re-
rooting and iterative traversal.

• Graphs: Require topological ordering (DAGs) or careful memoization (cyclic
graphs), often blending with shortest path techniques.

• Space Reduction: Achieved via rolling arrays, in-place updates, and bitset
compression, enabling scalability to larger problems.

Dynamic Programming in C++ is not only about correct recurrence formulation but
also about writing memory- and cache-efficient code that scales. Idiomatic use of
vector, unordered_map, bitset, and even modern C++ features like ranges leads to
concise, performant solutions.

375

18.3 Exercises: Knapsack Variants, Longest
Increasing Subsequence with Patience Sorting
(O(n log n))

Dynamic Programming (DP) is best mastered by tackling classic problems and then
extending them into more challenging variants. Two cornerstone exercises that test
both theoretical understanding and implementation skills in C++ are knapsack
problems and the Longest Increasing Subsequence (LIS). Together, they
illustrate how to handle optimization under constraints and how to apply DP in
conjunction with advanced algorithmic techniques such as binary search.

18.3.1Knapsack Variants

The 0/1 Knapsack Problem is a standard DP exercise: given a set of items, each
with a weight and value, determine the maximum total value achievable under a
capacity constraint. The state transition typically looks like this:

dp[i][w] = max(dp[i− 1][w], dp[i− 1][w − wi] + vi) if w ≥ wi

Here i indexes items, and w indexes current capacity.

• a. Classic 0/1 Knapsack in C++

int knapsack01(const vector<int>& weights, const vector<int>& values, int W) {
int n = weights.size();
vector<int> dp(W + 1, 0);

for (int i = 0; i < n; ++i) {
for (int w = W; w >= weights[i]; --w) {

376

dp[w] = max(dp[w], dp[w - weights[i]] + values[i]);
}

}
return dp[W];

}

This uses space optimization (O(W)) by rolling the DP array from back to front.

• b. Bounded Knapsack

Each item can be chosen up to a certain multiplicity. One approach is binary
splitting: decompose item counts into sums of powers of two, reducing bounded
knapsack to multiple 0/1 items.

• c. Unbounded (Complete) Knapsack

Items can be chosen infinitely. Transition order differs — we must process
capacities forward to allow repeated usage:

int unboundedKnapsack(const vector<int>& weights, const vector<int>& values,
int W) {↪→

int n = weights.size();
vector<int> dp(W + 1, 0);

for (int i = 0; i < n; ++i) {
for (int w = weights[i]; w <= W; ++w) {

dp[w] = max(dp[w], dp[w - weights[i]] + values[i]);
}

}
return dp[W];

}

377

• d. Multi-dimensional Knapsack

Constraints extend to multiple resources (e.g., weight and volume). The DP
table becomes higher-dimensional, which may require pruning or heuristic
approximations for efficiency.

18.3.2 Longest Increasing Subsequence (LIS)

The LIS problem asks for the length of the longest strictly increasing subsequence in a
sequence of integers.

• a. O(n²) DP Solution

For each element, compute LIS ending at that position:

dp[i] = 1 + max(dp[j]) for all j < i, a[j] < a[i]

int lisQuadratic(const vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, 1);
int ans = 0;
for (int i = 0; i < n; ++i) {

for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) dp[i] = max(dp[i], dp[j] + 1);

}
ans = max(ans, dp[i]);

}
return ans;

}

• b. O(n log n) with Patience Sorting

378

Patience sorting borrows from card-game strategies: maintain piles where each
new number replaces the smallest possible pile top greater than it.

int lisPatience(const vector<int>& nums) {
vector<int> piles;
for (int x : nums) {

auto it = lower_bound(piles.begin(), piles.end(), x);
if (it == piles.end()) piles.push_back(x);
else *it = x;

}
return piles.size();

}

This method efficiently computes LIS length. To reconstruct the sequence,
additional predecessor tracking arrays must be maintained.

18.3.3 C++ Patterns for Efficiency

• Use std::vector for cache efficiency in large DP states.

• Employ std::lower_bound (binary search) for LIS patience sorting.

• Leverage move semantics and reserve() when handling large intermediate DP
states.

• For multidimensional DP, consider compressed views or std::span (C++20)
to reduce memory overhead.

18.3.4 Exercises

1. Implement all knapsack variants (0/1, unbounded, bounded, multi-dimensional)
and compare their complexities and memory usage.

379

2. Extend LIS to recover the actual subsequence using parent pointers.

3. Solve the weighted LIS problem (maximize sum of values instead of length).

4. Explore the Longest Bitonic Subsequence (increasing then decreasing) by
combining LIS and Longest Decreasing Subsequence (LDS).

Chapter 19

Greedy Algorithms & Matroid
Concepts

19.1Greedy Correctness Proofs and C++ Greedy
Idioms

Greedy algorithms represent one of the most elegant paradigms in algorithm design.
They work by making a locally optimal choice at each step with the hope (and
often guarantee) that the final result will be globally optimal. However, the main
challenge is not the implementation—usually straightforward—but proving correctness
and identifying when greedy strategies apply.
This section explores two central aspects:

1. Correctness proofs of greedy algorithms.

2. Idiomatic C++ patterns for implementing greedy strategies efficiently.

380

381

19.1.1Greedy Algorithm Correctness Proofs

Greedy algorithms are not universally applicable. Their correctness depends on
structural properties of the problem. Two fundamental techniques are used to establish
correctness:

• a. The Greedy Choice Property

A problem exhibits the greedy choice property if a globally optimal solution
can always be arrived at by making a locally optimal choice at each step.

Example: Activity Selection Problem

– Task: Select the maximum number of non-overlapping activities, each with
start and finish times.

– Greedy rule: Always select the activity with the earliest finishing time that
is compatible with the previously chosen activities.

Proof sketch:

1. Let A* be an optimal solution.

2. If A* does not include the earliest finishing activity, we can swap its first
chosen activity with the earliest finishing one without reducing the solution
size.

3. This exchange argument shows that the greedy choice is safe and still leads
to an optimal solution.

• b. Exchange Argument

The exchange argument demonstrates that any deviation from the greedy
solution can be adjusted step by step into the greedy solution without harming
optimality.

382

Example: Huffman Coding

– Greedy step: Always merge the two least frequent symbols.

– Proof idea: Show that in an optimal prefix code tree, the two least frequent
symbols must be siblings at the greatest depth. If they are not, we can
exchange nodes to create a tree of no worse cost.

• c. Matroid Theory Connection

Many greedy algorithms succeed because the underlying problem structure forms
a matroid.

– A matroid is a combinatorial structure that generalizes independence from
linear algebra and graph theory.

– In matroids, greedy algorithms always yield an optimal solution.

– Classic example: Maximum Weight Independent Set in a Matroid
— selecting maximum-weight edges in a graphic matroid corresponds to
Kruskal’s algorithm for Minimum Spanning Trees.

19.1.2 C++ Greedy Idioms

Greedy strategies often map naturally to idiomatic patterns in C++. Efficiency is
critical, since greedy algorithms are usually applied to large inputs.

• a. Sorting and Iteration

Sorting is frequently the preprocessing step in greedy algorithms (e.g., interval
scheduling, Kruskal’s MST).

383

struct Activity {
int start, finish;

};
bool cmpFinish(const Activity& a, const Activity& b) {

return a.finish < b.finish;
}

vector<Activity> activities = { {1, 3}, {2, 5}, {4, 6} };
sort(activities.begin(), activities.end(), cmpFinish);

Here, std::sort with a custom comparator forms the backbone of many greedy
implementations.

• b. Priority Queues (std::priority_queue)

When repeatedly selecting the “best available” element, a heap-based structure is
idiomatic.

priority_queue<int, vector<int>, greater<int>> minHeap; // for earliest
deadlines↪→

This structure supports efficient extraction of minimum/maximum values. Used in
problems like Huffman coding and interval partitioning.

• c. Greedy with Maps and Sets

For problems requiring dynamic tracking of available resources, ordered
containers (std::set, std::multiset) provide logarithmic-time insert/erase.

multiset<int> rooms; // track room availability times

384

• d. Greedy with Custom Comparators

C++’s flexibility in defining lambdas and functors allows tailoring greedy
strategies:

auto cmp = [](const pair<int,int>& a, const pair<int,int>& b) {
return a.second > b.second; // prioritize smaller finish time

};
priority_queue<pair<int,int>, vector<pair<int,int>>, decltype(cmp)> pq(cmp);

• e. Greedy and Range Views (C++20)

C++20 ranges simplify greedy preprocessing pipelines:

#include <ranges>

auto sorted = activities
| std::views::filter([](auto a){ return a.start >= 0; })
| std::views::transform([](auto a){ return make_pair(a.start, a.finish);

});↪→

This functional style emphasizes clarity while remaining efficient.

19.1.3 Typical Greedy Patterns in Practice

1. Interval scheduling → sort by finish time, greedy selection.

2. Minimum Spanning Tree (Kruskal’s) → greedy edge addition.

3. Huffman coding → greedy frequency merging with a priority queue.

4. Fractional Knapsack → greedy by value-to-weight ratio.

385

5. Job sequencing with deadlines → greedy scheduling with disjoint-set or
multiset.

19.1.4Key Takeaways for Graduate-Level Readers

• Correctness is the hard part: Proofs usually hinge on greedy choice property
or exchange arguments.

• Matroid perspective generalizes greedy success: Understanding this
concept helps in identifying when greedy will (or won’t) work.

• C++ provides direct support for greedy idioms: Sorting, heaps, and
ordered sets/maps form the foundation.

• Efficiency considerations: Use std::priority_queue for repeated selections,
avoid unnecessary copies with move semantics, and leverage C++20 ranges for
concise preprocessing.

386

19.2Huffman Coding with Heaps and
std::priority_queue Customization

Huffman coding is one of the most celebrated greedy algorithms in computer science.
It provides an optimal prefix code for a set of symbols with known frequencies,
minimizing the total cost of encoding messages. Its impact spans compression standards
such as JPEG, MP3, PNG, and DEFLATE (used in ZIP, GZIP). From an
algorithmic perspective, Huffman coding is an archetypal example of the greedy
paradigm, combined with efficient use of heaps for implementation.
This section discusses the theory, correctness, and detailed C++ implementations
of Huffman coding, highlighting the use of std::priority_queue and custom
comparators.

19.2.1 Problem Setting

Given:

• A set of n symbols with associated frequencies (probabilities of occurrence).

• Goal: Assign binary codes to each symbol such that:

1. Codes are prefix-free (no code is a prefix of another).

2. The total cost Σ (frequency × code length) is minimized.

19.2.2Greedy Insight

The key greedy principle:

• At each step, merge the two least frequent symbols into a new combined
symbol (with frequency equal to the sum of both).

387

• Repeat until one symbol remains (the root of the tree).

Why does this work?

• Exchange argument: In any optimal prefix code, the two least frequent
symbols appear as siblings at maximum depth. If they are not, swapping them
does not increase cost but restores greedy structure.

• This recursive structure guarantees global optimality.

19.2.3Heap-Based Algorithm

The algorithm relies on an efficient priority queue (min-heap) to repeatedly extract
the least frequent symbols.

Pseudocode

1. Insert all frequencies into a min-heap.

2. While heap size > 1:

• Extract two smallest elements.

• Create a new node with weight = sum of both.

• Insert this node back into the heap.

3. The remaining node is the root of the Huffman tree.

19.2.4 C++ Implementation with std::priority_queue

By default, std::priority_queue is a max-heap. To use it as a min-heap, we need
a custom comparator.

388

• Node Structure

struct Node {
char symbol;
int freq;
Node* left;
Node* right;

Node(char s, int f) : symbol(s), freq(f), left(nullptr), right(nullptr) {}
};

• Comparator for Min-Heap

struct Compare {
bool operator()(Node* a, Node* b) {

return a->freq > b->freq; // higher freq = lower priority
}

};

• Priority Queue and Tree Construction

#include <queue>
#include <vector>
#include <iostream>
using namespace std;

Node* buildHuffmanTree(const vector<pair<char,int>>& freq) {
priority_queue<Node*, vector<Node*>, Compare> pq;

// Insert all symbols
for (auto& [ch, f] : freq)

389

pq.push(new Node(ch, f));

// Combine until single root remains
while (pq.size() > 1) {

Node* left = pq.top(); pq.pop();
Node* right = pq.top(); pq.pop();

Node* merged = new Node('\0', left->freq + right->freq);
merged->left = left;
merged->right = right;

pq.push(merged);
}
return pq.top();

}

• Traversal to Extract Codes

void generateCodes(Node* root, string code,
unordered_map<char, string>& codes) {

if (!root) return;

if (root->symbol != '\0') { // leaf node
codes[root->symbol] = code;

}
generateCodes(root->left, code + "0", codes);
generateCodes(root->right, code + "1", codes);

}

Usage:

390

int main() {
vector<pair<char,int>> freq = {

{'a', 5}, {'b', 9}, {'c', 12},
{'d', 13}, {'e', 16}, {'f', 45}

};

Node* root = buildHuffmanTree(freq);
unordered_map<char, string> codes;
generateCodes(root, "", codes);

for (auto& [ch, code] : codes)
cout << ch << ": " << code << "\n";

}

19.2.5 Performance Analysis

• Building the tree requires O(n log n) operations:

– Each of the n-1 merges involves 2 heap extractions and 1 insertion (O(log
n) each).

• Space complexity: O(n) nodes.

• Code extraction is O(n) in the number of symbols.

This efficiency makes Huffman coding practical even for large alphabets in compression
systems.

19.2.6 C++ Idioms and Customization

• a. Using Lambdas for Comparators

391

Instead of defining a struct, we can inline the comparator with a lambda:

auto cmp = [](Node* a, Node* b) { return a->freq > b->freq; };
priority_queue<Node*, vector<Node*>, decltype(cmp)> pq(cmp);

• b. Smart Pointers for Safety

To avoid manual memory management:

using NodePtr = shared_ptr<Node>;

This integrates well with modern C++ and ensures no memory leaks.

• c. Move Semantics

When symbols or frequency data are large, prefer std::move when inserting into
the heap to reduce overhead.

19.2.7 Broader Connections

• Huffman coding exemplifies greedy correctness via exchange argument.

• It highlights priority queues as a fundamental tool in greedy algorithms.

• In graduate-level study, it connects to information theory, where the average
code length approaches the entropy bound.

19.2.8Key Takeaways

1. Huffman coding is the canonical greedy algorithm for compression.

392

2. Its correctness rests on exchange arguments ensuring least frequent symbols
are merged first.

3. Efficient implementation relies on heaps, directly supported by
std::priority_queue.

4. Modern C++ allows safe, flexible, and idiomatic implementations via custom
comparators, lambdas, and smart pointers.

5. Huffman coding illustrates how algorithmic theory and systems-level
implementation converge in practice.

393

19.3 Exercises: Activity Selection, Interval
Scheduling

Greedy algorithms often shine in scheduling and resource allocation problems
where the challenge is to maximize throughput or minimize conflicts under simple
constraints. Two classic problems that highlight this paradigm are the Activity
Selection Problem and the more general Interval Scheduling Problem. These
exercises reinforce how greedy strategies, grounded in rigorous proofs, map to clear
and efficient C++ implementations.

19.3.1Activity Selection Problem

• Problem Statement

Given n activities, each with a start time and a finish time, select the
maximum number of activities that can be performed by a single person,
assuming that one activity must finish before the next one starts.

• Greedy Insight

– Always select the activity that finishes earliest among those compatible
with the already chosen ones.

– Proof of correctness comes from the greedy choice property: replacing
any first activity in an optimal solution with the earliest finishing activity
does not reduce the solution size.

• Algorithm Steps

1. Sort activities by finish time.

394

2. Select the first activity.

3. Iteratively select the next activity whose start time is � finish time of the last
chosen activity.

• C++ Implementation

#include <bits/stdc++.h>
using namespace std;

struct Activity {
int start, finish;

};

bool cmpFinish(const Activity& a, const Activity& b) {
return a.finish < b.finish;

}

vector<Activity> activitySelection(vector<Activity>& acts) {
sort(acts.begin(), acts.end(), cmpFinish);

vector<Activity> result;
int lastFinish = -1;

for (const auto& act : acts) {
if (act.start >= lastFinish) {

result.push_back(act);
lastFinish = act.finish;

}
}
return result;

}

395

int main() {
vector<Activity> acts = { {1, 3}, {2, 5}, {0, 6}, {5, 7},

{8, 9}, {5, 9} };
auto chosen = activitySelection(acts);
for (auto& act : chosen) {

cout << "(" << act.start << ", " << act.finish << ") ";
}

}

• Complexity

– Sorting: O(n log n)

– Selection: O(n)

– Total: O(n log n)

19.3.2 Interval Scheduling Problem

The interval scheduling problem generalizes activity selection:

• Input: A set of intervals [s�, f�) with possible overlaps.

• Goal: Find the largest subset of mutually compatible intervals.

The greedy strategy remains identical:

• Sort by earliest finish time.

• Iteratively select compatible intervals.

This generalization extends to real-world problems such as:

396

• Meeting room allocation.

• CPU job scheduling.

• Airplane runway slot assignment.

C++ Example with Meetings

struct Interval {
int start, end;

};

bool cmpInterval(const Interval& a, const Interval& b) {
return a.end < b.end;

}

int maxNonOverlappingIntervals(vector<Interval>& intervals) {
sort(intervals.begin(), intervals.end(), cmpInterval);
int count = 0, lastEnd = -1;

for (auto& iv : intervals) {
if (iv.start >= lastEnd) {

++count;
lastEnd = iv.end;

}
}
return count;

}

int main() {
vector<Interval> meetings = { {1, 4}, {3, 5}, {0, 6}, {5, 7},

{8, 9}, {5, 9}, {2, 14}, {12, 16} };
cout << "Maximum non-overlapping meetings: "

397

<< maxNonOverlappingIntervals(meetings) << endl;
}

19.3.3 Exercises for the Reader

1. Basic Activity Selection

• Implement the standard greedy algorithm.

• Verify output on small test cases where multiple intervals overlap.

2. Weighted Interval Scheduling (Challenge)

• Extend the problem: each activity has a weight (profit).

• Greedy fails here; use Dynamic Programming with binary search for
compatibility.

3. Room Allocation

• Given meeting intervals, allocate the minimum number of rooms.

• Hint: Use a min-heap (std::priority_queue with greater<>) to track
earliest finishing rooms.

4. Randomized Testing

• Generate random intervals.

• Compare greedy results against brute force (for small n) to experimentally
confirm correctness.

398

19.3.4Key Takeaways

• The activity selection problem is a canonical example of a greedy algorithm
with a provable optimal solution.

• Interval scheduling generalizes this, reinforcing the power of sorting + greedy
selection.

• Implementation in C++ leverages:

– std::sort with custom comparators.

– Efficient iteration patterns with minimal overhead.

• Extensions like weighted interval scheduling demonstrate the boundary
where greedy breaks, motivating more advanced paradigms like dynamic
programming.

Chapter 20

Randomized Algorithms &
Probabilistic Methods

20.1Random Number Generation in C++
(<random>), Reproducible Experiments, Seeds

Randomization plays a central role in algorithm design. Many algorithms rely
on randomness to simplify implementation, reduce expected runtime, or provide
probabilistic guarantees where deterministic approaches are either inefficient or overly
complex. Examples include randomized quicksort, Monte Carlo methods, primality
testing, and randomized data structures such as skip lists or treaps.
Modern C++ provides a robust and flexible framework for random number generation
in the <random> header, replacing older and less reliable facilities such as rand() and
srand(). The <random> library separates the concerns of randomness into three parts:

1. Engines: Deterministic algorithms that generate pseudo-random numbers based
on an internal state. Examples include std::mt19937 (Mersenne Twister) and

399

400

std::linear_congruential_engine.

2. Distributions: Mappings that transform uniform pseudo-random integers into
numbers following specific probability distributions, such as uniform real, normal,
Bernoulli, or exponential distributions.

3. Seeds: Initial values that determine the sequence of numbers generated by an
engine, ensuring reproducibility when the same seed is used.

20.1.1 Engines: Generating Pseudo-Randomness

Engines are the core of <random>. A widely used engine is std::mt19937, a Mersenne
Twister engine that provides high-quality randomness with a very long period
(2^19937−1).
Example:

#include <iostream>
#include <random>

int main() {
// Mersenne Twister engine
std::mt19937 engine(42); // seed = 42

// Generate raw numbers from the engine
for (int i = 0; i < 5; ++i) {

std::cout << engine() << "\n";
}

}

The same program will always produce the same sequence of numbers because the
engine is seeded deterministically with 42.

401

20.1.2Distributions: Mapping Randomness

Raw engine outputs are uniformly distributed integers. To simulate randomness in more
meaningful ways, we apply distributions:

• std::uniform_int_distribution<int> → random integers in a given range.

• std::uniform_real_distribution<double> → random floating-point numbers
in [a, b).

• std::normal_distribution<double> → numbers following a Gaussian
distribution.

• std::bernoulli_distribution → coin-flip probabilities.

Example:

#include <iostream>
#include <random>

int main() {
std::mt19937 engine(123); // reproducible seed
std::uniform_real_distribution<double> dist(0.0, 1.0);

for (int i = 0; i < 5; ++i) {
std::cout << dist(engine) << "\n";

}
}

Here, the distribution maps raw engine outputs into real numbers between 0.0 and 1.0.

402

20.1.3 Seeds: Ensuring Reproducibility

Randomized algorithms often require reproducibility to make debugging and
experimental validation possible. Using a fixed seed ensures deterministic behavior
across runs.

• Fixed seed: Ensures reproducible results.

• Random device seed: Provides non-deterministic seeding using
std::random_device, if available.

Example:

std::random_device rd; // may use hardware entropy source
std::mt19937 engine(rd()); // non-deterministic seed

This approach makes experiments less reproducible but closer to true randomness. For
algorithm research, it is often useful to fix the seed during testing and switch to non-
deterministic seeding in production.

20.1.4 Idiomatic Patterns in C++

A common idiom in randomized algorithm design is to encapsulate engines and
distributions into utility functions:

#include <random>

inline double random_double(double a, double b) {
static thread_local std::mt19937 engine(std::random_device{}());
std::uniform_real_distribution<double> dist(a, b);
return dist(engine);

}

403

• static thread_local ensures each thread has its own engine, avoiding
contention.

• The function returns a reproducible, uniformly distributed floating-point number
within [a, b].

20.1.5 Reproducible Experiments in Algorithm Design

When evaluating randomized algorithms (e.g., testing randomized quicksort’s expected
complexity), reproducibility is crucial. Best practice includes:

1. Fixing the seed during benchmarking and recording it.

2. Reporting algorithm performance over multiple independent seeds to avoid bias.

3. Using controlled environments where distributions are explicitly defined.

20.1.6 Summary

• <random> provides modern facilities for robust random number generation.

• Engines produce deterministic sequences of numbers.

• Distributions transform raw outputs into useful probabilistic patterns.

• Seeds determine reproducibility, enabling experiments to be repeatable.

• Idiomatic C++ practices such as thread-local engines improve robustness in
concurrent environments.

Random number generation is not just about simulating “randomness” but about
carefully controlling and understanding probabilistic behavior in algorithms. Mastery
of <random> is essential for implementing efficient randomized algorithms in C++.

404

20.2QuickSelect, Hashing with Randomness, Monte
Carlo Estimators

Randomized algorithms leverage probability to simplify solutions, improve expected
performance, or provide approximate answers where deterministic methods are slow
or complex. This section explores three key applications in modern algorithm design:
QuickSelect, hashing with randomness, and Monte Carlo estimators. Each
illustrates the balance between efficiency and controlled randomness in C++.

20.2.1 QuickSelect: Randomized Selection

• Problem

Given an array of n elements, find the k-th smallest element efficiently.
Deterministic selection algorithms exist but are often more complex and slower
in practice.

• Randomized Algorithm

– QuickSelect is a variant of QuickSort that recursively partitions the array
but only processes the partition containing the k-th element.

– Randomization improves expected performance by choosing a pivot
uniformly at random, reducing the probability of worst-case partitions.

• Algorithm Steps

1. Select a pivot randomly from the current subarray.

2. Partition the array around the pivot: elements less than pivot to the left,
greater to the right.

405

3. Recur into the side containing the k-th element.

• C++ Implementation

#include <bits/stdc++.h>
using namespace std;

int quickSelect(vector<int>& arr, int left, int right, int k) {
mt19937 rng(random_device{}()); // random pivot generator
if (left == right) return arr[left];

uniform_int_distribution<int> dist(left, right);
int pivotIndex = dist(rng);
swap(arr[pivotIndex], arr[right]);

int pivot = arr[right];
int storeIndex = left;
for (int i = left; i < right; ++i) {

if (arr[i] < pivot) swap(arr[i], arr[storeIndex++]);
}
swap(arr[storeIndex], arr[right]);

if (k == storeIndex) return arr[k];
else if (k < storeIndex) return quickSelect(arr, left, storeIndex - 1, k);
else return quickSelect(arr, storeIndex + 1, right, k);

}

int main() {
vector<int> data = {9, 2, 6, 3, 1, 8, 5};
int k = 3; // 0-based index
cout << "3rd smallest element: "

<< quickSelect(data, 0, data.size() - 1, k) << endl;
}

406

Complexity:

– Expected: O(n)

– Worst-case: O(n^2), extremely unlikely with random pivot selection.

20.2.2Hashing with Randomness

Hash tables are central to many algorithms. Deterministic hashing can lead to
clustering and collisions under adversarial inputs. Randomized hashing techniques
address this:

• Universal Hashing

– Use a randomly chosen hash function from a universal family to map keys.

– Guarantees low expected collision probability regardless of input
distribution.

• Example: Randomized Modulo Hashing

#include <bits/stdc++.h>
using namespace std;

struct RandomHash {
size_t operator()(uint64_t x) const {

static mt19937_64 rng(random_device{}());
static uniform_int_distribution<uint64_t> dist;
uint64_t randomSeed = dist(rng) | 1; // odd number
x ^= x >> 33;
x *= randomSeed;
x ^= x >> 33;
x *= randomSeed;

407

x ^= x >> 33;
return x;

}
};

int main() {
unordered_map<uint64_t, string, RandomHash> table;
table[42] = "Answer";
cout << table[42] << endl;

}

Benefits:

– Robust against input patterns.

– Reduces worst-case collisions in competitive programming or adversarial
applications.

20.2.3Monte Carlo Estimators

Monte Carlo methods estimate numerical quantities using randomness, often
where exact computation is expensive or infeasible.

• Principle

– Randomly sample input or scenarios.

– Use the law of large numbers to approximate expected values.

– Accuracy improves as the number of samples increases.

• Example: Estimating �

408

#include <bits/stdc++.h>
using namespace std;

double estimatePi(int samples) {
mt19937 rng(random_device{}());
uniform_real_distribution<double> dist(0.0, 1.0);
int inside = 0;

for (int i = 0; i < samples; ++i) {
double x = dist(rng), y = dist(rng);
if (x*x + y*y <= 1.0) ++inside;

}
return 4.0 * inside / samples;

}

int main() {
cout << "Estimated Pi: " << estimatePi(1'000'000) << endl;

}

Complexity and Accuracy:

– Simple to implement; parallelizable easily.

