
1

CPU Programming Series
ARM 32-bit Assembly Fundamentals

Registers, CPSR, and Load/Store Discipline

Prepared by Ayman Alheraki

simplifycpp.org

January 2026

Contents

Contents 2

Preface 6
Purpose of This Booklet . 6

Why ARM Is Different from x86 . 6

How to Read This Booklet . 7

Scope, Limits, and Design Discipline . 8

1 ARM Architecture Overview 9
1.1 RISC Philosophy and Design Goals . 9

1.2 ARM Execution Model (Conceptual) . 10

1.3 Instruction Set vs Microarchitecture . 11

1.4 ARM 32-bit Operating Modes (Overview Only) 12

2 ARM 32-bit Register Model 14
2.1 General-Purpose Registers (R0–R12) . 14

2.2 Stack Pointer (SP / R13) . 15

2.3 Link Register (LR / R14) . 16

2.4 Program Counter (PC / R15) . 18

2.5 Banked Registers (Conceptual View) . 19

2

3

2.6 Register Usage Discipline . 19

3 Program Counter, Link Register, and Control Flow 22

3.1 PC Semantics and Instruction Fetch . 22

3.2 LR Behavior in Branch-with-Link . 23

3.3 Return Sequences and Pitfalls . 24

3.4 Control Flow without a Stack . 25

3.5 ARM Branch Instructions Overview . 27

4 CPSR: Current Program Status Register 29

4.1 CPSR Layout and Bit Fields . 29

4.2 Condition Flags (N, Z, C, V) . 30

4.3 Flag Updates and Instruction Effects . 31

4.4 Flag Preservation Rules . 32

4.5 Common CPSR Misunderstandings . 34

5 Conditional Execution Model 36

5.1 ARM Condition Codes . 36

5.2 Conditional Instruction Encoding . 37

5.3 Flag-Driven Execution Flow . 38

5.4 Conditional Execution vs Branching . 39

5.5 Advantages and Limitations . 40

6 Load/Store Architecture Fundamentals 42

6.1 Why ARM Is Load/Store . 42

6.2 Memory Access Rules . 43

6.3 Register-to-Register vs Memory Operations 44

6.4 Side Effects and Ordering Constraints . 45

4

7 Addressing Modes 48

7.1 Immediate Addressing . 48

7.2 Register Addressing . 49

7.3 Offset Addressing . 50

7.4 Pre-indexed and Post-indexed Modes . 50

7.5 Write-back Semantics . 52

8 Data Movement and Alignment 54

8.1 Byte, Halfword, and Word Access . 54

8.2 Alignment Requirements . 55

8.3 Unaligned Access Behavior . 56

8.4 Endianness Considerations . 58

8.5 Memory Safety at Assembly Level . 59

9 Instruction Sequencing Discipline 62

9.1 Instruction Dependencies . 62

9.2 Flag Dependency Hazards . 63

9.3 Ordering Rules . 64

9.4 Predictable Execution Patterns . 65

9.5 Architectural Constraints . 67

10 Common Errors and Dangerous Assumptions 69

10.1 Misusing LR . 69

10.2 Incorrect PC Assumptions . 71

10.3 CPSR Corruption . 72

10.4 Misaligned Memory Access . 73

10.5 Invalid Load/Store Patterns . 74

5

Appendices 77
Appendix A — Minimal Instruction Reference (Conceptual) 77

Appendix B — Preparation for Next Booklets . 80

References 85
ARM Architecture Reference Manuals . 85

ARM Instruction Set Documentation . 86

Compiler-Generated ARM Code Behavior . 86

Cross-References to Other Booklets in This Series 87

Preface

Purpose of This Booklet

This booklet establishes a **precise and architecture-faithful foundation** for programming

in **ARM 32-bit assembly**, focusing on the elements that determine correctness before

performance: registers, CPSR, and the load/store execution discipline.

The goal is not to teach “how to write instructions quickly,” but to ensure the reader

understands **what the processor is allowed to do**, **what it will never do**, and

why certain patterns are correct or incorrect by design. This discipline is essential for

writing reliable low-level code, understanding compiler output, and preparing for ABI-level

interoperability in later booklets.

All explanations are derived from **official ARM architectural behavior**, not from compiler

tricks or OS-specific conventions.

Why ARM Is Different from x86

ARM and x86 differ fundamentally in execution philosophy:

• ARM is a **strict load/store architecture**: memory is accessed only through explicit

load and store instructions.

6

7

• x86 allows **memory operands** in many arithmetic and logical instructions.

• ARM uses a **uniform register file** with architecturally visible roles.

• x86 relies heavily on **implicit behavior** and historical instruction semantics.

ARM’s design enforces clarity:

LDR R0, [R1] @ load from memory

ADD R2, R0, R3 @ operate on registers only

STR R2, [R1] @ store back to memory

In contrast, x86 may combine these steps implicitly. ARM forbids such patterns intentionally

to ensure **predictable execution**, simpler pipelines, and consistent compiler behavior.

Additionally, ARM exposes **condition flags and conditional execution** as first-class

architectural features, whereas x86 relies primarily on branching.

How to Read This Booklet

This booklet must be read **sequentially**.

Each chapter builds on architectural rules introduced earlier. Skipping sections often leads to

misunderstanding later material, especially CPSR behavior and control flow rules.

Guidelines for effective reading:

• Focus on **architectural intent**, not instruction memorization.

• Treat examples as **behavioral demonstrations**, not templates.

• Assume no operating system, no ABI, and no compiler assistance.

• Verify mental models against instruction behavior, not assumptions.

All examples are intentionally minimal to expose **cause-and-effect relationships** at the

instruction level.

8

Scope, Limits, and Design Discipline

This booklet deliberately limits its scope.

It covers:

• ARM 32-bit register model

• CPSR structure and flag semantics

• Conditional execution rules

• Load/store memory discipline

It does not cover:

• Calling conventions or ABI rules

• Stack frame layouts

• Exception handling or OS interaction

• Performance tuning or pipeline optimization

This separation is intentional. Mixing ABI or OS concepts with architectural fundamentals

leads to fragile understanding and incorrect mental models.

By the end of this booklet, the reader should be able to:

• Reason about ARM instructions without relying on a compiler

• Predict CPSR effects accurately

• Write load/store sequences that are architecturally correct

• Prepare confidently for ARM ABI and stack discipline in subsequent booklets

Chapter 1

ARM Architecture Overview

1.1 RISC Philosophy and Design Goals

ARM is a classic example of a RISC (Reduced Instruction Set Computer) design approach:

a small set of regular instructions, a large register file, and a machine model that encourages

predictable execution and efficient implementation.

Key design goals relevant to assembly programmers:

• Load/Store discipline: arithmetic and logical operations target registers; memory is

accessed explicitly via load/store.

• Regular encodings and operands: many instructions share a consistent operand

structure (destination + sources).

• Efficient decoding and pipeline-friendly behavior: simpler instruction patterns reduce

decode complexity and ease scheduling.

• Architectural transparency: visible registers, explicit flag-setting, and explicit

addressing modes.

9

10

A practical consequence is that you write code in three phases:

@ Phase 1: bring data into registers

LDR R0, [R1] @ R0 = *R1

@ Phase 2: compute using registers

ADD R0, R0, R2 @ R0 = R0 + R2

@ Phase 3: write results back to memory (if needed)

STR R0, [R1] @ *R1 = R0

On a machine that allows arithmetic directly on memory operands, phase separation can be

blurred. On ARM, this separation is the model.

1.2 ARM Execution Model (Conceptual)

At a conceptual level, ARM 32-bit execution is best understood through a strict sequence:

• Fetch: the instruction at the current PC is fetched.

• Decode: fields are decoded (opcode, registers, immediates, condition).

• Condition check: many ARM instructions are conditionally executed based on CPSR

flags.

