https://simplifycpp.org

CPU Programming Series
x86-64 Syscalls & Privilege Boundary

From User Code to the Kernel

— CPU
| Programming
\Series\

—

Prepared by Ayman Alheraki



CPU Programming Series
86-64 Syscalls Privilege Boundary

From User Code to the Kernel

Prepared by Ayman Alheraki

simplifycpp.org

January 2026



Contents

Contents

Preface

Scope of ThisBooklet. . . . . . . ... ... .. .. ...

Position Within the CPU Programming Series . . . . . . . .. ... ... ......
What This Booklet Assumes (and DoesNot) . . . . . . . ... ... ... ......

Why Syscalls and Privilege Boundaries Matter . . . . . . . .. ... ... ......

1 Privilege Levels in x86-64

1.1
1.2
1.3
1.4

UserModevs KernelMode . . . . . ... .. ... .. ... ..........
Why Privilege Separation Exists . . . . . ... ... ... ... ... ...
Hardware-Enforced Boundaries (Conceptual) . . . . .. ... ... ......

Transition Costs and Security Implications . . . . . . .. .. ... ... ....

2 From User Code to the Kernel

2.1
22
2.3
24

What Happens When User Code Needs the Kernel . . . . . . . ... ... ...
Historical Overview: INT 0x80 vs SYSCALL . . . . . .. ... ... ... ..
Controlled Entry Points into the Kernel . . . . . . ... ... ... ......
Fast Path vs Slow Path Transitions . . . . . .. ... ... . ... .......

~N 9 O &

o



3 The syscall Instruction

3.1
32
33
34

Purpose and Design Goals of syscall . .. ..
CPU State Before and After syscall. . . . ..
MSRs Involved in Syscall Handling . . . . . . .
SYSCALL vs SYSRET (Conceptual Flow) . . .

4 Linux x86-64 Syscall ABI

4.1
4.2
4.3
4.4
4.5

Syscall Calling Convention Overview . . . . . .

Register Usage and Argument Passing . . . . . .

Return Values and Error Reporting . . . . . . ..
Clobbered Registers and ABI Guarantees . . . .

Comparison with Function Call ABI . . . . . ..

S Kernel Entry and Exit Mechanics

5.1
5.2
5.3
54

Stack Switching and Kernel Stacks . . . . . . ..

Context Saving Responsibilities . . . . . .. ..

Returning Safely to User Space . . . . . ... ..

Common Failure and Security Scenarios . . . . .

54.1
54.2
543
544
545

Invalid Pointers and Faults During Copy .
Signals Interrupting Syscalls . . . . . . .

Privilege Confusion and Entry Point Integrity . . . . . ... ... ...

Register Convention Mismatches . . . .
Hidden Costs: Scheduling and Slow Paths

6 Signals and Exceptions (Conceptual)

6.1

Difference Between Signals and Syscalls . . . . .

6.2 Synchronous vs Asynchronous Events . . . . . .

6.2.1

Synchronousevents . . . . .. ... ...

6.2.2 Asynchronousevents . . . ... ... ..

18
18
19
20
21

23
23
24
26
27
28

30
30
31
32
33
34
34
35
35
36



8

6.3 Signal Delivery from Kernel to User Space . . . . . ... ... ... ..... 39
6.4 Interaction Between Signals and Syscalls . . . . ... ... ... ... .... 40
6.4.1 Syscalls may be interrupted . . . . . .. ... oL 41
6.4.2 Syscallrestartrules . . . . . . . ... ... L L 42
6.4.3  Signals can arrive right before or right after syscall return. . . . . . . . 42
6.4.4 Exception-like signals (faults) . . . . ... .. .. ... ... ..... 42
Context Save and Restore Concepts 44
7.1 What “Context” Really Means . . . . . ... ... .. ............. 44
7.2 Minimal vs Full Context Saving . . . . . . . ... ... ... ... ...... 45
7.2.1 Minimal contextsaving . . . . . . . . ... ... 45
7.2.2 Fullcontextsaving . . . . . . . . .. ... ... .. 46
7.3 Performance Impact of Context Switching . . . . . ... ... ... ...... 47
7.4 Where Context Switches Fit in the Syscall Path . . . . . . ... ... ... .. 48
Putting It All Together 50
8.1 Full Syscall Lifecycle Walkthrough . . . . . . ... ... ... ... ..... 50
8.2 User — Kernel — User Execution Timeline . . . ... ... .......... 52
8.2.1 Timeline checkpoints (conceptual) . . . . . . ... ... ... ..... 52
8.2.2 Timeline with fast vsslowpath. . . . . . .. .. .. ... ... .... 53
8.3 Common Misconceptions About Syscalls . . . . .. ... ... ........ 53
8.3.1 Misconception: “A syscall is just a functioncall” . . . . . . ... ... 53
8.3.2 Misconception: “The syscall cannot be interrupted” . . . . . . . .. .. 54

8.3.3 Misconception: “Return value is always meaningful without error
checks” . . . . . L 54
8.3.4 Misconception: “The kernel trusts user pointers” . . . . .. ... ... 54
8.4 Why Understanding Syscalls Matters . . . . . . .. ... .. ... ....... 54

8.4.1 Correctness . . . . . . v v v i e e e e e e e 54



842 Security . . . . . ... e 55

84.3 Performance . ... ... ... ... 55

8.4.4 Tooling and debugging . . . . . . . .. .. ... .. ... 55
Appendices 56
Appendix A — Conceptual Syscall Flow Diagrams . . . . . .. .. ... ... ... 56
User-to-Kernel Transition Overview . . . . . . .. .. .. .. ... .. .... 56
Register and Stack State Changes . . . . . . . . ... ... ... .. ...... 58
Appendix B — Common Errors and Dangerous Assumptions . . . . . . . . ... .. 60
Assuming Syscalls Behave Like Functions . . . . . .. ... ... ... .... 60
Misunderstanding Privilege Boundaries . . . . . ... ... ... ... .... 62
Ignoring ABI Register Rules . . . . . .. ... ... .. ... ... ...... 64
Appendix C — Preparation for Next Booklets . . . . . .. ... ... ... ..... 66
Readiness for Interrupts and Exceptions . . . . . . .. ... ... ... .... 66
Readiness for Scheduling and Preemption . . . . . .. ... ... ... .... 68
Readiness for Kernel Internals . . . . . . ... ... ... ... ........ 69
References 72
x86-64 Architecture and Privilege Model Manuals . . . . . . .. ... ... ..... 72
Linux Kernel Documentation (Syscalls & Entry Paths) . . . . . ... ... ... .. 72
System Call ABI and Calling Convention Specifications . . . . . . . . ... ... .. 73
Signals, Exceptions, and Process Control References . . . . . . ... ... ... .. 73
Compiler-Generated Syscall Code Behavior . . . . . .. ... ... ......... 74
Academic and Professional OS Architecture Materials . . . . . . .. ... ... ... 74

Cross-References to Other Booklets in This Series . . . . . . . . . . .. ... .... 75



Preface

Scope of This Booklet

This booklet focuses on the x86-64 System V ABI as it is implemented on modern UNIX-like
systems, with a strict emphasis on calling conventions, stack discipline, and compiler—ABI
contracts. It explains how function calls are actually realized at the machine level: how
arguments are passed, how return values are delivered, how the stack frame is formed, aligned,
and destroyed, and how registers are preserved across calls.

The scope is intentionally limited to user-space execution and language-independent ABI
rules. Kernel entry mechanisms, syscalls, interrupts, and privilege transitions are explicitly

out of scope and addressed in subsequent booklets.

Position Within the CPU Programming Series

This booklet occupies a critical position in the CPU Programming Series. It builds directly
upon prior booklets covering registers, flags, data representation, memory layout, and stack
fundamentals, and serves as the final mandatory step before entering operating system
interaction and kernel boundaries.

Conceptually, it is the bridge between pure CPU mechanics and real-world compiled

programs. Without a precise understanding of the System V ABI, it is impossible to correctly

6



analyze compiler-generated assembly, debug optimized binaries, reason about inter-language
calls, or write reliable hand-crafted assembly that interoperates with C, C++, Rust, or other

compiled languages.