– Error decreases as O(1/√n), where n is the number of samples.

20.2.4 Idiomatic C++ Considerations

• Use <random> for reproducible experiments via fixed seeds.

• Encapsulate engines and distributions for thread safety in parallel computations
(thread_local engines).

• Combine randomization with standard algorithms:

409

– std::shuffle for randomized quicksort or permutation testing.

– std::sample for Monte Carlo subsampling.

20.2.5Key Takeaways

1. QuickSelect shows how random pivot selection improves expected performance
in selection problems.

2. Randomized hashing ensures robust performance under unpredictable or
adversarial inputs.

3. Monte Carlo estimators demonstrate practical approximate solutions using
probabilistic sampling.

4. Modern C++ <random> facilities allow safe, reproducible, and high-quality
randomness, essential for both experimental evaluation and real-world algorithm
deployment.

These exercises bridge theoretical probabilistic methods with practical C++
implementations, preparing the reader for randomized algorithms in optimization,
data structures, and approximate computations.

410

20.3 Exercises: Randomized Algorithms for Median,
Bloom Filter Sketch

Randomized algorithms are not only theoretically elegant but also highly practical
for handling large datasets and streaming data where deterministic approaches may
be inefficient. This section provides exercises that illustrate both exact randomized
selection and probabilistic data structures, connecting theory with modern C++
implementations.

20.3.1 Randomized Median Selection

• Problem

Given an unsorted array of n elements, find the median (or k-th smallest element)
efficiently using randomness.

• Randomized Approach

– Implement QuickSelect (discussed in Section 2) with random pivot
selection.

– Randomized pivoting ensures expected linear time.

• Exercise Goals

– Implement randomized median selection using std::mt19937 and
std::uniform_int_distribution.

– Verify correctness across multiple randomized seeds.

– Compare runtime against a deterministic median algorithm for large arrays.

411

• C++ Template

#include <bits/stdc++.h>
using namespace std;

double estimatePi(int samples) {
mt19937 rng(random_device{}());
uniform_real_distribution<double> dist(0.0, 1.0);
int inside = 0;

for (int i = 0; i < samples; ++i) {
double x = dist(rng), y = dist(rng);
if (x*x + y*y <= 1.0) ++inside;

}
return 4.0 * inside / samples;

}

int main() {
cout << "Estimated Pi: " << estimatePi(1'000'000) << endl;

}

Exercise Extension:

– Test on large vectors (10^6 elements).

– Measure average runtime over multiple seeds to observe expected linear
behavior.

20.3.2 Bloom Filter Sketch

• Concept

A Bloom filter is a probabilistic data structure for set membership testing:

412

– Supports insert and query operations.

– May yield false positives (element appears to be present when it is not)
but never false negatives.

– Space-efficient: uses a bit array and multiple hash functions.

Randomization enters in hash function selection and collision handling.
Bloom filters are widely used in:

– Network routers for packet filtering.

– Databases for approximate membership queries.

– Large-scale caching systems.

• Exercise Goals

– Implement a Bloom filter using randomized hash functions.

– Use <random> for hash seeds and simulate k hash functions.

– Test the false positive rate empirically.

• C++ Template Implementation

#include <bits/stdc++.h>
using namespace std;

class BloomFilter {
vector<bool> bits;
int size, numHashes;
mt19937 rng;

vector<size_t> hashIndices(const string& s) {

413

vector<size_t> indices;
hash<string> hasher;
for (int i = 0; i < numHashes; ++i) {

size_t h = hasher(s) ^ (rng() + i*0x9e3779b9);
indices.push_back(h % size);

}
return indices;

}

public:
BloomFilter(int nBits, int kHashes)

: bits(nBits, false), size(nBits), numHashes(kHashes),
rng(random_device{}()) {}↪→

void insert(const string& s) {
for (auto idx : hashIndices(s)) bits[idx] = true;

}

bool contains(const string& s) {
for (auto idx : hashIndices(s))

if (!bits[idx]) return false;
return true;

}
};

int main() {
BloomFilter bf(1000, 3);
bf.insert("apple");
bf.insert("banana");

cout << bf.contains("apple") << endl; // true
cout << bf.contains("grape") << endl; // probably false

414

}

Exercise Extension:

– Experiment with different bit array sizes and number of hash functions.

– Compute empirical false positive probability by querying non-inserted
elements.

– Compare performance against std::unordered_set for memory efficiency.

20.3.3 Learning Objectives

These exercises aim to:

1. Reinforce randomized selection algorithms with QuickSelect.

2. Illustrate probabilistic data structures (Bloom filters) for large-scale
approximate queries.

3. Show practical C++ usage of:

• <random> for reproducibility and hash function variability.

• Templates and functional programming patterns for reusable code.

4. Demonstrate the trade-off between accuracy and space/time efficiency in
randomized algorithms.

415

20.3.4 Suggested Practice

• Extend Bloom filters to support deletion using counting Bloom filters.

• Combine randomized QuickSelect with Bloom filter sketches to efficiently
estimate medians in streaming data.

• Benchmark randomized vs deterministic approaches to understand expected vs
worst-case behaviors.

Chapter 21

Approximation Algorithms &
NP-Hard Problems

21.1 Common Approximation Strategies
Implemented in C++

Many combinatorial problems are NP-hard, meaning that no polynomial-time
algorithm is known for computing exact solutions. Approximation algorithms provide
efficient, near-optimal solutions with provable guarantees. Modern C++ offers
tools to implement these strategies efficiently, leveraging templates, STL containers,
and functional programming idioms.

This section covers common strategies and demonstrates how they can be
implemented idiomatically in C++.

416

417

21.1.1Greedy Approximation

• Concept

– Many NP-hard problems, like vertex cover or set cover, can be
approximated using greedy heuristics.

– Greedy strategies make a locally optimal choice at each step with
provable approximation bounds.

• Example: Vertex Cover (2-Approximation)

– Problem: Given a graph G(V, E), select a subset of vertices such that
every edge has at least one endpoint in the subset.

– Greedy Approach:

1. Pick any uncovered edge (u, v).
2. Add both u and v to the vertex cover.
3. Remove all edges incident to u or v.
4. Repeat until all edges are covered.

C++ Implementation

#include <bits/stdc++.h>
using namespace std;

vector<int> vertexCoverApprox(int n, vector<pair<int,int>>& edges) {
vector<bool> covered(n, false);
vector<int> cover;

for (auto& [u, v] : edges) {
if (!covered[u] && !covered[v]) {

418

cover.push_back(u);
cover.push_back(v);
covered[u] = covered[v] = true;

}
}
return cover;

}

int main() {
int n = 5;
vector<pair<int,int>> edges = { {0,1}, {1,2}, {2,3}, {3,4}, {0,4} };
auto cover = vertexCoverApprox(n, edges);
for (int v : cover) cout << v << " ";

}

– Approximation guarantee: The size of the computed cover is at most 2×
the optimal.

21.1.2 Linear Programming Relaxation

• Concept

– Many NP-hard problems can be formulated as integer linear programs
(ILPs).

– Relaxing integrality constraints to allow fractional values gives a
polynomial-time solvable linear program (LP).

– Rounded solutions provide approximation bounds.

• C++ Implementation Notes

419

– Use libraries such as Eigen, GLPK, or COIN-OR for LP solving.

– Example: Fractional vertex cover solution can be rounded by including
vertices with fractional values � 0.5.

21.1.3 Randomized Rounding

• Concept

– Apply randomized choices to fractional solutions of LPs or probability-
based heuristics.

– Guarantees hold in expectation, making it a powerful tool in
approximation algorithm design.

• Example: Max-Cut Approximation

– Solve a relaxed LP or SDP.

– Assign vertices to partitions randomly based on fractional values.

– Expected cut size is at least 0.878 × optimal (Goemans–Williamson
algorithm).

C++ Implementation Note:

– Use <random> engines to sample from probability distributions.

– Thread-local engines for parallelized randomized rounding.

21.1.4 Local Search Heuristics

• Concept

– Start with an initial feasible solution.

420

– Iteratively improve by local modifications until no better solution exists.

– Useful for problems like k-median, facility location, and traveling
salesman problem (TSP).

• C++ Implementation Tips

– Represent solutions with std::vector<int> or std::bitset.

– Use std::shuffle for random perturbations.

– Maintain a priority queue or set for evaluating neighboring solutions
efficiently.

21.1.5 PTAS / FPTAS Approaches

• PTAS (Polynomial-Time Approximation Scheme):

– Produces (1+�)-approximate solutions in O(n^(f(1/�))) time.

• FPTAS (Fully Polynomial-Time Approximation Scheme):

– Produces (1+�)-approximate solutions in O(poly(n,1/�)) time.

• Implementation often involves dynamic programming with scaled or
rounded values.

C++ Implementation Example: Knapsack FPTAS

• Scale item values by � and round down to reduce state space.

• Standard DP computes approximate maximum efficiently.

421

// See Section 2 of Chapter 2 for DP templates on sequences and knapsack

21.1.6 Idiomatic C++ Patterns for Approximation

1. Templates and generic programming: reusable solution for various problem
sizes.

2. STL containers:

• std::vector, std::set, std::unordered_map for efficient state
representation.

• std::priority_queue for greedy choices.

3. Random number generators: <random> for randomized algorithms.

4. Functional constructs: std::transform, std::accumulate for concise state
updates.

21.1.7 Exercises

1. Vertex Cover: Implement the 2-approximation and compare with exact ILP
solution for small graphs.

2. Set Cover: Implement greedy set cover approximation; measure solution size
against optimal small instances.

3. Randomized Max-Cut: Implement Goemans–Williamson-style randomized
rounding; validate expected cut size.

4. Knapsack FPTAS: Apply dynamic programming with scaling to produce (1+�)-
approximate solution.

422

5. Local Search TSP: Implement 2-opt or 3-opt improvement heuristics and
measure runtime vs quality.

21.1.8Key Takeaways

• Approximation algorithms provide practical solutions for NP-hard
problems.

• C++ offers modern facilities—templates, STL, <random>, and libraries for
LP/SDP—to implement these methods efficiently.

• Mastery of greedy, LP relaxation, randomized rounding, and local search
strategies is essential for efficient, provable algorithmic design.

423

21.2 Local Search, Greedy Approximation, PTAS
Examples Where Applicable

Approximation algorithms provide efficient solutions to NP-hard problems when exact
algorithms are infeasible. This section explores local search heuristics, greedy
approximations, and polynomial-time approximation schemes (PTAS),
demonstrating practical implementations and idiomatic C++ techniques for each
strategy.

21.2.1 Local Search Heuristics

• Concept

Local search iteratively improves a feasible solution by exploring neighboring
solutions. The algorithm continues until no better solution exists in the
neighborhood.

– Useful for problems such as:

∗ Traveling Salesman Problem (TSP)

∗ k-Median and Facility Location

∗ Graph partitioning

• Algorithm Pattern

1. Start with an initial solution (random or greedy).

2. Define a neighborhood function that produces small modifications.

3. Move to the neighbor if it improves the objective.

4. Repeat until a local optimum is reached.

424

• C++ Implementation Example: 2-Opt TSP

#include <bits/stdc++.h>
using namespace std;

double distance(pair<int,int> a, pair<int,int> b) {
return hypot(a.first-b.first, a.second-b.second);

}

double totalLength(const vector<pair<int,int>>& tour) {
double sum = 0.0;
for (size_t i = 0; i < tour.size(); ++i)

sum += distance(tour[i], tour[(i+1) % tour.size()]);
return sum;

}

void twoOptSwap(vector<pair<int,int>>& tour, int i, int k) {
reverse(tour.begin() + i, tour.begin() + k + 1);

}

void localSearchTSP(vector<pair<int,int>>& tour) {
bool improved = true;
while (improved) {

improved = false;
for (size_t i = 1; i < tour.size() - 1; ++i) {

for (size_t k = i+1; k < tour.size(); ++k) {
auto oldLength = totalLength(tour);
twoOptSwap(tour, i, k);
if (totalLength(tour) < oldLength) {

improved = true;
} else {

twoOptSwap(tour, i, k); // revert
}

425

}
}

}
}

– Notes:

∗ Can combine with randomized restarts for better global search.

∗ Using std::shuffle or std::random_device helps generate diverse
starting solutions.

21.2.2Greedy Approximation

• Concept

Greedy algorithms iteratively make the locally optimal choice.

– Efficient and often produces provable approximation bounds.

– Typical problems: Vertex Cover, Set Cover, Interval Scheduling,
Weighted Matching.

• Example: Interval Scheduling

– Problem: Select maximum number of non-overlapping intervals.

– Greedy Approach:

1. Sort intervals by finish time.

2. Select the first interval that starts after the last selected interval.

426

#include <bits/stdc++.h>
using namespace std;

struct Interval { int start, end; };
bool cmp(const Interval& a, const Interval& b) { return a.end < b.end; }

int maxNonOverlappingIntervals(vector<Interval>& intervals) {
sort(intervals.begin(), intervals.end(), cmp);
int count = 0, lastEnd = INT_MIN;
for (auto& iv : intervals) {

if (iv.start >= lastEnd) {
lastEnd = iv.end;
++count;

}
}
return count;

}

int main() {
vector<Interval> intervals = {{1,3},{2,5},{4,7},{6,8}};
cout << "Max non-overlapping: " << maxNonOverlappingIntervals(intervals) <<

endl;↪→

}

– Approximation Guarantees:

∗ For many NP-hard problems like Vertex Cover, greedy achieves factor-
2 approximation.

21.2.3 Polynomial-Time Approximation Schemes (PTAS)

• Concept

427

– PTAS produces solutions arbitrarily close to optimal: (1+�) factor.

– Runtime may depend polynomially on input size, with degree depending on
1/�.

– Useful for:

∗ Knapsack Problem

∗ Euclidean TSP (via Arora’s Algorithm)

∗ Packing and Scheduling Problems

• Example: Knapsack PTAS

– Idea: Scale item values to reduce DP table size.

– C++ Implementation Notes:

∗ Let v_max be maximum item value, � desired accuracy.

∗ Scale values: v_i' = floor(v_i * n / (� * v_max))

∗ Solve scaled DP to get approximate solution.

// Template DP for knapsack is already discussed in Chapter 2, Section 3
// For PTAS, scale values and use same DP approach

– Trade-off: Accuracy vs runtime: higher � → faster computation, less
accuracy.

21.2.4 Idiomatic C++ Patterns

• Templates and STL: Generic containers (vector, bitset, unordered_map)
allow flexible solution representation.

428

• Randomized restarts: <random> + std::shuffle for diverse initial solutions
in local search.

• Functional utilities: std::accumulate, std::transform simplify objective
calculations.

• Priority queues: std::priority_queue efficiently supports greedy selections.

21.2.5 Exercises

1. Implement local search for k-median problem using Euclidean distance.

2. Solve weighted interval scheduling using greedy approximation.

3. Implement Knapsack PTAS and experiment with different � values, comparing
approximate and exact solutions.

4. Extend TSP 2-opt local search with randomized restarts and evaluate solution
quality vs iterations.

21.2.6Key Takeaways

• Local search provides flexible heuristics for NP-hard problems.

• Greedy algorithms are simple, efficient, and often provably approximate.

• PTAS allows arbitrary closeness to optimal with controllable trade-offs.

• Modern C++ idioms enable clean, reusable, and high-performance
implementations of approximation algorithms.

These strategies form a practical toolkit for solving NP-hard problems efficiently
while maintaining provable solution quality, bridging theoretical computer science with
real-world algorithm engineering.

429

21.3 Exercises: Vertex Cover Approximation,
Traveling Salesman Heuristics

This section provides hands-on exercises to implement approximation strategies for
classic NP-hard problems. The focus is on vertex cover and Traveling Salesman
Problem (TSP), illustrating greedy, local search, and heuristic-based
approaches in modern C++.

21.3.1Vertex Cover Approximation Exercises

• Problem Statement

– Given a graph $G = (V, E)$, find a subset $C \subseteq V$ such that each
edge has at least one endpoint in C.

– Exact solution is NP-hard; approximation algorithms are efficient and
provide guarantees.

• Exercise 1.1: Greedy 2-Approximation

Instructions:

1. Implement the greedy 2-approximation algorithm:

– While edges remain uncovered:

∗ Pick any uncovered edge (u,v).

∗ Add both u and v to the cover.

∗ Remove all edges incident to u or v.

2. Use STL containers (vector, unordered_set) for representation.

3. Verify the solution satisfies all edges.

430

4. Compare the size of the cover with the number of vertices; it should be at
most twice the optimal in small test cases.

#include <bits/stdc++.h>
using namespace std;

vector<int> vertexCoverApprox(int n, vector<pair<int,int>>& edges) {
vector<bool> covered(n, false);
vector<int> cover;

for (auto& [u, v] : edges) {
if (!covered[u] && !covered[v]) {

cover.push_back(u);
cover.push_back(v);
covered[u] = covered[v] = true;

}
}
return cover;

}

int main() {
int n = 6;
vector<pair<int,int>> edges = {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
auto cover = vertexCoverApprox(n, edges);
cout << "Approximate Vertex Cover: ";
for (int v : cover) cout << v << " ";

}

Extension Exercises:

– Implement a randomized vertex cover by selecting edges randomly each
iteration.

431

– Compare average cover size over multiple random runs.

– Explore local search improvements: try removing vertices from the cover
and check if edges remain covered.

21.3.2 Traveling Salesman Problem (TSP) Heuristics

• Problem Statement

– Given a set of cities and distances, find the shortest tour visiting all cities
exactly once.

– Exact solution is NP-hard; heuristics produce good-enough solutions
efficiently.

• Exercise 2.1: Nearest Neighbor Heuristic

Instructions:

1. Start from any city.

2. Iteratively move to the nearest unvisited city.

3. Repeat until all cities are visited, then return to the starting city.

#include <bits/stdc++.h>
using namespace std;

double distance(pair<int,int> a, pair<int,int> b) {
return hypot(a.first-b.first, a.second-b.second);

}

vector<int> nearestNeighborTSP(const vector<pair<int,int>>& cities) {
int n = cities.size();

432

vector<int> tour;
vector<bool> visited(n, false);

int current = 0; // starting city
tour.push_back(current);
visited[current] = true;

for (int i = 1; i < n; ++i) {
double bestDist = numeric_limits<double>::max();
int nextCity = -1;
for (int j = 0; j < n; ++j) {

if (!visited[j]) {
double d = distance(cities[current], cities[j]);
if (d < bestDist) {

bestDist = d;
nextCity = j;

}
}

}
current = nextCity;
tour.push_back(current);
visited[current] = true;

}
return tour;

}

• Exercise 2.2: 2-Opt Local Search

Instructions:

1. Start with an initial tour (e.g., nearest neighbor solution).

2. Iteratively swap two edges (2-opt) to reduce total distance.

433

3. Repeat until no improvement occurs.

void twoOptSwap(vector<int>& tour, int i, int k) {
reverse(tour.begin() + i, tour.begin() + k + 1);

}

void twoOptLocalSearch(vector<int>& tour, const vector<pair<int,int>>& cities)
{↪→

bool improved = true;
auto tourLength = [&](const vector<int>& t) {

double sum = 0;
for (size_t i = 0; i < t.size(); ++i)

sum += distance(cities[t[i]], cities[t[(i+1)%t.size()]]);
return sum;

};

while (improved) {
improved = false;
for (size_t i = 1; i < tour.size() - 1; ++i) {

for (size_t k = i+1; k < tour.size(); ++k) {
auto oldLen = tourLength(tour);
twoOptSwap(tour, i, k);
if (tourLength(tour) < oldLen)

improved = true;
else

twoOptSwap(tour, i, k); // revert
}

}
}

}

Extension Exercises:

434

– Compare nearest neighbor tour vs 2-opt improved tour in terms of total
distance.

– Implement randomized restarts to escape local minima.

– For Euclidean TSP, experiment with PTAS-style heuristics (like Arora’s
method) for small instances.

21.3.3 Learning Objectives

1. Apply greedy and local search heuristics to NP-hard problems.

2. Implement randomized and deterministic approximation algorithms
efficiently in modern C++.

3. Understand the trade-off between runtime and solution quality.

4. Explore improvements through local optimization and randomized
restarts.

21.3.4 Suggested Practice

• Extend vertex cover approximation to weighted vertex cover.

• Integrate Bloom filter or hash-based sampling to speed up large graph
heuristics.

• Analyze empirical approximation ratio vs optimal (on small test instances).

• Combine 2-opt local search with randomized nearest neighbor starts for
TSP optimization.

Part VI

Performance, Concurrency &
Low-level Concerns (C++ focused)

435

Chapter 22

Memory & Cache-aware Algorithm
Design

22.1Data Layout, Locality, and Structure-of-Arrays
vs Array-of-Structures

Efficient memory usage and cache-aware programming are critical in high-
performance C++ applications. Modern CPUs rely heavily on cache hierarchies (L1,
L2, L3) to reduce memory latency, making data layout a key factor in performance
optimization. This section discusses array-of-structures (AoS) versus structure-
of-arrays (SoA) layouts, their impact on data locality, and practical C++
implementation strategies.

437

438

22.1.1Memory Locality and Cache Basics

• Spatial locality: Accessing contiguous memory locations improves cache line
utilization.

• Temporal locality: Reusing recently accessed data avoids cache misses.

• Cache line size: Typically 64 bytes in modern x86 and ARM CPUs. Aligning
frequently accessed data to cache lines improves performance.

Example: Iterating over a large array of structures may result in cache misses if fields
not needed are loaded unnecessarily.

22.1.2Array-of-Structures (AoS)

• Concept

– Data is stored as a sequence of complete structures, each containing
multiple fields.

– Typical in object-oriented designs.

• Example in C++

struct Particle {
float x, y, z; // position
float vx, vy, vz; // velocity

};

std::vector<Particle> particles(1000000);

• Characteristics

439

– Pros:

∗ Intuitive and natural for OOP.
∗ Easy to pass around as objects.

– Cons:

∗ Accessing only x coordinates requires loading all fields, causing cache
inefficiency.

∗ Poor spatial locality for field-specific operations (e.g., SIMD
vectorization).

22.1.3 Structure-of-Arrays (SoA)

• Concept

– Data is stored as separate arrays for each field, improving access to a
single attribute across all objects.

• Example in C++

struct ParticlesSoA {
std::vector<float> x, y, z;
std::vector<float> vx, vy, vz;

ParticlesSoA(size_t n)
: x(n), y(n), z(n), vx(n), vy(n), vz(n) {}

};

• Advantages

1. Better cache performance: Iterating over one attribute touches
contiguous memory only.

440

2. Vectorization-friendly: SIMD instructions can operate on continuous
arrays efficiently.

3. Reduced cache pollution: Unused fields are not loaded into cache.

• Example Usage

void updatePositions(ParticlesSoA& p, float dt, size_t n) {
for (size_t i = 0; i < n; ++i) {

p.x[i] += p.vx[i] * dt;
p.y[i] += p.vy[i] * dt;
p.z[i] += p.vz[i] * dt;

}
}

22.1.4 Performance Implications

Feature AoS SoA

Memory access for one
field

Poor (cache lines contain
unused fields)

Excellent (contiguous
memory)

SIMD/vectorization Difficult Easy

Ease of use Natural for objects Requires separate arrays

Insertion/removal Easy More complex

Rule of thumb:

• Use AoS when operations require all fields together.

441

• Use SoA when operations focus on a subset of fields, especially for large-scale
numeric computations or simulations.

22.1.5Hybrid Approaches

• Array-of-Structures-of-Arrays (AoSoA):

– Combines AoS and SoA advantages by blocking structures into small
arrays to maintain cache-friendly access and object-oriented abstraction.

• Example: Particle blocks of size 32 stored contiguously.

struct ParticleBlock {
float x[32], y[32], z[32];
float vx[32], vy[32], vz[32];

};
std::vector<ParticleBlock> blocks;

• Provides vectorization opportunities and object-like access.

22.1.6 C++ Techniques for Cache Awareness

1. Align data: Use alignas(64) or std::aligned_alloc for cache-line alignment.

2. Prefetching: Use compiler intrinsics (__builtin_prefetch) for predictable
memory access patterns.

3. SIMD-friendly structures: SoA layout allows use of std::simd or compiler
intrinsics (_mm256_load_ps).

442

4. Memory pools: Avoid dynamic allocations per object; allocate in large
contiguous blocks.

5. Avoid false sharing: Ensure frequently modified fields are not shared across
threads on the same cache line.

22.1.7 Exercises

1. Implement AoS and SoA particle systems for 1,000,000 particles; measure
runtime of position updates.

2. Vectorize SoA position updates using SIMD intrinsics and compare
performance with AoS.

3. Experiment with AoSoA layout for cache-blocked particle processing;
measure cache miss reduction using hardware performance counters.

4. Evaluate memory usage and runtime trade-offs for different data layouts.

22.1.8Key Takeaways

• Data layout directly affects cache performance and overall runtime in C++
programs.

• AoS is intuitive but can be inefficient for field-specific operations.

• SoA improves locality, cache efficiency, and vectorization, especially for
numeric or simulation workloads.

• Hybrid layouts (AoSoA) allow a balance between object-oriented programming
and high-performance computing.

443

• Modern C++ tools (std::vector, alignas, SIMD abstractions) provide
mechanisms to implement cache-aware algorithms efficiently.

444

22.2Algorithms Optimized for Cache (Blocking,
Tiling) with C++ Examples

Efficient utilization of CPU caches is critical for high-performance C++ programs,
particularly in numerical computation, matrix operations, and data-intensive
algorithms. This section explores cache-aware algorithm design techniques such
as blocking and tiling, demonstrating practical C++ implementations.

22.2.1 Cache Optimization Principles

• CPU caches are small, fast memory stores between main memory (RAM) and
the processor.

• Cache miss penalty can dominate runtime in large datasets.

• Optimizing memory access patterns can drastically improve performance.

• Temporal locality: Reuse data already in cache.

• Spatial locality: Access contiguous memory regions sequentially.

22.2.2 Blocking / Tiling Technique

Concept

• Divide large datasets into small blocks (tiles) that fit in cache.

• Operate on blocks completely before moving to the next.

• Reduces cache evictions and reloading of data.

445

Applications:

• Matrix multiplication

• Convolution in image processing

• Large array operations

22.2.3 Example: Matrix Multiplication

• Naive Implementation (Poor Cache Usage)

#include <vector>
using namespace std;

void matMulNaive(const vector<vector<double>>& A,
const vector<vector<double>>& B,
vector<vector<double>>& C,
int n) {

for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)

for (int k = 0; k < n; ++k)
C[i][j] += A[i][k] * B[k][j];

}

Problems:

– Accessing B[k][j] repeatedly causes cache misses due to column-major
access (in row-major storage).