• Execute: the operation runs (ALU, load/store address generation, branch).

• Write-back: results update registers and possibly CPSR (depending on the instruction

form).

The architectural state that matters most to you early on:

• Registers R0–R15 (including SP/LR/PC roles)

11

• CPSR for flags and mode/state bits

• Memory as an external state reached only via LDR/STR

Example: conditional execution is a defining architectural feature. The instruction ADDEQ

executes only if Z=1 (equal/zero).

CMP R0, R1 @ sets flags based on (R0 - R1)

ADDEQ R2, R2, #1 @ if Z==1 then R2++

ADDNE R2, R2, #2 @ if Z==0 then R2+=2

This is not a compiler trick; it is a core architectural rule. Whether performance benefits exist

depends on microarchitecture, but the behavior is architectural.

1.3 Instruction Set vs Microarchitecture

It is critical to separate:

• ISA (Instruction Set Architecture): the contract defined by the architecture. It

specifies instruction semantics, registers, flags, memory model constraints, and visible

behavior.

• Microarchitecture: the internal implementation of a particular CPU (pipeline depth,

branch prediction, caches, reorder mechanisms, issue width).

As an assembly programmer building correct foundations, you write to the ISA.

Microarchitecture affects performance, but must not be required for correctness.

Example: both of the following are ISA-correct, but can differ in performance depending on

CPU implementation:

12

@ Version A: branch-based

CMP R0, #0

BEQ is_zero

ADD R1, R1, #5

is_zero:

@ Version B: conditional execution (no branch)

CMP R0, #0

ADDNE R1, R1, #5

Architecturally, both are correct. Microarchitecturally, one might be faster or slower

depending on branch prediction, instruction fusion rules, pipeline front-end, etc. This booklet

uses examples to teach architectural behavior first; later booklets can address performance.

1.4 ARM 32-bit Operating Modes (Overview Only)

ARM 32-bit defines several operating modes that affect the processor’s privileged state,

exception handling, and (in many designs) which banked registers are active.

This booklet includes only an overview because mode switching is primarily relevant when

discussing:

• exceptions and interrupts

• OS/RTOS kernels

• privileged instructions and system control

The essential conceptual points for this booklet:

• The CPU always runs in one mode at a time.

• Some modes have banked registers (alternate physical registers for some architectural

names) to speed exception handling and preserve context.

13

• Mode and state bits live in CPSR (and related saved status registers in exception

modes).

A minimal mental model:

• User mode: unprivileged application execution.

• Privileged/exception modes: entered by exceptions/interrupts; may have banked SP/LR

and possibly other registers depending on mode.

Why it matters even in a fundamentals booklet:

• It explains why documentation may show multiple SP/LR instances.

• It prevents incorrect assumptions about register preservation across exceptions.

• It prepares you to interpret CPSR bits and saved status behavior later.

This booklet will not require you to write mode-switching code, but it will ensure you

understand the architectural reason that ARM documentation distinguishes between user

state and privileged/exception state.

Chapter 2

ARM 32-bit Register Model

2.1 General-Purpose Registers (R0–R12)

ARM 32-bit exposes sixteen architectural registers R0--R15. In most application-level code,

R0--R12 are treated as general-purpose registers (GPRs). The architecture does not force

high-level roles for R0--R12; their role is established by discipline, ABI rules (later booklet),

and local conventions.

In disciplined assembly, classify usage by intent:

• Inputs/temporaries: short-lived values used inside a basic block.

• Live values: values that must survive across branches/calls (requires explicit

save/restore discipline).

• Address registers: base pointers and iterators used by load/store addressing modes.

Example: register-only computation with explicit dataflow

@ R0 = a, R1 = b, R2 = c

14

15

@ Compute: r = (a + b) ˆ c

ADD R3, R0, R1 @ R3 = a + b

EOR R3, R3, R2 @ R3 = (a + b) XOR c

@ Result in R3

Example: register roles for load/store traversal

@ R0 = base pointer, R1 = count, R2 = running sum

MOV R2, #0

loop_sum:

LDR R3, [R0], #4 @ R3 = *R0; R0 += 4

ADD R2, R2, R3 @ sum += value

SUBS R1, R1, #1 @ count--; update flags

BNE loop_sum

@ sum in R2

Key lesson: in ARM, arithmetic uses registers; memory is reached via explicit load/store.

Keeping addresses, counts, and accumulators in distinct registers reduces mistakes and

clarifies correctness.

2.2 Stack Pointer (SP / R13)

R13 is commonly used as the stack pointer and is referred to as SP. Although it is

architecturally a register, correct code treats it as a special register with invariants:

• SP points to the current stack top for the active mode/state.

• Stack growth direction and alignment requirements are convention/ABI-defined, but

alignment discipline is mandatory for correctness in real systems.

• SP should not be used as a general-purpose register in disciplined assembly.

16

Example: simple stack allocation and deallocation

@ Allocate 16 bytes of local stack space

SUB SP, SP, #16

@ Use stack slots (example)

STR R0, [SP, #0] @ store at local slot 0

STR R1, [SP, #4] @ store at local slot 1

@ Deallocate

ADD SP, SP, #16

Example: pushing/popping callee context (conceptual)

@ Save registers to stack (conceptual; exact set is ABI-dependent)

PUSH {R4, R5, R6, LR}

@ ... function body ...

POP {R4, R5, R6, PC} @ restore and return (PC loaded)

Even before ABI details, the conceptual discipline is:

• If you modify SP, you must restore it.

• If you store something at [SP, #offset], that offset must remain valid until you are

done.

2.3 Link Register (LR / R14)

R14 is commonly used as the link register, LR. Branch-with-link instructions place a return

address into LR. This means:

17

• LR is a return address register.

• Any nested call overwrites LR unless you save it.

• Treat LR as live whenever you intend to return.

Example: call and return using LR

BL callee @ LR = return address; branch to callee

@ execution continues here after callee returns

callee:

@ ... do work ...

BX LR @ return to caller

Example: nested call requires saving LR

caller:

BL f

B done

f:

PUSH {LR} @ save return address

BL g @ overwrites LR

POP {LR} @ restore

BX LR

g:

@ ... do something ...

BX LR

done:

18

If you forget to preserve LR across a nested call, the function may return to an unintended

address. This is one of the most common early ARM assembly failures.

2.4 Program Counter (PC / R15)

R15 is the program counter, PC. It identifies the next instruction stream location. In ARM

32-bit, PC can appear as an operand in some instructions, but you must treat PC usage as

architecturally special:

• Writing to PC changes control flow.

• Reading PC yields a value related to the current instruction address, but the exact

observed value is affected by the architecture’s instruction fetch behavior and state;

do not treat it like an ordinary register value.

• Correctness requires explicit branch/return intent, not “PC arithmetic” hacks.

Example: return by loading PC

@ Typical return forms

BX LR @ return via LR

@ or (conceptual pattern)

MOV PC, LR @ control transfer via PC write

Example: indirect branch via register

@ R0 holds a target address

BX R0 @ branch to address in R0

The discipline in this booklet: use PC writes only to express intentional control flow

(branch/return), not as a general computation target.

19

2.5 Banked Registers (Conceptual View)

ARM 32-bit defines multiple operating modes for exceptions and privileged execution. To

support fast exception entry, some registers are banked in certain modes, meaning:

• The architectural name (e.g., SP, LR) may refer to a different physical register

depending on the current mode.

• Banked registers allow an exception handler to have its own SP/LR without immediately

saving the interrupted context.

Conceptually, think of this as:

@ Conceptual idea (not actual code):

@ In user mode: SP_user, LR_user

@ In handler: SP_exc, LR_exc

Why this matters here:

• It prevents false assumptions about “one global SP” for the entire system.

• It clarifies why architectural documents describe SP/LR variants across modes.