What This Booklet Assumes (and Does Not)

This booklet assumes that the reader already understands:

General-purpose and SIMD registers in x86-64

Basic stack operation (RSP, push/pop, call/ret)

Binary data representation and alignment concepts

Reading basic assembly output from compilers
It does not assume:
* Prior knowledge of operating system internals
* Knowledge of syscalls, interrupts, or kernel code
* Familiarity with a specific high-level language

The focus is not on syntax memorization, but on mechanical rules, invariants, and

guarantees enforced by the ABI.

Why Syscalls and Privilege Boundaries Matter

Although this booklet is strictly user-space focused, understanding the System V ABI is a
prerequisite for understanding syscalls and privilege transitions. The ABI defines the last

stable execution environment before control is transferred to the operating system.



For example, a normal function call preserves a well-defined subset of registers and uses a

disciplined stack layout:

# System V function call discipline (conceptual)
# RDI, RSI, RDX, RCX, R8, R9 -> arguments

# RAX —-> return value

# RBX, RBP, R12-R15 -> callee-saved

call my_function

In contrast, a syscall crosses a privilege boundary where:
* The calling convention changes
* The stack may switch
* Register preservation rules are different

Understanding where the ABI ends is essential to understanding where the kernel begins.
This booklet therefore prepares the reader to correctly reason about the boundary between user

code and the operating system, which is explored in the next stage of the series.



Chapter 1

Privilege Levels in x86-64

1.1 User Mode vs Kernel Mode

Modern x86-64 processors operate with multiple privilege levels, known as rings. In practice,

only two are actively used by contemporary operating systems:

* User Mode (Ring 3): where applications execute

* Kernel Mode (Ring 0): where the operating system kernel executes

User mode code is deliberately restricted. It cannot directly access hardware devices,
privileged CPU instructions, kernel memory, or critical control registers. Any attempt to do so
results in a fault or exception.

Kernel mode code, by contrast, has unrestricted access to the processor and system resources.

This asymmetry is fundamental to system stability and security.

# User-space instruction (allowed)

mov rax, rbx



10

# Privileged instruction (not allowed in user mode)

cli # Clear interrupt flag —-> causes fault in Ring 3

The processor enforces these rules automatically; software cannot bypass them.

1.2 Why Privilege Separation Exists
Privilege separation exists to protect the system from:
* Application bugs
* Malicious code
* Accidental corruption of shared resources

Without privilege separation, a single faulty application could overwrite kernel memory,
reprogram hardware, or halt the entire machine. By confining applications to user mode, the
operating system ensures that failures are isolated and recoverable.

From a design perspective, this separation also defines a clean contract:
* Applications request services
* The kernel validates and performs them

This contract is enforced through controlled entry points, not trust.

1.3 Hardware-Enforced Boundaries (Conceptual)

The boundary between user mode and kernel mode is enforced by the CPU itself, not by

convention. Several hardware mechanisms participate in this enforcement:



11

Current Privilege Level (CPL)

Page table permission bits

* Instruction privilege checks

Model-Specific Registers controlling transitions

When executing in user mode, the CPL is set to the least-privileged level. Memory accesses
are checked against page permissions, and privileged instructions are rejected.
Transitions across the boundary can occur only through specific mechanisms designed for this

purpose, such as system calls. Arbitrary jumps into kernel code are impossible.

# Illegal attempt to jump into kernel space
jmp Oxfffff£f££81000000 # Kernel address —-> page fault

This enforcement is entirely automatic and occurs on every instruction and memory access.

1.4 Transition Costs and Security Implications

Crossing the privilege boundary is intentionally expensive compared to a normal function call.

A transition requires:

CPU mode switch

* Register state changes

Stack context changes

Strict validation of inputs



12

These costs discourage frequent boundary crossings and encourage batching of kernel requests.

Performance-sensitive software must account for this overhead.

From a security standpoint, every transition represents a potential attack surface. For this
reason:

* Entry paths are minimal and tightly controlled
* Inputs are validated aggressively
» Execution context is carefully reconstructed on return

Understanding these costs and risks is essential before studying system calls themselves. This
chapter establishes the conceptual foundation required to analyze how user code safely and

efficiently requests kernel services, which is the focus of the next chapter.



Chapter 2

From User Code to the Kernel

2.1 What Happens When User Code Needs the Kernel

User code routinely needs services that it is not allowed to perform directly, such as:
* creating or managing processes and threads
* opening files and performing I/0
* allocating memory with kernel involvement (e.g., mapping pages)
* networking, timers, and device access

Because user mode is restricted, the only correct path is to request the kernel to perform the

operation. Conceptually, this is a controlled call across the privilege boundary:
1. User code prepares a syscall number and its arguments.
2. A dedicated instruction transfers control to a privileged entry point.
3. The kernel validates the request, performs it, and returns a result or an error.

13



14

4. Control returns to user mode at the instruction following the transition.

A syscall is therefore closer to an architectural boundary crossing than to a normal function
call. A function call assumes mutual trust and shared address space rules; a syscall assumes

the opposite and is designed to survive hostile or corrupted inputs.

# Concept-only shape of a Linux x86-64 system call (details later)

# rax = syscall number

# rdi, rsi, rdx, rl0, r8, r9 = args (Linux syscall ABI)
mov rax, 60 # NR exit

xor rdi, rdi # status = 0

syscall # enter kernel, never returns

Even when the syscall does return, it may also be affected by signals and restart rules (covered

later in the booklet).

2.2 Historical Overview: INT 0x80 vs SYSCALL

On 32-bit Linux, system calls were traditionally issued with a software interrupt:

# IA-32 Linux (historical pattern)

mov eax, 1 # NR exit (IA-32)
Xor ebx, ebx # status = 0
int 0x80 # software interrupt -> kernel

This mechanism works, but it routes through the interrupt/exception machinery and typically
involves more overhead than a dedicated fast syscall path.
On x86-64 (and late x86 generations), CPUs introduced dedicated instructions for fast

transitions:



15

* SYSCALL/SYSRET for 64-bit mode
* SYSENTER/SYSEXIT historically for some 32-bit fast paths

syscall is designed specifically to reduce transition cost by using a dedicated entry
mechanism configured by model-specific registers, rather than the more general interrupt

gate path.

# x86-64 Linux preferred mechanism
mov rax, 60 # _ NR _exit
xor rdi, rdi

syscall

Practical takeaway: modern x86-64 user space uses syscall, while int 0x80 remains

primarily a legacy interface for compatibility (and is not the normal path for 64-bit processes).

2.3 Controlled Entry Points into the Kernel

The kernel is not entered by arbitrary branching. The CPU enforces that ring transitions occur

only through:
* system call entry instructions (e.g., syscall)
* exceptions and faults (e.g., page fault, general protection fault)
* interrupts (e.g., timer interrupt, device interrupts)
These entry paths are controlled because they land on specific kernel entry stubs that:
e establish a trusted execution context (stack and CPU state)

* save the minimum required registers



16

* validate the user request and pointers
* dispatch to the appropriate kernel handler
An important distinction:
* Syscall entry is intentional: user code requests a kernel service.
* Exception entry is reactive: the CPU detects illegal behavior or a fault.

Example: trying to execute a privileged instruction from user mode triggers an exception entry

path, not a syscall.

# User-mode attempt to modify interrupt state is illegal

cli # triggers a fault -> kernel exception handler

Both syscalls and exceptions cross the same privilege boundary, but they exist for different

reasons and follow different conventions.

2.4 Fast Path vs Slow Path Transitions

Even within syscalls, not every entry/exit is equal. Kernels generally implement:
* Fast paths: common operations optimized for minimal overhead
» Slow paths: rare, complex, or exceptional cases requiring extra work
Fast paths aim to:
* minimize register saving
* avoid expensive checks when not needed (while preserving safety)

* reduce branching and avoid heavy kernel subsystems



17

Slow paths appear when additional machinery is required, for example:

blocking I/0 (may sleep and reschedule)

page faults during copy to/from user space

signal delivery or interruption of a syscall

tracing, auditing, or security policy checks
* uncommon error cases and retries

Conceptual illustration: a syscall that must copy user memory cannot blindly trust the pointer.

It must validate and handle faults safely, which may force a slow path.

