
1

Quick Guide to Build Your Own Simple Interpreter

in Modern C++

Prepared by Ayman Alheraki

ForgeVM.org

July 2025

Contents

Contents 2

Author’s Preface 8

1 Introduction 9

1.1 What Is an Interpreter? . 9

1.2 Key Characteristics of Interpreters: . 9

1.2.1 Real-World Uses of Interpreters: . 10

1.2.2 Common Interpreted Languages: . 10

1.3 Why Build Your Own Interpreter? . 10

1.4 Anatomy of an Interpreter . 11

1.4.1 Lexical Analysis (Lexer) . 11

1.4.2 Parsing . 11

1.4.3 Evaluation . 11

1.5 What Will You Build? . 11

1.5.1 Supported Features: . 11

1.6 Why Use C++ to Build an Interpreter? . 12

1.6.1 Modern C++ Advantages: . 12

1.7 REPL: Read-Eval-Print Loop . 13

1.7.1 REPL Flow: . 13

1.7.2 Example Session: . 13

1.8 What You’ll Learn . 13

1.9 Who This Guide Is For . 14

1.10 Summary . 14

2

3

2 Project Setup 15

2.1 Introduction . 15

2.2 Directory and File Structure . 15

2.3 Installing Required Tools . 16

2.3.1 A Modern C++ Compiler . 16

2.3.2 CMake . 17

2.4 Writing CMakeLists.txt . 17

2.4.1 Notes: . 18

2.5 Hello World Test . 18

2.6 REPL Entry Point . 19

2.7 Optional: IDE Integration . 20

2.7.1 Visual Studio Code: . 20

2.7.2 CLion (JetBrains): . 20

2.8 Summary . 20

2.9 Exercises . 21

3 Lexer (Tokenizer) 22

3.1 What Is Lexical Analysis? . 22

3.2 Token Type Definition . 22

3.2.1 Notes: . 23

3.3 Designing the Lexer Class . 23

3.4 Lexer Implementation . 24

3.4.1 Constructor and Helpers . 24

3.4.2 Skipping Whitespace and Newlines . 25

3.4.3 Reading Numbers . 25

3.4.4 Reading Identifiers and Keywords . 25

3.4.5 Reading Symbols and Operators . 26

3.5 The Tokenize Loop . 26

3.6 Example Output . 27

3.7 Debug Utility: Print Tokens . 27

3.8 Exercises . 28

4

4 Writing the Parser 29

4.1 What Is a Parser? . 29

4.1.1 Input vs Output . 29

4.1.2 Why Recursive Descent? . 29

4.2 Basic Grammar of the Language . 30

4.3 AST Node Recap . 30

4.4 The Parser Class . 31

4.5 Helper Methods . 31

4.6 Parsing Expressions . 32

4.7 Parsing Statements . 33

4.8 Parsing Code Blocks . 34

4.9 Parsing the Program . 35

4.10 Example: From Code to AST . 35

4.11 Error Recovery Tips . 36

4.12 Exercises . 36

4.13 Summary . 36

5 AST Node Definitions and Tree Design 37

5.1 Goals of This Chapter . 37

5.2 AST Nodes for Expressions . 38

5.2.1 Expression Node Definitions . 38

5.3 AST Nodes for Statements . 39

5.4 Wrapping All Node Types with Variants . 39

5.4.1 Expression Variant . 39

5.4.2 Statement Variant . 40

5.5 Why Use std::variant Instead of Inheritance? . 40

5.5.1 Sample Use of std::visit . 40

5.6 Smart Memory Management with std::unique ptr . 40

5.6.1 Example: . 41

5.7 Example: AST for x = 1 + 2 . 41

5.8 Extending the AST in the Future . 42

5.9 Suggested Enhancements . 42

5.10 Summary . 43

5

6 Evaluator – Walking the AST to Run Code 44

6.1 What Is Evaluation? . 44

6.2 Evaluation Strategy . 45

6.3 Symbol Table – Storing Variables . 45

6.4 Evaluate Expressions . 45

6.4.1 Expression Cases . 45

6.5 Evaluate Statements . 46

6.5.1 Statement Cases . 46

6.6 Example: Evaluating a Full Program . 46

6.7 Tips for Cleaner Code . 47

6.8 Advanced: Boolean Expressions . 47

6.9 Summary . 47

7 Statements and REPL – Making Your Language Interactive 48

7.1 What Is a REPL? . 48

7.2 Add Support for print(expr) . 49

7.2.1 Parser Support . 49

7.2.2 Evaluator Support . 49

7.3 Building the REPL Loop . 50

7.4 Example REPL Session . 50

7.5 Enhancements and Features . 51

7.6 REPL and Real-Time Feedback . 51

7.7 Organizing REPL in Codebase . 51

7.8 Summary . 52

8 Control Flow – If and While Statements 53

8.1 Adding the if Statement . 53

8.1.1 Syntax . 53

8.1.2 AST Node . 54

8.1.3 Parser Support . 54

8.2 Adding the while Loop . 54

8.2.1 Syntax . 55

8.2.2 AST Node . 55

8.2.3 Parser Support . 55

6

8.3 Parsing Blocks . 55

8.3.1 Code Block Syntax . 55

8.3.2 Parser Utility . 56

8.4 Evaluator Support . 56

8.5 Simple Example . 57

8.6 Representing Code Blocks . 57

8.7 Scoping and Variable Isolation . 57

8.8 Future Extensions . 58

8.9 Summary . 58

9 Error Handling 59

9.1 Types of Errors . 59

9.2 Adding Line and Column Information . 59

9.2.1 Token Metadata . 59

9.3 Syntax Error Reporting . 60

9.4 Runtime Error Handling . 60

9.5 Optional and Result Types . 61

9.6 Highlighting Errors with Context . 62

9.7 Structured Error Classes . 62

9.8 REPL Integration . 62

9.9 Summary . 63

10 Final Touches and Next Steps 64

10.1 Recap of What’s Been Built . 64

10.2 Ideas for Extending the Language . 65

10.3 Suggestions for Larger-Scale Interpreters . 66

10.4 Language Design Ideas . 68

10.5 Learning Path Forward . 68

10.6 Closing Thoughts . 68

Appendices 70

Appendix A: Full Token and Tokenizer System . 70

10.6.1 Token Types . 70

10.6.2 Token Structure . 71

7

10.6.3 Tokenizer Extensions . 71

Appendix B: CMake Enhancements for Multi-File Projects . 71

10.6.4 Modular CMake Structure . 71

10.6.5 Add Unit Test Target . 72

10.7 Appendix C: Sample Unit Tests Using Catch2 . 72

Appendix C: Sample Unit Tests Using Catch2 . 72

10.7.1 Notes: . 72

Appendix D: Template for Expression Evaluation . 73

Appendix E: Common Errors and Fixes . 73

Appendix F: Adding a Simple Function System (Optional Extension) 74

10.7.2 Function Node . 74

10.7.3 Call Node . 74

10.7.4 Extend Evaluator . 74

Appendix G: Advanced Grammar Sample (Extended Language) 75

Appendix H: Building and Running Instructions . 75

10.7.5 Building with CMake . 75

10.7.6 Running the REPL . 75

10.7.7 Sample Input . 76

Appendix I: Sample REPL Loop with Error Catching . 76

Appendix J: Minimal AST Visualization for Debugging . 76

References 78

Author’s Preface

This quick guide was written with a sincere desire to benefit the followers of the ForgeVM project and

help them enter one of the most fascinating and foundational fields in computer science: the design and

implementation of programming languages.

Many passionate learners dream of building their own language, yet they often encounter technical

or conceptual barriers along the way. This guide is a stepping stone to overcoming those obstacles. It

simplifies the core concepts and walks the reader through the practical stages of building a minimal yet

functional interpreter using Modern C++20/23.

While I am currently working on my own full-fledged programming language project—and preparing

a comprehensive 750-page book that covers every detail of its design—I felt the need to also offer this

concise, focused guide. Its purpose is to make the world of interpreters more accessible and to empower

enthusiasts with the knowledge and confidence to begin their own journey.

I hope this guide brings value to readers and lights the path for those aiming to turn their language

design dreams into reality.

Stay Connected

For more discussions and valuable content about Quick Guide to Build Your Own Simple

Interpreter in Modern C++.