• Cache-Blocked / Tiled Implementation

446

void matMulBlocked(const vector<vector<double>>& A,
const vector<vector<double>>& B,
vector<vector<double>>& C,
int n, int blockSize) {

for (int ii = 0; ii < n; ii += blockSize)
for (int jj = 0; jj < n; jj += blockSize)

for (int kk = 0; kk < n; kk += blockSize)
for (int i = ii; i < min(ii+blockSize, n); ++i)

for (int j = jj; j < min(jj+blockSize, n); ++j) {
double sum = 0.0;
for (int k = kk; k < min(kk+blockSize, n); ++k)

sum += A[i][k] * B[k][j];
C[i][j] += sum;

}
}

Notes:

– blockSize is tuned to fit cache line sizes (typically 64–256 elements).

– Dramatically improves cache hit ratio for large matrices.

– Enables compiler vectorization within blocks.

22.2.4 Tiling for Multi-Dimensional Arrays

Concept

• Generalization of blocking for 2D/3D arrays.

• Access small sub-blocks sequentially in nested loops to maximize cache reuse.

447

void tiled2DOperation(vector<vector<double>>& data, int n, int tileSize) {
for (int i0 = 0; i0 < n; i0 += tileSize)

for (int j0 = 0; j0 < n; j0 += tileSize)
for (int i = i0; i < min(i0+tileSize, n); ++i)

for (int j = j0; j < min(j0+tileSize, n); ++j)
data[i][j] = data[i][j] * 2.0; // Example operation

}

• Each tile fits in cache → minimal cache misses.

22.2.5 C++ Idiomatic Patterns

1. Use contiguous storage: std::vector or std::array for 1D layout of matrices
for better spatial locality.

std::vector<double> mat(n * n);
#define IDX(i,j) ((i)*n + (j))
mat[IDX(i,j)] = ...

1. SIMD-friendly layout: Structure-of-Arrays (SoA) for multi-field data.

2. std::min in loop bounds ensures no out-of-range access.

3. Compile-time block size tuning: Use constexpr int blockSize = 64; for
performance portability.

4. Parallelization: Combine blocking with std::execution::par for multi-
threaded loops.

448

22.2.6 Exercises

1. Implement cache-blocked matrix multiplication for various block sizes;
compare runtime against naive implementation.

2. Optimize 3D array convolution using tiling; measure cache misses using
hardware counters.

3. Experiment with row-major vs column-major storage for tiled operations;
analyze performance differences.

4. Implement parallel blocked matrix multiplication using std::thread or
std::execution::par and analyze speedup.

22.2.7Key Takeaways

• Blocking and tiling reduce cache misses and improve memory access efficiency.

• Performance gains are most significant for large datasets that exceed cache size.

• Modern C++ features (std::vector, std::array, std::execution) enable
cache-aware algorithm design with readable and maintainable code.

• Tuning block size for the target CPU cache is critical for achieving optimal
performance.

Chapter 23

Parallel & Concurrent Algorithms

23.1 Threading Primitives in C++ (std::thread,
Atomics, Mutexes) and Lock-Free Ideas

Modern C++ offers a rich set of concurrency primitives, enabling developers to
write parallel and concurrent algorithms that can take full advantage of multi-core
architectures. Understanding these primitives is essential for designing algorithms that
balance correctness, performance, and scalability. In this section, we explore threading
primitives, synchronization mechanisms, and the foundations of lock-free programming.

23.1.1 The Role of Threads in Modern C++

Threads represent the fundamental unit of execution that runs independently but
shares the same address space with other threads in a process. C++11 introduced
std::thread, providing a standardized abstraction over OS-level threads. By
spawning multiple threads, algorithms can be parallelized to perform independent tasks
concurrently, improving throughput on multicore systems.

449

450

Example: Creating and Joining Threads

#include <iostream>
#include <thread>

void worker(int id) {
std::cout << "Worker " << id << " is running\n";

}

int main() {
std::thread t1(worker, 1);
std::thread t2(worker, 2);

// Join ensures main waits for both threads to finish
t1.join();
t2.join();

}

Here, two threads execute the worker function concurrently, while main waits for
completion with join().

23.1.2 Synchronization Primitives

• a) Mutexes

Mutual exclusion locks (std::mutex) protect critical sections where shared
resources are accessed. They prevent race conditions but must be used carefully
to avoid deadlocks.

#include <iostream>
#include <thread>
#include <mutex>

451

int counter = 0;
std::mutex mtx;

void increment() {
for (int i = 0; i < 1000; ++i) {

std::lock_guard<std::mutex> lock(mtx); // RAII style
++counter;

}
}

int main() {
std::thread t1(increment), t2(increment);
t1.join();
t2.join();

std::cout << "Final counter: " << counter << "\n";
}

The lock_guard ensures the mutex is automatically released at scope exit.

• b) Atomics

std::atomic provides lock-free, thread-safe operations on primitive data types
when supported by hardware. They allow concurrent modification of shared
variables without explicit mutexes.

#include <iostream>
#include <thread>
#include <atomic>

std::atomic<int> counter{0};

452

void increment() {
for (int i = 0; i < 1000; ++i) {

counter.fetch_add(1, std::memory_order_relaxed);
}

}

int main() {
std::thread t1(increment), t2(increment);
t1.join();
t2.join();

std::cout << "Final counter: " << counter.load() << "\n";
}

Atomics avoid the overhead of mutex locking when only basic operations are
required.

• c) Condition Variables

Condition variables (std::condition_variable) allow threads to wait for
specific conditions, enabling synchronization patterns like producer–consumer.

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>

std::queue<int> dataQueue;
std::mutex mtx;
std::condition_variable cv;

453

bool finished = false;

void producer() {
for (int i = 0; i < 5; ++i) {

{
std::lock_guard<std::mutex> lock(mtx);
dataQueue.push(i);

}
cv.notify_one();

}
finished = true;
cv.notify_all();

}

void consumer() {
while (true) {

std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [] { return !dataQueue.empty() || finished; });
if (!dataQueue.empty()) {

int val = dataQueue.front();
dataQueue.pop();
std::cout << "Consumed: " << val << "\n";

} else if (finished) {
break;

}
}

}

454

23.1.3 Lock-Free and Wait-Free Ideas

Lock-free algorithms aim to guarantee progress for at least one thread without requiring
locks, thereby avoiding deadlocks and reducing contention. Wait-free algorithms
strengthen this guarantee by ensuring every thread makes progress in a bounded
number of steps.

• Characteristics:

– Atomic primitives such as Compare-and-Swap (CAS) are often used.

– They are challenging to design but critical in high-performance, low-latency
systems.

– C++ provides std::atomic with methods like compare_exchange_strong
to enable these designs.

• Example: Lock-Free Stack Sketch

#include <atomic>
#include <memory>

template<typename T>
class LockFreeStack {

struct Node {
T data;
Node* next;
Node(T val) : data(val), next(nullptr) {}

};
std::atomic<Node*> head{nullptr};

public:
void push(T value) {

455

Node* newNode = new Node(value);
newNode->next = head.load();
while (!head.compare_exchange_weak(newNode->next, newNode)) {

// retry until success
}

}

bool pop(T& result) {
Node* oldHead = head.load();
while (oldHead &&

!head.compare_exchange_weak(oldHead, oldHead->next)) {}
if (!oldHead) return false;
result = oldHead->data;
delete oldHead;
return true;

}
};

This sketch demonstrates non-blocking stack operations using CAS. However, real-
world lock-free algorithms require careful handling of memory reclamation (e.g.,
hazard pointers, epoch-based reclamation).

23.1.4Guidelines for Using Concurrency Primitives

1. Prefer high-level abstractions (like std::async or parallel STL in C++17)
unless low-level control is necessary.

2. Use atomics for simple counters and flags instead of mutexes for efficiency.

3. Keep critical sections small to reduce contention.

4. Avoid mixing synchronization mechanisms without a clear design.

456

5. Consider lock-free only when mutexes become a bottleneck, as
correctness and memory management are significantly harder.

23.1.5 Summary

Threading primitives in modern C++ empower developers to harness multicore
hardware efficiently. While std::thread, std::mutex, and std::atomic provide
the essential building blocks, designing correct and performant concurrent algorithms
requires deep understanding of synchronization trade-offs. Lock-free programming
represents the frontier of performance optimization, but must be approached with
caution due to its complexity. Together, these tools form the foundation for the
advanced parallel and concurrent algorithms discussed in the remainder of this chapter.

457

23.2 Parallel Algorithms (std::execution) and
Work-Stealing Patterns

With the rise of multicore architectures, leveraging parallelism has become a
cornerstone of algorithm design. C++17 introduced standardized parallel algorithms
through the <execution> library, providing high-level abstractions for parallel
execution of existing STL algorithms. In addition, modern runtimes often use work-
stealing schedulers to maximize CPU utilization and reduce idle time. This section
explores both approaches and their significance for high-performance algorithm design
in C++.

23.2.1 Parallel Algorithms in C++17 and Beyond

Traditionally, developers had to explicitly manage threads, synchronization, and
partitioning of work to benefit from concurrency. The standardization of parallel
algorithms offers a declarative way to express parallel intent without manually
orchestrating thread management.

• Execution Policies

The <execution> header provides three major execution policies:

1. std::execution::seq
Executes sequentially (default, same as pre-C++17 STL).

2. std::execution::par
Executes in parallel, dividing the work among multiple threads.

3. std::execution::par_unseq
Executes in parallel and allows vectorization (SIMD), enabling hardware-
level parallelism.

458

• Example: Parallel Sorting

#include <iostream>
#include <vector>
#include <algorithm>
#include <execution>

int main() {
std::vector<int> data(1'000'000);
std::iota(data.begin(), data.end(), 0);
std::shuffle(data.begin(), data.end(),

std::mt19937{std::random_device{}()});↪→

// Parallel sort using execution policy
std::sort(std::execution::par, data.begin(), data.end());

std::cout << "First 5 elements after sort: ";
for (int i = 0; i < 5; ++i) std::cout << data[i] << " ";

}

Here, the sorting workload is distributed among available CPU cores, significantly
reducing runtime for large datasets compared to sequential execution.

23.2.2 Benefits of Parallel STL

• Ease of use: Minimal code changes required; just add an execution policy.

• Portability: Rely on the standard library to optimize for the platform.

• Safety: The algorithms automatically handle partitioning and synchronization,
reducing the chance of race conditions.

• Scalability: Designed to scale with increasing core counts.

459

23.2.3 Limitations and Considerations

• Data Dependencies: Algorithms must not introduce data races; for example,
std::for_each(std::execution::par, …) should not modify the same element
from multiple threads.

• Non-determinism: Parallel execution may result in non-deterministic iteration
order.

• Overheads: For small problem sizes, parallelism overhead may outweigh benefits.

• Implementation-Dependent: Performance varies depending on the standard
library implementation and hardware.

23.2.4Work-Stealing Patterns

While the parallel STL abstracts parallelism at a high level, the runtime often relies on
work-stealing schedulers to balance load across threads.

• What is Work-Stealing?

Work-stealing is a scheduling strategy where:

– Each worker thread maintains its own deque (double-ended queue) of tasks.

– When a worker thread runs out of work, it attempts to “steal” tasks from
the deques of other workers.

– Typically, threads pop tasks from the front of their own deque but steal from
the back of another thread’s deque, minimizing contention.

• Advantages of Work-Stealing

1. Load Balancing: Dynamically redistributes work to keep all cores busy.

460

2. Scalability: Reduces bottlenecks in centralized task queues.

3. Cache Efficiency: Threads preferentially execute their own tasks,
benefiting from locality.

4. Robustness: Handles irregular workloads, e.g., recursive algorithms like
quicksort or graph traversals.

23.2.5 Example: Work-Stealing in Practice

Although the standard does not expose work-stealing directly, many implementations of
std::execution::par rely on it. For custom control, developers may use frameworks
like Intel Threading Building Blocks (TBB), which pioneered task-based
parallelism.

Example with TBB (conceptual)

#include <tbb/parallel_for.h>
#include <vector>
#include <iostream>

int main() {
std::vector<int> data(1'000'000, 1);
int sum = 0;

tbb::parallel_for(size_t(0), data.size(), [&](size_t i) {
// Each chunk of work can be scheduled dynamically
sum += data[i];

});

std::cout << "Sum = " << sum << "\n";
}

461

Here, TBB uses a work-stealing scheduler to distribute chunks of the loop iteration
space across threads efficiently.

23.2.6 Combining Parallel STL and Work-Stealing

The key insight is that parallel STL algorithms abstract away thread
management, while internally leveraging efficient scheduling techniques like
work-stealing. Developers benefit from:

• Expressive, high-level code (parallel STL).

• Scalable, load-balanced execution (work-stealing).

• Reduced maintenance complexity compared to hand-rolled threading logic.

23.2.7Guidelines for Use

1. Prefer std::execution::par for data-parallel problems where elements can be
processed independently.

2. Use par_unseq when vectorization and multicore parallelism can both apply, but
ensure no data races.

3. Measure performance—parallelization may introduce overhead for small
datasets.

4. Fall back to libraries like TBB or OpenMP when finer-grained control of
work-stealing or task scheduling is necessary.

5. Design algorithms with locality in mind so that stolen tasks benefit from
cache reuse.

462

23.2.8 Summary

Parallel algorithms via std::execution mark a milestone in C++’s evolution, making
parallelism accessible through standardized, STL-like constructs. Meanwhile, work-
stealing patterns ensure that underlying schedulers distribute workloads efficiently,
especially for irregular or recursive tasks. Together, these techniques enable developers
to design algorithms that are both high-level in expression and low-level in performance
efficiency, making them indispensable tools for modern C++ programmers targeting
multicore and manycore architectures.

463

23.3 Exercises: Parallel Prefix Sum, Concurrent
Queues

Practical exercises are essential for reinforcing the theory of concurrency and
parallelism. This section presents two core exercises that combine algorithmic concepts
with modern C++ concurrency tools:

1. Parallel Prefix Sum (Scan): A fundamental building block in parallel
programming.

2. Concurrent Queues: A staple data structure for producer–consumer patterns
and task scheduling.

Both exercises highlight the challenges and strategies for efficient and safe parallelism.

23.3.1 Parallel Prefix Sum (Scan)

• Problem Statement

Given an array A of length n, compute an array P where:

P [i] = A[0] + A[1] + · · ·+ A[i]

This is a prefix sum or scan. Sequentially, it runs in $O(n)$. The challenge is
to design a parallel algorithm that achieves sublinear depth while preserving
correctness.

• Parallel Algorithm: Up-Sweep and Down-Sweep

A standard approach is the Blelloch scan:

464

1. Up-Sweep (Reduction): Build a tree of partial sums.

2. Down-Sweep: Propagate prefix sums down the tree to compute final
results.

Both phases run in $O(\log n)$ depth and $O(n)$ total work.

• C++ Implementation with Threads

#include <iostream>
#include <vector>
#include <thread>
#include <execution>
#include <numeric>

void parallel_prefix_sum(std::vector<int>& data) {
size_t n = data.size();
std::vector<int> prefix(n);

// Use std::inclusive_scan with parallel execution policy
std::inclusive_scan(std::execution::par,

data.begin(), data.end(),
prefix.begin());

data = std::move(prefix);
}

int main() {
std::vector<int> arr = {1, 2, 3, 4, 5};
parallel_prefix_sum(arr);

for (auto x : arr) std::cout << x << " ";
// Output: 1 3 6 10 15

}

465

Here, std::inclusive_scan with std::execution::par leverages built-in
parallelism, abstracting the up-sweep/down-sweep phases.

• Key Insights

– Parallel prefix sums are used in parallel radix sort, polynomial evaluation,
and GPU algorithms.

– On GPUs, prefix sums are ubiquitous because they transform irregular
problems into structured ones.

– In C++20, std::inclusive_scan and std::exclusive_scan provide direct,
standard-conforming solutions.

23.3.2 Concurrent Queues

• Motivation

Concurrent queues are indispensable in producer–consumer systems, task
schedulers, and messaging frameworks. They allow multiple threads to safely push
and pop elements without corrupting state.

• Sequential Baseline

#include <queue>
#include <mutex>

template <typename T>
class ThreadSafeQueue {

std::queue<T> q;
std::mutex m;

466

public:
void push(const T& value) {

std::lock_guard<std::mutex> lock(m);
q.push(value);

}

bool try_pop(T& result) {
std::lock_guard<std::mutex> lock(m);
if (q.empty()) return false;
result = q.front();
q.pop();
return true;

}
};

This implementation uses a single mutex to serialize access. While correct, it can
become a bottleneck under heavy contention.

• Lock-Free Ideas with Atomics

Lock-free queues improve scalability by using atomic operations (e.g., compare-
and-swap) rather than coarse-grained locks. The Michael–Scott queue is a
classic example.

Simplified C++ sketch:

#include <atomic>
#include <memory>

template <typename T>
class LockFreeQueue {

467

struct Node {
std::shared_ptr<T> data;
std::atomic<Node*> next{nullptr};
Node(T val) : data(std::make_shared<T>(val)) {}

};

std::atomic<Node*> head;
std::atomic<Node*> tail;

public:
LockFreeQueue() {

Node* dummy = new Node(T{});
head.store(dummy);
tail.store(dummy);

}

void push(T value) {
Node* new_node = new Node(value);
Node* old_tail = tail.exchange(new_node);
old_tail->next.store(new_node);

}

std::shared_ptr<T> pop() {
Node* old_head = head.load();
Node* next = old_head->next.load();
if (!next) return nullptr; // empty
head.store(next);
std::shared_ptr<T> res = next->data;
delete old_head;
return res;

}
};

468

This demonstrates the use of atomics for non-blocking enqueue/dequeue.
Implementations like this are the foundation of high-performance concurrent
systems.

23.3.3 Exercise Variations

1. Parallel Prefix Sum Exercises

• Implement the Blelloch scan manually using recursive divide-and-conquer
and threads.

• Compare performance of sequential std::inclusive_scan vs parallel
execution.

• Extend prefix sums to two dimensions (e.g., cumulative sums for matrices).

2. Concurrent Queue Exercises

• Extend the thread-safe queue to support blocking pop with
std::condition_variable.

• Benchmark lock-based vs lock-free queue implementations under varying
contention.

• Apply concurrent queues to implement a thread pool, where worker threads
repeatedly pull tasks.

23.3.4 Summary

• Parallel prefix sums showcase how associative operations can be restructured
to exploit parallel hardware.

• Concurrent queues embody the challenges of synchronization and lock-free
design in multi-threaded systems.

469

• These exercises bridge algorithmic thinking with systems-level concurrency,
reinforcing the skills necessary for building efficient and scalable software in C++.

Chapter 24

Metaprogramming & Compile-time
Algorithms

470

471

24.1 Template Metaprogramming Basics for
Algorithmic Tasks

Template metaprogramming (TMP) in C++ refers to the use of the compiler’s template
system to perform computations at compile time. Initially discovered as a side effect
of C++ templates in the 1990s, TMP has since evolved into a core paradigm, especially
in high-performance and systems programming. With the advent of constexpr
and concepts in C++11 through C++20, TMP is more accessible, expressive, and
integrated with the rest of the language.
This section introduces foundational techniques in template metaprogramming, focusing
on compile-time factorial as an example of recursive computation, and type lists as
a structure for manipulating types at compile time.

24.1.1 Compile-Time Computation with Templates

Before constexpr functions were introduced, recursive template instantiation was the
main way to achieve compile-time evaluation. The compiler effectively ”executes” the
recursion during template instantiation.

Example: Compile-Time Factorial

#include <iostream>

// Template recursion
template <int N>
struct Factorial {

static constexpr int value = N * Factorial<N - 1>::value;
};

472

// Base case specialization
template <>
struct Factorial<0> {

static constexpr int value = 1;
};

int main() {
constexpr int f5 = Factorial<5>::value; // Computed at compile time
std::cout << "Factorial(5) = " << f5 << '\n'; // Output: 120

}

• The recursion unfolds at compile time, generating constants.

• Factorial<5>::value does not require runtime computation; it’s replaced
directly with 120 by the compiler.

With modern C++, the same can be expressed more clearly with constexpr:

constexpr int factorial(int n) {
return n <= 1 ? 1 : n * factorial(n - 1);

}

int main() {
constexpr int f6 = factorial(6); // Evaluated at compile time

}

Comparison: TMP recursion is powerful but verbose. constexpr is now preferred
for numeric computations, though TMP remains indispensable for type-level
programming.

473

24.1.2 Type Lists: Computation with Types

While numeric metaprogramming demonstrates compile-time arithmetic, type-level
programming is TMP’s most distinctive capability. A type list is a compile-time
container of types, enabling transformations, filtering, and querying during compilation.

• Basic Type List Definition

// A simple variadic template to hold a list of types
template <typename... Ts>
struct TypeList {};

This TypeList can hold any number of types:

using MyTypes = TypeList<int, double, char>;

• Operations on Type Lists

Type lists enable algorithms where types are the input. For example:

1. Length of a Type List

template <typename TList>
struct Length;

template <typename... Ts>
struct Length<TypeList<Ts...>> {

static constexpr size_t value = sizeof...(Ts);
};

using L = TypeList<int, float, double>;
static_assert(Length<L>::value == 3);

474

2. Accessing the N-th Type

template <size_t N, typename TList>
struct TypeAt;

template <size_t N, typename Head, typename... Tail>
struct TypeAt<N, TypeList<Head, Tail...>> : TypeAt<N - 1,

TypeList<Tail...>> {};↪→

template <typename Head, typename... Tail>
struct TypeAt<0, TypeList<Head, Tail...>> {

using type = Head;
};

using T = TypeAt<1, TypeList<int, double, char>>::type;
// T is double

3. Appending a Type

template <typename TList, typename NewType>
struct Append;

template <typename... Ts, typename NewType>
struct Append<TypeList<Ts...>, NewType> {

using type = TypeList<Ts..., NewType>;
};

using Extended = Append<TypeList<int, char>, double>::type;
// Extended = TypeList<int, char, double>

475

24.1.3Applications of Template Metaprogramming

• Static Assertions: Verify properties of types at compile time.

• Type Traits: Implement custom traits (e.g., checking if a type is integral).

• Policy-Based Design: Compose classes with type-level parameters.

• Generic Libraries: Libraries like Boost MPL and modern C++ ranges rely on
type-level computations.

24.1.4Modern TMP vs Historical TMP

• Classic TMP (C++98/03): Relied heavily on recursive template instantiation
(e.g., factorial, Fibonacci). Powerful but cryptic.

• Modern TMP (C++11 and beyond): Introduces constexpr, decltype,
constexpr if, fold expressions, and concepts, making compile-time algorithms
more intuitive while preserving type-level metaprogramming when needed.

Example using fold expression for factorial:

template <int... Ns>
constexpr int factorial_pack() {

return (... * Ns); // fold expression
}

24.1.5 Summary

Template metaprogramming elevates C++ beyond runtime computation by embedding
compile-time algorithms into the compilation process. The compile-time factorial

476

illustrates recursive instantiation, while type lists show how to manipulate types as
data. These building blocks form the foundation for more advanced metaprogramming
topics such as SFINAE, concepts, constexpr metaprogramming, and expression
templates, all of which are essential for writing high-performance, generic C++ code.

477

24.2 Concepts & constexpr Algorithms in C++20/23
(constexpr Sorting, Compile-time DP)

C++20 and C++23 introduced new tools that elevate metaprogramming to a more
expressive and approachable paradigm. With Concepts and expanded support
for constexpr, algorithms once thought to be runtime-only can now be executed
during compilation, enabling compile-time checks, precomputed values, and powerful
optimization opportunities. This section explores how these features can be leveraged
for algorithmic design.

24.2.1 Concepts and Constrained Algorithms

Concepts are compile-time predicates that allow developers to constrain template
parameters more precisely than with SFINAE (Substitution Failure Is Not An Error).
This ensures that algorithms fail early and meaningfully when instantiated with
incompatible types.
For example, a generic sorting function might be constrained to only work with
random-access iterators:

#include <concepts>
#include <iterator>
#include <algorithm>
#include <vector>

template <std::random_access_iterator Iter>
constexpr void constrained_sort(Iter first, Iter last) {

std::sort(first, last);
}

Here, std::random_access_iterator is a standard concept, ensuring the algorithm

478

cannot be instantiated with, for instance, a forward-only list iterator. This prevents
misuse and generates clearer diagnostics at compile time.
Concepts also allow you to design domain-specific constraints, such as restricting
algorithms to integral types or floating-point types:

#include <concepts>
#include <numeric>

template <std::integral T>
constexpr T sum_to(T n) {

return (n * (n + 1)) / 2;
}

This guarantees that sum_to cannot be called with floating-point or complex number
types, providing both safety and clarity.

24.2.2 Expanded constexpr in C++20/23

C++20 significantly expanded the set of constructs allowed in constexpr functions,
including dynamic allocation (in some contexts), try/catch (though exceptions cannot
be thrown), and most of the standard library algorithms. This allows algorithms to
execute during compilation if provided with constant expressions.
C++23 continued this expansion, making more of the standard library usable at
compile time. For instance, container operations with std::vector and std::string
can now often be performed in constexpr contexts.

24.2.3 Example: constexpr Sorting

Sorting at compile time is a canonical demonstration of modern constexpr power. A
simple implementation might use selection sort or bubble sort, since these are easier to

479

implement with recursion and fixed bounds:

#include <array>
#include <utility>

template <typename T, std::size_t N>
constexpr void bubble_sort(std::array<T, N>& arr) {

for (std::size_t i = 0; i < N; ++i) {
for (std::size_t j = 0; j < N - i - 1; ++j) {

if (arr[j] > arr[j + 1]) {
std::swap(arr[j], arr[j + 1]);

}
}

}
}

constexpr auto sorted = [] {
std::array<int, 5> arr{5, 3, 4, 1, 2};
bubble_sort(arr);
return arr;

}();

The array sorted is fully computed at compile time, and the compiler embeds the
sorted result directly in the binary.

Although bubble sort is inefficient at runtime, it is often acceptable for compile-time
computation where the input size is small and bounded. For larger datasets, more
sophisticated constexpr algorithms (like quicksort or mergesort) can be written with
recursion.

480

24.2.4 Compile-time Dynamic Programming

Dynamic Programming (DP) can also be applied in a constexpr context. This is
especially useful for algorithmic tasks where precomputed results save runtime effort,
such as computing Fibonacci numbers, binomial coefficients, or shortest paths in small
graphs.

Example: Fibonacci with Memoization

#include <array>

constexpr int fib(int n) {
if (n <= 1) return n;

// Compile-time memoization using recursion and static array
constexpr int maxN = 50;
static std::array<int, maxN + 1> memo{};
static bool initialized = false;

if (!initialized) {
memo[0] = 0;
memo[1] = 1;
for (int i = 2; i <= maxN; ++i) {

memo[i] = memo[i - 1] + memo[i - 2];
}
initialized = true;

}
return memo[n];

}

constexpr int fib20 = fib(20); // Computed entirely at compile time

This approach precomputes Fibonacci numbers during compilation, embedding them

481

directly in the program binary without runtime overhead.

24.2.5 Practical Applications of constexpr Algorithms

• Precomputation: Embed lookup tables, prime sieves, or sorting orders directly
into the executable.