Concept: user provides a pointer in RSI
Kernel must treat this as untrusted input:
- verify accessibility

— handle page faults during copy

HH= = FH=

— return -EFAULT on invalid memory

Practical takeaway: understanding syscall performance requires distinguishing:
* the fixed transition overhead of entering/exiting the kernel
* the variable cost of what the kernel must do (fast vs slow path)

This sets the stage for the next chapter, where we formalize the syscall instruction behavior
and the Linux x86-64 syscall ABI in detail.



Chapter 3

The syscall Instruction

3.1 Purpose and Design Goals of syscall

The syscall instruction is a hardware-defined mechanism introduced to provide a fast,
minimal, and strictly controlled transition from user mode to kernel mode on x86-64
processors. It replaces older, more general mechanisms such as software interrupts for the
common case of system calls.

Its primary design goals are:

Explicit privilege transition: enforce a Ring 3 to Ring 0 switch under full CPU control.

Low latency: avoid the overhead of the full interrupt/exception dispatch machinery.

Predictable execution model: always enter the kernel at a single, preconfigured entry

point.

* Minimal architectural side effects: preserve only what is required for a correct return.

18



19

Unlike a normal function call, syscall does not assume trust, shared conventions, or a
shared stack. It is designed for an adversarial boundary where user code may be buggy or

malicious.

# Linux x86-64 syscall invocation (conceptual)

# rax = syscall number

# rdi, rsi, rdx, rl0, r8, r9 = arguments
mov rax, 39 # _ _NR_getpid
syscall

# rax contains return value or negative error

3.2 CPU State Before and After syscall

Before executing syscall, the processor is executing in user mode with the following

relevant state:

Current Privilege Level (CPL) =3

* RIP points to the syscall instruction

RSP refers to the user stack

General-purpose registers hold syscall number and arguments

When syscall is executed, the CPU performs an architectural transition with well-defined

effects:

e CPL is set to 0 (kernel mode)

* RIP is loaded from a kernel entry address



20

* The return instruction pointer is saved into RCX
* The user RELAGS value is saved into R11

* Selected flags in RELAGS are cleared according to configuration

Crucially, no return address is pushed onto the stack. The return context is carried entirely in

registers.

# Architectural effects of SYSCALL (conceptual)
# RCX <- user RIP (next instruction)

# R11 <- user RFLAGS

# RIP <- kernel entry RIP

# CPL <- O

Once inside the kernel, early entry code typically switches to a kernel-controlled stack, since

the user stack cannot be trusted for privileged execution.

3.3 MSRs Involved in Syscall Handling

The syscall/sysret mechanism is configured through a small set of model-specific
registers (MSRs). These registers define the execution environment of the transition and are
programmed by the operating system during boot.

Conceptually, the MSRs control:

* The kernel entry instruction pointer for syscall
* The code segment selectors used in kernel and user modes

* Which flags are masked on entry to the kernel

Key roles (names omitted here intentionally):



21

* An MSR that provides the kernel entry RIP
* An MSR that encodes kernel and user code segment selectors

* An MSR that defines which bits in RELAGS are cleared on entry

These registers ensure that user code cannot influence where execution enters the kernel or
how privilege state is established. Once configured, every syscall instruction uses the same

trusted entry path.

3.4SYSCALL vs SYSRET (Conceptual Flow)

syscall and sysret form a paired mechanism:

e syscall: transitions from user mode to kernel mode

e sysret: returns from kernel mode back to user mode
Conceptually, the flow is:

1. User code executes syscall

2. CPU saves return context into RCX and R11

3. Kernel executes syscall handler logic

4. Kernel prepares return value in RAX

5. Kernel executes sysret to resume user execution

# Conceptual syscall lifecycle
# User:

mov rax, 1



22

syscall

# Kernel:
# handle request
# prepare return value

sysret

sysret restores execution to user mode using the saved RCX (instruction pointer) and R11
(flags). The CPU reestablishes CPL=3 and resumes execution immediately after the original
syscall instruction.

This paired design minimizes overhead while maintaining strict control over privilege
transitions, making syscall/sysret the fundamental mechanism for user—kernel

interaction on modern x86-64 systems.



Chapter 4

Linux x86-64 Syscall ABI

4.1 Syscall Calling Convention Overview

On Linux x86-64, a system call is invoked with the syscall instruction and follows a
calling convention that is distinct from the System V function-call ABI. The syscall ABI
is designed for a privileged boundary crossing where the kernel must treat all user inputs as
untrusted.

The syscall interface consists of:
* A syscall number identifying the requested service
* Up to six arguments passed in registers
¢ A return value (or error indicator) delivered in RAX
High-level model:
1. Place syscall number in RAX
2. Place arguments in designated registers

23



24

3. Execute syscall
4. Read return value from RAX

# Minimal syscall pattern (Linux x86-64)
# rax = syscall number
# rdi, rsi, rdx, rl0, r8, r9 = args

# return in rax

mov rax, 39 # _ NR _getpid
syscall
# rax = pid (>= 0) on success

This convention is stable for user space and is what assembly code, runtimes, and libc

ultimately rely on when issuing syscalls.

4.2 Register Usage and Argument Passing
Linux x86-64 uses the following register mapping for syscall arguments:

* Syscall number: RAX
* Argl: RDI

* Arg2: RST

* Arg3: RDX

* Arg4: R10

* Arg5: R8

* Arg6: RO



25

The use of R10 for the 4th argument (instead of RCX) is not arbitrary: RCX is overwritten
by the syscall instruction (it receives the user return RIP), so it cannot safely carry an
argument across the transition.

Example: write (fd, buf, count)

# ssize_t write(int fd, const void* buf, size_t count)

# _ NR write = 1 on Linux x86-64

mov rax, 1 # _ NR write

mov rdi, 1 # fd = 1 (stdout)

lea rsi, [rel msqg] # buf

mov rdx, msg_len # count

syscall

# rax = bytes written (>= 0) or —-errno (< 0)
msg:

.ascii "Hello from syscall\n"

msg_len = . - msg

Example with 4 arguments: openat (dirfd, pathname, flags, mode) (conceptual

argument placement only)

# long openat (int dirfd, const char* pathname, int flags, mode_t
— mode)

dirfd

rdi

#

# rsi pathname
# rdx = flags
#

rl10

mode (4th arqg)



26

mov rax, 257 # _ NR_openat (number shown as an example)
mov rdi, —-100 # AT_FDCWD (conceptual)

lea rsi, [rel path]

mov rdx, O # flags (conceptual)
mov r10, O # mode

syscall

path:

.ascii "/etc/hostname\0"

The kernel treats all pointers (RST in the examples) as untrusted user addresses and must

validate access during copy.

4.3 Return Values and Error Reporting

The syscall return value is delivered in RAX.

* On success, RAX contains a non-negative result (often a value, count, or file descriptor).

* On failure, Linux returns a negative error number in RAX (e.g., —-EFAULT,
~EINVAL).

This is different from the user-facing C library behavior: libc typically converts negative
returns into —1 and stores the positive error code in errno. Pure assembly callers must
handle the kernel convention directly.

Example: handle success vs error (concept-only)

# After syscall:
# rax >= 0 => success

# rax < O => —errno



27

syscall

test rax, rax

jns .ok # jump if non-negative
neg rax # rax = errno (positive)
# handle error in rax

Jmp .done

.ok:

# handle success (rax = result)
.done:

This rule is consistent across syscalls: the sign of RAX indicates whether an error occurred.

4.4 Clobbered Registers and ABI Guarantees

At the syscall boundary, you must assume the kernel may overwrite most registers while
executing the syscall handler. However, there are two architectural clobbers that are always

relevant at the user boundary:

e RCX is overwritten (holds user return RIP)

e R11 is overwritten (holds saved user RELAGS)

Therefore, user code must treat RCX and R11 as clobbered by syscall.
In addition, because syscalls are privileged operations that may trigger scheduling, signal
handling, and deep kernel code paths, correct user-space assembly should follow a

conservative rule:



28

Assume that any register not explicitly part of the syscall interface is not preserved

across the syscall, unless your calling environment guarantees otherwise.