I invite you to follow me on LinkedIn:

https://linkedin.com/in/aymanalheraki

You can also visit my personal website:

https://simplifycpp.org

Ayman Alheraki

8

https://linkedin.com/in/aymanalheraki
https://simplifycpp.org

Chapter 1

Introduction

1.1What Is an Interpreter?

An interpreter is a type of program that reads source code and executes it directly, without first

compiling it to native machine code. This makes interpreters ideal for dynamic, interactive, and

lightweight languages such as Python, Lua, and JavaScript.

Unlike compilers that generate an executable binary, interpreters work at runtime, analyzing and

executing code line by line or statement by statement.

1.2 Key Characteristics of Interpreters:

Table 2-1: Interpreter vs Compiler Comparison

Feature Interpreter Compiler

Output Executes directly Generates executable binary

Runtime Speed Slower (interpreted at runtime) Faster (compiled beforehand)

Error Handling Detects errors during execution Detects errors before execution

Use Cases Scripting, REPLs, education High-performance applications

9

10

1.2.1 Real-World Uses of Interpreters:

• Scripting engines in games and embedded systems

• Domain-Specific Languages (DSLs) for automation

• Education and prototyping (REPL environments)

• Configuration languages (e.g., TOML, JSON interpreters)

1.2.2 Common Interpreted Languages:

• Python: General-purpose scripting language

• Lua: Lightweight embeddable interpreter used in games

• JavaScript: Interpreted in browsers (via engines like V8)

• Bash: Shell scripting interpreter

1.3Why Build Your Own Interpreter?

Creating a simple interpreter from scratch:

• Demystifies how languages work

• Teaches language design, parsing, evaluation, and error handling

• Improves your understanding of how Python, Lua, or similar languages behave internally

• Strengthens your Modern C++ skills through practical application

This booklet will walk you through building an interpreter that supports:

• Arithmetic and variable assignments

• Conditionals like if

• Loops like while

• A simple REPL

• A growing grammar

11

1.4 Anatomy of an Interpreter

At a high level, an interpreter is composed of three major phases:

Source Code

↓

[Lexical Analysis] → Tokens

↓

[Parsing] → AST (Abstract Syntax Tree)

↓

[Evaluation] → Result / Effect

1.4.1 Lexical Analysis (Lexer)

Breaks the raw source into a series of tokens (atomic symbols) like Number, Identifier, Operator,

Keyword.

1.4.2 Parsing

Takes the tokens and builds an AST (Abstract Syntax Tree) representing the structure and logic of

the code.

1.4.3 Evaluation

Walks the AST and performs the operations described (e.g., evaluates expressions, updates variables,

executes conditions and loops).

1.5What Will You Build?

In this guide, you will build an interpreter with the following minimal language features:

1.5.1 Supported Features:

12

Table 5-2: Language Feature Examples

Feature Example Code

Numbers 42

Variables x = 3 + 2

Print print(x)

Arithmetic 2 + 3 * (4 - 1)

If if x > 5 { print(x) }

While while x < 10 { x = x + 1 }

These form the foundation of a simple, Python-like interpreted language.

1.6Why Use C++ to Build an Interpreter?

Historically, interpreter design has often been taught in dynamic languages. However, Modern C++

(C++20/23) introduces several powerful features that make C++ ideal for interpreter construction:

1.6.1Modern C++ Advantages:

Table 6-3: Modern C++ Features in Interpreter Design

Feature Use in Interpreter

std::variant Store and dispatch different AST node types

std::optional Represent failed parsing or missing values

Ranges & string view Efficient source handling in the lexer

unique ptr Safe memory ownership of tree nodes

Concepts (C++20) Safer, constrained templates

std::format (C++20) Clean and readable error formatting

13

Example: AST with std::variant

using Expr = std::variant<Number, Variable, BinaryOp>;

struct BinaryOp {

std::string op;

std::unique_ptr<Expr> left, right;

};

This makes your code type-safe, clean, and extensible.

1.7 REPL: Read-Eval-Print Loop

Your interpreter will include a REPL—a loop that reads input from the user, evaluates it, and prints

the result. REPLs are used in Python, Lua, Scheme, and JavaScript consoles.

1.7.1 REPL Flow:

User Input → Lexer → Parser → AST → Evaluator → Output

1.7.2 Example Session:

>>> x = 10

>>> x + 5

15

>>> print(x)

10

1.8What You’ll Learn

By the end of this booklet, you will understand:

14

• How source code becomes tokens

• How grammars are parsed into structured trees

• How ASTs are evaluated with runtime environments

• How to structure and test a language project

• How to apply Modern C++ features practically

1.9Who This Guide Is For

• Beginner-to-intermediate C++ programmers who want to build something practical

• Students in compiler or programming language courses

• Python, Lua, or JavaScript users curious about language internals

• Educators or library developers building DSLs or interpreters for configuration

1.10 Summary

This chapter gave you an overview of what interpreters are, how they differ from compilers, what

phases they include, and why building one using Modern C++ is both practical and enlightening.

Chapter 2

Project Setup

2.1 Introduction

Before writing any interpreter logic, we need to set up the project structure and build system. This

chapter will walk you through:

• Organizing source files

• Setting up a Modern C++ toolchain using CMake

• Writing and building your first test program

• Verifying your environment with a working REPL shell entry point

This setup will scale cleanly as we add the lexer, parser, AST, and evaluator in later chapters.

2.2 Directory and File Structure

We'll use a simple, modular structure that mirrors the interpreter's architecture:

interpreter/

CMakeLists.txt

main.cpp

lexer.hpp / lexer.cpp

15

16

parser.hpp / parser.cpp

ast.hpp

interpreter.hpp / interpreter.cpp

repl.cpp

tokens.hpp

utils.hpp

Each file serves a clear role:

Table 2-1: Source File Responsibilities in Interpreter Project

File Responsibility

main.cpp Entry point, REPL loop

lexer.* Lexical analysis (tokenizing input)

parser.* Parsing token stream into AST

ast.hpp AST data structures (expression and statement nodes)

interpreter.* Evaluator/Executor of AST

repl.cpp Implements the Read-Eval-Print Loop

tokens.hpp Defines token types and token structure

utils.hpp Optional: helpers for formatting, error handling

2.3 Installing Required Tools

Make sure your system includes:

2.3.1 A Modern C++ Compiler

Compiler Minimum Version for C++20/23 Support

GCC 10.3+ (recommended 11.0+)

Clang 12+

17

Compiler Minimum Version for C++20/23 Support

MSVC 2019 (v16.9) or later

2.3.2 CMake

CMake version 3.20 or later is recommended.

Install via package manager:

• Linux:

sudo apt install cmake g++

• Windows:

– Install via Visual Studio Installer or cmake.org

• macOS:

brew install cmake

2.4Writing CMakeLists.txt

Create a new file named CMakeLists.txt at the root:

cmake_minimum_required(VERSION 3.20)

project(SimpleInterpreter LANGUAGES CXX)

set(CMAKE_CXX_STANDARD 23)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

add_executable(interpreter

main.cpp

repl.cpp

https://cmake.org

18

lexer.cpp

parser.cpp

interpreter.cpp

)

2.4.1 Notes:

• CMAKE EXPORT COMPILE COMMANDS is helpful for IDE integration and tooling (e.g. clangd).

• You can later split this into multiple targets for testing, modules, or libraries.

2.5 Hello World Test

Let’s write a small test in main.cpp:

// main.cpp

#include <iostream>

int main() {

std::cout << "Simple Interpreter Ready" << std::endl;

return 0;

}

Build and run:

mkdir build

cd build

cmake ..

cmake --build .

./interpreter

You should see:

Simple Interpreter Ready

This confirms that CMake, your compiler, and the project structure are functioning properly.

19

2.6 REPL Entry Point

Update main.cpp to prepare for REPL:

#include "repl.hpp"

int main() {

start_repl();

return 0;

}

Now create a basic repl.cpp and repl.hpp:

// repl.hpp

#pragma once

void start_repl();

cppCopyEdit// repl.cpp

#include <iostream>

#include <string>

#include "repl.hpp"

void start_repl() {

std::string line;

std::cout << ">>> ";

while (std::getline(std::cin, line)) {

if (line == "exit") break;

std::cout << "You typed: " << line << "\n>>> ";

}

}

Rebuild and run:

./interpreter

Expected behavior:

>>> print(5 + 2)

You typed: print(5 + 2)

>>> exit

20

This REPL will later be connected to your lexer, parser, and evaluator. For now, it serves as a sandbox

for interactive input.