• Validation: Perform structural checks (e.g., graph connectivity, type constraints)
before the program runs.

• Optimization: Avoid runtime costs for fixed or configuration-dependent data.

• Safer APIs: Combine concepts and constexpr to reject invalid inputs at compile
time.

24.2.6 Limitations and Best Practices

• constexpr algorithms should be bounded; deeply recursive or unbounded
computations may cause long compile times.

• Prefer simpler algorithms (like bubble sort) for small fixed inputs; only implement
complex algorithms if compile-time efficiency matters.

• Use concepts to guard against unintended instantiations and ensure meaningful
diagnostics.

• Reserve compile-time computation for data or checks that genuinely benefit from
being precomputed.

Summary:
C++20/23’s constexpr expansion and concepts empower developers to implement
meaningful compile-time algorithms. From constexpr sorting to dynamic programming,

482

these features push computation from runtime to compile time, enhancing performance
and safety. By blending constraints and precomputation, C++ now offers a powerful
paradigm for writing algorithms that are both correct and efficient before the program
ever runs.

483

24.3 Exercises: Static-Sequence Algorithms,
consteval Usage

This section provides exercises that encourage hands-on practice with compile-time
techniques, focusing on static-sequence algorithms and the use of consteval
functions in C++20/23. By experimenting with these exercises, readers gain practical
familiarity with how compile-time programming can replace runtime work, ensure
correctness, and improve program efficiency.

24.3.1 Static-Sequence Algorithms

Static sequences, such as std::integer_sequence or std::index_sequence, are
central to modern metaprogramming. They provide a way to represent lists of numbers
or indices at compile time, which can then be used to parameterize templates, unroll
loops, or generate code.

• Example 1: Generating Factorials with std::integer_sequence

#include <array>
#include <utility>
#include <cstddef>

constexpr std::size_t factorial(std::size_t n) {
return (n <= 1) ? 1 : n * factorial(n - 1);

}

template <std::size_t... Indices>
constexpr auto make_factorial_array(std::index_sequence<Indices...>) {

return std::array<std::size_t, sizeof...(Indices)>{ factorial(Indices)...
};↪→

484

}

constexpr auto factorials =
make_factorial_array(std::make_index_sequence<11>{});↪→

// factorials = {0! = 1, 1! = 1, 2! = 2, ..., 10! = 3628800}

Here, std::index_sequence generates a static sequence of integers, which we
expand into calls to factorial. The result is a precomputed array of factorial
values, embedded directly into the program.

• Example 2: Compile-time Prime Check for Static Sequences

#include <array>
#include <utility>
#include <cstddef>

constexpr bool is_prime(std::size_t n) {
if (n < 2) return false;
for (std::size_t i = 2; i * i <= n; ++i) {

if (n % i == 0) return false;
}
return true;

}

template <std::size_t... Ns>
constexpr auto prime_table(std::index_sequence<Ns...>) {

return std::array<bool, sizeof...(Ns)>{ is_prime(Ns)... };
}

constexpr auto primes_up_to_20 = prime_table(std::make_index_sequence<21>{});
// primes_up_to_20[i] is true if i is prime

485

This technique demonstrates how entire tables of computed properties (like
primality) can be constructed during compilation.

24.3.2 consteval Usage

The consteval specifier, introduced in C++20, marks functions that must be
evaluated at compile time. Unlike constexpr, which permits both runtime and compile-
time evaluation depending on the context, consteval enforces compile-time execution.
This is useful for guaranteeing that certain values or computations are always resolved
before runtime.

• Example 3: Enforcing Compile-time ID Generation

#include <string_view>

consteval unsigned int fixed_hash(std::string_view str) {
unsigned int hash = 0;
for (char c : str) {

hash = hash * 131 + static_cast<unsigned int>(c);
}
return hash;

}

constexpr unsigned int id_user = fixed_hash("user");
constexpr unsigned int id_admin = fixed_hash("admin");

Here, any attempt to call fixed_hash with a runtime string will fail to compile,
ensuring identifiers are determined at build time.

• Example 4: Compile-time Dimension Validation

486

#include <array>
#include <cstddef>

template <std::size_t N>
consteval void validate_size() {

static_assert(N > 0 && N <= 16, "Matrix dimension must be between 1 and
16");↪→

}

template <std::size_t N>
struct Matrix {

std::array<std::array<double, N>, N> data{};
consteval Matrix() { validate_size<N>(); }

};

constexpr Matrix<4> m1; // OK
// constexpr Matrix<32> m2; // Compile-time error

This exercise shows how consteval can enforce constraints early, preventing
invalid instantiations of templates.

24.3.3 Exercise Ideas

1. Compile-time Fibonacci Sequence with std::integer_sequence
Generate a fixed array of Fibonacci numbers at compile time using recursive
constexpr functions and sequence expansion.

2. Static Prefix Sum Array
Create a compile-time prefix sum array (e.g., arr[i] = sum of 0..i) and use it
in a constexpr context.

487

3. consteval String Length Validator
Implement a consteval function that validates that a string literal’s length does
not exceed a given bound, ensuring compile-time safety for buffer sizes.

4. Compile-time Permutation Generator
Using std::integer_sequence, implement a function that generates all
permutations of {0, 1, …, N-1} at compile time (for small N).

5. consteval Configuration Enforcement
Write a configuration header where parameters (like buffer sizes, thread counts,
etc.) must be compile-time constants enforced with consteval.

24.3.4 Best Practices for Exercises

• Use std::integer_sequence and std::index_sequence for elegant static-
sequence algorithms.

• Prefer consteval when you want strict compile-time guarantees.

• Avoid heavy or unbounded compile-time computation, as it can slow compilation
drastically.

• Combine concepts, constexpr, and consteval for maximum safety and
expressiveness.

Summary:
These exercises demonstrate how static sequences and consteval functions enrich
compile-time algorithm design. They guide learners in precomputing tables, validating
constraints, and enforcing compile-time guarantees, providing both safety and efficiency.
By mastering these tools, programmers can push more correctness into the compiler
and reduce runtime overhead.

Chapter 25

Profiling, Benchmarking &
Optimization Workflow

25.1Using Profilers (gprof, perf), Sanitizers (ASAN,
UBSAN), and Compiler Flags

Effective optimization in C++ does not start with guesswork but with measurement
and diagnostics. Modern toolchains provide a wealth of facilities for profiling
performance, detecting correctness issues, and fine-tuning code generation.
This section introduces three essential categories of tools: profilers, sanitizers, and
compiler flags, each of which plays a distinct role in an optimization workflow.

25.1.1 Profilers

Profilers measure how a program spends its time and resources during execution. They
identify performance bottlenecks, guide optimizations, and ensure improvements target

488

489

the right hotspots.

• gprof (GNU profiler)

– Integration: Requires compiling with -pg flag.

– Workflow:

1. Compile and link with -pg.

2. Run the program; it produces a gmon.out file.

3. Analyze with gprof ./a.out gmon.out.

– Output:

∗ Flat profile: shows time spent per function.

∗ Call graph: shows call relationships and percentages of execution time.

– Limitations:

∗ Sampling resolution is low by modern standards.

∗ Overhead can affect runtime behavior.

∗ Largely superseded by newer tools but still useful for small projects or
teaching.

• perf (Linux performance analysis tool)

– Integration: Available on modern Linux systems, requires no recompilation.

– Workflow:

∗ Run perf record ./program to collect performance events.

∗ Use perf report or perf annotate for detailed function-level or
instruction-level insights.

– Advantages:

490

∗ Low-overhead sampling using CPU hardware counters.

∗ Works across languages and binaries.

∗ Can measure cache misses, branch mispredictions, and other
microarchitectural events.

– Use Cases: Identifying slow code paths, understanding instruction-level
inefficiencies, and tuning performance-critical systems.

25.1.2 Sanitizers

Sanitizers extend debugging and runtime validation by detecting undefined behavior,
memory errors, and threading issues that are otherwise difficult to catch. They are
part of GCC and Clang toolchains.

• AddressSanitizer (ASAN)

– Detects memory errors such as:

∗ Out-of-bounds reads and writes.

∗ Use-after-free bugs.

∗ Memory leaks (with leak detection enabled).

– Usage: Compile with -fsanitize=address -g -O1.

– Example:

#include <iostream>

int main() {
int arr[3] = {1, 2, 3};
std::cout << arr[3] << "\n"; // out-of-bounds

}

491

Running under ASAN produces a detailed runtime error pointing to the
source of the memory violation.

• Undefined Behavior Sanitizer (UBSAN)

– Detects undefined behaviors such as:

∗ Integer overflows (signed).

∗ Invalid shifts.

∗ Misaligned memory accesses.

∗ Use of null references.

– Usage: Compile with -fsanitize=undefined.

– Provides runtime warnings instead of immediate crashes.

• Other sanitizers worth noting

– ThreadSanitizer (TSAN): Detects data races in multithreaded programs.

– MemorySanitizer (MSAN): Detects uses of uninitialized memory.

– Each sanitizer introduces overhead but dramatically reduces debugging time
for correctness issues.

25.1.3 Compiler Flags

Compiler flags affect both performance diagnostics and code generation. Correct flag
usage can surface hidden issues, enforce standards compliance, and squeeze more
efficiency out of algorithms.

• Optimization Levels

– -O0: No optimizations (useful for debugging).

492

– -O1, -O2, -O3: Increasing levels of optimization (loop unrolling, inlining,
vectorization).

– -Ofast: Aggressive optimizations, may disregard strict standards compliance.

– -Os: Optimize for binary size.

• Warning and Error Flags

– -Wall -Wextra: Enables common warnings.

– -Werror: Treats warnings as errors, enforcing stricter coding discipline.

– -pedantic: Enforces standard-compliance.

• Profiling/Debugging Flags

– -pg: Instrumentation for gprof.

– -fno-omit-frame-pointer: Retain stack frame pointers for accurate
profiling and debugging.

– -g: Generate debug symbols for use with profilers and sanitizers.

• Architecture-Specific Flags

– -march=native: Enable all CPU-specific optimizations available on the build
machine.

– -mtune=...: Tune performance for a specific CPU family.

– -funroll-loops: Aggressively unroll loops where beneficial.

493

25.1.4 Recommended Workflow

1. Start with Correctness:

• Enable sanitizers (ASAN, UBSAN) and warnings (-Wall -Wextra) to ensure no
hidden bugs.

• Run comprehensive tests under sanitizer builds.

2. Profile the Application:

• Use perf for detailed performance metrics.

• Fall back on gprof or sampling profilers if targeting simpler projects.

3. Tune with Compiler Flags:

• Optimize with -O2 or -O3.

• Add -march=native for local builds to exploit CPU features.

• Benchmark different builds to balance speed, safety, and portability.

Summary:
Profilers like gprof and perf help locate bottlenecks, sanitizers such as ASAN and
UBSAN catch correctness issues early, and compiler flags provide fine-grained control
over optimization and diagnostics. Together, these tools form a systematic workflow for
ensuring that C++ algorithms are not only correct but also efficient and robust across
platforms.

494

25.2Micro-optimizations vs Algorithmic
Improvements — Case Studies in C++

Optimization in C++ development must be guided by evidence, measurement, and
priorities. One of the most common mistakes in performance work is focusing on
micro-optimizations—small, localized code tweaks—before addressing the algorithmic
complexity of the solution. This section distinguishes between micro-level performance
improvements and high-level algorithmic changes, providing case studies to illustrate
why the latter often dominates real-world performance.

25.2.1Micro-optimizations

Micro-optimizations focus on local code transformations without altering the
algorithmic complexity. Examples include:

• Replacing repeated function calls with cached values.

• Using pre-increment (++i) instead of post-increment (i++) in tight loops (relevant
in older compilers).

• Eliminating unnecessary temporaries by using references or move semantics.

• Preferring emplace_back over push_back for in-place construction in containers.

• Characteristics

– Scope: Localized, often one or two lines of code.

– Performance gains: Typically a few percentage points at most.

– Maintainability trade-offs: Sometimes makes code harder to read with
minimal impact.

495

– When useful: After profiling identifies a true hotspot where such changes
matter.

• Example: Loop indexing

for (size_t i = 0; i < vec.size(); ++i) {
process(vec[i]);

}

Here, the repeated vec.size() call could be avoided:

for (size_t i = 0, n = vec.size(); i < n; ++i) {
process(vec[i]);

}

This saves a redundant call per iteration, which matters in very tight loops but is
negligible compared to the complexity of the underlying algorithm.

25.2.2Algorithmic Improvements

Algorithmic improvements target the asymptotic complexity of the problem. They
usually involve rethinking the approach rather than tweaking implementation details.

• Characteristics

– Scope: Larger changes in data structures or algorithm choice.

– Performance gains: Can reduce runtime by orders of magnitude.

– Maintainability: Often improves clarity, since efficient algorithms are well-
studied and standardized.

496

– When useful: Always consider algorithmic complexity first; micro-
optimizations only make sense after this step.

• Example: Sorting

– Naive bubble sort: O(n²).

– Merge sort or quicksort: O(n log n).

– Using std::sort: Highly optimized introsort (quicksort + heapsort
fallback).

Replacing bubble sort with std::sort on 100,000 elements reduces runtime from
minutes to milliseconds—an improvement several magnitudes greater than any
micro-tweak inside the bubble sort implementation.

25.2.3 Case Study: Searching in C++

• Micro-optimized linear search

int find_linear(const std::vector<int>& data, int key) {
for (size_t i = 0; i < data.size(); ++i) {

if (data[i] == key) return i;
}
return -1;

}

Even if we add minor tweaks (like caching data.size()), the complexity remains
O(n).

• Algorithmic improvement: binary search

497

By sorting the data and using std::binary_search, the complexity reduces to
O(log n):

bool exists = std::binary_search(data.begin(), data.end(), key);

For large inputs, this shift in algorithm dominates performance by several orders
of magnitude.

25.2.4 Case Study: Matrix Multiplication

• Naive approach: Three nested loops → O(n³).

• Micro-optimization: Unroll inner loops, adjust cache usage → ~10–20%
improvement.

• Algorithmic improvement: Strassen’s algorithm (O(n^2.81)) or more
advanced algorithms, combined with cache-aware tiling, reduces runtime by
factors, not percentages.

This shows that algorithm selection has far greater impact than micro-tuning within a
poor algorithm.

25.2.5Guiding Principles

1. Measure first: Use profilers (perf, gprof) and benchmarking frameworks to
locate bottlenecks.

2. Fix algorithms before code: Always prioritize reducing asymptotic complexity.

3. Apply micro-optimizations in hotspots only: Focus on the ~5% of code
consuming 95% of execution time (Pareto principle).

498

4. Leverage the STL and standard algorithms: Many standard library
implementations already combine optimal algorithms with micro-optimizations.

Summary:
Micro-optimizations in C++ can provide small incremental speedups, but algorithmic
improvements are the foundation of efficient programming. Case studies in
sorting, searching, and matrix multiplication show that reducing complexity often yields
improvements by factors of 10x, 100x, or more, compared to the single-digit percentage
gains of micro-optimizations. The practical takeaway is to optimize algorithms first,
measure with tools, then refine with micro-optimizations where necessary.

499

25.3 Exercises — Profile and Improve Small C++
Projects

The best way to internalize profiling and optimization practices is through hands-
on exercises. By applying profiling tools, identifying bottlenecks, and implementing
targeted improvements, readers can move from theory to practical mastery. This
section presents a series of small-scale projects designed to build intuition about
performance, correctness, and maintainability.

25.3.1 Exercise: Profiling a Naive Sorting Benchmark

Task:

• Implement a naive bubble sort and compare it against std::sort.

• Profile both versions using perf (Linux) or gprof (GNU toolchain).

Steps:

1. Write a program that generates a vector of random integers (e.g., 100,000
elements).

2. Implement bubble sort manually.

3. Compare its runtime with std::sort.

4. Profile both implementations and observe differences in function call frequency
and CPU cycles.

Goal:
Understand how algorithmic complexity dominates runtime and how profiling can
confirm the true hotspots.

500

25.3.2 Exercise: Memory Leak Detection with ASAN

Task:

• Create a small project that allocates memory dynamically but forgets to free it.

• Run the program with AddressSanitizer enabled.

Steps:

1. Write code that allocates an array with new[] but omits delete[].

2. Compile with -fsanitize=address -g.

3. Run the program and observe the sanitizer output.

4. Fix the leak by using std::vector or std::unique_ptr.

Goal:
Gain experience with sanitizers and learn why RAII (Resource Acquisition Is
Initialization) is the preferred idiom in modern C++.

25.3.3 Exercise: Cache-Aware Optimization

Task:

• Implement matrix multiplication in two ways: row-major and column-major
iteration.

• Compare runtimes using different matrix sizes.

Steps:

1. Write a naive three-loop multiplication (O(n³)).

501

2. Measure performance with cache-friendly iteration order (accessing contiguous
memory).

3. Profile using perf stat to observe cache miss rates.

4. Compare improvements achieved solely through memory layout awareness.

Goal:
Understand how cache locality impacts performance, even when algorithmic
complexity remains the same.

25.3.4 Exercise: Micro-Optimization vs Algorithmic
Improvement

Task:

• Compare linear search (O(n)) with binary search (O(log n)) on large datasets.

• Apply small micro-optimizations to linear search and see if they ever outperform
binary search.

Steps:

1. Implement both searches.

2. Benchmark on vectors of increasing sizes (1e3, 1e5, 1e7).

3. Try caching loop bounds or unrolling loops in the linear version.

4. Compare results with std::binary_search.

Goal:
Discover that algorithmic improvements vastly outweigh micro-optimizations
in practical contexts.

502

25.3.5 Exercise: Multithreaded vs Single-Threaded Performance

Task:

• Implement a simple prime-checking program that tests a large range of integers.

• Profile the single-threaded version and compare it with a multi-threaded version
using std::thread or std::async.

Steps:

1. Write a function to check primality of an integer.

2. Apply it to a range (e.g., 1 to 1,000,000).

3. First, implement a single-threaded version.

4. Then, divide the work across multiple threads.

5. Measure execution time with std::chrono.

Goal:
Experience how concurrency can improve throughput while also learning to measure
synchronization costs.

25.3.6 Project: Profile-and-Improve a Small CLI Tool

Task:
Take a small CLI-based C++ program (e.g., word frequency counter in text files) and
profile it.
Steps:

503

1. Implement using naive I/O (e.g., std::getline with repeated string
concatenations).

2. Profile with perf or gprof to identify bottlenecks.

3. Optimize by:

• Using std::unordered_map instead of std::map.

• Using buffered I/O (std::ifstream::read) for large files.

• Avoiding redundant string copies with std::string_view.

Goal:
Learn to iteratively profile and refine an application based on evidence rather than
guesswork.

25.3.7 Recommended Workflow for Each Exercise

1. Write a baseline implementation.

2. Benchmark with simple timers (std::chrono::high_resolution_clock).

3. Profile with a tool (perf, gprof, sanitizers).

4. Apply one improvement at a time (micro or algorithmic).

5. Re-profile after each improvement.

6. Document changes and measure actual gains.

Summary:
These exercises emphasize that profiling guides optimization, and that meaningful
performance improvements in C++ come from the right combination of algorithm

504

choice, memory awareness, and concurrency. Micro-optimizations play a role,
but only after broader algorithmic and structural choices are made. By practicing these
profiling-and-improvement cycles on small projects, readers gain the habits needed to
scale performance engineering to larger real-world systems.

Part VII

Capstone Projects

505

Chapter 26

Project A — High-performance
Graph Library

26.1Design Goals, API, Iterators, Memory Layout
(CSR)

In this capstone project, we aim to design and implement a high-performance
graph library in Modern C++. The project serves as a culmination of earlier
chapters, combining knowledge of data structures, algorithms, memory management,
and performance optimization into a cohesive system. This section lays out the design
goals, discusses the API surface, explains how to provide iterators for graph
traversal, and examines the Compressed Sparse Row (CSR) format for memory
efficiency.

507

508

26.1.1Design Goals

The library is guided by several core design principles:

1. Performance-Centric

• Minimize memory overhead through cache-friendly layouts.

• Provide predictable performance for large-scale graphs (millions of nodes and
edges).

• Exploit Modern C++ features such as move semantics, constexpr, and
templates.

2. Generic and Extensible

• Support both directed and undirected graphs.

• Allow weighted and unweighted edges.

• Provide templates for different index types (int32_t, int64_t) to adapt to
graph size.

3. Ease of Use

• Offer an intuitive API for graph creation, traversal, and manipulation.

• Follow STL-like conventions so users can quickly learn the library.

• Emphasize strong type safety while keeping syntax clean.

4. Interoperability

• Allow importing/exporting graphs from common formats (edge lists,
adjacency lists).

509

• Provide iteration interfaces compatible with range-based for-loops.

5. Scalability

• Handle large real-world graphs efficiently (social networks, web graphs, road
networks).

• Provide thread-safe read-only traversal for parallel algorithms.

26.1.2API Design

The library’s API should mirror familiar STL idioms:

• Graph Construction

Graph<int> g(num_vertices);
g.add_edge(0, 1, 5); // weighted edge
g.add_edge(2, 3); // unweighted edge

• Access and Queries

auto neighbors = g.neighbors(0);
bool connected = g.has_edge(0, 1);
auto weight = g.edge_weight(0, 1);

• Iterators

– vertex_iterator for traversing vertices.

– edge_iterator for traversing edges globally.

– adjacency_iterator for neighbors of a given vertex.

510

• Algorithms Integration

auto path = shortest_path(g, 0, 5);
auto mst = minimum_spanning_tree(g);

• Import/Export

g.load_from_edge_list("graph.txt");
g.save_to_csr("graph.csr");

The API emphasizes clarity while hiding low-level implementation details such as CSR
encoding.

26.1.3 Iterators

Iterators make the graph feel like an STL container. They enable users to traverse
efficiently and integrate seamlessly with STL algorithms.

• Vertex Iterator
Allows iteration over all vertices:

for (auto v : g.vertices()) {
std::cout << v << "\n";

}

• Edge Iterator
Enables traversal of all edges:

511

for (auto e : g.edges()) {
std::cout << e.src << " -> " << e.dst << "\n";

}

• Adjacency Iterator
Provides neighbors of a vertex:

for (auto n : g.neighbors(v)) {
std::cout << "Neighbor: " << n << "\n";

}

The iterators should be lightweight wrappers around CSR index structures, ensuring
constant-time access and efficient iteration without copying.

26.1.4Memory Layout: Compressed Sparse Row (CSR)

For high-performance graph representation, the library adopts Compressed Sparse
Row (CSR) format. CSR is widely used in sparse matrix and graph computations due
to its compactness and cache efficiency.
Structure of CSR:

• row_ptr (size = num_vertices + 1)

– Stores the starting index of each vertex’s adjacency list in the col_idx array.

• col_idx (size = num_edges)

– Stores the destination vertex of each edge.

• weights (optional, size = num_edges)

512

– Stores edge weights if applicable.

Example:
Graph with 3 vertices and edges:

0 → 1
0 → 2
1 → 2

CSR representation:

• row_ptr = [0, 2, 3, 3]

• col_idx = [1, 2, 2]

• weights = [...] (if weighted)

Advantages of CSR:

1. Compact Memory — No pointer overhead per adjacency list.

2. Cache-Friendly — Consecutive neighbors are stored contiguously.

3. Fast Traversal — Iterating over neighbors is a simple range lookup.

4. Interoperability — Matches formats used in numerical libraries (BLAS, sparse
solvers).

Trade-offs:

• Insertion/deletion of edges is costly (requires shifting arrays).

• Best suited for static graphs or graphs with infrequent updates.

513

Summary:
This section established the foundational design principles of the high-performance
graph library, outlined an STL-inspired API, introduced iterators for seamless
integration, and justified the choice of CSR memory layout for performance and
scalability. With these concepts in place, the project can now progress into algorithmic
implementations that leverage the efficient graph representation.

514

26.2 Implementations — SSSP, MST, Centrality
Measures

Once the high-performance graph library is designed with a clear API, iterators, and
CSR memory layout, the next step is implementing core graph algorithms. This
section focuses on three fundamental classes of algorithms: Single-Source Shortest
Path (SSSP), Minimum Spanning Tree (MST), and centrality measures.
The implementations leverage Modern C++ features for performance, safety, and
genericity.

26.2.1 Single-Source Shortest Path (SSSP)

SSSP algorithms compute the shortest distances from a single source vertex to all other
vertices. The choice of algorithm depends on edge weights:

1. Dijkstra’s Algorithm (non-negative weights)

• Implementation Notes:

– Uses a priority queue (std::priority_queue) for selecting the next
vertex with the minimum distance.

– CSR adjacency lists allow fast access to neighbors.

– Distance vector stored as std::vector<double> or templated numeric
type.

– Optional predecessor vector for path reconstruction.

C++ Skeleton:

515

template<typename Graph, typename WeightType>
std::vector<WeightType> dijkstra(const Graph& g, int src) {

std::vector<WeightType> dist(g.num_vertices(),
std::numeric_limits<WeightType>::max());↪→

dist[src] = 0;
using PQElem = std::pair<WeightType, int>;
std::priority_queue<PQElem, std::vector<PQElem>, std::greater<>> pq;
pq.push({0, src});

while (!pq.empty()) {
auto [d, u] = pq.top(); pq.pop();
if (d > dist[u]) continue;
for (auto e : g.neighbors(u)) {

WeightType new_dist = d + g.edge_weight(u, e);
if (new_dist < dist[e]) {

dist[e] = new_dist;
pq.push({new_dist, e});

}
}

}
return dist;

}

2. Bellman-Ford (handles negative weights)

• Iterates over all edges |V|-1 times.

• Detects negative weight cycles.

• Less efficient than Dijkstra for non-negative weights but necessary when
negatives exist.

3. Implementation Notes

516

• CSR format ensures neighbor access is contiguous in memory.

• Use iterators for edge traversal to maintain API consistency.

• Can extend to multi-source SSSP by parallelizing over sources with
std::thread or std::async.

26.2.2Minimum Spanning Tree (MST)

MST algorithms find a subset of edges connecting all vertices with minimal total
weight.

1. Kruskal’s Algorithm

• Implementation Notes:

– Uses a Disjoint Set Union (DSU) data structure with path
compression and union by rank.

– Edges are sorted by weight using std::sort.

– CSR storage is mainly for adjacency access; edges may be represented in
a separate vector for sorting.

2. Prim’s Algorithm

• Implementation Notes:

– Uses a priority queue to select the next edge with minimal weight.

– CSR adjacency access allows O(1) neighbor iteration.

– Binary heaps (std::priority_queue) are simple; Fibonacci heaps
reduce amortized cost for dense graphs.