• It prepares you to interpret CPSR mode bits later without requiring OS/kernel material.

2.6 Register Usage Discipline

This booklet enforces a disciplined model that remains correct across toolchains and prepares

you for ABI-level rules later.

20

Rule 1: Treat SP, LR, PC as special

• SP is never a scratch register.

• LR is preserved if you call another function before returning.

• PC is written only for explicit control flow.

Rule 2: Make liveness explicit

If a value must survive a branch or a call, you must explicitly preserve it (in registers that

remain live, or by saving it to the stack).

@ R4 holds a long-lived value; preserve across call

PUSH {R4, LR}

@ ... R4 is live ...

BL helper

@ ... still need R4 ...

POP {R4, LR}

BX LR

Rule 3: Separate roles for clarity

Use distinct registers for:

• base addresses

• indices/counters

• temporaries

• accumulated results

@ R0 base, R1 index, R2 temp, R3 result

LDR R2, [R0, R1, LSL #2] @ temp = base[index]

ADD R3, R3, R2 @ result += temp

21

Rule 4: Prefer predictable patterns over cleverness

Write code that is obviously correct under the ISA rules:

• explicit loads/stores

• explicit flag-setting points

• explicit save/restore boundaries

This discipline is the foundation for later chapters on CPSR behavior and conditional

execution, and for later booklets on ABI, stack frames, and interoperability.

Chapter 3

Program Counter, Link Register, and
Control Flow

3.1 PC Semantics and Instruction Fetch

In ARM 32-bit, R15 is the Program Counter (PC). Architecturally, PC identifies the current

instruction stream position, but it must be treated as special:

• Writing PC causes an immediate control-flow change (branch/return).

• Reading PC can yield a value related to the current execution address, but it is not a

general-purpose value. The observed PC value depends on the instruction set state and

the architectural rules for PC as an operand.

• Correct programs must not rely on “PC behaves like a normal register” assumptions.

Example: PC write expresses explicit control transfer

@ R0 holds target address

22

23

MOV PC, R0 @ branch to target by writing PC

Example: computed branch via BX (preferred for state-aware control
flow)

@ R0 holds target address

BX R0 @ branch to address in R0

Discipline: use B/BL/BX/BLX (and well-defined return sequences) rather than “PC

arithmetic” tricks. This keeps code correct across toolchains and across instruction-set states.

3.2 LR Behavior in Branch-with-Link

R14 is the Link Register (LR). The branch-with-link instruction stores a return address in

LR and transfers control to the target.

Example: BL stores return address in LR

BL callee @ LR = return address; branch to callee

@ execution resumes here after callee returns

callee:

@ ... work ...

BX LR @ return

Key properties:

• LR is overwritten by every BL / BLX.

• If a function makes a nested call, it must preserve LR first.

• LR is not “magic stack return state”; it is a register you must manage.

24

Example: nested call requires saving LR

f:

PUSH {LR} @ preserve return address

BL g @ overwrites LR

POP {LR} @ restore return address

BX LR

g:

@ ... work ...

BX LR

3.3 Return Sequences and Pitfalls

A return is a control transfer back to the caller. In disciplined ARM 32-bit assembly, returns

are expressed using well-defined patterns:

• BX LR is the canonical explicit return.

• Restoring PC from the stack can be used when a function saved LR on entry and wants

to combine restore+return.

Example: minimal leaf function return

leaf:

@ no nested calls, LR not clobbered

ADD R0, R0, #1

BX LR

Example: return by popping PC

nonleaf:

25

PUSH {R4, LR}

@ ... body may call other functions ...

POP {R4, PC} @ restore R4 and return (PC loaded)

Common pitfalls:

• Forgetting to save LR in non-leaf functions: the function returns to the wrong address.

• Clobbering LR as a scratch register: later BX LR becomes invalid.

• Inconsistent save/restore sets: stack imbalance or corrupted return state.

• Mixing return forms without discipline: e.g., saving LR but returning via stale LR.

Pitfall demo: LR overwritten by nested call

bad_f:

@ WRONG: does not preserve LR

BL g @ overwrites LR

BX LR @ returns to somewhere inside g's caller path

Corrected:

good_f:

PUSH {LR}

BL g

POP {LR}

BX LR

3.4 Control Flow without a Stack

Not all control flow requires stack usage. If a routine:

26

• does not call other routines (leaf),

• does not need to preserve live values beyond available registers,

then it can be written without any stack operations.

Example: branch-based loop (no stack)

@ R0 = pointer, R1 = count, R2 = sum

MOV R2, #0

loop:

LDR R3, [R0], #4 @ load and advance pointer

ADD R2, R2, R3 @ sum += value

SUBS R1, R1, #1 @ count-- and set flags

BNE loop @ if not zero, continue

@ sum in R2

Example: multi-way control flow using compares and conditional
branches

@ R0 holds x

CMP R0, #0

BEQ case_zero

BLT case_neg

B case_pos

case_zero:

MOV R1, #0

B done

case_neg:

MOV R1, #-1

27

B done

case_pos:

MOV R1, #1

done:

The key idea: structured control flow (loops, if/else, switch-like dispatch) is expressible using

branches and flags without stack usage. The stack becomes necessary when you must preserve

state across calls or exceed available registers.

3.5 ARM Branch Instructions Overview

ARM 32-bit provides a small set of branch/control-transfer instructions. The architectural

concepts you must master:

• B : unconditional branch (PC-relative target).

• BL: branch with link (stores return address in LR).

• BX: branch to address in register (used for returns and indirect branches).

• BLX: branch with link and optional instruction-set state exchange (register target form

commonly used for indirect calls).

• CBZ/CBNZ (where available): compare-and-branch on zero/nonzero for a register

(reduces explicit CMP in common patterns).

Example: direct call vs indirect call

BL direct_target @ direct call (symbol)

@ R4 holds function pointer

BLX R4 @ indirect call; LR updated

28

Example: canonical return

BX LR @ return to caller

Example: compact loop using CBZ (if supported)

@ R1 = count

loop2:

CBZ R1, done2

SUB R1, R1, #1

B loop2

done2:

Discipline summary

• Use BL/BLX for calls, and assume LR is overwritten.

• Use BX LR or stack-restore-to-PC patterns for returns.

• Use conditional branches for structured flow; avoid inventing ad-hoc PC tricks.

• Keep control flow readable: label blocks, use consistent patterns, and preserve return

state explicitly.

Chapter 4

CPSR: Current Program Status Register

4.1 CPSR Layout and Bit Fields

The Current Program Status Register (CPSR) holds the architectural status of the

processor: condition flags, control bits, and the current mode/state. In ARM 32-bit, CPSR is

not a general-purpose register; it is a system status register that affects instruction execution

(especially conditional execution) and privileged behavior.

For disciplined assembly at the architectural level, you must understand CPSR as three

conceptual regions:

• Condition flags (top bits): reflect arithmetic/logic results and drive conditional

execution.

• Execution control bits: control instruction-set state and interrupt masking (system-level

concept).

• Mode field: identifies the current operating mode (user/privileged/exception modes).

29

30

Conceptual view (do not treat as a full bit-accurate diagram)

@ CPSR conceptual grouping:

@ [flags: N Z C V] [control/state bits] [mode bits]

This booklet focuses on the flag semantics and their correctness impact. Control/state bits and

mode bits are introduced only to avoid incorrect assumptions.

4.2 Condition Flags (N, Z, C, V)

ARM condition flags are updated by many operations and are stored in CPSR:

• N (Negative): reflects the sign bit of the result (bit 31 of a 32-bit result).

• Z (Zero): set if the result is zero.

• C (Carry): indicates unsigned carry out in addition; in subtraction it indicates no

borrow (unsigned compare rule).

• V (Overflow): indicates signed overflow (two’s complement overflow).