2.7 Optional: IDE Integration

2.7.1 Visual Studio Code:

Install extensions:

• CMake Tools

• C++ IntelliSense

• clangd or MSVC backend

Set CMakeLists.txt as the project root, and configure your C++ standard in

.vscode/settings.json:

{

"cmake.generator": "Ninja",

"cmake.buildDirectory": "build",

"C_Cpp.default.cppStandard": "c++23"

}

2.7.2 CLion (JetBrains):

CLion detects CMakeLists.txt automatically. Set C++23 in CMake Settings.

2.8 Summary

You’ve now prepared:

• A modular source directory

• A modern CMake build

• A REPL entry point

21

• Your toolchain and IDE (optionally)

This foundation will support all future interpreter components: lexer, parser, AST, evaluator, control

flow, and more.

2.9 Exercises

1. Modularize Your Headers

Move all function declarations to .hpp files. Use #pragma once.

2. Add a Logging Utility

Write a simple log(std::string) function that can be enabled or disabled globally.

3. Add Version Info

Define a VERSION constant in main.cpp or a separate config file and print it on REPL startup.

4. Build Modes

Extend your CMakeLists.txt to support Debug/Release builds using:

cmake -DCMAKE_BUILD_TYPE=Release ..

Chapter 3

Lexer (Tokenizer)

3.1What Is Lexical Analysis?

Lexical analysis is the first phase of interpretation. It reads the raw source code (a plain string)

and converts it into a stream of tokens. Tokens are atomic units of meaning—such as numbers,

identifiers, operators, or keywords—that the parser will later process.

Example Input:

x = 3 + 4

Expected Tokens:

Token{Identifier, "x"}

Token{Assign, "="}

Token{Number, "3"}

Token{Operator, "+"}

Token{Number, "4"}

3.2 Token Type Definition

We begin by defining all possible token types that our language can recognize:

22

23

// token.hpp

enum class TokenType {

Number,

Identifier,

Operator,

Assign,

KeywordPrint,

KeywordIf,

KeywordWhile,

LeftParen,

RightParen,

LeftBrace,

RightBrace,

Semicolon,

EndOfFile,

Unknown

};

struct Token {

TokenType type;

std::string_view lexeme;

int line;

int column;

};

3.2.1 Notes:

• We use std::string view to avoid copying substrings during lexing.

• Line and column tracking helps with error reporting later.

3.3 Designing the Lexer Class

We define a class that takes the source code and produces a list of tokens.

// lexer.hpp

class Lexer {

public:

Lexer(std::string_view input);

24

std::vector<Token> tokenize();

private:

std::string_view source;

size_t start = 0;

size_t current = 0;

int line = 1;

int column = 1;

char peek() const;

char advance();

bool is_at_end() const;

void skip_whitespace();

Token read_number();

Token read_identifier_or_keyword();

Token read_operator_or_symbol();

};

3.4 Lexer Implementation

3.4.1 Constructor and Helpers

// lexer.cpp

Lexer::Lexer(std::string_view input) : source(input) {}

char Lexer::peek() const {

return is_at_end() ? '\0' : source[current];

}

char Lexer::advance() {

char c = peek();

++current;

++column;

return c;

}

bool Lexer::is_at_end() const {

25

return current >= source.size();

}

3.4.2 Skipping Whitespace and Newlines

void Lexer::skip_whitespace() {

while (!is_at_end()) {

char c = peek();

if (c == ' ' || c == '\t') {

advance();

} else if (c == '\n') {

++line;

column = 1;

advance();

} else {

break;

}

}

}

3.4.3 Reading Numbers

Token Lexer::read_number() {

size_t number_start = current;

while (isdigit(peek())) advance();

auto lexeme = source.substr(number_start, current - number_start);

return Token{TokenType::Number, lexeme, line, column};

}

3.4.4 Reading Identifiers and Keywords

Token Lexer::read_identifier_or_keyword() {

size_t id_start = current;

while (isalnum(peek()) || peek() == '_') advance();

26

auto text = source.substr(id_start, current - id_start);

if (text == "print") return Token{TokenType::KeywordPrint, text, line, column};

if (text == "if") return Token{TokenType::KeywordIf, text, line, column};

if (text == "while") return Token{TokenType::KeywordWhile, text, line, column};

return Token{TokenType::Identifier, text, line, column};

}

3.4.5 Reading Symbols and Operators

Token Lexer::read_operator_or_symbol() {

char c = advance();

switch (c) {

case '+': case '-': case '*': case '/':

return Token{TokenType::Operator, source.substr(current - 1, 1), line, column};

case '=':

return Token{TokenType::Assign, source.substr(current - 1, 1), line, column};

case '(': return Token{TokenType::LeftParen, "(", line, column};

case ')': return Token{TokenType::RightParen, ")", line, column};

case '{': return Token{TokenType::LeftBrace, "{", line, column};

case '}': return Token{TokenType::RightBrace, "}", line, column};

case ';': return Token{TokenType::Semicolon, ";", line, column};

default:

return Token{TokenType::Unknown, source.substr(current - 1, 1), line, column};

}

}

3.5 The Tokenize Loop

std::vector<Token> Lexer::tokenize() {

std::vector<Token> tokens;

while (!is_at_end()) {

skip_whitespace();

char c = peek();

27

if (isdigit(c)) {

tokens.push_back(read_number());

} else if (isalpha(c)) {

tokens.push_back(read_identifier_or_keyword());

} else {

tokens.push_back(read_operator_or_symbol());

}

}

tokens.push_back(Token{TokenType::EndOfFile, "", line, column});

return tokens;

}

3.6 Example Output

Given this input:

print x = 5 + 10

The output token stream would be:

[KeywordPrint, "print"]

[Identifier, "x"]

[Assign, "="]

[Number, "5"]

[Operator, "+"]

[Number, "10"]

[EndOfFile, ""]

3.7 Debug Utility: Print Tokens

void print_tokens(const std::vector<Token>& tokens) {

for (const auto& token : tokens) {

std::cout << "Token{" << static_cast<int>(token.type) << ", \""

<< token.lexeme << "\", line " << token.line

28

<< ", column " << token.column << "}\n";

}

}

Use this in your REPL to debug lexer output.

3.8 Exercises

1. Add support for comments.

Example: ignore anything after // until the end of the line.

2. Add string literals.

Strings should be enclosed in quotes: "hello world".

3. Add multi-character operators.

Support ==, !=, <=, >= in read operator or symbol().

4. Track source ranges.

Extend the Token struct to include start pos and end pos for advanced diagnostics.

Chapter 4

Writing the Parser

4.1What Is a Parser?

A parser is the second major phase in the interpreter. It reads the stream of tokens generated by the

lexer and produces a structured tree representing the logic of the code.

This tree is called an Abstract Syntax Tree (AST). Each node in the AST represents a meaningful

operation: a number, a variable, an assignment, a binary operation like addition, or a statement like

print() or if.

4.1.1 Input vs Output

Component Input Output

Lexer Raw source code List of Token

Parser List of Token AST (Abstract Syntax Tree)

Evaluator AST Result / Effect

4.1.2Why Recursive Descent?

We use recursive descent parsing because:

29

30

• It is simple to implement.

• It works well for small, LL(1)-style grammars.

• It gives readable, clean, hand-written code.

Modern C++ makes it even more elegant with smart pointers, variants, and clear control structures.