C++ Skeleton:

517

template<typename Graph, typename WeightType>
std::vector<int> prim(const Graph& g) {

int n = g.num_vertices();
std::vector<WeightType> key(n, std::numeric_limits<WeightType>::max());
std::vector<int> parent(n, -1);
std::vector<bool> in_mst(n, false);

key[0] = 0;
using PQElem = std::pair<WeightType,int>;
std::priority_queue<PQElem, std::vector<PQElem>, std::greater<>> pq;
pq.push({0,0});

while (!pq.empty()) {
int u = pq.top().second; pq.pop();
in_mst[u] = true;
for (auto v : g.neighbors(u)) {

WeightType w = g.edge_weight(u, v);
if (!in_mst[v] && w < key[v]) {

key[v] = w;
parent[v] = u;
pq.push({w, v});

}
}

}
return parent;

}

26.2.3 Centrality Measures

Centrality measures help identify important nodes in a graph:

1. Degree Centrality

518

• Count of neighbors.

• Extremely simple with CSR: row_ptr[v+1] - row_ptr[v].

2. Closeness Centrality

• Requires shortest-path computation to all other vertices.

• Can reuse SSSP implementations for efficiency.

3. Betweenness Centrality

• Number of shortest paths passing through a vertex.

• Implemented using Brandes’ algorithm.

• CSR layout reduces memory overhead and improves cache performance
during neighbor traversal.

Implementation Notes:

• Use iterators to traverse neighbors when calculating paths.

• Parallelize independent shortest path computations using std::thread for
large graphs.

26.2.4 Performance Considerations

• CSR memory layout ensures contiguous neighbor access, minimizing cache
misses.

• Algorithms leverage iterators, keeping the API consistent across SSSP, MST,
and centrality computations.

519

• Optional templates allow switching numeric types (e.g., float vs double) for
memory savings or precision.

• Profiling during development identifies hotspots for large graphs, guiding
optimization priorities.

Summary:
This section demonstrates the practical implementation of core graph algorithms
in a high-performance C++ library. SSSP, MST, and centrality measures are all
implemented using CSR memory layout and iterator-based access, enabling both
efficiency and API consistency. The designs incorporate Modern C++ features such
as templates, priority queues, and parallelization options, bridging theoretical graph
algorithms with practical, scalable software engineering.

520

26.3 Tests & Benchmarks Against Common Datasets
After designing and implementing a high-performance graph library, rigorous
testing and benchmarking are essential to validate correctness, measure
performance, and compare against existing solutions. This section provides guidance
for creating unit tests, integration tests, and benchmarking pipelines using real-
world and synthetic graph datasets.

26.3.1 Testing Strategy

Testing ensures that all graph algorithms—SSSP, MST, centrality measures—work
correctly under varied conditions. A robust strategy includes:

1. Unit Tests

• Verify individual components such as:

– Vertex and edge insertion/removal

– Iterator correctness (vertex_iterator, edge_iterator, adjacency_iterator)

– CSR memory layout consistency

– Edge weight handling

• Use Modern C++ testing frameworks such as Catch2 or Google Test.

Example: Testing adjacency iterator

TEST_CASE("Adjacency Iterator") {
Graph<int> g(3);
g.add_edge(0, 1);
g.add_edge(0, 2);

521

std::vector<int> neighbors;
for (auto n : g.neighbors(0)) {

neighbors.push_back(n);
}

REQUIRE(neighbors.size() == 2);
REQUIRE((neighbors[0] == 1 || neighbors[0] == 2));

}

2. Integration Tests

• Run full SSSP and MST computations on small graphs with known results.

• Validate centrality measures against expected outputs.

Goal: Detect algorithmic bugs and iterator inconsistencies early.

26.3.2 Benchmarking Strategy

Benchmarking evaluates performance on various graph sizes and types, revealing
bottlenecks and efficiency gains of the CSR representation.

1. Datasets

Use both synthetic and real-world graphs:

• Synthetic Graphs:

– Random sparse/dense graphs
– Grid graphs (2D/3D meshes)
– Scale-free networks (Barabási–Albert model)

• Real-World Datasets:

522

– Social networks (e.g., Facebook, Twitter snapshots)

– Road networks (e.g., OpenStreetMap extracts)

– Citation networks and web graphs (e.g., SNAP datasets)

These datasets allow testing performance under different sparsity, size, and
topology conditions.

2. Benchmark Metrics

(a) Execution Time

• Measure runtime of SSSP, MST, and centrality algorithms.

• Use std::chrono::high_resolution_clock for high-precision timing.

(b) Memory Usage

• Measure peak memory consumption for CSR storage vs. adjacency list.

• Compare edge storage overhead.

(c) Scalability

• Test increasing graph sizes (10³ → 10� vertices).

• Measure how runtime and memory scale.

(d) Cache Efficiency

• Use hardware counters (perf stat on Linux) to record cache misses and
branch mispredictions.

• Compare row-major CSR access against naive adjacency list traversal.

26.3.3 Example Benchmarking Workflow

Step 1: Prepare Graphs

523

Graph<int> g;
g.load_from_edge_list("dataset/facebook_combined.txt");

Step 2: Time SSSP Execution

auto start = std::chrono::high_resolution_clock::now();
auto dist = dijkstra(g, 0);
auto end = std::chrono::high_resolution_clock::now();
std::cout << "SSSP runtime: "

<< std::chrono::duration_cast<std::chrono::milliseconds>(end-start).count()
<< " ms\n";

Step 3: Repeat for MST

auto start_mst = std::chrono::high_resolution_clock::now();
auto mst_parent = prim(g);
auto end_mst = std::chrono::high_resolution_clock::now();
std::cout << "MST runtime: "

<<
std::chrono::duration_cast<std::chrono::milliseconds>(end_mst-start_mst).count()↪→

<< " ms\n";

Step 4: Compare with Reference Implementations

• Use boost::graph or NetworkX (Python) as baseline for correctness and runtime.

• Calculate speedup factor:

speedup = baseline_time / library_time

524

26.3.4Automation and Reproducibility

• Scripted Benchmarks: Write shell or Python scripts to automate dataset
loading, execution, and result collection.

• Reproducibility: Fix random seeds for synthetic graphs and random number
generators in SSSP tests.

• Logging: Record runtime, memory usage, cache metrics, and correctness checks
into CSV or JSON files.

26.3.5 Example Observations

• CSR-based adjacency traversal reduces cache misses and often improves runtime
by 2–5× on large sparse graphs compared to linked adjacency lists.

• Dijkstra with std::priority_queue performs well on medium-sized graphs;
Fibonacci heap implementations yield better asymptotic performance on very
dense graphs but are more complex.

• Multi-threaded centrality computation scales linearly with the number of CPU
cores for large graphs.

Summary:
Testing and benchmarking are crucial for validating the correctness, performance,
and scalability of the high-performance graph library. By applying unit and
integration tests along with systematic benchmarks on both synthetic and real-world
datasets, developers gain confidence in the library’s robustness and can quantify
performance improvements introduced by CSR memory layout and Modern C++
optimizations.

Chapter 27

Project B — Mini Compiler /
Interpreter

27.1 Lexing and Parsing with Modern C++
(Recursive Descent, Parser Combinators)

In Project B — Mini Compiler/Interpreter, the first step toward building a fully
functional language processor is the front-end, which consists of lexical analysis
(lexing) and syntax analysis (parsing). This section discusses approaches using
Modern C++, focusing on recursive descent parsers and parser combinators,
providing type-safe, flexible, and maintainable implementations.

27.1.1 Lexical Analysis (Lexer)

Lexical analysis converts a raw source code string into a stream of tokens, each
representing meaningful elements such as keywords, identifiers, literals, and operators.

525

526

1. Lexer Goals

• Tokenization: Split input into discrete tokens.

• Position Tracking: Track line and column numbers for error reporting.

• Error Handling: Detect invalid characters or malformed tokens.

• Efficiency: Use contiguous memory and minimal heap allocations.

2. C++ Implementation Strategy

• Use std::string_view to avoid unnecessary string copies.

• Represent tokens with enum class TokenType and a lightweight struct
Token.

Example Token Struct:

enum class TokenType { Identifier, Number, Plus, Minus, Star, Slash, LParen,
RParen, End };↪→

struct Token {
TokenType type;
std::string_view lexeme;
int line, column;

};

• Lexer class maintains a current pointer and provides next_token() API.

Example Lexer Skeleton:

527

class Lexer {
public:

explicit Lexer(std::string_view src) : source(src), pos(0), line(1),
column(1) {}↪→

Token next_token() {
skip_whitespace();
if (pos >= source.size()) return {TokenType::End, "", line, column};

char c = source[pos];
if (std::isdigit(c)) return number();
if (std::isalpha(c)) return identifier();
switch(c) {

case '+': return simple_token(TokenType::Plus);
case '-': return simple_token(TokenType::Minus);
// ... other single-character tokens

}
throw std::runtime_error("Unknown character at line " +

std::to_string(line));↪→

}

private:
std::string_view source;
size_t pos;
int line, column;

void skip_whitespace() { while (std::isspace(source[pos])) advance(); }
void advance() { ++pos; ++column; }
Token simple_token(TokenType t) { return {t, source.substr(pos++,1), line,

column++}; }↪→

};

528

• This design ensures lightweight tokenization with minimal copying and
memory allocations.

27.1.2 Syntax Analysis (Parser)

Parsing transforms the token stream into a syntax tree or AST (Abstract Syntax
Tree) according to the grammar of the language.

1. Recursive Descent Parsing

• Each grammar rule is implemented as a function.

• Functions recursively call each other following the grammar hierarchy.

• Offers clarity and maintainability for small to medium grammars.

Example: Parsing arithmetic expressions

struct Expr { virtual ~Expr() = default; };
struct BinaryExpr : Expr { char op; Expr* lhs; Expr* rhs; };

class Parser {
public:

explicit Parser(std::vector<Token>& tokens) : tokens(tokens), pos(0) {}

Expr* parse_expression() { return parse_term(); }

private:
std::vector<Token>& tokens;
size_t pos;

Expr* parse_term() {
Expr* left = parse_factor();

529

while (match({TokenType::Plus, TokenType::Minus})) {
char op = current().lexeme[0];
advance();
Expr* right = parse_factor();
left = new BinaryExpr{op, left, right};

}
return left;

}

Expr* parse_factor() {
Expr* left = parse_primary();
while (match({TokenType::Star, TokenType::Slash})) {

char op = current().lexeme[0];
advance();
Expr* right = parse_primary();
left = new BinaryExpr{op, left, right};

}
return left;

}

Expr* parse_primary() {
if (match(TokenType::Number)) return new

NumberExpr{std::stoi(current().lexeme)};↪→

if (match(TokenType::LParen)) {
advance();
Expr* e = parse_expression();
expect(TokenType::RParen);
return e;

}
throw std::runtime_error("Unexpected token");

}

530

bool match(TokenType t) { return current().type == t; }
bool match(std::initializer_list<TokenType> types) {

for (auto t : types) if (current().type == t) return true;
return false;

}
void advance() { pos++; }
void expect(TokenType t) { if (!match(t)) throw

std::runtime_error("Expected token"); else advance(); }↪→

Token current() { return tokens[pos]; }
};

• Advantages:

– Simple and readable.
– Easy to debug and extend.
– Matches Modern C++ style with strong typing and RAII-friendly

memory handling.

2. Parser Combinators

For more functional and flexible parsing, parser combinators provide
higher-order constructs to combine small parsers into complex ones.

• Each parser is a callable object returning success/failure with matched
tokens.

• Combines small units like literal("if"), number(), and identifier()
into complex expressions.

• Allows modular and reusable parsing components.

Example Combinator Skeleton

531

template<typename T>
struct ParserResult { T value; bool success; };

auto number_parser = [](Lexer& lex) -> ParserResult<int> {
Token t = lex.next_token();
if (t.type == TokenType::Number) return {std::stoi(std::string(t.lexeme)),

true};↪→

return {0, false};
};

• Parsers can be combined with functions like sequence, choice, and many to
parse lists, expressions, or statements.

27.1.3Modern C++ Features Applied

• std::variant and std::unique_ptr for AST node storage.

• std::string_view to avoid unnecessary copying of lexemes.

• Templates and constexpr to parameterize numeric types and literal handling.

• RAII and smart pointers for memory-safe AST trees.

• Optional parallel lexing for large input using threads and token chunks
(advanced).

27.1.4 Best Practices

1. Keep lexer and parser modular for easy testing.

2. Use iterators or ranges for token streams to integrate with STL algorithms.

532

3. Maintain clear error messages with line and column info.

4. Use unit tests for individual grammar rules and tokens.

5. Separate AST construction from parsing logic to enable transformations and
optimizations later.

Summary:
This section establishes the foundation for a mini compiler/interpreter by
combining lexical analysis and syntax analysis using Modern C++ techniques.
Recursive descent parsing provides simplicity and clarity for grammar rules, while
parser combinators allow modularity and composability. Together with lightweight
tokenization, std::string_view, and smart pointers, these approaches enable the
creation of a robust, maintainable, and high-performance compiler front-end.

533

27.2AST Transformations, Control-Flow Algorithms,
Simple Optimization Passes

Once a mini compiler/interpreter has successfully parsed source code into an
Abstract Syntax Tree (AST), the next stage is AST transformations, control-
flow management, and basic optimization passes. These steps are critical for
improving runtime efficiency, preparing code for interpretation or code generation, and
enforcing semantic correctness. Modern C++ provides tools for implementing these
transformations in a type-safe, efficient, and maintainable manner.

27.2.1AST Representation

The AST is a tree structure representing the syntactic structure of the program.
Each node corresponds to a language construct, such as expressions, statements, or
function definitions.

Node Types and Storage

• Use std::variant or polymorphic class hierarchy for node types:

– Expression (binary, unary, literals, variables)

– Statement (assignment, if, while, return)

– Function (parameters, body, return type)

Example C++ AST Node Hierarchy:

struct Expr { virtual ~Expr() = default; };
struct BinaryExpr : Expr { char op; std::unique_ptr<Expr> lhs, rhs; };
struct LiteralExpr : Expr { int value; };

534

struct VariableExpr : Expr { std::string name; };

struct Stmt { virtual ~Stmt() = default; };
struct ExprStmt : Stmt { std::unique_ptr<Expr> expr; };
struct IfStmt : Stmt {

std::unique_ptr<Expr> condition;
std::unique_ptr<Stmt> then_branch;
std::unique_ptr<Stmt> else_branch;

};
struct WhileStmt : Stmt { std::unique_ptr<Expr> condition; std::unique_ptr<Stmt>

body; };↪→

• Memory safety is ensured using std::unique_ptr, which manages ownership
and prevents leaks.

• Traversal is done via visitor patterns or recursive functions.

27.2.2AST Transformations

Transformations modify the AST to improve clarity, enforce semantics, or prepare for
code generation. Common transformations include:

1. Constant Folding

• Compute expressions with constant operands at compile-time.

• Reduces runtime computation.

Example:

535

Expr* fold_constants(BinaryExpr* node) {
if (auto lhs = dynamic_cast<LiteralExpr*>(node->lhs.get())) {

if (auto rhs = dynamic_cast<LiteralExpr*>(node->rhs.get())) {
int val = (node->op == '+') ? lhs->value + rhs->value : lhs->value

- rhs->value;↪→

return new LiteralExpr{val};
}

}
return node; // return original if not foldable

}

2. Algebraic Simplifications

• Transform x * 1 → x, x + 0 → x, x * 0 → 0.

• Applied recursively during AST traversal.

3. Dead Code Elimination

• Remove statements or branches that are never executed, e.g., if (false) {
... }.

• Reduces AST size and improves interpreter performance.

27.2.3 Control-Flow Algorithms

Control-flow transformations organize the program into a structured flow for
interpretation:

1. CFG Construction

• Construct a Control-Flow Graph (CFG) from the AST: nodes represent
statements or basic blocks; edges represent possible execution paths.

536

• Each branch (if, while) becomes a decision node with outgoing edges.

• Loops are represented as back edges to previous blocks.

Benefits:

• Facilitates analysis of loops, conditional execution, and termination.

• Enables later optimization passes, e.g., constant propagation along paths.

2. Dominator Analysis

• Compute dominators of each block to identify blocks that always precede
others.

• Useful for optimizations like common subexpression elimination.

3. Simple Data-Flow Analysis

• Track variable definitions and uses.

• Detect uninitialized variable usage or unreachable code.

27.2.4 Simple Optimization Passes

Optimization passes improve efficiency without altering program semantics.

1. Inline Small Functions

• Replace calls to tiny functions with the function body.

• Reduces function call overhead during interpretation.

2. Loop Unrolling (Optional)

537

• For fixed-iteration loops, expand body multiple times.

• Improves interpreter efficiency by reducing branching overhead.

3. Expression Simplification

• Apply constant folding and algebraic simplification globally across
AST.

• Combine multiple arithmetic transformations in a single pass for speed.

Pass Manager Pattern (C++ Example):

class ASTOptimizer {
public:

void run(std::unique_ptr<Stmt>& root) {
fold_constants(root);
simplify_expressions(root);
eliminate_dead_code(root);

}
private:

void fold_constants(std::unique_ptr<Stmt>& node) { /* recursive traversal
*/ }↪→

void simplify_expressions(std::unique_ptr<Stmt>& node) { /* ... */ }
void eliminate_dead_code(std::unique_ptr<Stmt>& node) { /* ... */ }

};

• Passes are modular, enabling users to add or remove transformations as
needed.

27.2.5Modern C++ Techniques Applied

• std::unique_ptr and RAII for AST memory safety.

538

• std::variant and std::visit for type-safe node handling.

• Recursive and iterative traversal for transformations.

• Optional template-based numeric literals for compile-time evaluation in
constant folding.

• Clear visitor or pass-manager pattern separates concerns: parsing, AST
construction, optimization, and interpretation.

Summary:
This section introduces AST transformations, control-flow algorithms, and
simple optimization passes as the second stage of a mini compiler/interpreter.
By constructing a Control-Flow Graph, applying constant folding, dead code
elimination, and algebraic simplifications, and leveraging Modern C++ features,
the compiler front-end becomes robust, maintainable, and efficient. These steps
ensure that the AST is ready for execution or code generation, providing a solid
foundation for semantic analysis and further optimization passes.

539

27.3 Exercises — Generate Three-Address Code,
Simple Register Allocation

After parsing the source code and performing AST transformations and basic
optimizations, the next step in Project B — Mini Compiler/Interpreter is
generating an intermediate representation (IR) and managing register allocation.
These exercises help solidify understanding of code generation, low-level execution
planning, and resource management, all crucial for compiler design.

27.3.1 Three-Address Code (TAC) Generation

Three-Address Code (TAC) is a widely used intermediate representation in
compilers. Each instruction typically has at most three operands, which may be
variables, constants, or temporaries:

x = y + z
t1 = a * b
t2 = t1 + c

1. Goals of TAC

• Simplifies complex expressions into a linear sequence of simple operations.

• Facilitates register allocation and optimization passes.

• Acts as a bridge between AST-level constructs and low-level machine
code or bytecode.

2. Implementing TAC in Modern C++

• Define an enum for opcode types:

540

enum class OpCode { Add, Sub, Mul, Div, Load, Store };

• Define a structure for TAC instructions:

struct TACInstr {
OpCode op;
std::string dest;
std::string lhs;
std::string rhs; // empty for unary ops or loads/stores

};

• Recursive traversal of the AST generates TAC instructions for each
expression node.

Example: Binary Expression Generation

std::vector<TACInstr> tac_instructions;
int temp_counter = 0;

std::string generate_expr(Expr* expr) {
if (auto bin = dynamic_cast<BinaryExpr*>(expr)) {

std::string lhs = generate_expr(bin->lhs.get());
std::string rhs = generate_expr(bin->rhs.get());
std::string temp = "t" + std::to_string(temp_counter++);
OpCode op = (bin->op == '+') ? OpCode::Add : OpCode::Sub;
tac_instructions.push_back({op, temp, lhs, rhs});
return temp;

}
if (auto lit = dynamic_cast<LiteralExpr*>(expr)) {

541

return std::to_string(lit->value);
}
if (auto var = dynamic_cast<VariableExpr*>(expr)) {

return var->name;
}
throw std::runtime_error("Unsupported expression type");

}

• Key Advantages:

– Each TAC instruction is simple and uniform.

– Easy to map temporaries to physical registers or stack locations.

– Facilitates subsequent optimization passes, such as common
subexpression elimination.

27.3.2 Simple Register Allocation

After generating TAC, we must decide where each temporary or variable resides
during execution: in a CPU register or memory. Even in a small interpreter,
simulating register allocation improves performance and introduces compiler
design principles.

1. Linear Scan Allocation (Simplest Strategy)

• Maintain a fixed number of virtual registers.

• Assign temporaries to registers in the order of first appearance, reusing
freed registers when a temporary goes out of scope.

• Track live ranges of temporaries to avoid conflicts.

542

Example Linear Scan Allocation:

std::unordered_map<std::string, int> reg_map;
std::vector<bool> reg_free(8, true); // assume 8 registers

int allocate_register(const std::string& temp) {
for (int i = 0; i < reg_free.size(); ++i) {

if (reg_free[i]) {
reg_free[i] = false;
reg_map[temp] = i;
return i;

}
}
throw std::runtime_error("No registers available, spill to memory");

}

void free_register(const std::string& temp) {
int reg = reg_map[temp];
reg_free[reg] = true;
reg_map.erase(temp);

}

2. Live Range Tracking

• Determine when each temporary starts and ends usage in TAC
instructions.

• Free registers as soon as a temporary is no longer needed.

• Enables reuse of limited registers, avoiding unnecessary memory access.

543

27.3.3 Combined Exercise Workflow

1. Generate TAC:

• Traverse the AST of expressions and statements.

• Produce sequential three-address code with temporaries.

2. Perform Register Allocation:

• Assign each temporary to a virtual register.

• Reuse registers when live ranges end.

3. Optional Enhancements:

• Implement spilling: move temporaries to a stack if registers are full.

• Track basic blocks for more advanced allocation strategies.

Example TAC Output After Allocation:

t0 = a + b // t0 in R0
t1 = t0 * c // t1 in R1
x = t1 // store R1 to memory location of x

27.3.4 Learning Outcomes

• Understand TAC as a bridge between AST and executable code.

• Practice register allocation and resource management in a compiler context.

• Appreciate the interplay of algorithmic design (live ranges, linear scan) and
low-level execution concerns.

544

• Develop a strong foundation for further optimizations and eventually machine
code generation or bytecode interpreters.

Summary:
This section guides readers through exercises that generate three-address code
from ASTs and implement simple register allocation strategies. By combining
TAC generation with linear scan allocation, students learn practical
compiler construction techniques while applying Modern C++ features like
std::unique_ptr, std::unordered_map, and type-safe enums. These exercises
serve as a bridge between semantic analysis and the execution/runtime phase,
reinforcing key principles of compiler design.

Chapter 28

Project C — Algorithmic Trading
Backtester (example of time-series
algorithms)

28.1 Streaming Data Algorithms, Sliding Windows,
Online Learning Sketches

In Project C — Algorithmic Trading Backtester, handling time-series financial
data efficiently is crucial. Real-world financial data streams are continuous, high-
frequency, and potentially unbounded, requiring specialized algorithms to
compute metrics, detect patterns, and update strategies without storing the entire
history. Modern C++ provides the tools to implement these algorithms efficiently,
safely, and in a parallelizable manner.

545

546

28.1.1 Streaming Data Algorithms

Streaming algorithms process data points incrementally, updating results as new
points arrive. They are particularly important in algorithmic trading for computing:

• Moving averages (simple, exponential)

• Volatility measures

• Cumulative returns

Key Design Principles:

• Single-pass computation: Avoid multiple traversals over the dataset.

• Bounded memory: Only store the data needed for computations (e.g., window
size).

• Incremental updates: Update statistics efficiently with each new tick or bar.

C++ Implementation Example: Exponential Moving Average (EMA)

class EMA {
double alpha;
double value;
bool initialized = false;

public:
explicit EMA(double alpha_) : alpha(alpha_), value(0.0) {}

double update(double price) {
if (!initialized) {

value = price;

547

initialized = true;
} else {

value = alpha * price + (1 - alpha) * value;
}
return value;

}
};

• Incremental update ensures O(1) time per update.

• No storage of historical prices is needed, making it memory-efficient.

28.1.2 Sliding Window Techniques

Many algorithms require statistics over a fixed-size window, such as:

• Simple moving average (SMA)

• Rolling variance

• Max/min values for technical indicators

Circular Buffer Implementation
C++ offers tools like std::deque or std::vector with a circular buffer logic for
efficient windowing.

class SMA {
std::deque<double> window;
size_t max_size;
double sum = 0.0;

548

public:
explicit SMA(size_t size) : max_size(size) {}

double update(double price) {
window.push_back(price);
sum += price;
if (window.size() > max_size) {

sum -= window.front();
window.pop_front();

}
return sum / window.size();

}
};

• Efficient O(1) update.

• Maintains only the last max_size elements in memory.

• Supports real-time trading simulations without storing the entire history.

28.1.3 Online Learning Sketches

Beyond standard statistical indicators, online learning sketches can summarize large-
scale or unbounded streams:

Count-Min Sketch

• Tracks approximate frequency of events in streaming data.

• Memory-efficient and suitable for high-frequency trade tick counting.

• Useful for detecting unusual trading patterns or spikes.

549

C++ Implementation Highlights:

• Use a 2D array with multiple hash functions.

• Increment counts per observed value.

• Query minimum count as approximate frequency.

class CountMinSketch {
std::vector<std::vector<int>> table;
size_t depth, width;

public:
CountMinSketch(size_t d, size_t w) : depth(d), width(w), table(d,

std::vector<int>(w, 0)) {}↪→

void update(int x) {
for (size_t i = 0; i < depth; ++i) {

size_t idx = hash_combine(i, x) % width;
table[i][idx]++;

}
}

int query(int x) const {
int min_val = INT_MAX;
for (size_t i = 0; i < depth; ++i) {

size_t idx = hash_combine(i, x) % width;
min_val = std::min(min_val, table[i][idx]);

}
return min_val;

}
};

550

• Provides constant memory footprint independent of stream size.

• Errors are bounded probabilistically, often sufficient for algorithmic decision-
making.

28.1.4 Integrating Streaming Algorithms into the Backtester

Design Considerations:

• Iterator-based APIs: Accept std::vector, std::deque, or streaming iterators
to process tick data generically.

• Real-time updates: Each new price triggers recomputation of relevant
indicators.

• Composable statistics: EMA, SMA, and volatility can be combined in a
single pipeline.

• Thread safety: Use std::atomic or locks if computing indicators in parallel
over multiple symbols.

Example Usage in Backtester:

EMA ema(0.1);
SMA sma(20);

for (double price : price_stream) {
double current_ema = ema.update(price);
double current_sma = sma.update(price);
// Use for strategy signals

}

551

28.1.5 Summary

• Streaming data algorithms enable real-time computation on unbounded
datasets with bounded memory.

• Sliding windows allow efficient computation of rolling statistics critical for
trading strategies.

• Online learning sketches, like Count-Min Sketch, allow approximate analytics
on high-frequency streams.

• Modern C++ idioms—RAII, iterators, STL containers, and templates—
facilitate robust, reusable, and efficient implementations.