In practice, when writing syscall wrappers in assembly:
» Save any values you must keep across the syscall
* Do not use RCX for arguments (use R10 for Arg4)
* Expect flags to be modified (do not depend on condition codes after return)

Example: preserving a value across syscall

# Preserve RBX across syscall (example technique)
push rbx
mov rbx, 12345

mov rax, 39 # getpid
syscall

# rax = pid
pop rbx
4.5 Comparison with Function Call ABI

The Linux x86-64 syscall ABI differs from the System V AMDG64 function-call ABI in critical

ways:
* Entry mechanism: function call uses call; syscall uses syscall

* Privilege level: function call stays in user mode; syscall switches to kernel mode



29

* Argument registers:

— Function call: RDI, RSI, RDX, RCX, R8, R9

— Syscall: RDI, RSI, RDX, R10, R8, R9 (note R10 instead of RCX)
e Clobbers:

— Function call clobbers depend on caller-saved rules

— Syscall always clobbers RCX and R11 at the boundary
* Error reporting:

— Function call typically uses return value conventions and library-level error

handling

— Syscall returns negative —errno in RAX on failure

Concrete side-by-side illustration (argument registers only):

# Function call (SysV AMD64 ABI) :
# argl=rdi arg2=rsi arg3=rdx argd=rcx argb=r8 arg6=r9

call some_function

# Syscall (Linux x86-64 ABI):
# argl=rdi arg2=rsi arg3=rdx arg4=rl0 arg5=r8 arg6=r9
# rax=syscall_number

syscall

Practical takeaway: do not mix these two conventions. A correct syscall wrapper must follow
the syscall ABI exactly, and a correct function call must follow the System V function ABI.
Confusing RCX vs R10 is one of the most common sources of subtle bugs in hand-written

syscall code.



Chapter 5

Kernel Entry and Exit Mechanics

5.1 Stack Switching and Kernel Stacks

When user code enters the kernel (via syscall, an exception, or an interrupt), the kernel
must immediately execute with a trusted stack. The user stack pointer (RSP) is under user
control and cannot be relied upon for privileged execution.

Two core reasons the kernel does not run on the user stack:

* Trust: user RSP may point to invalid/unmapped memory or memory crafted to trigger

faults.

* Isolation: kernel stack must not be writable by user processes.

On x86-64, modern kernels use per-thread or per-CPU kernel stacks. On entry, the kernel
quickly switches to its kernel stack and only then performs heavier work.

Conceptual flow:

1. CPU transfers control to a kernel entry point (privileged RIP).

2. Entry code switches to the kernel stack.

30



31

3. Minimal state is saved and a kernel “frame” is built.
4. The syscall/exception/interrupt is dispatched.
Concept-only illustration (not a real kernel stub):

# Concept: early entry code switches stacks
# user_rsp is untrusted

# kernel_rsp is trusted (obtained from kernel structures)

mov rlZ2, rsp # save user rsp temporarily (concept)
mov rsp, rl3 # switch to kernel rsp (concept)

# now safe to push/save state

Important note: for syscall specifically, the instruction itself does not push a return address.
The kernel must build its own entry frame and preserve return context using the architectural

conventions of the syscall/sysret mechanism.

5.2 Context Saving Responsibilities
The kernel must preserve enough CPU state to:
* resume the interrupted user code correctly
* protect kernel correctness during nested events
* potentially perform scheduling (switch to a different task)
A useful way to think about kernel entry state is to split it into layers:
* Architectural return context: what is strictly required to return to user space.

* Kernel working context: additional registers/state used while executing kernel code.



32

* Scheduling context: the state needed to suspend the current task and later resume it.

For a syscall entry on x86-64, the CPU already provides two key pieces of the user return

context:
* RCX contains the user return instruction pointer
* R11 contains the saved user RELAGS

Therefore, correct kernel entry code must treat RCX and R11 as part of the return context and
preserve them across the syscall handling path.

Concept-only illustration:

# Concept: preserve syscall return context early
push rcx # user RIP for SYSRET
push rll # user RFLAGS for SYSRET

# save other registers as required by kernel convention

In addition, kernel code must be prepared for asynchronous events (interrupts) and
synchronous faults (page faults) that can occur while it is servicing a syscall, and it must

preserve state in a way that supports nested handling safely.

5.3 Returning Safely to User Space

Returning to user space is not a simple inverse of entry. The kernel must re-establish:
 User privilege level (Ring 3)
 User instruction pointer (resume point)
 User flags (with enforced constraints)

» User stack pointer (restored user RSP)



33

For syscalls, the conceptual return mechanism is sysret, which returns to the user
instruction pointer held in RCX and restores flags from R11 (subject to architectural masking
rules).

Concept-only return sequence:

# Concept: prepare return value and restore context

# rax already holds return value

pop rll # restore user RFLAGS (concept)
pPop rcx # restore user RIP (concept)
mov rsp, rl2 # restore user RSP (concept)
sysret # return to user mode

The kernel must ensure that the return context is safe and canonical for x86-64 user space.
Returning with invalid addresses or inconsistent state must be prevented, even if the user input
attempted to provoke it.

Practical rule for user-space assembly writers:
* Do not assume any flags are preserved across a syscall.
* Do not assume RCX and R11 survive a syscall.

* Always treat the syscall as a boundary that may schedule, fault, or be interrupted.

5.4 Common Failure and Security Scenarios

Kernel entry/exit paths are among the most security-critical code in an operating system
because they operate on untrusted inputs at the highest privilege level. Common failure

patterns fall into a few categories:



34

5.4.1 Invalid Pointers and Faults During Copy

Syscalls often accept user pointers (buffers, strings, structures). These pointers may be:
* unmapped
* mapped but not readable/writable as required
* mapped but crossing into invalid pages

A correct kernel must handle faults during copy and return an error rather than crashing.

Concept-only user-side scenario:

# write (fd=1, buf=0x1, count=16) -> invalid pointer
mov rax, 1

mov rdi, 1

mov rsi, 1 # invalid user pointer

mov rdx, 16

syscall

# rax < 0 (e.g., —-EFAULT) expected on failure

5.4.2 Signals Interrupting Syscalls

A syscall may be interrupted by a signal, producing an early return with an error indicating
interruption. The exact restart behavior depends on kernel policy and user-space signal
handling configuration. The key mechanical point is that syscall completion is not guaranteed

to be atomic with respect to signal delivery.

# Concept: syscall can return early due to signal
# user code must handle "interrupted" outcomes correctly
syscall

test rax, rax



35

jns .ok

# error path (may include interruption)

5.4.3 Privilege Confusion and Entry Point Integrity
The kernel must guarantee that:

* user code cannot choose the kernel entry address

* user code cannot execute privileged instructions directly

* return to user mode cannot be redirected to kernel addresses

These are enforced by CPU privilege checks and the kernel’s strict validation of return state.

5.4.4 Register Convention Mismatches
A frequent correctness bug in low-level user code is mixing:
* the System V function-call ABI
* the Linux syscall ABI
The most common pitfall is the 4th argument register:
* function ABI uses RCX
* syscall ABIuses R10

# Wrong for syscalls (RCX is not argd)
# rcx will be clobbered by SYSCALL
mov rcx, 123 # WRONG for argé

# Correct for syscalls

mov rl0, 123 # arg4d



36

5.4.5 Hidden Costs: Scheduling and Slow Paths

Even when the transition itself is fast, the kernel may:
* block the calling thread
* schedule another thread
* fault and resolve memory mappings
Therefore, “syscall cost” must be understood as:
* fixed entry/exit overhead
* plus variable work (fast vs slow path)

Correct systems programming treats syscalls as boundary crossings with both performance

and security consequences, not as ordinary calls.



Chapter 6

Signals and Exceptions (Conceptual)

6.1 Difference Between Signals and Syscalls

A syscall is an intentional request from user space to the kernel:
* It is initiated by user code (explicitly).

* It asks the kernel to perform a privileged service (I/O, process control, memory

mapping, etc.).
* It follows a defined ABI: syscall number + arguments in registers + return value in RAX.
A signal is a kernel-delivered notification to user space:
* It is delivered by the kernel to a process/thread.
* It represents an event (fault, timer, external request, child status change, etc.).
* It may interrupt normal user execution and run a user-registered handler.
A practical mental model:

37



38

» Syscall: user asks the kernel for service.
» Signal: kernel interrupts the user to notify an event.

Example: user performs a syscall intentionally (write), while a signal can arrive at any

instruction boundary.