4.2 Basic Grammar of the Language

Here is the simplified grammar for expressions and statements:

program → statement* EOF

statement → print_stmt | assign_stmt | if_stmt | while_stmt | expr_stmt

print_stmt → "print" expression

assign_stmt → IDENTIFIER "=" expression

if_stmt → "if" expression block

while_stmt → "while" expression block

expr_stmt → expression

block → "{" statement* "}"

expression → term (("+" | "-") term)*

term → factor (("*" | "/") factor)*

factor → NUMBER | IDENTIFIER | "(" expression ")"

4.3 AST Node Recap

We assume you've already defined basic AST node structures like:

// ast.hpp

struct Number { double value; };

struct Variable { std::string name; };

struct BinaryOp { std::string op; std::unique_ptr<Expr> left, right; };

struct Assignment { std::string name; std::unique_ptr<Expr> expr; };

struct Print { std::unique_ptr<Expr> expr; };

31

struct Block { std::vector<Stmt> statements; };

struct If { std::unique_ptr<Expr> condition; Block body; };

struct While { std::unique_ptr<Expr> condition; Block body; };

Where:

using Expr = std::variant<Number, Variable, BinaryOp, Assignment>;

using Stmt = std::variant<Print, If, While, Block, Assignment>;

4.4 The Parser Class

// parser.hpp

class Parser {

public:

Parser(std::vector<Token> tokens);

std::vector<Stmt> parse();

private:

const std::vector<Token>& tokens;

size_t current = 0;

Token peek() const;

Token advance();

bool match(TokenType type);

bool check(TokenType type) const;

bool is_at_end() const;

// Parsing entry points

Stmt parse_statement();

Expr parse_expression();

Expr parse_term();

Expr parse_factor();

};

4.5 Helper Methods

32

Token Parser ::peek() const {

return tokens[current];

}

bool Parser :: is_at_end () const {

return peek().type == TokenType :: EndOfFile;

}

Token Parser :: advance () {

if (! is_at_end ()) ++ current;

return tokens[current - 1];

}

bool Parser ::check(TokenType type) const {

return !is_at_end () && peek().type == type;

}

bool Parser ::match(TokenType type) {

if (check(type)) {

advance ();

return true;

}

return false;

}

4.6 Parsing Expressions

Expr Parser::parse_expression() {

Expr expr = parse_term();

while (match(TokenType::Operator) && (peek().lexeme == "+" || peek().lexeme == "-")) {

std::string op = tokens[current - 1].lexeme;

Expr right = parse_term();

expr = BinaryOp{op, std::make_unique<Expr>(std::move(expr)),

std::make_unique<Expr>(std::move(right))};↪→

}

return expr;

33

}

cppCopyEditExpr Parser::parse_term() {

Expr expr = parse_factor();

while (match(TokenType::Operator) && (peek().lexeme == "*" || peek().lexeme == "/")) {

std::string op = tokens[current - 1].lexeme;

Expr right = parse_factor();

expr = BinaryOp{op, std::make_unique<Expr>(std::move(expr)),

std::make_unique<Expr>(std::move(right))};↪→

}

return expr;

}

cppCopyEditExpr Parser::parse_factor() {

if (match(TokenType::Number)) {

double val = std::stod(tokens[current - 1].lexeme.data());

return Number{val};

}

if (match(TokenType::Identifier)) {

return Variable{std::string(tokens[current - 1].lexeme)};

}

if (match(TokenType::LeftParen)) {

Expr expr = parse_expression();

if (!match(TokenType::RightParen)) throw std::runtime_error("Expected ')'");

return expr;

}

throw std::runtime_error("Unexpected token in factor");

}

4.7 Parsing Statements

Stmt Parser::parse_statement() {

if (match(TokenType::KeywordPrint)) {

Expr value = parse_expression();

return Print{std::make_unique<Expr>(std::move(value))};

}

34

if (check(TokenType::Identifier) && tokens[current + 1].type == TokenType::Assign) {

std::string name = std::string(advance().lexeme); // identifier

advance(); // consume '='

Expr value = parse_expression();

return Assignment{name, std::make_unique<Expr>(std::move(value))};

}

if (match(TokenType::KeywordIf)) {

Expr cond = parse_expression();

Block body = parse_block();

return If{std::make_unique<Expr>(std::move(cond)), body};

}

if (match(TokenType::KeywordWhile)) {

Expr cond = parse_expression();

Block body = parse_block();

return While{std::make_unique<Expr>(std::move(cond)), body};

}

Expr expr = parse_expression();

return Assignment{"_", std::make_unique<Expr>(std::move(expr))}; // anonymous expression

}

4.8 Parsing Code Blocks

Block Parser::parse_block() {

if (!match(TokenType::LeftBrace)) {

throw std::runtime_error("Expected '{' to start block");

}

std::vector<Stmt> stmts;

while (check(TokenType::RightBrace) && is_at_end()) {

stmts.push_back(parse_statement());

}

if (!match(TokenType::RightBrace)) {

throw std::runtime_error("Expected '}' to close block");

}

35

return Block{std::move(stmts)};

}

4.9 Parsing the Program

std::vector<Stmt> Parser::parse() {

std::vector<Stmt> stmts;

while (!is_at_end()) {

stmts.push_back(parse_statement());

}

return stmts;

}

4.10 Example: From Code to AST

Input code:

x = 3 + 4

print(x)

AST (simplified):

Assignment("x",

BinaryOp("+",

Number(3),

Number(4)

)

)

Print(

Variable("x")

)

36

4.11 Error Recovery Tips

• Always check token bounds: tokens[current + 1] can crash.

• Track line/column in exceptions.

• Wrap parse calls in try/catch in REPL mode.

4.12 Exercises

1. Support parentheses inside if and while:

if (x > 10) { ... }

2. Add comparison operators: ==, !=, <, >, <=, >=

3. Support multi-statement blocks without braces (optional, like Python)

4. Implement return keyword (future function support)

4.13 Summary

You’ve now written a parser that:

• Converts a flat token stream into a structured tree

• Understands both expressions and statements

• Supports nested arithmetic, conditionals, and loops

Chapter 5

AST Node Definitions and Tree

Design

In this chapter, we define the structures needed to represent programs in memory after parsing. This

phase is essential for evaluation, as it translates the parser’s output into objects the evaluator can

easily process.

AST stands for Abstract Syntax Tree, which is a hierarchical, structured representation of code.

Each node in the AST corresponds to a construct in the language, such as numbers, variables, binary

operations, assignments, print statements, and control flows.

5.1 Goals of This Chapter

• Define the main AST nodes for expressions and statements.

• Decide between using std::variant vs class inheritance.

• Implement smart memory management using std::unique ptr.

• Prepare for efficient and clean tree traversal in the evaluator.

37

38

5.2 AST Nodes for Expressions

Here are the common types of expressions in a simple language:

• Number: Constant value like 42

• Variable: Symbol reference like x

• BinaryOp: Operation like a + b

• Assignment: x = 10

5.2.1 Expression Node Definitions

// ast.hpp

struct Number {

double value;

};

struct Variable {

std::string name;

};

struct BinaryOp {

std::string op;

std::unique_ptr<Expr> left;

std::unique_ptr<Expr> right;

};

struct Assignment {

std::string name;

std::unique_ptr<Expr> value;

};

We wrap child expressions in std::unique ptr to express ownership and enable dynamic,

recursive structures.

39

5.3 AST Nodes for Statements

Statements include actions like:

• Print: print(x)

• If : conditional execution

• While: looping

• Block: group of statements

struct Print {

std::unique_ptr<Expr> expr;

};

struct If {

std::unique_ptr<Expr> condition;

std::vector<Stmt> body;

};

struct While {

std::unique_ptr<Expr> condition;

std::vector<Stmt> body;

};

struct Block {

std::vector<Stmt> statements;

};

5.4Wrapping All Node Types with Variants

We now wrap the node types in type-safe discriminated unions using std::variant.

5.4.1 Expression Variant

40

using Expr = std::variant<Number, Variable, BinaryOp, Assignment>;

5.4.2 Statement Variant

using Stmt = std::variant<Print, If, While, Block, Assignment>;

This enables us to use std::visit() later when evaluating expressions or statements based on their

actual type.

5.5Why Use std::variant Instead of Inheritance?

While you could define a common base class and use virtual methods, std::variant:

• Is compile-time type-safe: no dynamic casting.

• Enables pattern matching with std::visit.

• Avoids heap allocations for every node type.

• Is simpler and clearer in C++20/C++23 projects.

5.5.1 Sample Use of std::visit

std::visit(overloaded {

[](const Number& n) { return n.value; },

[](const Variable& v) { return lookup(v.name); },

[](const BinaryOp& b) { return evaluate_binary(b); },

[](const Assignment& a) { return assign(a); }

}, expr);

5.6 Smart Memory Management with std::unique ptr

In recursive structures like ASTs, we use std::unique ptr to:

• Represent ownership of children (e.g., left/right expressions).