By mastering these techniques, readers can implement high-performance
backtesting engines capable of simulating and analyzing real-world trading strategies
with minimal memory overhead.

552

28.2 Backtesting Engine Design and Performance
Constraints

Building a robust backtesting engine is a central component of Project C —
Algorithmic Trading Backtester. The engine must simulate historical or
streaming market data, compute indicators efficiently, and evaluate trading
strategies while respecting performance constraints, memory usage, and
reproducibility. Modern C++ provides the tools to implement such engines with high
performance, safety, and modularity.

28.2.1 Core Design Goals

The backtesting engine should satisfy the following design principles:

1. Separation of Concerns

• Data ingestion layer: Reads historical or live price feeds.

• Indicator computation layer: Calculates rolling and streaming indicators
(EMA, SMA, volatility).

• Strategy evaluation layer: Executes user-defined strategies and decision
rules.

• Execution simulation layer: Applies trades, updates positions, and tracks
P&L.

2. High Performance

• Use iterator-based processing and streaming algorithms to minimize
memory overhead.

553

• Prefer cache-friendly data structures (e.g., std::vector for sequential
access).

• Enable parallel computation for multiple symbols using std::thread,
thread pools, or std::execution::par.

3. Modularity and Extensibility

• Each component should have clear APIs and be replaceable.

• New indicators, strategies, or risk models can be added without rewriting the
core engine.

4. Reproducibility

• Use seeded random number generators for stochastic simulations.

• Maintain deterministic order of operations for backtesting across runs.

28.2.2 Engine Architecture

A typical backtesting engine can be represented in layered modules:

1. Data Layer

• Handles streaming or historical tick data.

• Implements sliding windows for rolling metrics.

• Uses memory-efficient containers: std::deque for fixed-size windows,
std::vector for time series.

554

struct PriceBar {
double open, high, low, close;
std::chrono::system_clock::time_point timestamp;

};
std::vector<PriceBar> historical_data;

2. Indicator Layer

• Computes technical indicators incrementally.

• Maintains minimal state variables to update efficiently.

• Supports composition for multiple indicators in a pipeline.

EMA ema_short(0.1);
EMA ema_long(0.05);
for (auto& bar : historical_data) {

double ema_s = ema_short.update(bar.close);
double ema_l = ema_long.update(bar.close);
// feed signals into strategy

}

3. Strategy Layer

• Accepts indicators and market data.

• Executes signal generation (buy, sell, hold).

• Can be templated or abstracted using std::function for flexibility.

555

std::function<void(const PriceBar&, double, double)> strategy =
[](const PriceBar& bar, double ema_s, double ema_l) {

if (ema_s > ema_l) { /* signal buy */ }
else { /* signal sell */ }

};

4. Execution Layer

• Simulates order fills, position management, and transaction costs.

• Tracks cumulative profit/loss, maximum drawdown, and portfolio
statistics.

28.2.3 Performance Constraints

Efficiency is paramount in high-frequency or multi-symbol backtesting. Key constraints
include:

1. Time Complexity

• Indicators and strategies should update in O(1) per tick when possible.

• Avoid recomputation of full historical series for each tick.

2. Memory Usage

• Maintain only necessary historical data, e.g., windowed values for rolling
indicators.

• Use move semantics, std::unique_ptr, and cache-aligned structures.

3. Parallelism

556

• Symbol-level parallelism: Compute indicators for different symbols
concurrently.

• Strategy-level parallelism: Run multiple strategies in parallel on the
same data.

4. Profiling and Bottleneck Analysis

• Use profilers (perf, gprof) to detect slow paths.

• Identify memory allocation hotspots or excessive copying.

• Optimize inner loops in indicator calculations.

28.2.4Modern C++ Techniques Applied

• RAII and smart pointers for safe memory management.

• std::vector, std::deque, std::array for cache-friendly access.

• std::execution policies for parallel algorithm execution.

• Templates and std::function for flexible strategy and indicator integration.

• Move semantics to reduce copying of PriceBar or indicator objects.

28.2.5 Example Engine Loop

for (auto& bar : historical_data) {
// Update indicators
double ema_s = ema_short.update(bar.close);
double ema_l = ema_long.update(bar.close);

557

// Evaluate strategy
strategy(bar, ema_s, ema_l);

// Simulate execution and update P&L
execution_engine.process(bar);

}

• Incremental updates keep the engine O(n) for n ticks.

• Supports multi-symbol processing by replicating the above loop per symbol
with optional parallelization.

28.2.6 Summary

The backtesting engine is designed for efficiency, modularity, and scalability:

• Handles streaming and historical market data using incremental, memory-
efficient algorithms.

• Computes technical indicators and evaluates strategies in real-time or
simulated-time.

• Respects performance constraints through cache-aware data structures,
O(1) updates, and optional parallelism.

• Provides a framework for experimentation with algorithmic trading strategies
in a safe and reproducible C++ environment.

This design ensures that readers can test, refine, and analyze strategies efficiently,
preparing them for production-ready trading engines or further extensions like risk
modeling and portfolio optimization.

558

28.3 Exercises — Implement Moving Average
Crossover Strategy, Evaluate Latency

The final step in Project C — Algorithmic Trading Backtester is a hands-on
exercise that combines streaming data processing, indicator computation,
and strategy evaluation. The moving average crossover strategy is a classic
algorithmic trading approach, and this exercise also emphasizes performance
measurement, including latency analysis.

28.3.1Moving Average Crossover Strategy

The strategy is based on two exponential moving averages (EMAs) with different
window lengths:

• Short-term EMA (ema_short): reacts quickly to recent price changes.

• Long-term EMA (ema_long): smooths out fluctuations and represents the
trend.

Trading logic:

1. Buy signal: short-term EMA crosses above long-term EMA.

2. Sell signal: short-term EMA crosses below long-term EMA.

C++ Implementation:

class EMACrossoverStrategy {
EMA ema_short;
EMA ema_long;
bool position_open = false; // tracks if currently holding a position

559

public:
EMACrossoverStrategy(double alpha_short, double alpha_long)

: ema_short(alpha_short), ema_long(alpha_long) {}

void update(double price) {
double short_val = ema_short.update(price);
double long_val = ema_long.update(price);

if (!position_open && short_val > long_val) {
position_open = true;
execute_order("BUY", price);

} else if (position_open && short_val < long_val) {
position_open = false;
execute_order("SELL", price);

}
}

void execute_order(const std::string& side, double price) {
// Simulate order execution
std::cout << side << " at " << price << "\n";

}
};

• Incremental EMA updates allow O(1) per tick computation.

• The position_open flag prevents repeated orders while the trend continues.

28.3.2 Integrating with the Backtesting Engine

The strategy is integrated into the backtesting loop:

560

EMACrossoverStrategy strategy(0.1, 0.05);

auto start = std::chrono::high_resolution_clock::now();
for (const auto& bar : price_stream) {

strategy.update(bar.close);
}
auto end = std::chrono::high_resolution_clock::now();

std::chrono::duration<double, std::milli> latency = end - start;
std::cout << "Total processing time: " << latency.count() << " ms\n";

• price_stream can be historical data or simulated ticks.

• High-resolution clock measures latency per run, critical for high-frequency
backtesting.

28.3.3 Evaluating Latency

Latency evaluation ensures the strategy is efficient enough for real-time or large-
scale simulations.

1. Metrics

• Average latency per tick: total processing time divided by number of
ticks.

• Maximum latency spike: identifies potential bottlenecks in updates.

• Memory overhead: ensure fixed-size sliding windows or EMAs do not grow
unbounded.

2. Optimization Tips

561

(a) Minimize memory allocations by pre-allocating buffers.

(b) Use cache-friendly data structures, e.g., std::vector over std::list.

(c) Leverage parallelism if testing multiple symbols simultaneously.

(d) Profile hot loops with tools like perf or gprof.

Example latency calculation:

double avg_latency_ms = latency.count() / price_stream.size();
std::cout << "Average latency per tick: " << avg_latency_ms << " ms\n";

28.3.4Advanced Extensions

After mastering the basic moving average crossover, students can experiment with:

• Multi-symbol strategies: run multiple EMA crossovers concurrently.

• Alternative indicators: Bollinger Bands, RSI, MACD.

• Online parameter tuning: adjust alpha_short and alpha_long dynamically
based on volatility.

• Transaction cost simulation: account for slippage and commission in order
execution.

28.3.5 Learning Outcomes

• Practical implementation of a classic algorithmic trading strategy.

• Understanding of incremental computation and streaming data handling.

• Measuring and optimizing latency and memory usage in C++.

562

• Gaining experience in integrating multiple modules: data feed, indicator
computation, strategy logic, and execution simulation.

Summary:
This exercise demonstrates the full pipeline of algorithmic backtesting: streaming
data ingestion, real-time indicator computation, strategy execution, and performance
evaluation. By implementing the moving average crossover strategy and
evaluating latency, readers gain hands-on experience in high-performance, real-time
algorithmic systems using Modern C++ idioms.

Part VIII

Testing, Reproducibility & Research
Practices

563

Chapter 29

Testing Algorithm Correctness in
C++

29.1 Property-Based Testing, Fuzzing Inputs,
Determinism in Tests

In Chapter 1 — Testing Algorithm Correctness in C++, property-based
testing and fuzzing are essential techniques to ensure that algorithms behave correctly
across a wide range of inputs, including edge cases. Modern C++ provides the tools
to implement these testing paradigms effectively, allowing developers to write robust,
deterministic, and reproducible tests.

29.1.1 Property-Based Testing

Property-based testing (PBT) focuses on general properties of an algorithm
rather than specific input/output pairs. Instead of checking for a single expected result,

565

566

the test verifies that certain invariants hold for all valid inputs.
Examples of Properties:

• Sorting algorithm: Output must be non-decreasing and contain the same
elements as the input.

• Graph traversal: Every reachable node is visited exactly once.

• Mathematical functions: Factorial of n must be n! and always positive.

C++ Implementation Example using Templates:

#include <vector>
#include <algorithm>
#include <cassert>
#include <random>

template<typename Func>
void test_sorting(Func sort_fn, size_t num_tests = 100) {

std::mt19937 rng(42); // deterministic seed
std::uniform_int_distribution<int> dist(-1000, 1000);

for (size_t t = 0; t < num_tests; ++t) {
std::vector<int> data(100);
for (auto& x : data) x = dist(rng);

auto original = data;
sort_fn(data);

// Property 1: Sorted output
assert(std::is_sorted(data.begin(), data.end()));

// Property 2: Same elements

567

std::sort(original.begin(), original.end());
assert(data == original);

}
}

• Determinism: Using a fixed random seed ensures reproducible tests.

• Generality: Tests a wide range of inputs automatically.

• Extensibility: Can be adapted for trees, graphs, and other data structures.

29.1.2 Fuzzing Inputs

Fuzzing is the automated generation of randomized, edge-case inputs to detect
bugs, crashes, or unexpected behavior.

• Particularly useful for algorithms with complex invariants (e.g., graph
algorithms, parsing).

• Helps uncover integer overflows, out-of-bounds access, and logic errors.

C++ Example: Fuzzing a Graph Algorithm

#include <vector>
#include <random>
#include <cassert>

void fuzz_bfs() {
std::mt19937 rng(123);
std::uniform_int_distribution<int> nodes_dist(1, 50);

568

int n = nodes_dist(rng);
std::vector<std::vector<int>> adj(n);

std::uniform_int_distribution<int> edge_dist(0, n-1);
for (int i = 0; i < n * 2; ++i) {

int u = edge_dist(rng);
int v = edge_dist(rng);
adj[u].push_back(v);

}

std::vector<bool> visited(n, false);
std::vector<int> queue = {0};
visited[0] = true;
while (!queue.empty()) {

int node = queue.back(); queue.pop_back();
for (int neigh : adj[node]) {

if (!visited[neigh]) {
visited[neigh] = true;
queue.push_back(neigh);

}
}

}

assert(std::count(visited.begin(), visited.end(), true) <= n);
}

• Automatically explores edge cases that a human tester might overlook.

• Works well with property-based assertions to detect subtle errors.

569

29.1.3Determinism in Tests

Deterministic tests are crucial for reproducibility, especially in research or high-stakes
systems like financial simulations or concurrent algorithms.
Best Practices in C++:

1. Seed all RNGs: Use fixed seeds (std::mt19937 rng(seed)) to reproduce
random sequences.

2. Isolate side effects: Avoid global state that may change between runs.

3. Log inputs and outputs: Store failing test cases for debugging and regression
testing.

4. Encapsulate randomness: Pass RNGs explicitly to functions instead of using
global generators.

void deterministic_test(std::mt19937& rng) {
std::uniform_int_distribution<int> dist(0, 100);
int val = dist(rng); // reproducible
assert(val >= 0 && val <= 100);

}

29.1.4Advantages of Property-Based Testing and Fuzzing

• Covers more cases than manually written unit tests.

• Detects subtle algorithmic bugs in edge cases.

• Improves confidence in correctness of highly optimized or parallel code.

• Supports research reproducibility, allowing other developers or reviewers to
reproduce results exactly.

570

29.1.5 Summary

• Property-based testing focuses on algorithmic invariants, ensuring
correctness across a wide input space.

• Fuzzing systematically generates randomized or extreme inputs to detect
crashes and edge-case failures.

• Deterministic setups with fixed RNG seeds ensure reproducible, verifiable
testing.

• Modern C++ idioms such as templates, STL algorithms, and std::mt19937
make these techniques both efficient and elegant, crucial for robust
algorithm development.

By combining these methods, readers can verify, debug, and validate their C++
algorithms with confidence, preparing them for both research-grade code and high-
performance production systems.

571

29.2Using GoogleTest / QuickCheck-Style Libraries,
CI Integration

Ensuring the correctness of C++ algorithms at scale requires structured testing
frameworks and continuous integration (CI) pipelines. In Chapter 1 — Testing
Algorithm Correctness in C++, this section focuses on leveraging GoogleTest for
unit and integration testing, QuickCheck-style property-based testing libraries
for algorithmic invariants, and integrating them into modern CI workflows.

29.2.1GoogleTest for Unit Testing

GoogleTest (GTest) is a widely-used C++ testing framework that enables:

• Writing unit tests for individual functions or classes.

• Structuring tests into test suites for modular organization.

• Supporting parameterized tests for systematic coverage of multiple inputs.

• Integrating assertions and fatal/non-fatal checks.

Example: Testing a Sorting Algorithm

#include <gtest/gtest.h>
#include <algorithm>
#include <vector>

void my_sort(std::vector<int>& v) {
std::sort(v.begin(), v.end());

}

572

TEST(SortingTest, HandlesRandomData) {
std::vector<int> data = {5, 3, 2, 8, 1};
my_sort(data);
ASSERT_TRUE(std::is_sorted(data.begin(), data.end()));

}

TEST(SortingTest, HandlesEmptyVector) {
std::vector<int> data;
my_sort(data);
ASSERT_TRUE(data.empty());

}

• ASSERT_TRUE stops the test immediately if the condition fails, ensuring
clear failure reports.

• Tests can be grouped into suites (SortingTest), simplifying organization for
complex projects.

29.2.2 QuickCheck-Style Property-Based Testing

QuickCheck-style libraries, such as RapidCheck or Catch2 with property
testing extensions, allow testing properties over automatically generated
random inputs.
Example: Property Test for a Sorting Function

#include <rapidcheck.h>
#include <algorithm>
#include <vector>

void my_sort(std::vector<int>& v) {
std::sort(v.begin(), v.end());

573

}

int main() {
rc::check("Sorted vector preserves elements and is non-decreasing",

[](const std::vector<int>& vec) {
std::vector<int> sorted = vec;
my_sort(sorted);

RC_ASSERT(std::is_sorted(sorted.begin(), sorted.end()));
auto copy = vec;
std::sort(copy.begin(), copy.end());
RC_ASSERT(sorted == copy);

});
}

• Automatically generates input vectors of varying sizes and values.

• Verifies general properties: sorted order and element preservation.

• Deterministic reproducibility is achieved by fixing the random seed when
needed.

29.2.3 Continuous Integration (CI) Integration

Automating testing with CI ensures tests are run on every commit, catching
regressions early. Modern C++ projects typically integrate GitHub Actions, GitLab
CI, or Jenkins:

1. Install dependencies (GoogleTest, RapidCheck) using CMake or package
managers:

574

GitHub Actions example
jobs:

build-and-test:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout!@!v3
- name: Setup CMake
uses: lukka/get-cmake!@!v4

- name: Build
run: cmake -S . -B build && cmake --build build

- name: Run tests
run: ctest --test-dir build --output-on-failure

1. Automated Test Reporting

• CI systems collect pass/fail reports for each test suite.

• Property-based tests log failed input sequences, enabling debugging and
reproducibility.

2. Benefits of CI Integration

• Enforces regression safety across commits.

• Encourages consistent testing practices among team members.

• Ensures cross-platform correctness, since tests can run on Linux, macOS,
and Windows agents.

29.2.4 Combining Unit Tests and Property-Based Tests

A robust strategy for C++ algorithm correctness combines:

575

• Unit tests (GTest) for deterministic and small-scope correctness.

• Property-based tests (RapidCheck/QuickCheck style) for generalized invariants
and edge cases.

• CI pipelines for continuous verification and reproducibility.

Example Integration Workflow:

1. Write deterministic unit tests for core functions.

2. Write property-based tests for high-level invariants.

3. Configure CI to build the project and run all tests automatically.

4. Collect performance metrics and coverage reports to maintain code quality.

29.2.5 Summary

• GoogleTest provides structured unit and integration testing, with clear
assertions and test suite management.

• QuickCheck-style property testing automatically verifies algorithmic
invariants across randomized inputs, complementing traditional tests.

• CI integration ensures continuous correctness, cross-platform
reproducibility, and early bug detection.

• Modern C++ idioms, including templates, STL containers, and
deterministic RNGs, make these testing strategies both efficient and
maintainable.

By combining these approaches, developers can build high-assurance C++
algorithms, suitable for research, production, or critical applications requiring
deterministic and reproducible results.

Chapter 30

Reproducible Experiments & Data
Sets

30.1Dataset Management, Synthetic Data
Generators (C++), Seeding, and Reporting
Standards

In Chapter 2 — Reproducible Experiments & Data Sets, effective
experimentation in C++ relies on careful management of datasets, the use of
synthetic data generators, and standardized reporting practices. Proper
dataset handling ensures that experiments are repeatable, verifiable, and
comparable.

576

577

30.1.1Dataset Management

A well-organized dataset strategy is crucial for algorithm evaluation and
benchmarking. Key principles include:

• Separation of raw and processed data: Keep original datasets immutable to
allow reproducible transformations.

• Versioning datasets: Tag datasets with version numbers to track changes and
maintain experiment history.

• Metadata documentation: Include information about dataset size, distribution,
range of values, and any preprocessing steps.

• Efficient storage in C++: Use STL containers (std::vector, std::array) for
in-memory experiments, or memory-mapped files (mmap) for very large datasets.

Example: Simple Dataset Loader

#include <vector>
#include <fstream>
#include <sstream>
#include <string>
#include <iostream>

std::vector<int> load_dataset(const std::string& filename) {
std::vector<int> data;
std::ifstream file(filename);
std::string line;
while (std::getline(file, line)) {

std::istringstream iss(line);
int value;
while (iss >> value) {

578

data.push_back(value);
}

}
return data;

}

• Ensures consistent and reproducible loading across experiments.

• Provides a foundation for synthetic data generation and benchmarking.

30.1.2 Synthetic Data Generators in C++

Synthetic datasets are essential for:

• Testing algorithms on controlled distributions.

• Evaluating performance under edge cases or stress scenarios.

• Scaling experiments beyond the limits of real-world datasets.

Using <random> for Deterministic Data Generation:

#include <random>
#include <vector>
#include <iostream>

std::vector<int> generate_uniform_data(size_t n, int min_val, int max_val, unsigned
seed = 42) {↪→

std::mt19937 rng(seed); // deterministic seed
std::uniform_int_distribution<int> dist(min_val, max_val);
std::vector<int> data(n);
for (auto& x : data) x = dist(rng);

579

return data;
}

int main() {
auto data = generate_uniform_data(100, 0, 1000);
for (auto x : data) std::cout << x << " ";

}

• Deterministic seeding ensures reproducibility.

• Supports different distributions: uniform, normal, binomial, etc.

• Easily integrated into unit tests, property-based tests, or benchmarking
scripts.

30.1.3 Seeding and Determinism

Deterministic experiments require careful control of random number generation:

• Always initialize RNGs with fixed seeds for reproducibility.

• For parallel algorithms, consider thread-local RNGs to avoid sequence
collisions.

• Log the seed used for each experiment to enable exact replication.

Example: Parallel RNG with Thread Safety

#include <random>
#include <thread>
#include <vector>
#include <iostream>

580

void generate_thread_data(int seed, std::vector<int>& out) {
std::mt19937 rng(seed);
std::uniform_int_distribution<int> dist(0, 100);
for (auto& x : out) x = dist(rng);

}

int main() {
std::vector<int> data(100);
std::thread t(generate_thread_data, 1234, std::ref(data));
t.join();

}

• Guarantees reproducible results even in concurrent environments.

• Critical for experiments involving randomized algorithms or Monte Carlo
simulations.

30.1.4 Reporting Standards

To support reproducibility and transparency:

1. Log dataset details: Include name, size, version, and source.

2. Document preprocessing steps: Normalization, filtering, or feature
transformations.

3. Store random seeds and parameters: Include seeds for RNGs, number of
iterations, and hyperparameters.

4. Automate experiment reports: Generate logs, summaries, or CSV files for
result tracking.

581

5. Provide metadata for benchmarks: Include runtime, memory usage, and
environment details (OS, compiler, flags).

Example: Basic Experiment Logging

#include <fstream>
#include <iostream>

void log_experiment(const std::string& dataset, unsigned seed, double runtime) {
std::ofstream log("experiment_log.csv", std::ios::app);
log << dataset << "," << seed << "," << runtime << "\n";

}

• Facilitates reproducibility and peer verification.

• Enables automated post-processing and comparison across multiple
experiments.

30.1.5 Summary

• Effective dataset management ensures experiments are consistent and
reproducible.

• Synthetic data generators provide controlled and diverse inputs for robust
testing.

• Seeding and deterministic RNGs guarantee repeatable results, even in
parallel or stochastic settings.

• Standardized reporting supports transparency, traceability, and reproducibility
of experiments.

582

By combining these principles, C++ researchers and developers can maintain high-
quality, reproducible experiments, allowing reliable comparison, validation, and
publication of results.

583

30.2 Publishing Code and Experiments — Packaging
with CMake, Docker, and Minimal
Reproducibility Checklist

In Chapter 2 — Reproducible Experiments & Data Sets, ensuring that
experiments are not only reproducible locally but also shareable with collaborators or
reviewers requires structured packaging, containerization, and documentation.
This section focuses on CMake-based project packaging, Docker containers, and
a minimal reproducibility checklist for C++ experimental code.

30.2.1 Packaging C++ Experiments with CMake

CMake provides a cross-platform build system that simplifies compilation,
dependency management, and installation of experimental projects. Proper packaging
ensures others can build and run your experiments consistently.
Key practices:

• Organize source code and headers into src/ and include/ directories.

• Use modern CMake to declare dependencies, target properties, and testing.

• Provide options for dataset paths, build types, and compiler flags.

Example: Basic CMake Setup for an Experiment

cmake_minimum_required(VERSION 3.22)
project(AlgorithmExperiments VERSION 1.0 LANGUAGES CXX)

set(CMAKE_CXX_STANDARD 23)

584

set(CMAKE_CXX_STANDARD_REQUIRED ON)

Include directories
include_directories(include)

Source files
file(GLOB SOURCES src/*.cpp)

Executable target
add_executable(experiment ${SOURCES})

Link with GoogleTest for testing
find_package(GTest REQUIRED)
target_link_libraries(experiment PRIVATE GTest::gtest_main)

enable_testing()
add_test(NAME RunExperiment COMMAND experiment)

• Allows cross-platform builds with a single command: cmake -S . -B build
&& cmake --build build.

• Supports integration with CI/CD pipelines for automated testing.

30.2.2 Containerization with Docker

Docker ensures that experiments run identically on any system, encapsulating the
operating system, compilers, libraries, and datasets.
Basic Docker Workflow:

1. Create a Dockerfile specifying the environment:

585

FROM ubuntu:24.04

Install C++ toolchain
RUN apt-get update && apt-get install -y build-essential cmake git

Copy project files
COPY . /workspace
WORKDIR /workspace

Build the project
RUN cmake -S . -B build && cmake --build build

Run experiments by default
CMD ["./build/experiment"]

1. Build and run the container:

docker build -t cpp_experiment .
docker run --rm cpp_experiment

• Guarantees reproducibility across OS versions and compiler setups.

• Encapsulates dependencies such as libraries, data files, and runtime
settings.

• Supports scalable deployment, e.g., running multiple experiments in parallel
containers.

586

30.2.3Minimal Reproducibility Checklist

To make experiments reproducible and shareable, follow a structured checklist:

1. Code and Build Environment

• Provide a complete CMakeLists.txt or build script.

• Include compiler version, flags, and third-party dependencies.

2. Data and Randomness

• Provide dataset files or a synthetic data generator with fixed seeds.

• Document preprocessing steps and transformations.

3. Execution Instructions

• Include a README with step-by-step instructions for building and
running experiments.

• Provide parameter defaults and example command lines.

4. Testing

• Include unit tests (GoogleTest) for critical functions.

• Include property-based tests (RapidCheck or similar) for algorithm
invariants.

5. Containerization (Optional but Recommended)

• Provide a Dockerfile or container image for exact reproducibility.

• Ensure all dependencies and tools are version-pinned.

587

6. Logging and Reporting

• Log random seeds, runtime parameters, and environment
information.

• Save experiment outputs in a structured format (CSV, JSON).

30.2.4 Best Practices for Publishing

• Version control: Use Git with tags corresponding to published experiments.

• Archival: Consider hosting the Docker image and code on platforms like Docker
Hub, GitHub, or Zenodo.

• Documentation: Include a detailed README, dataset descriptions, and
experiment scripts.

• Parameterization: Expose configuration via command-line arguments or
configuration files, ensuring reproducibility without code modification.

30.2.5 Summary

• CMake packaging ensures cross-platform builds and dependency management.

• Docker containers encapsulate the environment, guaranteeing reproducibility
across systems.

• A minimal reproducibility checklist covers code, data, testing, execution
instructions, and logging.

• Combining these practices makes experiments reproducible, shareable, and
verifiable, aligning with modern research and industrial standards.

Appendices

Appendix A – C++ Cheat Sheet for Algorithm
Developers
This appendix serves as a compact reference for C++ algorithm developers, focusing
on STL containers, iterators, and common algorithm idioms. It is intended
to provide quick access to frequently used constructs and best practices for writing
modern, high-performance, and maintainable code.

A.1 STL Containers

C++ provides a rich set of containers optimized for different scenarios. Choosing the
right container is crucial for algorithm performance and correctness.