# Intentional: syscall
mov rax, 39 # _ NR_getpid

syscall # user -> kernel -> user

# Not intentional: a signal may interrupt execution here
nop

nop

This chapter is conceptual: it explains the mechanics that matter for syscall correctness and

privilege-boundary reasoning, without going into full POSIX signal programming.

6.2 Synchronous vs Asynchronous Events

In low-level execution terms, events that cross into the kernel can be categorized by whether

they are caused directly by the currently executing instruction.

6.2.1 Synchronous events

A synchronous event is directly triggered by the current instruction. Examples include:
* Syscall entry: syscall instruction explicitly transfers control.

* Faults and exceptions: illegal instruction, divide error, general protection fault, page

fault.



39

If the same instruction is re-executed under the same conditions, it will typically reproduce the
same synchronous event.
Conceptual example: executing a privileged instruction in user mode triggers a synchronous

fault.

# User mode cannot execute this

cli # synchronous fault -> kernel exception path

6.2.2 Asynchronous events

An asynchronous event is not caused by the current user instruction. It arrives due to external

or concurrent conditions. Examples include:
* Hardware interrupts (timer tick, device completion)
 Signal delivery triggered by another thread/process (e.g., termination request)
* Child process state changes (conceptually delivered as a signal)

Asynchronous events can arrive between instructions, and their timing is not controlled by
user code.
The important connection to syscalls: asynchronous events (signals) may interrupt a thread

that is inside a syscall or about to return from one.

6.3 Signal Delivery from Kernel to User Space

Signal delivery is a controlled kernel-to-user transition. Conceptually, when the kernel decides

to deliver a signal to a thread, it must:

1. Choose a delivery point (typically when returning to user mode or at a safe interruption

boundary).



40

2. Save the interrupted user context (register state, instruction pointer, flags, stack state).
3. Arrange for user code to execute a signal handler (if installed), or apply a default action.

4. Provide a way to resume the interrupted execution after the handler completes.

From the user’s perspective, signal delivery looks like an unexpected call that happens “by
itself™:

* it can interrupt normal flow
* it runs on the user stack (unless an alternate signal stack is configured)
* it eventually returns to the interrupted instruction stream

Conceptual user-space view:

User execution (conceptual timeline)

instruction A

instruction B

—> handler runs

#

#

#

#

# [signal arrives]
#

# —> returns

#

instruction C continues

Key idea for systems programmers: signal delivery requires the kernel to construct a user-
mode execution frame that is safe, correctly aligned, and consistent with the ABI expectations

of user-space code.

6.4 Interaction Between Signals and Syscalls

Signals and syscalls interact in several important ways that affect correctness and robustness

of low-level code.



41

6.4.1 Syscalls may be interrupted

A blocking syscall (or even a fast syscall under certain circumstances) may be interrupted by a
signal, causing the syscall to return early with an error indication. User code must be prepared

for this.

Concept-only pattern for robust syscall wrappers:
* check RAX for negative error

* handle interruption by retrying when appropriate

# Concept: syscall wrapper loop (error handling shape only)
.retry:

syscall

test rax, rax

jns .ok # success (rax >= 0)

# rax is negative -—-errno

# A robust wrapper may retry on specific interruption cases (policy
— dependent)

# Here we just expose the error

neg rax # rax = errno (positive)

Jjmp .done

.ok:
# rax = result

.done:



42

6.4.2 Syscall restart rules

Some syscalls are restartable depending on how signal handlers are configured and the

kernel’s restart policy. The important conceptual point is:

A syscall boundary is not guaranteed to be a simple single-shot request/response;

it may return early and require user-space policy to decide whether to retry.
Therefore, assembly-level syscall code must treat “interrupted syscall” as a normal, expected

outcome.

6.4.3 Signals can arrive right before or right after syscall return

Signals are often delivered when the kernel is about to return to user space. This means:

* the thread can appear to “return from syscall into handler” rather than into the next user

instruction

* user code must not assume immediate continuation after syscall return

6.4.4 Exception-like signals (faults)

Some signals correspond to synchronous faults (e.g., invalid memory access). Conceptually:
* auser-space fault triggers a kernel exception path
* the kernel converts it into a user-visible signal (or terminates the process)

This is why it is useful to consider “signals and exceptions” together: many signals are the
user-visible consequence of low-level exceptions, and the delivery path itself is another
controlled kernel-to-user transition.

Practical takeaway: to write correct low-level code around syscalls, you must assume:



43

syscalls can fail with negative errors
syscalls can be interrupted
control flow may jump to a handler between instructions

after a signal handler, execution resumes as if an unexpected call occurred



Chapter 7

Context Save and Restore Concepts

7.1 What “Context” Really Means

In low-level execution, a context is the complete set of architectural and logical state required
to resume execution as if no interruption occurred. It is not a single structure, but a
collection of CPU-visible and kernel-managed state.

At minimum, execution context includes:

* Instruction pointer (RIP)

Stack pointer (RSP)

Flags register (RELAGS)

General-purpose registers
In practice, a full execution context may also include:

* SIMD and floating-point registers

44



45

* Control registers and thread-local state
* Memory mapping context (address space identifier)
» Kernel scheduling metadata

The defining property of a correctly saved context is transparency: after restore, the code
continues exactly where it left off, with no observable difference except for effects explicitly
caused by the event (syscall result, signal handler execution, etc.).

Conceptual illustration:

# Context must preserve the illusion:
# Before interruption:

add rax, rbx

# After interruption and restore:
# Execution resumes here exactly as expected

add rax, rbx

Any omission or corruption of context breaks this illusion and results in incorrect behavior.

7.2 Minimal vs Full Context Saving
Not every kernel entry requires saving the same amount of state. A key performance principle

is to save only what is necessary.

7.2.1 Minimal context saving

Minimal context saving is used when:

* the kernel knows it will return quickly



46

* no task switch will occur
* no complex kernel subsystems will be invoked
In this case, the kernel preserves only:
e architectural return state (e.g., RCX, R11 for syscall)
* registers it actively uses
Concept-only example:

# Minimal save (conceptual)

push rcx # user RIP
push rll # user RFLAGS
# handle fast syscall

pop rll

pop rcx

This approach minimizes memory traffic and latency.

7.2.2 Full context saving
Full context saving is required when:
* the kernel may block or sleep
* a context switch to another task may occur
* signals or interrupts require deep kernel paths

A full save typically includes all general-purpose registers and, when necessary, extended
register state.

Concept-only illustration:



47

# Full save (conceptual shape)
push rax
push rbx
push rcx
push rdx
push rsi
push rdi

# plus additional registers as required

The kernel must ensure that the saved context is sufficient to resume the task at any later time,

possibly on a different CPU core.

7.3 Performance Impact of Context Switching

Saving and restoring context is expensive relative to normal instruction execution because it:
* touches memory (often multiple cache lines)
* disrupts cache locality
* may require saving large register sets

A full context switch between tasks typically costs orders of magnitude more than a simple

function call. The cost includes:

* saving the outgoing task state

restoring the incoming task state

switching address spaces

reloading CPU execution context



48

Conceptual contrast:

# Function call (cheap)
call £

ret

Context switch (expensive)
save task A

select task B

N

restore task B

Because of this cost, operating systems are designed to:
* avoid unnecessary context switches

* keep fast paths short

* batch work inside the kernel when possible

This performance reality explains why syscalls are designed to be fast but not free, and why

excessive syscall usage can dominate runtime in low-level code.

7.4 Where Context Switches Fit in the Syscall Path

A syscall does not automatically imply a context switch. Many syscalls complete entirely
within the context of the calling thread.

Typical syscall path options:
* Fast path: syscall handled, return to user without switching tasks.
* Slow path: syscall blocks or triggers scheduling, causing a context switch.

Examples of syscalls that often stay on the fast path:



49

* simple queries (process ID, time read)

* operations satisfied from cache
Examples of syscalls that may cause a context switch:

* blocking I/0
* waiting on synchronization primitives
* resource contention

Conceptual flow:

# Syscall path (conceptual)
syscall
kernel entry
if fast path:
handle and return
else:
save full context
schedule another task

later restore context

H= S FH H= FH H FH

return to user

For user-space developers, the key takeaway is that a syscall is a potential suspension point.