41

• Avoid manual new/delete.

• Enable safe recursion without memory leaks.

5.6.1 Example:

struct BinaryOp {

std::string op;

std::unique_ptr<Expr> left;

std::unique_ptr<Expr> right;

};

C++20 and C++23 make working with smart pointers easier with:

• Implicit move constructors

• Structured bindings

• Clear code formatting

5.7 Example: AST for x = 1 + 2

Here's how the AST might look in memory:

Assignment{

name = "x",

value = std::make_unique<Expr>(

BinaryOp{

op = "+",

left = std::make_unique<Expr>(Number{1}),

right = std::make_unique<Expr>(Number{2})

}

)

}

And visually:

42

Assignment(x)

BinaryOp(+)

Number(1)

Number(2)

This is the core data structure that the evaluator will walk to compute values or perform side effects

like printing.

5.8 Extending the AST in the Future

Your AST can grow to support:

• Function definitions and calls

• String literals

• Boolean logic (&&, ||, !)

• Return and break statements

• Error tracking and debugging metadata

Always define each new construct as a new struct and wrap it into the Expr or Stmt variant.

5.9 Suggested Enhancements

• Add a base interface Node if you want runtime polymorphism.

• Store token location in each AST node to enable detailed error reporting.

• Use std::shared ptr if multiple parts of the tree need access to the same object (not typical for

basic interpreters).

• Use C++23 std::expected to enhance construction of ASTs with error messages.

43

5.10 Summary

In this chapter, you:

• Defined core AST node types (Number, Variable, BinaryOp, etc.)

• Used std::variant to group expression and statement variants.

• Applied std::unique ptr to manage memory safely.

• Prepared the AST structure for evaluation in the next stage.

Chapter 6

Evaluator – Walking the AST to

Run Code

This chapter implements the core logic of your interpreter: executing the abstract syntax tree (AST)

you've built from source code.

Evaluation involves traversing the AST nodes, performing operations such as arithmetic, assignments,

and control flow. This process turns static structure into dynamic behavior.

6.1What Is Evaluation?

The evaluator (or interpreter core) is responsible for:

• Traversing expression and statement nodes.

• Calculating numeric values.

• Managing variable values.

• Executing side effects (print()).

• Performing branching (if) and loops (while).

44

45

6.2 Evaluation Strategy

We’ll evaluate AST nodes using:

• std::variant + std::visit for dispatching behavior based on node type.

• Recursive traversal for nested operations.

• A symbol table (std::unordered map) for storing variable values.

6.3 Symbol Table – Storing Variables

Create a global environment:

#include <unordered_map>

std::unordered_map<std::string, double> globals;

This stores variable names and their current values.

6.4 Evaluate Expressions

We'll write a function evaluate expr that takes an Expr and returns a value:

double evaluate_expr(const Expr& expr);

6.4.1 Expression Cases

double evaluate_expr(const Expr& expr) {

return std::visit(overloaded{

[](const Number& n) {

return n.value;

},

[](const Variable& v) {

return globals.at(v.name); // Throws if not found

},

[](const BinaryOp& b) {

46

double left = evaluate_expr(*b.left);

double right = evaluate_expr(*b.right);

if (b.op == "+") return left + right;

if (b.op == "-") return left - right;

if (b.op == "*") return left * right;

if (b.op == "/") return left / right;

throw std::runtime_error("Unknown operator: " + b.op);

},

[](const Assignment& a) {

double val = evaluate_expr(*a.value);

globals[a.name] = val;

return val;

}

}, expr);

}

This uses std::visit to pattern-match the type inside std::variant.

6.5 Evaluate Statements

Statements don’t return values, they perform actions. Define a function:

void execute_stmt(const Stmt& stmt);

6.5.1 Statement Cases

Conditionals are treated as ”true” if not zero.

6.6 Example: Evaluating a Full Program

For the input:

x = 3 + 4;

print(x);

The evaluation does:

47

• Compute 3 + 4 → 7

• Store x = 7 in globals

• Output 7 to the console

6.7 Tips for Cleaner Code

• Use an Environment class to manage scopes in future chapters.

• Add tracing/logging for debugging evaluation steps.

• Use exceptions to handle undefined variables or bad operations.

• For complex languages, separate ExprEvaluator and StmtExecutor.

6.8 Advanced: Boolean Expressions

You can later extend evaluate expr to support:

• ==, !=, <, >, <=, >=

• Logical operators: &&, ||

Return 1.0 for true, 0.0 for false, or introduce a Value type using std::variant<double, bool,

std::string>.

6.9 Summary

In this chapter, you've implemented the interpreter core:

• Recursively evaluated expression trees.

• Stored and retrieved variables.

• Performed side effects like print().

• Executed control flow (if, while, block).

• Used modern C++ features (std::variant, std::visit, smart pointers).

Chapter 7

Statements and REPL – Making

Your Language Interactive

Now that your interpreter can parse and evaluate programs, it's time to make it interactive with a

REPL: a Read–Eval–Print Loop. This allows users to enter code line by line and see immediate

results, just like in Python.

7.1What Is a REPL?

REPL stands for:

• Read – Accept user input (a line of source code).

• Eval – Tokenize, parse, and evaluate it.

• Print – Output the result or any errors.

• Loop – Repeat the cycle until the user exits.

REPLs are great for:

• Debugging

• Prototyping

48

49

• Learning

• Interactive environments

7.2 Add Support for print(expr)

First, extend your grammar and parser to recognize print() calls.

7.2.1 Parser Support

Add a new AST node:

struct Print {

std::unique_ptr<Expr> expr;

};

Add a variant entry:

using Stmt = std::variant<Print, Assignment, Block, If, While>;

Update the parser:

Stmt parse_statement() {

if (match("print")) {

consume("(");

auto expr = parse_expression();

consume(")");

return Print{ std::move(expr) };

}

// other cases...

}

7.2.2 Evaluator Support

Update execute stmt:

50

[](const Print& p) {

std::cout << evaluate_expr(*p.expr) << std::endl;

},

Now your language supports visible output.

7.3 Building the REPL Loop

Write a loop in repl.cpp:

void repl() {

while (true) {

std::cout << ">> ";

std::string line;

if (!std::getline(std::cin, line)) break;

if (line.empty()) continue;

try {

auto tokens = tokenize(line);

auto stmt = parse_statement(tokens);

execute_stmt(stmt);

} catch (const std::exception& e) {

std::cerr << "Error: " << e.what() << '\n';

}

}

}

Add repl(); to main().

7.4 Example REPL Session

>> x = 5 + 3

>> print(x)

8

>> y = x * 2

>> print(y)

16

51

Every line is processed independently. State (variables) is preserved across lines.

7.5 Enhancements and Features

You can improve the REPL with:

• Multi-line input: detect { or (to allow block or multi-line entry.

• Command shortcuts: support :exit, :vars, :help.

• History: store previous commands (can use external libraries).

• Autocomplete: suggest variable names or keywords (advanced).

7.6 REPL and Real-Time Feedback

Why use REPL in a language?

• Instant feedback accelerates learning.

• Encourages experimentation.

• Enables scripting tools and dynamic control.

• Makes the language more interactive and fun to use.

REPL is also useful during development to test language features quickly.

7.7 Organizing REPL in Codebase

Split your REPL logic into a separate file repl.cpp:

void start_repl() {

// same code from above

}

Declare in repl.hpp:

52

void start_repl();

Update main.cpp:

int main() {

std::cout << "Simple Interpreter v0.1\n";

start_repl();

return 0;

}

7.8 Summary

You now have:

• print() support to output values.

• A full interactive loop that reads and executes code.

• A cleaner way for users to interact with your interpreter.

Chapter 8

Control Flow – If and While

Statements

So far, your language supports variables, expressions, and output through print(). To make it truly

useful, you now need control flow constructs—statements that allow conditional execution (if) and

repetition (while).

This chapter explains how to parse and evaluate both.

8.1 Adding the if Statement

8.1.1 Syntax

if (condition) {

statements...

}

Optionally:

if (condition) {

statements...