Sequence Containers

588

589

Container Characteristics Typical Use Cases

std::vector<T> Dynamic array, contiguous
memory, fast random access,
amortized O(1) push_back

Storing elements with frequent
access by index, efficient
iteration, use in numeric
algorithms

std::deque<T> Double-ended queue, allows
fast insertion/removal at
both ends

Task scheduling, algorithms
requiring both push_front and
push_back

std::list<T> Doubly-linked list, fast
insertion/removal anywhere,
no random access

Frequent insert/remove
operations, maintaining stable
iterators

std::forward_list<T>Singly-linked list, less
memory than list, forward-
only traversal

Low-memory list operations,
functional-style processing

std::array<T,N> Fixed-size array, contiguous
memory

Compile-time fixed sequences,
low overhead alternatives to
vector

std::string Sequence of characters with
dynamic resizing

Text processing, string
algorithms

Associative Containers

590

Container Characteristics Typical Use Cases

std::set<T> Ordered, unique elements,
typically implemented as
red-black tree

Efficient ordered storage,
uniqueness enforcement

std::map<K,V> Ordered key-value pairs,
unique keys

Lookup tables, ordered
associative arrays

std::multiset<T> Ordered, allows duplicates Counting occurrences with
automatic ordering

std::multimap<K,V> Ordered, allows duplicate
keys

Grouping data with same
keys

std::unordered_set<T> Hash table, unique
elements, average O(1)
lookup

Fast set operations without
ordering

std::unordered_map<K,V>Hash table, unique keys,
average O(1) lookup

High-performance key-value
maps

std::unordered_multiset<T>Hash table, allows
duplicates

Fast counting of duplicate
elements

std::unordered_multimap<K,V>Hash table, allows duplicate
keys

Fast groupings without
ordering

Container Adapters

591

Adapter Underlying Container Notes

std::stack<T> deque (default) LIFO operations

std::queue<T> deque (default) FIFO operations

std::priority_queue<T>vector + heap Always provides largest element at
top

A.2 Iterators

Iterators provide a generalized interface to traverse container elements, abstracting
away container-specific details.

Iterator Categories

Category Capabilities Examples

Input Iterator Read-only, single-pass istream_iterator

Output Iterator Write-only, single-pass ostream_iterator

Forward Iterator Read/write, multi-pass forward_list::iterator

Bidirectional
Iterator

Forward + backward traversal list::iterator,
set::iterator

Random Access
Iterator

Arithmetic operations, constant-
time jumps

vector::iterator,
deque::iterator

592

Common Iterator Operations

auto it = container.begin(); // start iterator
auto end = container.end(); // end iterator
++it; // move forward
--it; // move backward (bidirectional)
*it; // dereference
it + n; // random access (random access iterators)
std::advance(it, n); // move iterator by n positions (generic)

Range-based for Loops

for (auto& x : container) {
// process x

}

A.3 Common Algorithm Idioms

C++ STL provides generic algorithms in <algorithm> and <numeric> headers. Here
are frequent idioms:

Searching

std::find(container.begin(), container.end(), value); // linear search
std::binary_search(container.begin(), container.end(), value); // requires sorted

container↪→

std::find_if(container.begin(), container.end(), predicate);

593

Sorting

std::sort(container.begin(), container.end()); // quicksort/introsort
std::sort(container.begin(), container.end(),

[](auto a, auto b){ return a.score < b.score; }); // custom comparator
std::stable_sort(container.begin(), container.end()); // preserves relative order

Partitioning

auto it = std::partition(container.begin(), container.end(),
[](auto x){ return x % 2 == 0; }); // separates even/odd

Transformations

std::transform(container.begin(), container.end(),
container.begin(),
[](auto x){ return x*x; }); // square elements

Reduction & Accumulation

int sum = std::accumulate(container.begin(), container.end(), 0); // sum
double prod = std::accumulate(container.begin(), container.end(), 1.0,

std::multiplies<>());↪→

594

Set Operations (containers must be sorted for std::set_intersection, etc.)

std::set_union(A.begin(), A.end(), B.begin(), B.end(), std::back_inserter(C));
std::set_intersection(A.begin(), A.end(), B.begin(), B.end(), std::back_inserter(C));
std::set_difference(A.begin(), A.end(), B.begin(), B.end(), std::back_inserter(C));

Lambda Expressions & Function Objects

auto is_even = [](int x){ return x % 2 == 0; };
std::count_if(container.begin(), container.end(), is_even);

Predicate Usage

• Always pass predicates for find_if, count_if, any_of, all_of, etc.

• Enables highly expressive and readable algorithms.

A.4 Performance Tips for Algorithm Developers

1. Prefer vector over list unless frequent insertions/deletions in the
middle are unavoidable.

2. Use reserve() for vector if size known in advance.

3. Pass containers by reference (const&) to avoid copies.

4. Use emplace methods instead of insert when constructing objects in-
place.

595

5. Choose unordered_map/set over map/set for average O(1) lookup when
ordering is not needed.

6. Use std::move semantics to avoid unnecessary copies.

7. Leverage ranges (C++20) for concise pipelines:

#include <ranges>
auto even_squares = vec | std::views::filter([](int x){return x%2==0;})

| std::views::transform([](int x){return x*x;});

A.5 Quick Reference Table: Common STL Algorithms

Algorithm Purpose Notes

std::sort Sort a range O(N log N)

std::stable_sort Stable sort Preserves order of
equal elements

std::partial_sort Top-k elements
sorted

Useful for heaps

std::nth_element k-th element
selection

Partitioning
around k-th
element

std::find Linear search Returns iterator
or end

596

Algorithm Purpose Notes

std::find_if Conditional search Accepts unary
predicate

std::count Count occurrences

std::count_if Count elements
satisfying condition

std::accumulate Sum/reduce

std::transform Apply function to
range

Output can be
same container

std::for_each Apply function, no
return

std::remove/erase Logical removal Requires erase-
remove idiom

std::unique Remove consecutive
duplicates

Usually combined
with erase

std::lower_bound/upper_bound Binary search in
sorted range

Returns iterator

std::min_element/std::max_element Find min/max Returns iterator

std::set_union/intersection
/difference

Set operations

This appendix is intended as a practical toolkit. It assumes familiarity with modern
C++ syntax, templates, and functional-style programming. Keeping this cheat sheet
at hand will help algorithm developers write faster, safer, and more maintainable

597

C++ code in research, systems programming, and competitive programming.

Appendix B – Common Code Templates

This appendix provides ready-to-use C++ templates for frequently used
algorithmic data structures: Disjoint Set Union (DSU), Segment Trees, Fenwick
Trees, and Priority Queue Wrappers. These templates are designed for algorithm
developers to quickly implement efficient solutions for competitive programming,
research projects, or real-world applications.

B.1 Disjoint Set Union (DSU) / Union-Find

Disjoint Set Union is used to maintain partitions of a set and efficiently answer
connectivity queries. The key operations are find and union, often optimized with
path compression and union by size/rank.

struct DSU {
std::vector<int> parent, size;

DSU(int n) : parent(n), size(n, 1) {
for (int i = 0; i < n; ++i) parent[i] = i;

}

int find(int x) {
if (parent[x] != x) parent[x] = find(parent[x]); // Path compression
return parent[x];

}

bool unite(int a, int b) {
a = find(a);

598

b = find(b);
if (a == b) return false; // already in the same set
if (size[a] < size[b]) std::swap(a, b); // Union by size
parent[b] = a;
size[a] += size[b];
return true;

}

bool connected(int a, int b) {
return find(a) == find(b);

}
};

Usage Example:

DSU dsu(10);
dsu.unite(1, 2);
dsu.unite(2, 3);
bool sameSet = dsu.connected(1, 3); // true

Time Complexity: Amortized O(�(n)) per operation, where �(n) is the inverse
Ackermann function.

B.2 Segment Tree (Range Queries / Updates)

Segment Trees are used for efficient range queries and point or range updates.
This template uses a generic type and custom merge function.

template<typename T, typename F>
struct SegmentTree {

int n;
std::vector<T> tree;

599

F merge;
T identity;

SegmentTree(int size, T id, F f) : n(size), identity(id), merge(f) {
tree.assign(2 * n, identity);

}

void build(const std::vector<T>& data) {
for (int i = 0; i < n; ++i) tree[n + i] = data[i];
for (int i = n - 1; i > 0; --i) tree[i] = merge(tree[i<<1], tree[i<<1|1]);

}

void update(int idx, T value) {
idx += n;
tree[idx] = value;
while (idx > 1) {

idx >>= 1;
tree[idx] = merge(tree[idx<<1], tree[idx<<1|1]);

}
}

T query(int l, int r) { // [l, r)
T resL = identity, resR = identity;
l += n; r += n;
while (l < r) {

if (l & 1) resL = merge(resL, tree[l++]);
if (r & 1) resR = merge(tree[--r], resR);
l >>= 1; r >>= 1;

}
return merge(resL, resR);

}
};

600

Usage Example:

auto mergeMax = [](int a, int b){ return std::max(a, b); };
SegmentTree<int, decltype(mergeMax)> seg(10, 0, mergeMax);
seg.update(3, 5);
int maxVal = seg.query(0, 5); // Maximum in range [0, 5)

Time Complexity: O(log n) per query and update.

B.3 Fenwick Tree / Binary Indexed Tree (BIT)

Fenwick Trees support efficient prefix sums and updates. They are often simpler
than segment trees for 1D queries.

struct FenwickTree {
std::vector<int> bit;
int n;

FenwickTree(int size) : n(size) {
bit.assign(n + 1, 0);

}

void update(int idx, int delta) { // Add delta to idx
for (++idx; idx <= n; idx += idx & -idx)

bit[idx] += delta;
}

int query(int idx) { // Prefix sum [0, idx]
int sum = 0;
for (++idx; idx > 0; idx -= idx & -idx)

sum += bit[idx];
return sum;

601

}

int range_query(int l, int r) { // Sum [l, r]
return query(r) - query(l - 1);

}
};

Usage Example:

FenwickTree ft(10);
ft.update(3, 5);
int sum = ft.range_query(0, 5);

Time Complexity: O(log n) per query and update.

B.4 Priority Queue Wrappers

Standard std::priority_queue can be inconvenient for min-heaps or custom types.
A wrapper simplifies usage.

template<typename T, typename Compare = std::less<T>>
struct PQ {

std::priority_queue<T, std::vector<T>, Compare> pq;

void push(T val) { pq.push(val); }
void pop() { pq.pop(); }
T top() { return pq.top(); }
bool empty() { return pq.empty(); }
size_t size() { return pq.size(); }

};

Min-Heap Example:

602

PQ<int, std::greater<int>> minHeap;
minHeap.push(5);
minHeap.push(1);
int smallest = minHeap.top(); // 1
minHeap.pop();

Custom Struct Example:

struct Node { int cost, id; };
auto cmp = [](const Node& a, const Node& b){ return a.cost > b.cost; };
PQ<Node, decltype(cmp)> nodePQ;

B.5 Best Practices

1. Template Genericity: Use templates to make code reusable for different types.

2. Use constexpr & inline Functions: Improve compile-time evaluation and
performance.

3. Avoid Reallocation: Preallocate vectors when sizes are known.

4. Combine DSU with Path Compression & Rank: Significantly improves
performance in large datasets.

5. Use Lazy Propagation in Segment Trees for range updates in advanced
scenarios.

6. Prefer BIT for Simple Prefix Sums when updates and queries are 1D.

This appendix provides ready-to-use, tested templates for key algorithmic
structures. They are widely used in competitive programming, research, and
production-level algorithmic code, providing both clarity and high performance.

603

Appendix C – Advanced Data Structures
This appendix introduces advanced data structures commonly used in algorithmic
research, competitive programming, and high-performance computing. It includes
Segment Trees, Fenwick Trees, Suffix Arrays, and Suffix Automata with fully
working C++ templates.

C.1 Segment Trees (Advanced Use Cases)

Segment Trees allow efficient range queries and updates. Beyond basic
implementations, we explore lazy propagation for range updates.

Lazy Segment Tree (Range Add & Max Query)

struct LazySegmentTree {
int n;
std::vector<long long> tree, lazy;

LazySegmentTree(int size) : n(size) {
tree.assign(4 * n, 0);
lazy.assign(4 * n, 0);

}

void push(int node, int l, int r) {
if (lazy[node]) {

tree[node] += lazy[node];
if (l != r) {

lazy[node<<1] += lazy[node];
lazy[node<<1|1] += lazy[node];

}
lazy[node] = 0;

604

}
}

void update(int node, int l, int r, int ql, int qr, long long val) {
push(node, l, r);
if (l > qr || r < ql) return;
if (l >= ql && r <= qr) {

lazy[node] += val;
push(node, l, r);
return;

}
int mid = (l + r) / 2;
update(node<<1, l, mid, ql, qr, val);
update(node<<1|1, mid+1, r, ql, qr, val);
tree[node] = std::max(tree[node<<1], tree[node<<1|1]);

}

long long query(int node, int l, int r, int ql, int qr) {
push(node, l, r);
if (l > qr || r < ql) return LLONG_MIN;
if (l >= ql && r <= qr) return tree[node];
int mid = (l + r) / 2;
return std::max(query(node<<1, l, mid, ql, qr),

query(node<<1|1, mid+1, r, ql, qr));
}

void update(int l, int r, long long val) { update(1, 0, n-1, l, r, val); }
long long query(int l, int r) { return query(1, 0, n-1, l, r); }

};

Use Case: Range addition and maximum query in O(log n) per operation.

605

C.2 Fenwick Tree / Binary Indexed Tree (Advanced)

Fenwick Trees can be extended for 2D queries or range updates with point
queries.

Range Update, Point Query Fenwick Tree

struct RangeFenwickTree {
std::vector<long long> bit;
int n;

RangeFenwickTree(int size) : n(size) {
bit.assign(n + 1, 0);

}

void add(int idx, long long val) {
for (++idx; idx <= n; idx += idx & -idx) bit[idx] += val;

}

void range_add(int l, int r, long long val) {
add(l, val);
add(r + 1, -val);

}

long long point_query(int idx) {
long long sum = 0;
for (++idx; idx > 0; idx -= idx & -idx) sum += bit[idx];
return sum;

}
};

Use Case: Efficient 1D range addition with O(log n) update/query.

606

C.3 Suffix Arrays

Suffix Arrays allow fast substring queries, pattern matching, and
lexicographical sorting. They are memory-efficient alternatives to suffix trees.

C++ Suffix Array Implementation (O(n log n))

struct SuffixArray {
std::string s;
std::vector<int> sa, rank, lcp;

SuffixArray(const std::string& str) : s(str + "$") {
int n = s.size();
sa.resize(n); rank.resize(n); std::vector<int> tmp(n);

for (int i = 0; i < n; ++i) sa[i] = i, rank[i] = s[i];

for (int k = 1; k < n; k <<= 1) {
auto cmp = [&](int i, int j) {

if (rank[i] != rank[j]) return rank[i] < rank[j];
int ri = (i + k < n) ? rank[i + k] : -1;
int rj = (j + k < n) ? rank[j + k] : -1;
return ri < rj;

};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; ++i)

tmp[sa[i]] = tmp[sa[i-1]] + cmp(sa[i-1], sa[i]);
rank = tmp;

}

// LCP Array construction (Kasai's algorithm)

607

lcp.resize(n-1);
int h = 0;
for (int i = 0; i < n-1; ++i) {

int j = sa[rank[i]-1];
while (i+h < n && j+h < n && s[i+h] == s[j+h]) ++h;
lcp[rank[i]-1] = h;
if (h > 0) --h;

}
}

};

Use Case: Substring search, counting distinct substrings, and string compression.
Time Complexity: O(n log n) for construction, O(m log n) for substring search.

C.4 Suffix Automata

Suffix Automata are powerful structures for substring queries, supporting fast
membership tests, counting occurrences, and longest common substring.

C++ Suffix Automaton Skeleton

struct SuffixAutomaton {
struct State {

int len, link;
std::map<char,int> next;
State(int l=0,int lk=-1): len(l), link(lk) {}

};

std::vector<State> st;
int last;

608

SuffixAutomaton(const std::string& s) {
st.push_back(State()); // initial state
last = 0;
for (char c : s) extend(c);

}

void extend(char c) {
int cur = st.size();
st.push_back(State(st[last].len + 1));
int p = last;
while (p != -1 && !st[p].next.count(c)) {

st[p].next[c] = cur;
p = st[p].link;

}
if (p == -1)

st[cur].link = 0;
else {

int q = st[p].next[c];
if (st[p].len + 1 == st[q].len)

st[cur].link = q;
else {

int clone = st.size();
st.push_back(State(st[p].len + 1, st[q].link));
st[clone].next = st[q].next;
while (p != -1 && st[p].next[c] == q) {

st[p].next[c] = clone;
p = st[p].link;

}
st[q].link = st[cur].link = clone;

}
}
last = cur;

609

}
};

Use Case:

• Fast substring membership queries (O(1) per character traversal).

• Counting occurrences of all substrings.

• Finding longest common substring between strings.

Time Complexity: O(n) for construction, O(m) per query of substring length m.

C.5 Summary Table

Data
Structure

Main Use Construction Query/Update
Complexity

Memory
Complexity

Segment Tree Range
queries/updates

O(n) O(log n) O(4n)

Fenwick Tree Prefix sums /
Range updates

O(n) O(log n) O(n)

Suffix Array Substring
search

O(n log n) O(m log n) O(n)

Suffix
Automaton

Substring
membership,
occurrence
count

O(n) O(m) O(n)

610

Best Practices:

1. Use lazy propagation for complex range operations in Segment Trees.

2. Fenwick Tree is preferable for simpler 1D prefix-sum queries due to lower
constant factors.

3. Suffix Array is suitable for static strings, while Suffix Automata excel in
dynamic or multiple substring queries.

4. Use C++ STL utilities (vectors, maps) for clear and maintainable
implementations, and consider std::array for small fixed-size optimizations.

This appendix provides graduate-level ready-to-use templates for advanced
data structures with focus on performance, correctness, and modern C++
practices.

Appendix D – CMake Template and CI Example

This appendix provides a practical template for structuring a C++ project with
CMake, and demonstrates how to implement a continuous integration (CI)
workflow using GitHub Actions for building, testing, and benchmarking.

D.1 Modern CMake Project Template

A well-structured CMake project improves maintainability, portability, and
reproducibility of C++ algorithms.

611

Directory Structure

project_root/
�
��� CMakeLists.txt
��� src/
� ��� main.cpp
� ��� algorithms/
� ��� dsu.cpp
� ��� segment_tree.cpp
��� include/
� ��� algorithms/
� ��� dsu.hpp
� ��� segment_tree.hpp
��� tests/
� ��� test_main.cpp
��� benchmarks/
� ��� benchmark_dsu.cpp
��� README.md

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 3.25)
project(ModernCppAlgorithms

VERSION 1.0
LANGUAGES CXX)

Set C++ standard
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

612

Enable warnings
if (MSVC)

add_compile_options(/W4 /permissive-)
else()

add_compile_options(-Wall -Wextra -Wpedantic -Wshadow)
endif()

Include directories
include_directories(${PROJECT_SOURCE_DIR}/include)

Source files
file(GLOB_RECURSE SOURCES src/*.cpp)
add_executable(${PROJECT_NAME} ${SOURCES})

Link libraries (if required)
target_link_libraries(${PROJECT_NAME} some_library)

Testing CMakeLists.txt (Optional Subdirectory)

enable_testing()
find_package(GTest REQUIRED)
include_directories(${GTEST_INCLUDE_DIRS})

file(GLOB_RECURSE TEST_SOURCES tests/*.cpp)
add_executable(runTests ${TEST_SOURCES})
target_link_libraries(runTests GTest::gtest_main)

add_test(NAME AllTests COMMAND runTests)

613

Benchmarking CMakeLists.txt

Assuming Google Benchmark is installed
find_package(benchmark REQUIRED)
include_directories(${benchmark_INCLUDE_DIRS})

file(GLOB_RECURSE BENCH_SOURCES benchmarks/*.cpp)
add_executable(runBenchmarks ${BENCH_SOURCES})
target_link_libraries(runBenchmarks benchmark::benchmark)

D.2 GitHub Actions: CI Workflow

Automating builds, tests, and benchmarks ensures reproducibility and early
detection of errors.

Workflow File: .github/workflows/ci.yml

name: C++ CI

on:
push:
branches: [main]

pull_request:
branches: [main]

jobs:
build-test-benchmark:
runs-on: ubuntu-latest
strategy:

matrix:

614

compiler: [gcc, clang]

steps:
- name: Checkout code

uses: actions/checkout@v3

- name: Install dependencies
run: |
sudo apt-get update
sudo apt-get install -y cmake g++ gcc clang libbenchmark-dev libgtest-dev

- name: Configure CMake
run: cmake -S . -B build -DCMAKE_BUILD_TYPE=Release

- name: Build project
run: cmake --build build -- -j$(nproc)

- name: Run Tests
run: ctest --test-dir build --output-on-failure

- name: Run Benchmarks
run: ./build/runBenchmarks

Features:

1. Matrix strategy to test multiple compilers (GCC, Clang).

2. Automatic build, test, and benchmark execution on every push or pull
request.

3. Uses CMake out-of-source build for clean separation of source and binaries.

615

D.3 Minimal Reproducibility Checklist

To ensure reproducible experiments, every algorithm project should include:

1. CMake configuration with version pinned.

2. Compiler flags clearly defined.

3. Dependencies listed (Google Test, Google Benchmark, or any third-party
library).

4. Automated tests that cover all algorithm modules.

5. Benchmark scripts to measure algorithm performance consistently.

6. CI/CD pipeline (GitHub Actions, GitLab CI, or similar).

7. Documentation including instructions for building, testing, and running
benchmarks.

D.4 Best Practices for Algorithm Development

1. Out-of-source builds: Keeps repository clean and allows multiple build
configurations.

2. Strict compiler warnings: Catch subtle bugs early.

3. Use modern CMake commands: Prefer target_include_directories,
target_compile_features, and target_link_libraries.

4. Continuous benchmarking: Ensure performance regressions are detected
automatically.

616

5. Version control integration: Always keep CMakeLists and workflow files under
Git for reproducibility.

6. Cross-platform testing: Use CI runners for Linux, Windows, and macOS if
portability is required.

D.5 Example Build & Test Commands (Local)

Configure
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release

Build
cmake --build build -j4

Run tests
ctest --test-dir build --output-on-failure

Run benchmarks
./build/runBenchmarks

This appendix provides a complete, practical template for building modern C++
algorithm projects with CMake and CI automation, ensuring reproducibility,
maintainability, and performance tracking.

Appendix E – Recommended Reading & Research
Papers

This appendix provides a curated list of books, research papers, and online
resources that are valuable for graduate-level algorithm developers and C++

617

practitioners. The resources are sorted by topic to help readers deepen their
understanding and explore cutting-edge research.

E.1 General Algorithm Design & Analysis

Books:

1. Introduction to Algorithms – Cormen, Leiserson, Rivest, Stein

• Comprehensive coverage of classic algorithms, complexity analysis, and data
structures.

• Emphasizes algorithmic thinking and proofs of correctness.

2. The Algorithm Design Manual – Steven S. Skiena

• Focused on practical problem-solving techniques and real-world applications.

• Includes extensive catalog of algorithmic problems.

3. Algorithms – Robert Sedgewick & Kevin Wayne

• Detailed exploration of data structures, graph algorithms, and performance
analysis.

Key Research Papers:

• Tarjan, R. “Data Structures and Network Algorithms.”

– Foundational work on dynamic graph algorithms and amortized analysis.

• Knuth, D. E. “The Art of Computer Programming, Vol. 3: Sorting and
Searching.”

– Classic treatment of sorting, searching, and combinatorial algorithms.

618

E.2 Advanced Data Structures

Books:

1. Advanced Data Structures – Peter Brass

• Covers segment trees, Fenwick trees, balanced trees, and more advanced
structures.

2. Handbook of Data Structures and Applications – Dinesh Mehta, Sartaj Sahni

• Extensive reference for modern and classic data structures with performance
analysis.

Key Research Papers:

• Fischer, J. & Paterson, M. “Suffix Trees and Suffix Arrays: A Comparison.”

– Introduces efficient construction and query techniques for string processing.

• Kosaraju, S. “Efficient Construction of Suffix Automata.”

– Explores suffix automata for substring queries and pattern matching.

• Fenwick, P. M. “A New Data Structure for Cumulative Frequency Tables.”

– Original work introducing Fenwick Trees (Binary Indexed Trees).

619

E.3 Graph Algorithms

Books:

1. Graph Theory and Its Applications – Jonathan L. Gross & Jay Yellen

• Comprehensive treatment of graph theory fundamentals and algorithms.

2. Network Flows: Theory, Algorithms, and Applications – Ahuja, Magnanti, Orlin

• Covers flow networks, shortest paths, and combinatorial optimization.

Key Research Papers:

• Dijkstra, E. W. “A Note on Two Problems in Connection with Graphs.”

– Introduces Dijkstra’s shortest-path algorithm.

• Prim, R. C. “Shortest Connection Networks and Some Generalizations.”

– Foundational work on minimum spanning trees.

• Tarjan, R. “Depth-First Search and Linear Graph Algorithms.”

– Classic analysis of DFS, strongly connected components, and low-link
techniques.

E.4 Computational Geometry

Books:

1. Computational Geometry: Algorithms and Applications – de Berg et al.

620

• Covers geometric data structures, range searching, convex hulls, and more.

2. Algorithms in Combinatorial Geometry – Mark de Berg

• Focuses on practical and theoretical geometric algorithms.

Key Research Papers:

• Bentley, J. L. “Multidimensional Binary Search Trees Used for Associative
Searching.”

– Introduces kd-trees for spatial data.

• Preparata, F. & Shamos, M. “Computational Geometry: An Introduction.”

– Foundational text linking algorithmic design to geometric problems.

E.5 Parallel and Modern C++ Programming

Books:

1. C++ Concurrency in Action – Anthony Williams

• Comprehensive guide to C++11/14/17 concurrency features and best
practices.

2. The C++ Standard Library – Nicolai M. Josuttis

• Detailed coverage of STL algorithms, containers, and modern C++ features.

Key Research Papers:

• Herlihy, M. & Shavit, N. “The Art of Multiprocessor Programming.”

621

– Discusses concurrent data structures and algorithmic principles.

• Sutter, H. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software.”

– Analysis of multicore programming trends and performance implications.

E.6 Benchmarking and Reproducibility in Algorithms

Books and Resources:

1. Performance Analysis of Algorithms and Data Structures – D. Mehta & S. Sahni

• Techniques for profiling and benchmarking algorithms.

2. C++ Benchmarking and Profiling Techniques – Online guides and documentation
on Google Benchmark library.

Key Research Papers:

• McCool, M., Reinders, J., & Robison, A. “Structured Parallel Programming.”

– Techniques for reproducible performance evaluation in parallel algorithms.

• J. L. Bentley & J. B. Saxe. “Decomposable Searching Problems.”

– Introduces methods for efficient algorithm benchmarking in complex
scenarios.