Correct low-level code must assume that:
* execution may pause for an unbounded time
* another thread may run in between

¢ the CPU core may change before resumption

Understanding where and why context is saved and restored is essential for reasoning about

syscall performance, signal interaction, and concurrency at the privilege boundary.



Chapter 8

Putting It All Together

8.1 Full Syscall Lifecycle Walkthrough

This section ties the previous chapters into a single end-to-end model of what happens when
user code performs a Linux x86-64 system call.

A syscall lifecycle can be understood as four phases:

1. User preparation: place syscall number and arguments into the syscall ABI registers.

2. Boundary transition: execute syscall; CPU enters kernel mode and transfers

control to the kernel entry point.

3. Kernel service: kernel validates inputs, performs the requested operation, and produces

a result or error.

4. Return to user: kernel returns to user mode and resumes execution after the syscall

instruction.

Example: getpid () in pure assembly (conceptual correctness: register protocol and return

handling)

50



51

# long getpid(void) -> pid in rax

mov rax, 39 # _ NR _getpid
syscall # enter kernel, return to user
# rax = pid (>= 0) or —-errno (< 0, rare for getpid)

Example: write (1, msg, len) with minimal error handling

# ssize_t write(int fd, const void* buf, size_t count)

# rax=_ NR_write(l), rdi=fd, rsi=buf, rdx=count

lea rsi, [rel msg]
mov rdx, msg_len

mov rdi, 1

mov rax, 1 # _ NR _write
syscall
# Success: rax = bytes written (>= 0)

# Failure: rax —errno (< 0)

test rax, rax

jns .ok

neg rax # rax = errno (positive)

# error handling here (rax holds errno)

.ok:
msg:

.ascii "Syscall lifecycle: write()\n"
msg_len = . - msg

Key correctness rules reinforced by the walkthrough:

e RAX selects the service and receives the return value.



52

* Argument registers are RDI, RSI, RDX, R10, R8, RO.
* RCXand R11 are clobbered by syscall.

¢ On failure, Linux returns —errno in RAX.

8.2 User — Kernel — User Execution Timeline

A syscall is a precise timeline of control and state changes. The most useful way to visualize it

is as a sequence of checkpoints.

8.2.1 Timeline checkpoints (conceptual)

1. TO (User mode): user code is running normally.

2. T1 (Prepare): user places syscall number and arguments in registers.

3. T2 (Execute syscall): CPU switches to kernel mode and jumps to kernel entry.
4. T3 (Entry): kernel establishes a trusted stack and saves return context.

5. T4 (Dispatch): kernel identifies the requested syscall and validates inputs.

6. TS (Service): kernel performs the operation (fast or slow path).

7. T6 (Return prep): kernel sets RAX to result or —errno.

8. T7 (Return): kernel returns to user mode, resuming after syscall.



53

8.2.2 Timeline with fast vs slow path

# Fast path shape (conceptual) :

# user -> syscall -> kernel handles quickly -> return

# Slow path shape (conceptual):
# user -> syscall -> kernel blocks or faults -> scheduler may run
— others

# later -> original thread resumes -> return to user
Why this matters:
* Even if the transition is fast, the work may not be.
* A syscall is a potential suspension point; the thread may sleep and resume later.

* Signals can be delivered near syscall boundaries and change the observed control flow.

8.3 Common Misconceptions About Syscalls

8.3.1 Misconception: “A syscall is just a function call”

Reality: a syscall crosses a privilege boundary. It is not a normal call:
* it enters Ring 0
* it uses different argument registers than the function-call ABI (Arg4 is R10, not RCX)
* it clobbers RCX and R11

# Common bug: using RCX as arg4 (wrong for syscalls)
mov rcx, 123 # WRONG: syscall arg4 is rl0
mov rl0, 123 # Correct



54

8.3.2 Misconception: “The syscall cannot be interrupted”

Reality: syscalls can be interrupted by signals, and blocking syscalls may sleep. User code

must treat syscalls as boundary crossings with complex control flow possibilities.

8.3.3 Misconception: “Return value is always meaningful without error

checks”

Reality: on Linux, errors are returned as negative —errno. Assembly must check sign.

syscall

test rax, rax

jns .ok

neg rax # errno (positive)
# handle error

.ok:

8.3.4 Misconception: “The kernel trusts user pointers”

Reality: user pointers are untrusted inputs. The kernel validates and may fault during copy,

returning errors (commonly manifested as negative —errno).

8.4 Why Understanding Syscalls Matters

Understanding syscalls is not optional for serious low-level work. It directly affects

correctness, security reasoning, and performance analysis.

8.4.1 Correctness

* Correct register usage prevents silent corruption.



55

* Correct error handling prevents subtle failures.

* Correct assumptions about interruption avoid rare, hard-to-debug bugs.

8.4.2 Security

* Syscalls are privilege boundary crossings.
» All user inputs are treated as hostile by design.

* Many security failures originate from misunderstanding boundary invariants.

8.4.3 Performance

* Excess syscalls can dominate runtime due to entry/exit overhead and kernel work.
* “Fast syscall” does not mean “free syscall”.

* Understanding fast vs slow paths explains real-world latency variability.

8.4.4 Tooling and debugging

Reading traces, debugging crashes, and interpreting compiler output often requires knowing:
» when user code actually enters the kernel
» which registers carry arguments and results
» why the observed control flow differs from source-level expectations

Mastering syscalls and privilege boundaries completes the mental model of how user

programs truly interact with the operating system on x86-64.



Appendices

Appendix A — Conceptual Syscall Flow Diagrams

User-to-Kernel Transition Overview

This appendix provides conceptual diagrams for the Linux x86-64 syscall path. The goal is
to visualize the boundary crossing and the minimum architectural state transitions, without

depending on any specific kernel implementation details.

Conceptual Syscall Flow (High-Level)

User Mode (Ring 3)

1) Prepare syscall ABI
- RAX = syscall number
- RDI, RSI, RDX, R10, R8, RY9 = args

Execute SYSCALL
|

| 2) CPU-enforced transition
| - CPL: 3 —> 0

| — RIP: user —> kernel entry

56



57

| — RCX <- user RIP (return address)
| - R11 <- user RFLAGS
|
v
Kernel Entry Stub (Ring 0)
|
| 3) Establish trusted context
| - switch to kernel stack
| - save required registers/state
|
v
Syscall Dispatch + Handler
|
| 4) Validate + execute service
| - validate arguments, pointers
| - perform operation (fast/slow path)
| - set RAX = result or —-errno
|
v

Kernel Return Path

| 5) Restore return context
| — restore user RSP (as needed)

| — prepare SYSRET using RCX/R11

v
User Mode (Ring 3)

|
| 6) Resume after SYSCALL

| — RAX holds return value

Fast Path vs Slow Path (Conceptual)

Fast path:



58

SYSCALL -> quick validate -> execute —-> SYSRET

Slow path examples:
- blocking I/O (thread sleeps, scheduler runs others)
- page fault during copy to/from user (fault handling)

- signal interruption (early return / restart policy)

Register and Stack State Changes

This subsection focuses on the key architectural state changes that matter to user-space low-

level code.

Register Roles at the Boundary (Linux x86-64 Syscall ABI)

On entry (user prepares):
RAX = syscall number
RDI = argl
RSI = arg2
RDX = arg3

R10 = arg4
R8 = argb
R9 = argé6

Architectural effects of SYSCALL:

RCX = user RIP of next instruction (return address)
R11 = saved user RFLAGS

RIP = kernel entry RIP (configured)

CPL = 0 (kernel mode)

Clobbers Visible to User Code From the perspective of user-space assembly, two registers

are always treated as clobbered by the syscall instruction itself:

Always clobbered by SYSCALL:



59

RCX, R11

Therefore, user code must not assume these registers survive across a syscall.

Stack State Change (Conceptual) A syscall does not push a return address on the user

stack. The return context is carried in registers.

Normal function call:
call £

— pushes return RIP onto current stack

Syscall:
syscall
— does NOT push return RIP onto user stack

— stores return RIP in RCX instead

Inside the kernel, the entry stub typically switches to a kernel stack early. Conceptually:

Before SYSCALL:

RSP —-> user stack (untrusted)

After entering kernel:
RSP —-> kernel stack (trusted)

(user RSP is saved in kernel state for later restore)

Concrete User-Side Demonstration (Register Hazards) This example demonstrates why

RCX cannot be used as the 4th syscall argument and why R10 is required.