} else {

53

54

other_statements...

}

8.1.2 AST Node

struct If {

std::unique_ptr<Expr> condition;

std::vector<Stmt> then_branch;

std::vector<Stmt> else_branch;

};

8.1.3 Parser Support

Extend your parse statement() function:

Stmt parse_if() {

consume("if");

consume("(");

auto condition = parse_expression();

consume(")");

auto then_branch = parse_block();

std::vector<Stmt> else_branch;

if (match("else")) {

else_branch = parse_block();

}

return If{ std::move(condition), std::move(then_branch), std::move(else_branch) };

}

8.2 Adding the while Loop

55

8.2.1 Syntax

while (condition) {

statements...

}

8.2.2 AST Node

struct While {

std::unique_ptr<Expr> condition;

std::vector<Stmt> body;

};

8.2.3 Parser Support

Stmt parse_while() {

consume("while");

consume("(");

auto condition = parse_expression();

consume(")");

auto body = parse_block();

return While{ std::move(condition), std::move(body) };

}

Update parse statement() to dispatch based on keyword (if, while, print, etc.).

8.3 Parsing Blocks

8.3.1 Code Block Syntax

Blocks are delimited by { and }:

{

statement1;

56

statement2;

}

8.3.2 Parser Utility

std::vector<Stmt> parse_block() {

consume("{");

std::vector<Stmt> statements;

while (!match("}")) {

statements.push_back(parse_statement());

}

return statements;

}

8.4 Evaluator Support

Extend your execute stmt() dispatch logic:

std::visit(overloaded {

...

[&](const If& stmt) {

if (evaluate_expr(*stmt.condition)) {

for (const auto& s : stmt.then_branch) execute_stmt(s);

} else {

for (const auto& s : stmt.else_branch) execute_stmt(s);

}

},

[&](const While& stmt) {

while (evaluate_expr(*stmt.condition)) {

for (const auto& s : stmt.body) execute_stmt(s);

}

}

}, stmt);

57

8.5 Simple Example

>> x = 5

>> if (x > 3) { print(100) }

100

>> y = 0

>> while (y < 3) { print(y); y = y + 1 }

0

1

2

8.6 Representing Code Blocks

In your AST and parser:

• Code blocks are std::vector<Stmt>

• They can be nested inside If, While, and Block

• Statements are executed in order

This is essential for structured control flow.

8.7 Scoping and Variable Isolation

You can implement block scope using a scope stack:

std::vector<std::unordered_map<std::string, double>> scopes;

On block entry:

scopes.push_back({});

On block exit:

58

scopes.pop_back();

For lookups:

• Search from top down

• Update nearest match

This enables variable shadowing and better organization.

8.8 Future Extensions

Later, you can support:

• break and continue

• for loops

• switch-case

• Boolean short-circuiting

8.9 Summary

You’ve added:

• Full support for if and while

• Structured blocks using {} and std::vector<Stmt>

• Optional scoping support for block-local variables

With control flow now implemented, your interpreter becomes a true mini-language capable of

branching and looping.

Chapter 9

Error Handling

Interpreters must handle invalid input gracefully. A single syntax error or runtime failure shouldn't
crash the whole program. This chapter introduces clean and modern ways to catch, report, and recover

from errors in your interpreter using C++20 and C++23.

9.1 Types of Errors

Errors typically fall into two categories:

1. Syntax Errors – Found during tokenization or parsing (e.g., unexpected symbol, unmatched

parentheses).

2. Runtime Errors – Occur during evaluation (e.g., division by zero, undefined variable).

Handling both is critical for a reliable user experience.

9.2 Adding Line and Column Information

9.2.1 Token Metadata

Enhance your Token struct:

59

60

struct Token {

TokenType type;

std::string_view lexeme;

int line;

int column;

};

Update the lexer to track line and column as characters are processed.

9.3 Syntax Error Reporting

Throw errors during parsing:

void error(const Token& token, const std::string& message) {

throw std::runtime_error("Syntax Error at line " + std::to_string(token.line) +

", column " + std::to_string(token.column) + ": " + message);

}

Use this in consume():

Token consume(TokenType expected) {

if (current().type == expected)

return advance();

error(current(), "Expected token type: " + token_type_to_string(expected));

}

C++20’s std::format (if available) makes formatting even cleaner.

9.4 Runtime Error Handling

You can detect problems during evaluation, such as:

• Division by zero

• Using undeclared variables

• Invalid operator usage

61

double evaluate_binary_op(const std::string& op, double left, double right) {

if (op == "/") {

if (right == 0)

throw std::runtime_error("Runtime Error: Division by zero");

return left / right;

}

...

}

Use a top-level try/catch block in the REPL to recover:

try {

auto tokens = tokenize(line);

auto ast = parse(tokens);

evaluate(ast);

} catch (const std::exception& ex) {

std::cerr << ex.what() << "\n";

}

9.5 Optional and Result Types

C++20 provides std::optional<T> for expressing failure without exceptions:

std::optional<Token> try_consume(TokenType expected) {

if (current().type == expected)

return advance();

return std::nullopt;

}

You can also define a simple Result<T> type:

template<typename T>

struct Result {

T value;

std::string error;

bool is_ok;

};

62

And use it instead of throwing:

Result<double> safe_divide(double a, double b) {

if (b == 0) return {0.0, "Division by zero", false};

return {a / b, "", true};

}

This approach avoids exceptions, improves control, and supports future error handling improvements.

9.6 Highlighting Errors with Context

Output errors with context:

Error: Unexpected token '=' at line 3, column 5

--> 3 | x == 5 + ;

^

You can display the original line and use spacing to point to the column position. Store the full source

lines for this purpose.

9.7 Structured Error Classes

Use error classes for better control:

class InterpreterError : public std::runtime_error {

public:

InterpreterError(const std::string& msg, int line, int column)

: std::runtime_error(msg), line(line), column(column) {}

int line, column;

};

Or specialize for different types (e.g., SyntaxError, RuntimeError) for fine-grained catching.

9.8 REPL Integration

Wrap the whole REPL loop:

63

while (true) {

try {

std::string line;

std::getline(std::cin, line);

auto tokens = tokenize(line);

auto ast = parse(tokens);

evaluate(ast);

} catch (const InterpreterError& e) {

std::cerr << "Error at line " << e.line << ", column " << e.column << ": " << e.what() << "\n";

} catch (const std::exception& e) {

std::cerr << "Error: " << e.what() << "\n";

}

}

This prevents the interpreter from terminating on every error.

9.9 Summary

This chapter introduced error-handling infrastructure:

• Track line/column metadata in tokens

• Report syntax and runtime errors clearly

• Catch exceptions at the REPL level

• Use std::optional or Result<T> for error-aware logic

A robust error system helps both beginners and advanced users quickly debug issues and makes the

language feel more complete.

Chapter 10

Final Touches and Next Steps

In this final chapter, we summarize the features already implemented and provide a roadmap for

improving and scaling your interpreter. Even though the core functionality is in place, interpreters

are extensible by design—and Modern C++ makes the process cleaner, safer, and more expressive than

ever before.

10.1 Recap of What’s Been Built

You’ve successfully built a functioning interpreter in under 50 pages using C++20/C++23.

Your interpreter now supports:

• Lexical analysis of identifiers, numbers, operators, and control symbols.

• Parsing expressions, assignments, and statements using recursive descent.

• AST creation via modern structures (std::variant, std::unique ptr).

• Evaluation of binary operations, variables, and assignments.

• Control flow with if and while.

• Printing output with print().

• A REPL (Read-Eval-Print Loop) for line-by-line execution.

64

65

• Basic error handling for both syntax and runtime problems.

Technologies used:

• std::variant – For managing typed AST nodes.

• std::unique ptr – For safe, automatic memory management.

• std::optional or exceptions – For error reporting.

• CMake – For cross-platform project setup.

• C++20/23 – For expressive and maintainable syntax.

This is already a minimal language engine capable of interpreting simple programs. The architecture is

designed for growth.

10.2 Ideas for Extending the Language

The current interpreter is a solid foundation. Here’s what you can add next:

1. User-Defined Functions

• Allow defining and calling functions with parameters.

• Maintain a call stack and local scope for each call.