Example: basic flag production via SUBS/CMP

@ CMP is architecturally a subtraction that updates flags and discards

the result↪→

CMP R0, R1 @ flags reflect (R0 - R1)

@ Equivalent conceptual form:

SUBS R2, R0, R1 @ R2 = R0 - R1, and flags updated

31

Unsigned vs signed meaning

• Unsigned comparisons typically use C and Z.

• Signed comparisons typically use N and V (and Z).

Example: unsigned compare (HI/LS) vs signed compare (GT/LT)

CMP R0, R1

BHI unsigned_r0_gt_r1 @ unsigned: (C==1 && Z==0)

BLS unsigned_r0_le_r1

CMP R0, R1

BGT signed_r0_gt_r1 @ signed: (Z==0 && N==V)

BLT signed_r0_lt_r1 @ signed: (N!=V)

4.3 Flag Updates and Instruction Effects

Not every instruction updates flags. In ARM 32-bit, many data-processing instructions have a

flag-setting form (commonly expressed using an S suffix). The discipline is:

• Use flag-setting instructions only when you intend to consume the flags.

• Avoid accidental flag clobbering before a conditional branch or conditional instruction.

Example: ADD vs ADDS

ADD R2, R0, R1 @ flags not updated (typical form)

ADDS R2, R0, R1 @ flags updated (N,Z,C,V updated per result)

32

Example: loop counter with SUBS (canonical pattern)

@ R1 = count

loop:

@ ... body ...

SUBS R1, R1, #1 @ updates flags based on new count

BNE loop @ uses Z flag

Example: accidental flag clobbering

CMP R0, #0

ADDS R1, R1, #1 @ WRONG if you still needed CMP flags

BEQ is_zero @ BEQ now tests flags from ADDS, not CMP

Corrected:

CMP R0, #0

BEQ is_zero

ADD R1, R1, #1 @ safe: does not overwrite flags (in this

form)↪→

Example: using flags immediately (tight, readable)

CMP R0, R1

MOVEQ R2, #0 @ if equal

MOVLT R2, #-1 @ if signed less-than

MOVGT R2, #1 @ if signed greater-than

4.4 Flag Preservation Rules

CPSR flags are global architectural state for the currently executing context. They are not

automatically preserved across:

33

• most arithmetic/logic instructions in flag-setting form

• comparisons (CMP, CMN, TST, TEQ)

• many instructions that have an S variant

Core rules for disciplined code:

• If you need flags, consume them immediately.

• Assume a function call may destroy flags unless a strict convention promises otherwise

(do not rely on it in fundamentals).

• Avoid long sequences between flag-producing instruction and flag-consuming control

flow.

Example: consume flags immediately

CMP R0, #0

BEQ zero_case

@ safe to do non-flag-setting work here

Example: preserve decision result in a register instead of preserving flags

Instead of trying to “save flags”, convert the decision into a value:

CMP R0, #0

MOVEQ R2, #1 @ R2 = (R0==0) ? 1 : 0

MOVNE R2, #0

@ later code uses R2, not CPSR flags

This is the recommended discipline for maintainable assembly: CPSR is for short-lived

decisions, registers are for durable state.

34

4.5 Common CPSR Misunderstandings

Misunderstanding 1: Carry and overflow mean the same thing

They represent different arithmetic domains:

• C is about unsigned arithmetic (carry / no-borrow).

• V is about signed arithmetic overflow.

Example: C can change without V, and V can change without C

@ Unsigned carry example: 0xFFFFFFFF + 1 -> 0 with carry

MOV R0, #0

MVN R0, R0 @ R0 = 0xFFFFFFFF

ADDS R1, R0, #1 @ R1 = 0, C=1, Z=1, V=0

@ Signed overflow example: 0x7FFFFFFF + 1 -> 0x80000000 with V set

MOV R0, #0x7F

LSL R0, R0, #24 @ R0 = 0x7F000000

ORR R0, R0, #0xFF

LSL R0, R0, #8

ORR R0, R0, #0xFF

LSL R0, R0, #8

ORR R0, R0, #0xFF @ R0 = 0x7FFFFFFF (constructed without

literals)↪→

ADDS R1, R0, #1 @ V=1 (signed overflow), C depends on

unsigned carry-out (here C=0)↪→

Misunderstanding 2: CMP is “just compare” with no arithmetic meaning

CMP is subtraction that updates flags. Understanding it as subtraction is essential for correct

unsigned/signed interpretation.

35

Misunderstanding 3: Flags survive across unrelated instructions

Flags are overwritten frequently. If you need a prior comparison, branch/conditionalize

immediately or materialize the decision into a register.

Misunderstanding 4: Using S-variants everywhere is harmless

Overusing flag-setting instructions increases the chance of accidental clobbering and makes

code fragile. Use S forms only when flags are intentionally consumed.

Misunderstanding 5: Treating CPSR as a general-purpose variable

CPSR is system state. In disciplined assembly, CPSR flags are ephemeral control signals, not

long-lived program variables. Long-lived state should be stored in registers or memory with

explicit save/restore boundaries.

Chapter 5

Conditional Execution Model

5.1 ARM Condition Codes

ARM 32-bit defines a rich set of condition codes that allow most instructions to be

conditionally executed based on CPSR flags. Each condition evaluates a Boolean expression

over N, Z, C, V.

Conceptually, conditions fall into categories:

• Equality: EQ (Z==1), NE (Z==0)

• Unsigned comparisons: HI, HS/CS, LO/CC, LS

• Signed comparisons: GT, GE, LT, LE

• Flag tests: MI (N==1), PL (N==0), VS (V==1), VC (V==0)

• Always: AL

36

37

Example: mapping flags to intent

CMP R0, R1

BEQ equal_case @ Z==1

BHI unsigned_gt @ C==1 && Z==0

BLT signed_lt @ N!=V

Correct usage requires selecting the condition that matches the data domain (unsigned vs

signed). Mixing domains yields logically correct code only by accident.

5.2 Conditional Instruction Encoding

In ARM 32-bit (ARM state), most data-processing instructions include a condition field. If

the condition evaluates false, the instruction is treated as a no-op with respect to architectural

state (no register write, no flag update).

Example: conditional data movement

CMP R0, #0

MOVEQ R1, #0 @ if R0==0

MOVNE R1, #1 @ if R0!=0

Example: conditional arithmetic

CMP R2, R3

ADDGT R4, R4, #5 @ signed greater-than

ADDLE R4, R4, #1 @ signed less-or-equal

Encoding discipline:

• Condition applies to the entire instruction.

38

• If the condition fails, no side effects occur.

• Flag-setting variants (S) update flags only if executed.

5.3 Flag-Driven Execution Flow

Conditional execution enables a style where flags drive short control decisions without

branches. The canonical pattern is:

• Produce flags (CMP, SUBS, TST, etc.).

• Immediately consume flags with conditional instructions.

Example: saturating increment

@ R0 holds value, saturate at 100

CMP R0, #100

ADDLT R0, R0, #1 @ increment only if R0 < 100 (signed)

Example: select without branching

@ R0 = x, R1 = y, select max(x,y) into R2 (signed)

CMP R0, R1

MOVGE R2, R0

MOVLT R2, R1

Example: flag clobber avoidance

CMP R0, #0

MOVEQ R1, #0

MOVNE R1, #1

@ No flag-setting instructions in between

39

Discipline: flags are short-lived. Consume them immediately or materialize the decision into

a register.

5.4 Conditional Execution vs Branching

Conditional execution and branching are complementary tools.

Branch-based form

CMP R0, #0

BEQ zero

ADD R1, R1, #5

B done

zero:

ADD R1, R1, #1

done:

Conditional-execution form

CMP R0, #0

ADDEQ R1, R1, #1

ADDNE R1, R1, #5

Architectural correctness is identical. Differences are practical:

• Conditional execution avoids branches for short, local decisions.