# Incorrect syscall arg4 placement (RCX will be overwritten)
mov rax, 0 # syscall number (example only)

mov rcx, 123 # WRONG: syscall overwrites RCX
syscall # RCX clobbered



60

# Correct placement for arg4

mov rax, 0 # syscall number (example only)
mov rl0, 123 # Correct: arg4 in R10
syscall

Return Value and Error Sign Convention Linux syscalls return:

* Success: RAX is non-negative
* Failure: RAX is negative (—errno)

# Generic syscall return check (conceptual)
syscall

test rax, rax

jns .ok

neg rax # rax = errno (positive)
# handle error in rax

.ok:

# success in rax

Appendix B — Common Errors and Dangerous Assumptions

This appendix lists the most common failure patterns seen when programmers first write
syscall-level code or reason about user—kernel boundaries. Each item includes a concrete

failure mode, why it happens, and a minimal correction pattern.

Assuming Syscalls Behave Like Functions

Error: treating syscall like call A function call is a user-space convention: it assumes

shared ABI rules, no privilege switch, and it pushes a return address on the current stack. A



61

syscall is a hardware-enforced boundary transition and does not behave like a normal call.

* Function call: pushes return address to stack, uses SysV function ABI registers.

* Syscall: saves return address in RCX, saves flags in R11, enters Ring 0, may switch

stacks, may block, may be interrupted.

Symptom patterns

* using function-call argument registers for syscalls (especially Arg4)

* assuming caller/callee-saved rules apply across syscall

* assuming control returns immediately after syscall with no interruption

Concrete pitfall: Arg4 register mismatch

# WRONG:

using RCX as the 4th argument like a normal function call

# SysV function ABI uses RCX for arg4, but SYSCALL overwrites RCX.

mov rax,
mov rdi,
mov rsi,
mov rdx,
mov rcx,

syscall

# RIGHT:
mov rax,
mov rdi,
mov rsi,
mov rdx,
mov rl1l0,

syscall

0

1
2
3
4

#

#
#
#
#

syscall number (example only)

argl

argz

arg3

WRONG: RCX is clobbered by SYSCALL

syscall ABI uses R10 for arg4

0

1
2
3
4

#

Correct arg4 register for syscalls



62

Correction checklist
* Use syscall ABI registers: RDI, RSI, RDX, R10, R8, RO.
* Treat RCX and R11 as clobbered by syscall.

* Treat syscall as a potential suspension point (may block or be interrupted).

Error: ignoring Linux syscall error convention Linux syscalls return errors as negative

—errno in RAX. This differs from libc wrappers that return —1 and set errno.

# Correct sign-check for a raw syscall return
syscall

test rax, rax

jns .ok

neg rax # rax = errno (positive)
# handle error (rax holds errno)

.ok:

# handle success (rax holds result)

Misunderstanding Privilege Boundaries

Error: assuming user code can ‘‘do kernel things” directly In user mode, privileged
instructions and privileged state are blocked by the CPU. Attempting to execute privileged

operations triggers faults, not “partial success”.

# Privileged instruction in user mode -> fault (exception path)

cli # cannot be executed in Ring 3



63

Error: assuming kernel uses the user stack On entry, the kernel must run on a trusted
stack. User RSP is untrusted and may be invalid or maliciously crafted. Correct kernel entry
paths switch to a kernel stack early.

User-space implication:

* do not assume anything about kernel stack layout from user space

* do not assume RSP is meaningful to the kernel beyond being saved/validated

Error: assuming pointers are trusted User pointers passed to syscalls are untrusted. The
kernel validates access and may fail with an error (commonly a negative —errno) if the

pointer is invalid or faults during copy.

# Example of an invalid pointer passed to write

mov rax, 1 # _ NR write

mov rdi, 1 # fd = stdout

mov rsi, 1 # invalid user pointer (likely unmapped)
mov rdx, 16 # count

syscall
# Expect rax < 0 on failure (e.g., —-EFAULT)

Security consequence The user—kernel boundary is a major attack surface. Correct

reasoning requires assuming:

¢ user data is hostile until validated

* boundary transitions are controlled and audited

* unexpected events (signals/interrupts) can occur at boundaries



64

Ignoring ABI Register Rules

Error: mixing SysV function ABI and Linux syscall ABI These conventions are similar
but not identical. Mixing them creates silent corruption.

Key differences that frequently break code:
* SysV function ABI arg4 is RCX; syscall arg4 is R10.
e syscall clobbers RCX and R11.

* Syscalls return —errno in RAX on failure.

Error: assuming caller-saved/callee-saved rules apply across syscalls Function-call ABIs
define caller-saved/callee-saved contracts. A syscall crosses into kernel code and should be

treated as:
* clobbering at least RCX and R11 by definition
* potentially modifying other registers indirectly depending on calling environment

* always modifying flags in ways user code must not depend on

Robust syscall wrapper pattern (save what you need) If your user-space assembly needs

to preserve values across syscalls, save them explicitly.

# Preserve a value across syscall (example technique)

push rbx # save caller state
mov rbx, 12345 # value you need later
mov rax, 39 # _ NR_getpid

syscall # RCX and R11 clobbered; do not depend on flags



65

# rax holds pid or -errno

pop rbx # restore saved state

Error: depending on flags after syscall Because the boundary transition modifies flags
(and the kernel work itself is arbitrary), do not use condition codes from before syscall to

make decisions after return.
WRONG idea (do not do this):

#
# cmp rdi, rsi
# syscall

# Jjg .greater # condition codes are not preserved

— meaningfully

# RIGHT idea:

syscall

test rax, rax # set flags based on return value you actually
— need

jns .ok

Minimal ABI sanity checklist

Load syscall number into RAX.

Load args into RDI, RSI, RDX, R10, R8, RO.

Assume RCX and R11 are clobbered.

Check RAX for negative —errno.

Do not depend on flags across the syscall boundary.



66

Appendix C — Preparation for Next Booklets

This appendix defines the minimum readiness checklist to move from “syscalls and privilege
boundaries” into deeper operating-system mechanics. The goal is not to teach the next topics
fully, but to ensure the reader has the correct mental model, vocabulary, and low-level habits

required to avoid common misconceptions.

Readiness for Interrupts and Exceptions

To be ready for interrupts and exceptions, you must be able to distinguish why control entered

the kernel and what that implies about program correctness.

Core distinctions to master
 Syscall is intentional: user requests a service with syscall.
* Exception is synchronous: triggered by the current instruction (fault/trap).

* Interrupt is asynchronous: arrives independent of the current instruction.

Minimal mental model

* Exceptions have an immediate cause tied to an instruction (e.g., invalid opcode, divide

error, page fault).
* Interrupts arrive between instructions and typically represent external/time events.

* Both lead to kernel entry with strict state saving and return rules.



67

Practical readiness exercises
1. Identify whether an event is synchronous or asynchronous from a short trace.
2. Explain what state must be preserved to resume user execution safely.

3. Explain why a user-mode privileged instruction must trap instead of “partially working”.

Concept-only trigger examples

# Synchronous exception example (user mode)
ud2 # guaranteed invalid instruction —-> exception

— path

# Synchronous exception example (user mode)
cli # privileged —-> general-protection style fault

— path

# Asynchronous interrupt example (conceptual)

# Timer interrupt can arrive between any two instructions:
nop

nop

nop

Readiness checklist
* You can explain trap vs fault at a conceptual level (resume semantics differ).

* You can explain why page faults are “part of normal execution” in demand-paged

systems.

* You can explain why returning to user mode requires validated instruction pointers and

flags.



68

Readiness for Scheduling and Preemption

Scheduling and preemption require a correct understanding of when a thread can stop

running and what the kernel must preserve so it can resume later.

Core concepts to master
* Blocking vs non-blocking: a syscall may block (sleep) and resume later.
* Preemption: the kernel may involuntarily stop a running thread to run another.

* Context switch: saving one task’s context and restoring another’s.

Key mental model A syscall boundary is a potential scheduling point. Even if the syscall
itself is “fast”, the kernel may need to wait for resources, causing the calling thread to sleep

and another thread to run.