Example Syntax:

def add(a, b) {

return a + b;

}

print(add(2, 3));

2. String Support

• Add String to your token types and AST variants.

• Implement string operations (concatenation, length, etc.).

66

Example:

name = "John";

print("Hello, " + name);

3. File I/O Support

• Add read(filename) and write(filename, data) built-in functions.

• Use std::filesystem and std::ifstream/std::ofstream.

Example:

data = read("input.txt");

write("output.txt", data);

10.3 Suggestions for Larger-Scale Interpreters

Once your interpreter gets larger, scale it with professional design choices:

1. Modular Design with Namespaces or C++ Modules

Break components into smaller libraries:

• Lexer

• Parser

• AST

• Evaluator

• Built-ins

• REPL

This structure improves maintainability and compile times.

2. Enhanced Type System

Support:

67

• Booleans

• Arrays

• Maps

• Custom types

Use std::variant to model more complex type hierarchies.

3. Scope Management

Replace single symbol table with a scope chain or environment stack. This supports:

• Local variables

• Closures

• Shadowing

4. Function Call Stack

Track:

• Call depth

• Local variables

• Return addresses

A Frame object can hold this information.

5. Import and Module System

Allow users to separate code into files and reuse components.

Example:

import "math.lang"

print(add(2, 3));

6. AST Optimization

Perform constant folding, dead code elimination, and simple inlining.

68

10.4 Language Design Ideas

Here are additional concepts to explore:

• Garbage Collection: Swap std::unique ptr with shared ownership or design a GC.

• JIT Compilation: Use libraries like LLVM or asmjit to compile hot paths.

• Debugging Tools: AST printers, breakpoints, step-by-step evaluation.

• Interactive Documentation: Add built-in help and error hints.

10.5 Learning Path Forward

Once you've built this interpreter, you have a strong understanding of language implementation. You

can now study:

• Compiler design (start building a bytecode or native compiler).

• Advanced parsing techniques (LR parsers, PEGs).

• Virtual machines and register-based evaluation.

• Language design principles (syntax, semantics, user experience).

Books to continue with:

• Crafting Interpreters by Bob Nystrom

• Programming Language Pragmatics by Michael Scott

• Modern C++ Design by Andrei Alexandrescu

10.6 Closing Thoughts

Building an interpreter from scratch is one of the most rewarding projects a programmer can pursue. It

sharpens your skills in:

• Syntax design

69

• Recursive thinking

• Memory management

• C++ idioms and type systems

• Real-world architecture

With just Modern C++ and standard libraries, you’ve written a working language—one you can grow,

enhance, and share.

Whether you plan to design a full scripting engine, teach programming, or just enjoy the craftsmanship

of language building, this project is a powerful launch point.

Congratulations. You're now not only a Modern C++ developer, but also a language designer.

Appendices

Appendix A: Full Token and Tokenizer System

10.6.1 Token Types

enum class TokenType {

Number,

Identifier,

String,

Operator,

Assign,

Semicolon,

LeftParen,

RightParen,

LeftBrace,

RightBrace,

Comma,

KeywordPrint,

KeywordIf,

KeywordElse,

KeywordWhile,

KeywordFunc,

KeywordReturn,

EndOfFile,

Unknown

};

70

71

10.6.2 Token Structure

struct Token {

TokenType type;

std::string_view lexeme;

int line;

int column;

};

10.6.3 Tokenizer Extensions

Add support for:

• String literals: Detect and handle quoted text.

• Semicolons: Allow statement separation.

• Function keywords: func, return, etc.

Example for string handling in lexer:

if (ch == '"') {

++pos;

size_t start = pos;

while (pos < source.size() && source[pos] != '"') ++pos;

std::string_view str = source.substr(start, pos - start);

tokens.push_back({ TokenType::String, str, line, col });

++pos; ++col;

continue;

}

Appendix B: CMake Enhancements for Multi-File Projects

10.6.4Modular CMake Structure

72

add_library(lexer lexer.cpp lexer.hpp)

add_library(parser parser.cpp parser.hpp)

add_library(ast ast.cpp ast.hpp)

add_library(interpreter interpreter.cpp interpreter.hpp)

add_executable(interpreter_cli main.cpp repl.cpp)

target_link_libraries(interpreter_cli PRIVATE lexer parser ast interpreter)

10.6.5 Add Unit Test Target

enable_testing()

add_executable(test_runner tests/test_main.cpp)

add_test(NAME LexerTest COMMAND test_runner)

10.7 Appendix C: Sample Unit Tests Using Catch2

#define CATCH_CONFIG_MAIN

#include <catch2/catch.hpp>

#include "lexer.hpp"

TEST_CASE("Lex simple expression") {

std::string src = "x = 42 + 3";

auto tokens = tokenize(src);

REQUIRE(tokens.size() == 5);

REQUIRE(tokens[0].type == TokenType::Identifier);

REQUIRE(tokens[2].type == TokenType::Number);

}

10.7.1 Notes:

• Use Catch2, doctest, or Google Test.

• Keep tests for Lexer, Parser, and Evaluator separate.

• Automate testing in CMake.

73

Appendix D: Template for Expression Evaluation

std::unordered_map<std::string, double> globals;

double eval_expr(const Expr& expr) {

return std::visit(overloaded{

[](const Number& n) { return n.value; },

[](const Variable& v) -> double {

auto it = globals.find(v.name);

if (it != globals.end()) return it->second;

throw std::runtime_error("Undefined variable: " + v.name);

},

[](const BinaryOp& b) -> double {

double l = eval_expr(*b.left);

double r = eval_expr(*b.right);

if (b.op == "+") return l + r;

if (b.op == "-") return l - r;

if (b.op == "*") return l * r;

if (b.op == "/") return l / r;

throw std::runtime_error("Unknown operator");

},

[](const Assignment& a) -> double {

double val = eval_expr(*a.expr);

globals[a.name] = val;

return val;

}

}, expr);

}

Appendix E: Common Errors and Fixes

Error Type Description Solution

Undefined symbol Variable used before assignment Check variable presence in symbol

table

Token mismatch Invalid character in input Add default handling in tokenizer

74

Error Type Description Solution

Empty AST Parser failed to return a root node Ensure parser handles all valid

inputs

Infinite loop In while, condition never becomes

false

Use debug print to inspect variable

state

Missing tokens Lexer skipped important characters Carefully handle all punctuation

cases

Appendix F: Adding a Simple Function System (Optional

Extension)

10.7.2 Function Node

struct Function {

std::string name;

std::vector<std::string> params;

std::vector<Stmt> body;

};

10.7.3 Call Node

struct Call {

std::string funcName;

std::vector<Expr> arguments;

};

10.7.4 Extend Evaluator

std::unordered_map<std::string, Function> functions;

75

Value eval_call(const Call& call) {

auto& func = functions[call.funcName];

// Create new environment, bind parameters to arguments

// Evaluate body and return last value or `return` statement value

}

Appendix G: Advanced Grammar Sample (Extended Language)

program → statement*

statement → expr_stmt | if_stmt | while_stmt | func_decl

expr_stmt → IDENT "=" expression ";" | "print" "(" expression ")" ";"

if_stmt → "if" "(" expression ")" block ("else" block)?

while_stmt → "while" "(" expression ")" block

func_decl → "func" IDENT "(" param_list? ")" block

expression → term (("+" | "-") term)*

term → factor (("*" | "/") factor)*

factor → NUMBER | STRING | IDENT | "(" expression ")" | call_expr

call_expr → IDENT "(" arguments? ")"

Appendix H: Building and Running Instructions

10.7.5 Building with CMake

mkdir build

cd build

cmake ..

cmake --build .