• Branching is clearer for long or complex control paths.

• Microarchitectural performance varies; correctness does not.

40

Example: loop control favors branching

@ R1 = count

loop:

@ body

SUBS R1, R1, #1

BNE loop

Loops rely on branches; conditional execution shines in straight-line code.

5.5 Advantages and Limitations

Advantages

• Reduced branching: fewer control-flow changes for short decisions.

• Clear intent: explicit mapping from flags to actions.

• Predictable behavior: architectural no-op on failed condition.

• Compact code: replaces small if/else blocks.

Limitations

• Not suitable for long sequences: readability and maintenance suffer.

• Flag pressure: accidental flag clobbering can break logic.

• State restrictions: conditional execution applies broadly in ARM state; availability and

forms may differ in other states.

• Performance is implementation-dependent: do not assume it is always faster than

branching.

41

Guidelines

• Use conditional execution for short, local, side-effect-free decisions.

• Use branches for loops, calls, and multi-block control flow.

• Produce flags intentionally; consume them immediately.

• Prefer clarity over cleverness; readable code is more reliable.

This conditional execution model is a defining characteristic of ARM 32-bit. Mastery requires

precise flag handling and disciplined instruction selection—skills that directly support later

topics such as ABI code generation and low-level optimization.

Chapter 6

Load/Store Architecture Fundamentals

6.1 Why ARM Is Load/Store

ARM 32-bit is a load/store architecture: arithmetic and logical instructions operate on

register operands, and memory is accessed only through explicit load and store instructions.

This is not a style preference; it is the architectural contract.

Practical consequences for assembly programmers:

• Computation is register-centric: move data into registers, compute, then store results.

• Address calculation is explicit and structured through addressing modes.

• Correctness depends on understanding when memory is read/written and which
instructions can touch memory.

Example: the three-phase load/compute/store model

@ R0 = pointer p, R1 = value x

LDR R2, [R0] @ R2 = *p (memory read)

42

43

ADD R2, R2, R1 @ R2 = R2 + x (register compute)

STR R2, [R0] @ *p = R2 (memory write)

In a non-load/store ISA, an arithmetic instruction might directly use a memory operand. On

ARM, it cannot. This separation makes reasoning about memory effects precise.

6.2 Memory Access Rules

In disciplined ARM 32-bit assembly, only a small family of instructions may read or write

memory:

• Loads: LDR, LDRB, LDRH and related variants

• Stores: STR, STRB, STRH and related variants

• Multiple transfers: LDM, STM (including push/pop style forms)

Core rules:

• Address used by a load/store is computed from a base register plus an offset/index
(depending on addressing mode).

• The architecture defines which byte/halfword/word is transferred and how the

destination register is updated.

• The assembly programmer must ensure the address is valid, properly aligned when

required, and points to accessible memory.

Example: explicit access width

@ R0 points to bytes

LDRB R1, [R0] @ load 8-bit, zero-extended into R1

LDRH R2, [R0] @ load 16-bit, zero-extended into R2

LDR R3, [R0] @ load 32-bit into R3

44

Example: sign vs zero extension discipline

@ R0 points to signed byte and signed halfword

LDRSB R1, [R0] @ load signed 8-bit, sign-extend into R1

LDRSH R2, [R0] @ load signed 16-bit, sign-extend into R2

If you use the wrong variant, your arithmetic may become silently incorrect (especially in

signed comparisons and indexing logic).

Example: address calculation is explicit

@ R0 = base, R1 = index

@ Load base[index] where element size is 4 bytes

LDR R2, [R0, R1, LSL #2]

This is a core ARM idiom: index scaling is part of the addressing mode, not a separate

instruction.

6.3 Register-to-Register vs Memory Operations

In ARM 32-bit, nearly all data-processing instructions are register-to-register (or register-

immediate). Memory cannot be used as an operand in these instructions.

Example: arithmetic is register-only

@ R2 = R0 + R1 (register operation)

ADD R2, R0, R1

If you want to add a memory value to a register, you must load first:

@ R0 = pointer p, want: R2 = R2 + *p

LDR R1, [R0] @ R1 = *p

ADD R2, R2, R1 @ R2 += R1

45

Example: register staging clarifies memory side effects

@ Update a struct field: *(p+8) += x

@ R0 = p, R1 = x

LDR R2, [R0, #8] @ load field (read)

ADD R2, R2, R1 @ compute

STR R2, [R0, #8] @ store field (write)

This pattern makes memory effects explicit and auditable: one read, one write, no hidden

memory operands.

6.4 Side Effects and Ordering Constraints

Loads and stores have observable side effects: they interact with memory and with the outside

world when memory-mapped I/O is involved. Even when you are not writing kernel code,

disciplined assembly must respect these facts.

Side-effect categories

• Architectural state side effects: register write-back in certain addressing modes.

• Memory side effects: reads/writes to RAM or device-mapped regions.

• Flag side effects: most loads/stores do not update flags, but do not assume a universal

rule; keep flag logic isolated.

Example: write-back changes the base register

@ R0 points to an array

LDR R1, [R0], #4 @ R1 = *R0; then R0 = R0 + 4 (post-index

write-back)↪→

If you forget that write-back occurred, later addresses will be wrong.

46

Example: pre-indexed with write-back

@ Advance pointer then load

LDR R1, [R0, #4]! @ R0 = R0 + 4; then R1 = *R0

The discipline is: treat write-back forms as both a load/store and a pointer update. Do not

mix them casually with other pointer arithmetic unless you are very explicit.

Ordering constraints (conceptual, correctness-first)

At the ISA level, a single-threaded program observes memory effects in program order.

However, when interacting with:

• device memory (memory-mapped I/O),

• concurrency,

• interrupts/exceptions,

you must assume that ordering and visibility rules become part of correctness. This booklet

does not teach the full system memory model, but it enforces safe assembly habits:

• Keep memory-mapped I/O access sequences explicit and isolated.

• Avoid “clever” reordering of loads/stores around flag-dependent control flow.

• Treat multi-instruction read-modify-write sequences as non-atomic unless you later use

proper atomic/locking mechanisms.

Example: read-modify-write is not atomic

@ *(p) += 1 (not atomic across threads/interrupts)

LDR R1, [R0]

ADD R1, R1, #1

STR R1, [R0]

47

This sequence is correct for single-threaded logic, but it is not safe as an atomic increment if

another agent can modify the same memory concurrently.

Example: disciplined separation of concerns

@ Good practice: separate address evolution, data movement, and

decisions↪→

LDR R2, [R0] @ data

CMP R2, #0 @ decision flags

BEQ done @ control flow

ADD R2, R2, #1 @ compute

STR R2, [R0] @ commit

done:

Summary discipline checklist

• Only load/store instructions touch memory; everything else is register compute.

• Choose the correct width and sign-extension form.

• Treat write-back addressing as a side effect on the base register.

• Consume flags immediately; avoid accidental clobbering between compare and

branch/conditional instruction.

• Remember that multi-instruction updates are not atomic when concurrency or interrupts

exist.

Chapter 7

Addressing Modes

7.1 Immediate Addressing

ARM 32-bit provides immediate operands for many data-processing instructions. Immediate

addressing means the operand is encoded directly in the instruction, not loaded from memory.

This is crucial for tight code: constants, masks, increments, and small offsets can be used

without extra loads.

Example: arithmetic with immediate

ADD R0, R0, #1 @ R0 += 1

SUB R1, R1, #16 @ R1 -= 16

Example: bit manipulation with immediate masks

ORR R2, R2, #0x1 @ set bit 0

BIC R3, R3, #0x4 @ clear bit 2 (bit clear)

48

49

Example: immediate in address calculation via offset addressing

Immediate values are also used inside memory addressing forms:

LDR R0, [R1, #12] @ load word from address (R1 + 12)

Discipline: immediate operands are ideal for small constants and offsets; large constants

require construction or literal loading (addressed later in the series).