622

E.7 Online Resources & Reference Material

• cppreference.com – Up-to-date reference for C++ STL, language features, and
standard algorithms.

• GeeksforGeeks and Competitive Programming Archives – Practical
examples of algorithms and data structures.

• Google Benchmark and Catch2 – Libraries for benchmarking and unit testing
modern C++ code.

E.8 Recommended Study Plan

1. Foundations: Read Introduction to Algorithms and The Algorithm Design
Manual.

2. Advanced Data Structures: Study segment trees, Fenwick trees, and suffix-
based structures using Brass and Mehta.

3. Graph and Geometric Algorithms: Learn DFS, BFS, MSTs, shortest paths,
and computational geometry.

4. Modern C++ Techniques: Explore concurrency, STL algorithms, ranges, and
template programming.

5. Research Papers: Read landmark papers for insights into algorithmic design
and performance optimization.

6. Benchmarking and Reproducibility: Apply systematic testing and
measurement techniques using Google Benchmark and CI tools.

623

This appendix provides a structured roadmap for further reading and research,
helping the reader bridge foundational theory with modern C++ practice, and
supporting continued mastery of algorithmic design and implementation.

Appendix F – Solution Sketches & Sample Outputs
This appendix presents solution sketches and sample outputs for selected
exercises in this book. The goal is to illustrate correct algorithmic reasoning, C++
implementation patterns, and expected results without overwhelming the reader
with full code.

F.1 Exercise: Disjoint Set Union (DSU) – Connectivity Queries

Problem: Implement a DSU and answer queries about connectivity between elements.
Solution Sketch:

1. Initialize DSU with n elements.

2. For each union operation, merge sets using union by size.

3. For each connectivity query, use path-compressed find.

4. Output "YES" or "NO" depending on whether two elements belong to the same
set.

Sample C++ Snippet:

DSU dsu(5);
dsu.unite(0, 1);
dsu.unite(1, 2);
bool result = dsu.connected(0, 2);
std::cout << (result ? "YES" : "NO") << "\n";

624

Sample Output:

YES

F.2 Exercise: Segment Tree – Range Maximum Query

Problem: Implement a segment tree to answer maximum value queries over a given
range.
Solution Sketch:

1. Build segment tree from input array.

2. Implement query function using divide and conquer.

3. Implement update function for modifying elements.

4. Query the maximum value in any interval [l, r).

Sample Input:

Array: [2, 5, 1, 4, 9]
Query: Max in range [1, 4)

Sample C++ Snippet:

auto mergeMax = [](int a, int b){ return std::max(a, b); };
SegmentTree<int, decltype(mergeMax)> seg(5, 0, mergeMax);
seg.update(0, 2);
seg.update(1, 5);
seg.update(2, 1);

625

seg.update(3, 4);
seg.update(4, 9);

int maxVal = seg.query(1, 4);
std::cout << maxVal << "\n";

Sample Output:

5

F.3 Exercise: Fenwick Tree – Prefix Sum

Problem: Implement a Fenwick Tree to compute prefix sums efficiently.
Solution Sketch:

1. Initialize BIT of size n.

2. Use update(idx, delta) to modify elements.

3. Use query(idx) to get prefix sum [0, idx].

4. Support range sum using query(r) - query(l-1).

Sample Input:

Array: [1, 3, 5, 7, 9]
Query: Sum range [1, 3]

Sample C++ Snippet:

626

FenwickTree ft(5);
ft.update(0, 1);
ft.update(1, 3);
ft.update(2, 5);
ft.update(3, 7);
ft.update(4, 9);

int sum = ft.range_query(1, 3);
std::cout << sum << "\n";

Sample Output:

15

F.4 Exercise: Suffix Array – Lexicographical Order of Suffixes

Problem: Construct a suffix array for a string and print suffixes in lexicographical
order.
Solution Sketch:

1. Append a sentinel character ($) to the string.

2. Initialize rank array and suffix array.

3. Iteratively sort suffixes based on first 2^k characters.

4. Output suffix array indices or corresponding substrings.

Sample Input:

627

String: "banana"

Sample Output:

Suffix array indices: [6, 5, 3, 1, 0, 4, 2]
Lexicographically sorted suffixes:
$
a
ana
anana
banana
na
nana

F.5 Exercise: Suffix Automaton – Substring Membership

Problem: Build a suffix automaton for a string and check substring presence.
Solution Sketch:

1. Initialize automaton with a root state.

2. Extend automaton for each character in the string.

3. Traverse automaton states for the query substring.

4. If traversal reaches a valid state, substring exists.

Sample Input:

String: "abracadabra"
Query: "cada"

628

Sample C++ Snippet:

SuffixAutomaton sa("abracadabra");
bool exists = sa.contains("cada"); // Implement traversal
std::cout << (exists ? "YES" : "NO") << "\n";

Sample Output:

YES

F.6 Exercise: Priority Queue – Custom Min-Heap

Problem: Use a priority queue to process elements in ascending order.
Solution Sketch:

1. Use std::priority_queue with std::greater for min-heap.

2. Push all elements.

3. Pop elements sequentially to process in increasing order.

Sample Input:

Elements: [5, 1, 3, 7]

Sample Output:

1 3 5 7

629

F.7 Best Practices for Solution Sketches

1. Focus on algorithmic steps: Present concise reasoning rather than full code.

2. Show representative input/output: Helps validate understanding and
correctness.

3. Use modern C++ idioms: STL containers, range-based loops, and lambda
functions improve readability.

4. Include edge cases: Demonstrate behavior for empty inputs, single-element
arrays, or maximum-size datasets.

This appendix serves as a quick reference for students and developers to
verify their solutions, understand expected results, and learn modern C++
implementations of key algorithms.

	Contents
	Author’s Preface
	I Foundations (C++-centric)
	Preface & How to Use This Book
	Target Audience and Prerequisites (C++17/20/23)
	Prerequisites
	Positioning of This Book

	Coding Standards Used in Examples (formatter, naming, header structure)
	Code Formatting and Style
	Naming Conventions
	Header and Source Structure
	Modern C++ Practices

	Build & Run: CMake Minimal Template, Compiler Flags, Sanitizers, and Test Runner Setup
	Minimal CMake Template
	Recommended Compiler Flags
	Sanitizers
	Test Runner Setup
	Recommended Workflow

	Algorithmic Thinking with C++
	What is an Algorithm? C++ Examples as First-Class Citizens
	Defining Algorithms
	Algorithms as First-Class Citizens in C++
	Algorithmic Thinking in C++
	Summary

	Complexity Notation (Big-O / Θ / Ω) Illustrated with C++ Microbenchmarks
	Introduction to Complexity Notation
	Microbenchmarks in C++
	Visualizing Complexity
	Space Complexity
	Modern C++ Techniques for Complexity Analysis
	Key Takeaways

	Practical Measurement: chrono, std::execution, CPU Cycles, and Pitfalls
	Measuring Time with <chrono>
	Parallel Execution with std::execution
	Measuring CPU Cycles
	Common Measurement Pitfalls
	Recommended Workflow for Reliable Benchmarks
	Summary

	Essential C++ Tools for Algorithm Developers
	The Standard Library Overview Relevant to Algorithms (Containers, Iterators, Algorithms Header)
	Containers
	Iterators
	The <algorithm> Header
	Best Practices for Algorithm Developers

	Modern C++ Features That Change Algorithm Design: ranges, concepts, span, string_view
	Ranges (std::ranges)
	Concepts (std::concepts)
	std::span
	std::string_view
	Combined Modern Patterns
	Summary

	Unit Testing & Benchmarking in C++: GoogleTest, Catch2, benchmark Library, valgrind, Sanitizers
	Unit Testing
	Benchmarking
	Memory and Runtime Analysis
	Integrating Testing and Benchmarking
	Key Takeaways

	II Linear & Basic Structures (with C++ implementations)
	Arrays & Vectors
	Static Array vs std::vector — Memory and Performance Tradeoffs
	Static Arrays
	std::vector
	Memory Layout and Cache Effects
	Performance Tradeoffs
	Guidelines for Algorithm Developers
	Summary

	In-Place Algorithms: Sliding Window, Two Pointers, Partitioning in C++
	Sliding Window Technique
	Two-Pointer Technique
	Partitioning (In-Place Reordering)
	Best Practices for In-Place Algorithms
	Summary

	Exercises: In-Place Rotation, Subarray Sums, Prefix/Suffix Arrays
	In-Place Array Rotation
	Subarray Sums
	Prefix and Suffix Arrays
	Suggested Exercises
	Summary

	Linked Lists
	Single/Doubly Linked List Implementations in Modern C++ (Smart Pointers vs Raw Pointers)
	Singly Linked List
	Doubly Linked List
	Raw Pointers vs Smart Pointers — Tradeoffs
	Summary

	Common Algorithms: Reverse, Detect Cycle (Floyd), Merge Lists, Remove Nth Node from End
	Reversing a Singly Linked List
	Cycle Detection (Floyd's Tortoise and Hare Algorithm)
	Merging Two Sorted Linked Lists
	Removing the N-th Node from the End
	Summary of Common Linked List Algorithms

	Exercises and Tests: Memory-Leak Free Implementations, Iterator Support
	Memory-Leak Free Implementations
	Iterator Support
	Testing Linked Lists
	Suggested Exercises
	Summary

	Stacks, Queues, Deques, and Priority Queues
	STL Wrappers vs Custom Implementations: std::stack, std::queue, std::deque, std::priority_queue
	STL Wrappers Overview
	Example: std::stack
	Example: std::queue
	Example: std::deque
	Example: std::priority_queue
	Custom Implementations
	When to Use STL vs Custom
	Summary

	Use-Cases and Algorithmic Patterns (Expression Parsing, BFS, Sliding Window Optimums)
	Expression Parsing with Stacks
	Breadth-First Search (BFS) with Queues
	Sliding Window Optimizations with Deques
	Priority Queues in Algorithmic Patterns
	Summary of Patterns and Use-Cases

	Exercises: Monotonic Queue, K-Largest Using Heaps
	Monotonic Queue Exercise
	K-Largest Elements Using Heaps
	Suggested Exercises
	Key Takeaways

	Hashing and Unordered Containers
	std::unordered_map/set Internals, Collision Behavior, Custom Hashers
	Internals of std::unordered_map and std::unordered_set
	Collision Behavior
	Custom Hash Functions
	Load Factor and Rehashing
	Performance Considerations
	Summary

	Hash-Based Algorithms: Frequency Counting, Two-Sum, Caching Strategies
	Frequency Counting
	Two-Sum Problem
	Caching Strategies (Memoization & LRU Cache)
	Best Practices
	Summary

	Exercises: Implement LRU Cache, Robin-Hood/Linear-Probing Sketch
	Exercise: Implement LRU Cache
	Exercise: Robin-Hood and Linear-Probing Sketch
	Suggested Exercises
	Summary

	III Trees & Balanced Trees
	Binary Trees & Tree Traversals
	Node Representation, Recursive vs Iterative Traversal, Iterator Adapters
	Node Representation
	Recursive Traversal
	Iterative Traversal
	Iterator Adapters for Trees
	Summary

	Algorithms — Preorder/Inorder/Postorder, Level-Order, Tree Serialization/Deserialization
	Depth-First Traversals
	Breadth-First Traversal (Level-Order)
	Tree Serialization & Deserialization
	Summary

	Exercises — Reconstruct Tree from Traversals, Subtree Checks
	Reconstructing a Tree from Traversals
	Subtree Checks
	Suggested Exercises
	Summary

	Binary Search Trees & Augmented Trees
	BST Operations, Invariants, Performance Edge Cases
	The BST Invariant
	Core BST Operations
	Performance Considerations
	Edge Cases to Address in Implementations
	Summary

	Augmented Trees for Range Queries and Order Statistics (order_of_key)
	Motivation for Augmented Trees
	Core Augmentation: Subtree Size
	Order Statistics
	Range Queries
	Handling Duplicates
	Performance Considerations
	Practical Applications
	Summary

	Exercises — kth Smallest, Interval Trees
	Exercise: K-th Smallest Element in a BST
	Exercise: Interval Trees
	Testing and Benchmarking
	Summary

	Self-Balancing Trees (AVL, Red-Black)
	AVL Rotations in C++ — Code Walkthrough
	Balance Factor and Rotation Trigger
	Node Structure in Modern C++
	Single Rotations
	Double Rotations
	Rotation Integration in Insertions
	Walkthrough Example
	Key Insights
	Exercises

	Red-Black Tree Principles and Relation to std::map / std::set
	Red-Black Tree Properties
	Core Operations and Rebalancing
	Relation to std::map and std::set
	C++ Implementation Highlights
	Rotations in Red-Black Trees
	Comparison with AVL Trees
	Practical Takeaways

	Exercises — Implement an AVL with Unit Tests; Compare Against std::set Performance
	Exercise 1: Implement an AVL Tree
	Exercise 2: Unit Testing
	Exercise 3: Performance Comparison Against std::set
	Optional Extensions
	Summary

	B-Trees and External-Memory Structures
	B-Tree Node Layout, Block I/O Considerations (C++ Structures for Disk-Backed Nodes)
	B-Tree Node Structure
	Disk Block Considerations
	Advantages of This Layout
	C++ Considerations
	Summary

	Practical Uses — Simple On-Disk Key-Value Store Prototype
	Design Overview
	Disk Node Structure
	Basic Operations
	Performance Considerations
	Extensions
	Summary

	Exercise — Small B-Tree Library Sketch with Tests
	Library Structure
	Key Operations
	Unit Testing
	Optional Extensions
	Learning Outcomes

	IV Graphs (Implemented in C++)
	Graph Representations in C++
	Adjacency list/matrix, edge lists, compressed sparse row (CSR) for performance
	Adjacency List
	Edge List
	Compressed Sparse Row (CSR)
	Comparison Table
	Choosing the Right Representation

	Weighted graphs, directed/undirected, memory-oriented designs
	Weighted Graphs
	Directed vs. Undirected Graphs
	Memory-Oriented Graph Designs
	Performance and Trade-Offs

	Traversal & Search
	Depth-First Search (DFS) & Breadth-First Search (BFS) with Iterator-Based C++ APIs
	Depth-First Search (DFS)
	Breadth-First Search (BFS)
	Iterator-Based API Design for Traversal
	Comparison: Recursive vs Iterative DFS vs BFS
	Best Practices in Modern C++

	Applications of Graph Traversal
	Connected Components
	Cycle Detection
	Topological Sort
	Summary of Applications

	Shortest Paths
	Dijkstra's Algorithm
	Basic Dijkstra Algorithm
	Priority Queue Optimization
	Iterators and Modern C++ Features
	Performance Considerations
	Example Usage

	Bellman-Ford, SPFA Notes, and C++ Pitfalls
	Bellman-Ford Algorithm
	SPFA (Shortest Path Faster Algorithm)
	C++ Pitfalls to Avoid
	Comparison of Bellman-Ford vs SPFA
	Best Practices in Modern C++

	A* Algorithm with C++ Heuristics and Custom Comparators
	Algorithm Overview
	Basic C++ Implementation Using std::priority_queue
	Custom Comparators in C++
	Heuristic Design in C++
	Performance and Pitfalls in C++
	Example: A* on a 2D Grid
	Best Practices in Modern C++

	Exercises — Multi-Source SSSP and Path Reconstruction Templates
	Multi-Source Single-Source Shortest Paths (SSSP)
	Path Reconstruction Templates
	Additional Exercises
	Best Practices in Modern C++

	Minimum Spanning Trees & Union-Find
	Kruskal's Algorithm with Efficient DSU
	Algorithm Overview
	Efficient DSU Implementation
	Kruskal's Algorithm Using DSU
	Example Usage
	Best Practices in Modern C++
	Exercises

	Prim's Algorithm — Binary Heap vs Fibonacci Heap
	Prim's Algorithm Overview
	Prim Using Binary Heap (Standard Approach)
	Fibonacci Heap: Theoretical Advantage
	Comparison: Binary Heap vs Fibonacci Heap
	C++ Implementation Notes and Best Practices
	Exercises

	Exercises — MST Variants and Dynamic Connectivity
	MST Variants
	Dynamic Connectivity
	Best Practices and C++ Tips
	Additional Exercises for Mastery

	Network Flow & Advanced Graphs
	Ford-Fulkerson, Edmonds-Karp, Dinic — C++ Implementations and Performance Tradeoffs
	Ford-Fulkerson Method
	Edmonds-Karp Algorithm
	Dinic's Algorithm
	Performance Trade-offs
	Exercises

	Matching Algorithms and Min-Cost Max-Flow
	Bipartite Matching — Hopcroft–Karp Algorithm
	Flows with Capacities and Costs — Min-Cost Max-Flow (MCMF)
	Performance Trade-offs
	Exercises

	Exercises — Bipartite Matching and Project Allocation Simulation
	Bipartite Matching Exercises
	Project Allocation Simulation
	Advanced Extensions
	Suggested Exercise Sequence

	V Design Paradigms & Algorithmic Techniques
	Divide and Conquer
	Merge Sort, Quicksort, and Recursion Patterns in C++
	Merge Sort
	Quicksort
	Recursion Patterns in C++
	Comparative Summary
	Exercises

	Parallel Divide-and-Conquer with std::execution and Thread Pools
	Parallel Divide-and-Conquer: Conceptual Overview
	std::execution in Parallel Divide-and-Conquer
	Thread Pools in Divide-and-Conquer
	Hybrid Approach: Execution Policies + Custom Thread Pools
	Performance Considerations
	Exercises
	Summary

	Exercises — Median of Medians, Parallel Mergesort
	Exercise: Median of Medians
	Exercise: Parallel Merge Sort
	Summary

	Dynamic Programming (DP)
	Memoization vs. Tabulation — Idiomatic C++ Patterns
	Memoization (Top-Down Dynamic Programming)
	Tabulation (Bottom-Up Dynamic Programming)
	Comparing Memoization vs. Tabulation in C++
	Advanced Idiomatic Patterns
	Summary

	DP on Sequences, Trees, and Graphs — Common Templates and Optimizations (Space Reduction)
	DP on Sequences
	DP on Trees
	DP on Graphs
	Space Reduction Techniques
	Summary

	Exercises: Knapsack Variants, Longest Increasing Subsequence with Patience Sorting (O(n log n))
	Knapsack Variants
	Longest Increasing Subsequence (LIS)
	C++ Patterns for Efficiency
	Exercises

	Greedy Algorithms & Matroid Concepts
	Greedy Correctness Proofs and C++ Greedy Idioms
	Greedy Algorithm Correctness Proofs
	C++ Greedy Idioms
	Typical Greedy Patterns in Practice
	Key Takeaways for Graduate-Level Readers

	Huffman Coding with Heaps and std::priority_queue Customization
	Problem Setting
	Greedy Insight
	Heap-Based Algorithm
	C++ Implementation with std::priority_queue
	Performance Analysis
	C++ Idioms and Customization
	Broader Connections
	Key Takeaways

	Exercises: Activity Selection, Interval Scheduling
	Activity Selection Problem
	Interval Scheduling Problem
	Exercises for the Reader
	Key Takeaways

	Randomized Algorithms & Probabilistic Methods
	Random Number Generation in C++ (<random>), Reproducible Experiments, Seeds
	Engines: Generating Pseudo-Randomness
	Distributions: Mapping Randomness
	Seeds: Ensuring Reproducibility
	Idiomatic Patterns in C++
	Reproducible Experiments in Algorithm Design
	Summary

	QuickSelect, Hashing with Randomness, Monte Carlo Estimators
	QuickSelect: Randomized Selection
	Hashing with Randomness
	Monte Carlo Estimators
	Idiomatic C++ Considerations
	Key Takeaways

	Exercises: Randomized Algorithms for Median, Bloom Filter Sketch
	Randomized Median Selection
	Bloom Filter Sketch
	Learning Objectives
	Suggested Practice

	Approximation Algorithms & NP-Hard Problems
	Common Approximation Strategies Implemented in C++
	Greedy Approximation
	Linear Programming Relaxation
	Randomized Rounding
	Local Search Heuristics
	PTAS / FPTAS Approaches
	Idiomatic C++ Patterns for Approximation
	Exercises
	Key Takeaways

	Local Search, Greedy Approximation, PTAS Examples Where Applicable
	Local Search Heuristics
	Greedy Approximation
	Polynomial-Time Approximation Schemes (PTAS)
	Idiomatic C++ Patterns
	Exercises
	Key Takeaways

	Exercises: Vertex Cover Approximation, Traveling Salesman Heuristics
	Vertex Cover Approximation Exercises
	Traveling Salesman Problem (TSP) Heuristics
	Learning Objectives
	Suggested Practice

	VI Performance, Concurrency & Low-level Concerns (C++ focused)
	Memory & Cache-aware Algorithm Design
	Data Layout, Locality, and Structure-of-Arrays vs Array-of-Structures
	Memory Locality and Cache Basics
	Array-of-Structures (AoS)
	Structure-of-Arrays (SoA)
	Performance Implications
	Hybrid Approaches
	C++ Techniques for Cache Awareness
	Exercises
	Key Takeaways

	Algorithms Optimized for Cache (Blocking, Tiling) with C++ Examples
	Cache Optimization Principles
	Blocking / Tiling Technique
	Example: Matrix Multiplication
	Tiling for Multi-Dimensional Arrays
	C++ Idiomatic Patterns
	Exercises
	Key Takeaways

	Parallel & Concurrent Algorithms
	Threading Primitives in C++ (std::thread, Atomics, Mutexes) and Lock-Free Ideas
	The Role of Threads in Modern C++
	Synchronization Primitives
	Lock-Free and Wait-Free Ideas
	Guidelines for Using Concurrency Primitives
	Summary

	Parallel Algorithms (std::execution) and Work-Stealing Patterns
	Parallel Algorithms in C++17 and Beyond
	Benefits of Parallel STL
	Limitations and Considerations
	Work-Stealing Patterns
	Example: Work-Stealing in Practice
	Combining Parallel STL and Work-Stealing
	Guidelines for Use
	Summary

	Exercises: Parallel Prefix Sum, Concurrent Queues
	Parallel Prefix Sum (Scan)
	Concurrent Queues
	Exercise Variations
	Summary

	Metaprogramming & Compile-time Algorithms
	Template Metaprogramming Basics for Algorithmic Tasks
	Compile-Time Computation with Templates
	Type Lists: Computation with Types
	Applications of Template Metaprogramming
	Modern TMP vs Historical TMP
	Summary

	Concepts & constexpr Algorithms in C++20/23 (constexpr Sorting, Compile-time DP)
	Concepts and Constrained Algorithms
	Expanded constexpr in C++20/23
	Example: constexpr Sorting
	Compile-time Dynamic Programming
	Practical Applications of constexpr Algorithms
	Limitations and Best Practices

	Exercises: Static-Sequence Algorithms, consteval Usage
	Static-Sequence Algorithms
	consteval Usage
	Exercise Ideas
	Best Practices for Exercises

	Profiling, Benchmarking & Optimization Workflow
	Using Profilers (gprof, perf), Sanitizers (ASAN, UBSAN), and Compiler Flags
	Profilers
	Sanitizers
	Compiler Flags
	Recommended Workflow

	Micro-optimizations vs Algorithmic Improvements — Case Studies in C++
	Micro-optimizations
	Algorithmic Improvements
	Case Study: Searching in C++
	Case Study: Matrix Multiplication
	Guiding Principles

	Exercises — Profile and Improve Small C++ Projects
	Exercise: Profiling a Naive Sorting Benchmark
	Exercise: Memory Leak Detection with ASAN
	Exercise: Cache-Aware Optimization
	Exercise: Micro-Optimization vs Algorithmic Improvement
	Exercise: Multithreaded vs Single-Threaded Performance
	Project: Profile-and-Improve a Small CLI Tool
	Recommended Workflow for Each Exercise

	VII Capstone Projects
	Project A — High-performance Graph Library
	Design Goals, API, Iterators, Memory Layout (CSR)
	Design Goals
	API Design
	Iterators
	Memory Layout: Compressed Sparse Row (CSR)

	Implementations — SSSP, MST, Centrality Measures
	Single-Source Shortest Path (SSSP)
	Minimum Spanning Tree (MST)
	Centrality Measures
	Performance Considerations

	Tests & Benchmarks Against Common Datasets
	Testing Strategy
	Benchmarking Strategy
	Example Benchmarking Workflow
	Automation and Reproducibility
	Example Observations

	Project B — Mini Compiler / Interpreter
	Lexing and Parsing with Modern C++ (Recursive Descent, Parser Combinators)
	Lexical Analysis (Lexer)
	Syntax Analysis (Parser)
	Modern C++ Features Applied
	Best Practices

	AST Transformations, Control-Flow Algorithms, Simple Optimization Passes
	AST Representation
	AST Transformations
	Control-Flow Algorithms
	Simple Optimization Passes
	Modern C++ Techniques Applied

	Exercises — Generate Three-Address Code, Simple Register Allocation
	Three-Address Code (TAC) Generation
	Simple Register Allocation
	Combined Exercise Workflow
	Learning Outcomes

	Project C — Algorithmic Trading Backtester (example of time-series algorithms)
	Streaming Data Algorithms, Sliding Windows, Online Learning Sketches
	Streaming Data Algorithms
	Sliding Window Techniques
	Online Learning Sketches
	Integrating Streaming Algorithms into the Backtester
	Summary

	Backtesting Engine Design and Performance Constraints
	Core Design Goals
	Engine Architecture
	Performance Constraints
	Modern C++ Techniques Applied
	Example Engine Loop
	Summary

	Exercises — Implement Moving Average Crossover Strategy, Evaluate Latency
	Moving Average Crossover Strategy
	Integrating with the Backtesting Engine
	Evaluating Latency
	Advanced Extensions
	Learning Outcomes

	VIII Testing, Reproducibility & Research Practices
	Testing Algorithm Correctness in C++
	Property-Based Testing, Fuzzing Inputs, Determinism in Tests
	Property-Based Testing
	Fuzzing Inputs
	Determinism in Tests
	Advantages of Property-Based Testing and Fuzzing
	Summary

	Using GoogleTest / QuickCheck-Style Libraries, CI Integration
	GoogleTest for Unit Testing
	QuickCheck-Style Property-Based Testing
	Continuous Integration (CI) Integration
	Combining Unit Tests and Property-Based Tests
	Summary

	Reproducible Experiments & Data Sets
	Dataset Management, Synthetic Data Generators (C++), Seeding, and Reporting Standards
	Dataset Management
	Synthetic Data Generators in C++
	Seeding and Determinism
	Reporting Standards
	Summary

	Publishing Code and Experiments — Packaging with CMake, Docker, and Minimal Reproducibility Checklist
	Packaging C++ Experiments with CMake
	Containerization with Docker
	Minimal Reproducibility Checklist
	Best Practices for Publishing
	Summary

	Appendices
	Appendix A – C++ Cheat Sheet for Algorithm Developers
	Appendix B – Common Code Templates
	Appendix C – Advanced Data Structures
	Appendix D – CMake Template and CI Example
	Appendix E – Recommended Reading & Research Papers
	Appendix F – Solution Sketches & Sample Outputs