10.7.6 Running the REPL

./interpreter_cli

76

10.7.7 Sample Input

x = 5

y = x + 7

print(y)

Appendix I: Sample REPL Loop with Error Catching

int main() {

while (true) {

std::cout << ">>> ";

std::string input;

if (!std::getline(std::cin, input)) break;

try {

auto tokens = tokenize(input);

auto ast = parse(tokens);

evaluate(ast);

} catch (const std::exception& e) {

std::cerr << "Error: " << e.what() << "\n";

}

}

return 0;

}

Appendix J: Minimal AST Visualization for Debugging

void print_ast(const Expr& expr, int indent = 0) {

std::visit(overloaded {

[indent](const Number& n) {

std::cout << std::string(indent, ' ') << "Number(" << n.value << ")\n";

},

[indent](const Variable& v) {

std::cout << std::string(indent, ' ') << "Variable(" << v.name << ")\n";

},

77

[indent](const BinaryOp& b) {

std::cout << std::string(indent, ' ') << "BinaryOp(" << b.op << ")\n";

print_ast(*b.left, indent + 2);

print_ast(*b.right, indent + 2);

},

[indent](const Assignment& a) {

std::cout << std::string(indent, ' ') << "Assignment(" << a.name << ")\n";

print_ast(*a.expr, indent + 2);

}

}, expr);

}

References

Modern C++ Standards

1. ISO/IEC 14882:2020 – Programming Language C++ (C++20 Standard)

2. ISO/IEC 14882:2023 – Programming Language C++ (C++23 Standard Draft and Features)

3. cppreference.com – https://en.cppreference.com

• Comprehensive documentation for std::variant, std::optional, std::visit,

std::unique ptr, std::ranges, std::format, and more.

Interpreter and Compiler Construction

1. Crafting Interpreters – Robert Nystrom

• While it is written in Java, the structure and methodology were adapted to C++ in this

booklet.

• Focused on recursive descent parsers and tree-walking interpreters.

2. Let’s Build a Simple Interpreter – Ruslan Spivak

• A minimalist Python-based tutorial that inspired the breakdown into lexer → parser →
interpreter.

• Converted and modernized into C++ for this project.

3. The Super Tiny Compiler – James Kyle

78

https://en.cppreference.com

79

• A well-known JavaScript-focused compiler demo; adapted to C++ to explain abstract syntax

tree construction in simple steps.

C++ Resources Focused on Modern Features

1. Anthony Williams – C++ Concurrency in Action (Second Edition, updated for C++20)

• Relevant in memory management, smart pointers, and resource safety using RAII.

2. Jason Turner – C++ Best Practices and talks from CppCon and Meeting C++

• Advocates for clean, modern C++ style, especially use of std::variant and constexpr.

3. Ben Deane & Jason Turner – Variant Visitors in Modern C++

• Presenting practical use of std::variant and std::visit for expression evaluation.

4. Herb Sutter – C++ Language Evolution Proposals (ISO papers)

• His contributions around pattern matching, language safety, and the future of error handling

in C++23 and beyond.

CMake and Tooling

1. CMake Documentation – https://cmake.org/documentation

• For build system setup, modular configuration, linking multiple source files, and toolchain

usage for C++20/23.

2. JetBrains CLion Documentation

• Advanced IDE support for C++20 and integration with CMake and unit testing

frameworks.

3. Catch2 Framework – https://github.com/catchorg/Catch2

• Used in the booklet to demonstrate unit testing of the lexer and parser.

https://cmake.org/documentation
https://github.com/catchorg/Catch2

80

Practical Community Resources and Examples

1. Compiler Explorer (Godbolt) – https://godbolt.org

• Used to test and validate modern C++ snippets in real-time with support for latest

compilers (GCC, Clang, MSVC).

2. GitHub Projects for Educational Interpreters:

• Several open-source projects were referenced to cross-check idioms and best practices,

including:

– Starlang (C++-based)

– Cxx-Lox

– kaleidointerpreter (LLVM/C++)

Academic Foundations

1. “Programming Language Pragmatics” by Michael L. Scott

• Provides theoretical background for grammar rules, recursive descent parsing, and runtime

environments.

2. “Modern Compiler Implementation in C” by Andrew W. Appel

• Though written in C, the data structures and flow served as a foundation for the parser and

evaluator designs.

https://godbolt.org

	Contents
	Author’s Preface
	Introduction
	What Is an Interpreter?
	Key Characteristics of Interpreters:
	Real-World Uses of Interpreters:
	Common Interpreted Languages:

	Why Build Your Own Interpreter?
	Anatomy of an Interpreter
	Lexical Analysis (Lexer)
	Parsing
	Evaluation

	What Will You Build?
	Supported Features:

	Why Use C++ to Build an Interpreter?
	Modern C++ Advantages:

	REPL: Read-Eval-Print Loop
	REPL Flow:
	Example Session:

	What You'll Learn
	Who This Guide Is For
	Summary

	Project Setup
	Introduction
	Directory and File Structure
	Installing Required Tools
	A Modern C++ Compiler
	CMake

	Writing CMakeLists.txt
	Notes:

	Hello World Test
	REPL Entry Point
	Optional: IDE Integration
	Visual Studio Code:
	CLion (JetBrains):

	Summary
	Exercises

	Lexer (Tokenizer)
	What Is Lexical Analysis?
	Token Type Definition
	Notes:

	Designing the Lexer Class
	Lexer Implementation
	Constructor and Helpers
	Skipping Whitespace and Newlines
	Reading Numbers
	Reading Identifiers and Keywords
	Reading Symbols and Operators

	The Tokenize Loop
	Example Output
	Debug Utility: Print Tokens
	Exercises

	Writing the Parser
	What Is a Parser?
	Input vs Output
	Why Recursive Descent?

	Basic Grammar of the Language
	AST Node Recap
	 The Parser Class
	Helper Methods
	Parsing Expressions
	Parsing Statements
	Parsing Code Blocks
	Parsing the Program
	Example: From Code to AST
	Error Recovery Tips
	Exercises
	Summary

	AST Node Definitions and Tree Design
	Goals of This Chapter
	AST Nodes for Expressions
	Expression Node Definitions

	AST Nodes for Statements
	Wrapping All Node Types with Variants
	Expression Variant
	Statement Variant

	Why Use std::variant Instead of Inheritance?
	Sample Use of std::visit

	Smart Memory Management with std::unique_ptr
	Example:

	Example: AST for x = 1 + 2
	Extending the AST in the Future
	Suggested Enhancements
	Summary

	Evaluator – Walking the AST to Run Code
	What Is Evaluation?
	Evaluation Strategy
	Symbol Table – Storing Variables
	Evaluate Expressions
	Expression Cases

	Evaluate Statements
	Statement Cases

	Example: Evaluating a Full Program
	Tips for Cleaner Code
	Advanced: Boolean Expressions
	Summary

	Statements and REPL – Making Your Language Interactive
	What Is a REPL?
	Add Support for print(expr)
	Parser Support
	Evaluator Support

	Building the REPL Loop
	Example REPL Session
	Enhancements and Features
	REPL and Real-Time Feedback
	Organizing REPL in Codebase
	Summary

	Control Flow – If and While Statements
	Adding the if Statement
	Syntax
	AST Node
	Parser Support

	Adding the while Loop
	Syntax
	AST Node
	Parser Support

	Parsing Blocks
	Code Block Syntax
	Parser Utility

	Evaluator Support
	Simple Example
	Representing Code Blocks
	Scoping and Variable Isolation
	Future Extensions
	Summary

	Error Handling
	Types of Errors
	Adding Line and Column Information
	Token Metadata

	Syntax Error Reporting
	Runtime Error Handling
	Optional and Result Types
	Highlighting Errors with Context
	Structured Error Classes
	REPL Integration
	Summary

	Final Touches and Next Steps
	Recap of What's Been Built
	Ideas for Extending the Language
	Suggestions for Larger-Scale Interpreters
	Language Design Ideas
	Learning Path Forward
	Closing Thoughts

	Appendices
	Appendix A: Full Token and Tokenizer System
	Token Types
	Token Structure
	Tokenizer Extensions
	Appendix B: CMake Enhancements for Multi-File Projects
	Modular CMake Structure
	Add Unit Test Target

	Appendix C: Sample Unit Tests Using Catch2
	Appendix C: Sample Unit Tests Using Catch2
	Notes:

	Appendix D: Template for Expression Evaluation
	Appendix E: Common Errors and Fixes
	Appendix F: Adding a Simple Function System (Optional Extension)
	Function Node
	Call Node
	Extend Evaluator
	Appendix G: Advanced Grammar Sample (Extended Language)
	Appendix H: Building and Running Instructions
	Building with CMake
	Running the REPL
	Sample Input

	Appendix I: Sample REPL Loop with Error Catching
	Appendix J: Minimal AST Visualization for Debugging

	References