7.2 Register Addressing

Register addressing means the operand comes from a register. This is the core of ARM data

processing: most operations are register-to-register.

Example: register-to-register arithmetic

ADD R2, R0, R1 @ R2 = R0 + R1

EOR R3, R3, R4 @ R3 = R3 XOR R4

For memory operations, register addressing appears as using a base register and optionally an

index register.

Example: register offset addressing in load/store

@ R0 = base, R1 = offset

LDR R2, [R0, R1] @ load from (R0 + R1)

Example: scaled register indexing (array element access)

@ R0 = base address, R1 = index

@ element size = 4 bytes

LDR R2, [R0, R1, LSL #2] @ R2 = base[index]

50

This is a key ARM idiom: index scaling is integrated into the addressing mode.

7.3 Offset Addressing

Offset addressing forms compute an effective address using a base register plus an offset. The

offset can be immediate or register-based, and it does not necessarily update the base register.

Example: immediate offset (no write-back)

@ Load a struct field at offset 8

LDR R1, [R0, #8] @ R1 = *(R0 + 8)

STR R2, [R0, #12] @ *(R0 + 12) = R2

Example: register offset (no write-back)

@ R0 = base, R3 = dynamic offset

LDR R1, [R0, R3] @ R1 = *(R0 + R3)

Example: scaled index offset (no write-back)

@ array of 32-bit elements

LDR R2, [R0, R1, LSL #2]

Discipline: when you use offset addressing without write-back, you are expressing: compute

address, access memory, base remains unchanged.

7.4 Pre-indexed and Post-indexed Modes

Indexing modes define when the base register is updated relative to the memory access.

51

Pre-indexed addressing (compute first, then access)

Pre-indexed means the effective address is computed before the load/store. It can optionally

include write-back.

@ Pre-index without write-back (common conceptual form)

LDR R1, [R0, #4] @ R1 = *(R0 + 4), R0 unchanged

Pre-index with write-back

@ The '!' means write-back: update base to the effective address

LDR R1, [R0, #4]! @ R0 = R0 + 4; then R1 = *R0

Post-indexed addressing (access first, then update)

Post-indexed means the memory access uses the original base register value, and then the base

register is updated afterward.

LDR R1, [R0], #4 @ R1 = *R0; then R0 = R0 + 4

These forms are widely used for iteration because they combine memory access and pointer

progression.

Example: iterate a word array using post-index

@ R0 = ptr, R1 = count, R2 = sum

MOV R2, #0

loop:

LDR R3, [R0], #4 @ load then advance

ADD R2, R2, R3

SUBS R1, R1, #1

BNE loop

52

Example: reverse traversal using pre-index write-back

@ R0 points just past end of array (end pointer)

@ Each iteration: move back then load

LDR R3, [R0, #-4]! @ R0 = R0 - 4; R3 = *R0

7.5 Write-back Semantics

Write-back means the base register is modified as a side effect of the addressing mode. This

has major correctness implications.

Key rules

• Write-back updates the base register to the computed effective address (pre-index) or

base+offset after access (post-index).

• Write-back changes the register value even if you do not use it later; it is still a side

effect that can break logic if overlooked.

• Do not combine write-back with separate pointer updates unless you are explicitly

modeling both.

Example: write-back vs manual pointer update (avoid double-advance)

@ WRONG: post-index already advances R0; adding again double-advances

LDR R1, [R0], #4

ADD R0, R0, #4 @ wrong: R0 advanced twice

Correct (pick one):

@ Option A: use post-index only

LDR R1, [R0], #4

53

@ Option B: no write-back, update explicitly

LDR R1, [R0]

ADD R0, R0, #4

Example: safe pointer+data discipline

@ R0 = ptr, R1 = count

loop2:

LDR R2, [R0], #4 @ side effect: ptr advanced

@ R0 now points to next element

SUBS R1, R1, #1

BNE loop2

Summary discipline checklist

• Use immediate offsets for fixed fields and small strides.

• Use scaled register offsets for indexed arrays.

• Prefer post-index write-back for forward iteration.

• Prefer pre-index write-back for reverse iteration.

• Treat write-back as a real side effect: track it like you track register clobbers.

Chapter 8

Data Movement and Alignment

8.1 Byte, Halfword, and Word Access

ARM 32-bit load/store instructions are explicitly typed by access width. Correct assembly

requires selecting the instruction that matches the data layout in memory.

• Byte (8-bit): LDRB, STRB

• Halfword (16-bit): LDRH, STRH

• Word (32-bit): LDR, STR

Loads into registers place the value into a 32-bit register. For smaller widths, loads typically

zero-extend unless a signed-load variant is used.

Example: zero-extension vs sign-extension

@ R0 points to memory

LDRB R1, [R0] @ unsigned byte -> zero-extended into R1

54

55

LDRH R2, [R0] @ unsigned halfword -> zero-extended into R2

LDRSB R3, [R0] @ signed byte -> sign-extended into R3

LDRSH R4, [R0] @ signed halfword -> sign-extended into R4

Example: writing narrow fields without corrupting neighbors

@ Store only one byte

STRB R1, [R0] @ writes low 8 bits of R1 to memory

@ Store only one halfword

STRH R2, [R0, #2] @ writes low 16 bits of R2 to memory

Discipline: never use STR when you intend to update a byte field. A 32-bit store overwrites

four bytes and can destroy adjacent fields.

8.2 Alignment Requirements

Alignment is the constraint that an address must be a multiple of the access size for naturally

aligned transfers:

• Byte: alignment always satisfied.

• Halfword: typically requires address divisible by 2.

• Word: typically requires address divisible by 4.

Why it matters:

• Misalignment can trigger exceptions on some systems/configurations.

• Even when allowed, misalignment can change behavior or reduce performance.

• Correct assembly assumes alignment unless explicitly handling unaligned layouts.

56

Example: alignment-aware layout

@ Suppose a struct layout:

@ offset 0: uint32_t a

@ offset 4: uint16_t b

@ offset 6: uint8_t c

@ offset 7: padding (for 4-byte alignment of next field)

LDR R1, [R0, #0] @ a (word aligned)

LDRH R2, [R0, #4] @ b (halfword aligned)

LDRB R3, [R0, #6] @ c (byte)

Example: computing alignment test in assembly

@ Test if R0 is word-aligned (R0 % 4 == 0)

TST R0, #3

BNE not_aligned

@ aligned path

8.3 Unaligned Access Behavior

Unaligned behavior is not a safe assumption. The architectural reality is that whether

unaligned word/halfword accesses are supported, trapped, or transformed depends on system

configuration and the specific ARM core/profile and control settings.

Therefore, disciplined assembly follows one of two correct approaches:

• Approach A (preferred): enforce alignment and treat misalignment as an error or slow

path.

• Approach B: explicitly implement unaligned loads/stores using byte operations and

shifts.

57

Example: safe aligned/unaligned split

@ R0 = pointer to 32-bit value (may be unaligned)

TST R0, #3

BNE slow_unaligned

LDR R1, [R0] @ fast aligned load

B done

slow_unaligned:

@ Manual unaligned load into R1 using bytes (little-endian assumed

here)↪→

LDRB R1, [R0, #0]

LDRB R2, [R0, #1]

LDRB R3, [R0, #2]

LDRB R4, [R0, #3]

ORR R1, R1, R2, LSL #8

ORR R1, R1, R3, LSL #16

ORR R1, R1, R4, LSL #24

done:

This is architecturally explicit: it works regardless of unaligned support, at the cost of extra

instructions.

Example: manual unaligned 16-bit load

@ R0 = pointer to 16-bit value (may be unaligned)

LDRB R1, [R0, #0]

LDRB R2, [R0, #1]

ORR R1, R1, R2, LSL #8

58

8.4 Endianness Considerations

Endianness determines the byte order used to represent multi-byte values in memory.