Conceptual syscall-to-scheduler flow

User: syscall
Kernel: validate -> attempt operation
if resource not ready:
save full context
mark task sleeping
pick next runnable task
later:
wake task
restore context

return to user

Practical readiness exercises

1. Explain why a blocking read can cause a context switch.



69

2. Explain why “time spent in syscall” may include time when the thread was not running.

3. Explain why user code must assume it might resume on a different CPU core.

Minimal assembly habit Assume any syscall can:
* be interrupted by signals
* block and later resume

¢ run after other threads have executed

# Robust syscall mindset (conceptual):

# treat syscall as a boundary with possible delays/interruptions
syscall

test rax, rax

jns .ok

neg rax # errno

# handle error / retry policy

.ok:

Readiness for Kernel Internals

Kernel internals require understanding the core invariants of privileged code:

kernel operates on untrusted user inputs

kernel maintains per-task and per-CPU state
* kernel must preserve return context precisely

* kernel must not trust user stack or user pointers



70

Minimum internal structures to be ready to discuss (conceptual)

» Task/thread structure: holds saved registers, scheduling state, and kernel stack

reference.
* Kernel stack: per-task (or per-CPU) trusted stack used during privileged execution.
* Syscall dispatch table: mapping syscall numbers to kernel handlers.

* User memory access helpers: mechanisms to validate/copy user buffers safely.

Critical invariants
» User pointers are validated and may fault during copy.
» Kernel return paths must restore user mode safely and prevent privilege confusion.

* The syscall ABI is stable at the boundary even if the kernel implementation evolves.

Readiness exercises
1. Explain why RCX and R11 are special at the syscall boundary.
2. Explain why syscall Arg4 is R10 (and what would break if you used RCX).

3. Explain why the kernel switches stacks and how this protects the system.

One-page readiness summary If you can correctly reason about:
* the difference between syscalls, exceptions, and interrupts
* the conditions that trigger a context switch

* the user—kernel trust boundary (stacks, pointers, privilege)



71

* the syscall ABI register and return conventions

then you are ready to move into deeper kernel entry paths, interrupt/exception handling, and

scheduling internals in the next booklets.



References

x86-64 Architecture and Privilege Model Manuals

This booklet relies on the architectural definition of privilege levels, control transfers, and
execution state as defined by the x86-64 architecture. Core concepts derived from these

manuals include:
* privilege rings and Current Privilege Level (CPL)
e architectural effects of SYSCALL and SYSRET
* control registers, flags masking, and canonical addressing rules
* separation of architectural guarantees from microarchitectural behavior

These manuals define what the CPU must do during a privilege transition, independent of any

operating system.

Linux Kernel Documentation (Syscalls & Entry Paths)

Linux kernel documentation provides the authoritative description of how the kernel uses the

architectural mechanisms:

* syscall entry stubs and dispatch logic

72



73

* validation of user pointers and arguments
* kernel stack usage and per-task context handling
* fast path vs slow path behavior

The emphasis is on kernel-visible behavior rather than user-space abstractions. This includes

how syscalls interact with scheduling, signals, and memory management.

System Call ABI and Calling Convention Specifications

The Linux x86-64 syscall ABI defines the stable user—kernel interface:

syscall number placement in RAX
e argument registers RDI, RSI, RDX, R10, R8, R9

e return values and negative —errno convention

architectural clobbers (RCX, R11)

These rules are contractual: user-space code must obey them exactly, regardless of kernel

version or internal implementation changes.

Signals, Exceptions, and Process Control References

This booklet’s treatment of signals and exceptions is grounded in the execution model defined
by:

* synchronous exceptions triggered by instructions

« asynchronous events delivered independently of instruction flow



74

* conversion of faults into user-visible signals
* interaction between signal delivery and syscall return paths

The focus is on control flow effects and context preservation, not high-level signal APIs.

Compiler-Generated Syscall Code Behavior

Modern compilers generate syscalls indirectly through runtime libraries or inline sequences.

This booklet references:
* register setup patterns for syscall wrappers
* error handling transformations performed by standard libraries
* differences between raw syscalls and library-mediated calls

Understanding compiler-generated behavior is essential for correctly reading disassembly and

debugging optimized binaries.

Academic and Professional OS Architecture Materials

Concepts such as context switching, scheduling, and privilege separation are grounded in

established operating system theory:
* process and thread models
* kernel/user isolation principles
* cost models for context switches and boundary crossings

These materials provide the theoretical framework that explains why modern kernels are

structured around strict privilege boundaries.



75

Cross-References to Other Booklets in This Series

This booklet builds directly on earlier titles in the CPU Programming Series and prepares for

subsequent ones:
* earlier booklets: registers, flags, memory, stack discipline, and calling conventions
* this booklet: completes the user-space execution model up to the kernel boundary
* upcoming booklets: interrupts, exceptions, scheduling, and kernel internals

Readers are expected to use this booklet as the transition point between pure user-space

execution and full operating-system internals.



	Contents
	Preface
	Scope of This Booklet
	Position Within the CPU Programming Series
	What This Booklet Assumes (and Does Not)
	Why Syscalls and Privilege Boundaries Matter

	Privilege Levels in x86-64
	User Mode vs Kernel Mode
	Why Privilege Separation Exists
	Hardware-Enforced Boundaries (Conceptual)
	Transition Costs and Security Implications

	From User Code to the Kernel
	What Happens When User Code Needs the Kernel
	Historical Overview: INT 0x80 vs SYSCALL
	Controlled Entry Points into the Kernel
	Fast Path vs Slow Path Transitions

	The syscall Instruction
	Purpose and Design Goals of syscall
	CPU State Before and After syscall
	MSRs Involved in Syscall Handling
	SYSCALL vs SYSRET (Conceptual Flow)

	Linux x86-64 Syscall ABI
	Syscall Calling Convention Overview
	Register Usage and Argument Passing
	Return Values and Error Reporting
	Clobbered Registers and ABI Guarantees
	Comparison with Function Call ABI

	Kernel Entry and Exit Mechanics
	Stack Switching and Kernel Stacks
	Context Saving Responsibilities
	Returning Safely to User Space
	Common Failure and Security Scenarios
	Invalid Pointers and Faults During Copy
	Signals Interrupting Syscalls
	Privilege Confusion and Entry Point Integrity
	Register Convention Mismatches
	Hidden Costs: Scheduling and Slow Paths


	Signals and Exceptions (Conceptual)
	Difference Between Signals and Syscalls
	Synchronous vs Asynchronous Events
	Synchronous events
	Asynchronous events

	Signal Delivery from Kernel to User Space
	Interaction Between Signals and Syscalls
	Syscalls may be interrupted
	Syscall restart rules
	Signals can arrive right before or right after syscall return
	Exception-like signals (faults)


	Context Save and Restore Concepts
	What ``Context'' Really Means
	Minimal vs Full Context Saving
	Minimal context saving
	Full context saving

	Performance Impact of Context Switching
	Where Context Switches Fit in the Syscall Path

	Putting It All Together
	Full Syscall Lifecycle Walkthrough
	User  Kernel  User Execution Timeline
	Timeline checkpoints (conceptual)
	Timeline with fast vs slow path

	Common Misconceptions About Syscalls
	Misconception: ``A syscall is just a function call''
	Misconception: ``The syscall cannot be interrupted''
	Misconception: ``Return value is always meaningful without error checks''
	Misconception: ``The kernel trusts user pointers''

	Why Understanding Syscalls Matters
	Correctness
	Security
	Performance
	Tooling and debugging


	Appendices
	Appendix A — Conceptual Syscall Flow Diagrams
	User-to-Kernel Transition Overview
	Register and Stack State Changes
	Appendix B — Common Errors and Dangerous Assumptions
	Assuming Syscalls Behave Like Functions
	Misunderstanding Privilege Boundaries
	Ignoring ABI Register Rules

	Appendix C — Preparation for Next Booklets
	Readiness for Interrupts and Exceptions
	Readiness for Scheduling and Preemption
	Readiness for Kernel Internals


	References
	x86-64 Architecture and Privilege Model Manuals
	Linux Kernel Documentation (Syscalls & Entry Paths)
	System Call ABI and Calling Convention Specifications
	Signals, Exceptions, and Process Control References
	Compiler-Generated Syscall Code Behavior
	Academic and Professional OS Architecture Materials
	Cross-References to Other Booklets in This Series