• Little-endian: lowest-address byte is the least significant byte.

• Big-endian: lowest-address byte is the most significant byte.

Most modern ARM systems are configured little-endian, but assembly that handles raw bytes

must be explicit about endianness assumptions.

Example: assembling a 32-bit word from bytes

Little-endian assembly (byte 0 is least significant):

@ R0 points to 4 bytes: b0 b1 b2 b3

LDRB R1, [R0, #0]

LDRB R2, [R0, #1]

LDRB R3, [R0, #2]

LDRB R4, [R0, #3]

ORR R1, R1, R2, LSL #8

ORR R1, R1, R3, LSL #16

ORR R1, R1, R4, LSL #24

For big-endian, the shifts would be reversed. The discipline is: if you write byte-assembly

code, document and enforce the assumed endianness.

Example: swapping endianness (byte reverse concept)

When you must convert between byte orders, use byte-level logic (or architecture-supported

byte-reversal instructions where available in the profile), but always verify the correctness

using test vectors.

59

@ Conceptual byte swap using shifts/masks (portable)

@ Input in R0, output in R1

AND R1, R0, #0xFF

MOV R1, R1, LSL #24

AND R2, R0, #0xFF00

MOV R2, R2, LSL #8

ORR R1, R1, R2

AND R2, R0, #0xFF0000

MOV R2, R2, LSR #8

ORR R1, R1, R2

AND R2, R0, #0xFF000000

MOV R2, R2, LSR #24

ORR R1, R1, R2

8.5 Memory Safety at Assembly Level

Assembly provides no automatic memory safety. Correctness depends on disciplined rules:

• Never access memory outside the valid region.

• Keep pointer arithmetic explicit and auditable.

• Match access width to the actual object layout.

• Respect alignment; handle unaligned only via explicit safe paths.

• Avoid accidental overwrites: use STRB/STRH for narrow fields.

60

Example: bounds-checked byte copy (conceptual safety pattern)

@ Copy N bytes from src to dst

@ R0 = dst, R1 = src, R2 = count

copy_loop:

CMP R2, #0

BEQ copy_done

LDRB R3, [R1], #1

STRB R3, [R0], #1

SUB R2, R2, #1

B copy_loop

copy_done:

Example: preventing width mismatch overwrite

@ Suppose [R0] is a packed byte field.

@ WRONG: STR overwrites 4 bytes.

@ STR R1, [R0]

@ Correct: store only one byte.

STRB R1, [R0]

Example: alignment-aware word copy with fallback

@ Copy 32-bit words when aligned; otherwise copy bytes.

@ R0 = dst, R1 = src, R2 = word_count

ORR R3, R0, R1

TST R3, #3

BNE copy_bytes

copy_words:

CMP R2, #0

61

BEQ done

LDR R4, [R1], #4

STR R4, [R0], #4

SUBS R2, R2, #1

BNE copy_words

B done

copy_bytes:

@ Convert word_count to byte_count (word_count * 4)

MOV R2, R2, LSL #2

byte_loop:

CMP R2, #0

BEQ done

LDRB R4, [R1], #1

STRB R4, [R0], #1

SUB R2, R2, #1

B byte_loop

done:

This pattern is correctness-first: it respects alignment constraints and remains valid even when

unaligned word loads are not supported.

Chapter 9

Instruction Sequencing Discipline

9.1 Instruction Dependencies

Correct assembly is fundamentally about respecting dependencies: when one instruction

produces a value or state that a later instruction consumes.

In ARM 32-bit, the most important dependency classes are:

• Register data dependency: a later instruction reads a register written earlier.

• Address dependency: a load/store depends on an address computed earlier.

• Memory dependency: a later load depends on a prior store (same location) in program

logic.

• Control dependency: a later instruction is reached only if a prior branch condition is

taken.

• Flag dependency: a later conditional instruction/branch consumes CPSR flags

produced earlier.

62

63

Example: register data dependency

ADD R2, R0, R1 @ produces R2

EOR R3, R2, #0xFF @ consumes R2

Example: address dependency

ADD R0, R0, #16 @ produces new pointer

LDR R1, [R0, #4] @ consumes pointer as base address

Example: memory dependency (read after write)

STR R2, [R0] @ write *p

LDR R3, [R0] @ later read *p (expects the stored value)

Discipline: keep related producer/consumer instructions close together and avoid interleaving

unrelated work that may clobber registers or flags.

9.2 Flag Dependency Hazards

Flags are a shared global state in CPSR. A flag hazard occurs when the flags you intend to

use are overwritten before you consume them.

Hazard pattern:

• instruction A sets flags

• instruction B (unintentionally) sets flags again

• instruction C branches/conditionalizes based on flags, but now sees B’s flags, not A’s

64

Example: classic hazard

CMP R0, #0

ADDS R1, R1, #1 @ clobbers flags

BEQ zero_case @ tests ADDS flags, not CMP flags

Correct patterns:

Pattern 1: consume flags immediately

CMP R0, #0

BEQ zero_case

ADD R1, R1, #1

Pattern 2: avoid S-variants unless needed

CMP R0, #0

ADD R1, R1, #1 @ does not update flags in this form

BEQ zero_case @ safe: still tests CMP flags

Pattern 3: materialize decision into a register

CMP R0, #0

MOVEQ R2, #1

MOVNE R2, #0

@ Later logic uses R2; flags no longer required

Discipline: flags are for short-lived decisions. Registers are for durable state.

9.3 Ordering Rules

At the architectural level for single-threaded code, instructions appear to execute in program

order. However, assembly must still respect ordering rules in practice:

65

• A value must be produced before it is consumed.

• Memory updates in multi-instruction sequences are not atomic.

• Loads/stores with write-back introduce additional register updates that must be

accounted for.

Example: write-back ordering is part of correctness

@ Post-index: access then update

LDR R1, [R0], #4 @ R1 = *R0; then R0 += 4

LDR R2, [R0] @ uses updated R0

Example: pre-index with write-back ordering

LDR R1, [R0, #4]! @ R0 += 4; then R1 = *R0

LDR R2, [R0] @ uses same updated base

Example: read-modify-write sequence is ordered but not atomic

LDR R1, [R0] @ read

ADD R1, R1, #1 @ modify

STR R1, [R0] @ write

This is correct for single-threaded logic, but another agent (thread/interrupt) can observe

intermediate states. Treat such sequences as non-atomic unless later booklets introduce

atomic mechanisms.

9.4 Predictable Execution Patterns

Predictable assembly favors standard, recognizable idioms:

66

• compare then branch immediately

• loop with SUBS + BNE

• load/compute/store with clear staging registers

• preserve LR before nested calls

Pattern: compare then branch

CMP R0, R1

BEQ equal

BHI unsigned_gt

@ fall-through

Pattern: counter loop

@ R0 = pointer, R1 = count

loop:

LDR R2, [R0], #4

@ ... body ...

SUBS R1, R1, #1

BNE loop

Pattern: conditional select without branch

@ R0 = a, R1 = b, result in R2 (signed max)

CMP R0, R1

MOVGE R2, R0

MOVLT R2, R1

67

Pattern: call discipline

PUSH {LR}

BL helper

POP {LR}

BX LR

Predictability here is a correctness tool: these idioms make it hard to accidentally clobber

flags, lose the return address, or mis-handle pointer updates.

9.5 Architectural Constraints

Instruction sequencing must respect constraints imposed by the ISA:

• Only load/store instructions access memory; arithmetic is register-only.

• CPSR flags are overwritten by comparisons and S-variants; treat flags as volatile control

state.

• PC/LR/SP are special registers with control-flow and stack invariants.

• Write-back addressing modes modify the base register as a side effect.

Constraint example: do not “compute on memory”

@ Wrong mental model: "ADD [R0], #1" does not exist on ARM

@ Correct staging:

LDR R1, [R0]

ADD R1, R1, #1

STR R1, [R0]

68

Constraint example: keep flag producers adjacent to consumers

CMP R2, #0

BEQ done @ consume immediately

@ safe: flag-neutral work or explicit decisions after the branch

Constraint example: avoid losing LR

@ Any nested BL clobbers LR; save it first

PUSH {LR}

BL g

POP {LR}

BX LR

Discipline checklist

• Track register liveness; do not reuse registers prematurely.

• Treat flags as volatile; consume immediately or materialize decisions.

• Treat write-back as a real side effect; never “double-advance” pointers.

• Keep code structured: producer/consumer proximity, clear labels, standard idioms.

• Prefer correctness patterns first; performance tuning comes after correctness is proven.

Chapter 10

Common Errors and Dangerous
Assumptions

10.1 Misusing LR

LR (R14) holds the return address after BL/BLX. The most common ARM assembly failures

happen when LR is treated like a normal scratch register or when nested calls overwrite it.

Error 1: Non-leaf function that does not preserve LR

bad_f:

@ WRONG: LR will be overwritten by BL g

BL g

BX LR @ returns to the wrong place

Correct:

good_f:

PUSH {LR}

69

70

BL g

POP {LR}

BX LR

Error 2: Using LR as temporary storage

bad_lr_temp:

MOV LR, R0 @ WRONG: destroys return address

@ ...

BX LR @ branches to arbitrary value

Correct discipline: LR is return state. Use a GPR (R0--R12) or stack slots for temporaries.

Error 3: Mixing return mechanisms without discipline

mixed_return:

PUSH {LR}

@ ...

BX LR @ WRONG: LR on stack not restored; stack

becomes imbalanced↪→

Correct: choose one strategy and complete it.

consistent_return:

PUSH {LR}

@ ...

POP {LR}

BX LR

Or return by restoring PC:

consistent_return2:

PUSH {LR}

@ ...

POP {PC} @ return by loading PC

71

10.2 Incorrect PC Assumptions

PC (R15) is not a normal register. Writing PC transfers control. Reading PC yields an

architecturally defined value tied to the instruction stream, but not a general-purpose “current

address” you can casually compute with.

Error 1: Treating PC like a general data register

bad_pc_math:

ADD R0, PC, #4 @ often used for position logic, but unsafe

as a general habit↪→

@ R0 may not mean what you assume across states/encodings

Correct discipline in this booklet:

• Use PC writes only for explicit branches/returns.

• Use labels and assembler-supported relocation for addresses (introduced later in the

series).

• Avoid “PC arithmetic” tricks in fundamentals code.

Error 2: Returning by writing PC from an untrusted register

bad_return:

MOV PC, R0 @ WRONG if R0 is not a verified return target

Correct: return only via the established return state (BX LR or restoring PC from the stack).

safe_return:

BX LR

72

10.3 CPSR Corruption

CPSR flags drive conditional execution and branching. “Corruption” in normal application-

level assembly usually means accidentally overwriting flags between a flag-producing

instruction and a flag-consuming instruction.

Error 1: Flag clobber between CMP and branch

bad_flags:

CMP R0, #0

ADDS R1, R1, #1 @ clobbers flags

BEQ zero_case @ tests ADDS flags, not CMP flags

Correct patterns:

good_flags_1:

CMP R0, #0

BEQ zero_case

ADD R1, R1, #1

good_flags_2:

CMP R0, #0

ADD R1, R1, #1 @ no flags updated

BEQ zero_case @ still uses CMP flags

Error 2: Using S-variants everywhere

bad_overuse_s:

ADDS R2, R2, #1

SUBS R3, R3, #4

ANDS R4, R4, R5

@ flags are continually overwritten; later conditions become fragile

Correct discipline: use S only when you intend to consume flags immediately.

73

Error 3: Assuming flags survive a call

bad_call_flags:

CMP R0, #0

BL helper @ assume flags preserved (unsafe assumption)

BEQ zero_case @ may not test CMP result anymore

Correct: branch/conditionalize before calls or materialize the decision:

good_call_flags:

CMP R0, #0

MOVEQ R2, #1

MOVNE R2, #0

BL helper

CMP R2, #1

BEQ zero_case

10.4 Misaligned Memory Access

Misalignment is one of the most common sources of crashes or silent wrong behavior in low-

level code. Halfword/word loads generally require natural alignment (2/4-byte), and unaligned

support is configuration- and core-dependent.

Error 1: Word load from unaligned address

bad_unaligned:

@ R0 may be unaligned

LDR R1, [R0] @ may fault or behave unexpectedly on some

systems↪→

Correct: enforce alignment or use a safe slow path.

74

good_align_check:

TST R0, #3

BNE slow_unaligned

LDR R1, [R0]

B done

slow_unaligned:

@ Portable unaligned load (little-endian assumed)

LDRB R1, [R0, #0]

LDRB R2, [R0, #1]

LDRB R3, [R0, #2]

LDRB R4, [R0, #3]

ORR R1, R1, R2, LSL #8

ORR R1, R1, R3, LSL #16

ORR R1, R1, R4, LSL #24

done:

Error 2: Wrong-width store overwriting neighbors

bad_width_store:

@ Want to store a byte field, but this overwrites 4 bytes

STR R1, [R0]

Correct:

good_width_store:

STRB R1, [R0] @ store only low 8 bits

10.5 Invalid Load/Store Patterns

Load/store instructions are precise: they define access width, addressing mode, and optional

write-back. Many bugs come from misunderstanding write-back and base register evolution.

75

Error 1: Double-advancing a pointer (write-back + manual update)

bad_double_advance:

LDR R1, [R0], #4 @ post-index already advances R0

ADD R0, R0, #4 @ WRONG: advances twice

Correct (choose one):

good_advance_a:

LDR R1, [R0], #4

good_advance_b:

LDR R1, [R0]

ADD R0, R0, #4

Error 2: Confusing pre-index and post-index semantics

@ Pre-index with write-back:

@ R0 updated first, then used

LDR R1, [R0, #4]!

@ Post-index:

@ R0 used first, then updated

LDR R2, [R0], #4

If you swap these forms unintentionally, your code reads the wrong element or

skips/duplicates elements.

Error 3: Using the wrong sign-extension form

bad_sign:

@ byte is signed in memory, but loaded as unsigned

LDRB R1, [R0] @ zero-extends; negative values become large

positives↪→

76

Correct:

good_sign:

LDRSB R1, [R0] @ sign-extends correctly

Error 4: Read-modify-write assumed atomic

bad_atomic_assumption:

@ Not atomic across threads/interrupts

LDR R1, [R0]

ADD R1, R1, #1

STR R1, [R0]

Correct discipline: treat this as single-threaded logic only. Atomicity requires dedicated

mechanisms (introduced in later booklets).

Summary: dangerous assumptions checklist

• LR is not a scratch register; preserve it in non-leaf functions.

• PC is a control-flow register; avoid PC arithmetic tricks in fundamentals.

• Flags are volatile; consume immediately and avoid accidental clobbering.

• Alignment is not optional; validate or implement safe unaligned paths.

• Write-back is a side effect; track it like register clobbers.

• Width and sign-extension must match the memory data model exactly.

Appendices

Appendix A — Minimal Instruction Reference (Conceptual)

This appendix provides a concise, correctness-focused reference to the essential ARM

32-bit instruction classes used throughout this booklet. It is intentionally conceptual and

architectural: it explains what each class does and how it behaves, without encoding tables,

ABI rules, OS assumptions, or microarchitectural tuning.

Data Processing Instructions

Data processing instructions compute on registers (and immediates). They do not access

memory.

• Arithmetic: ADD, SUB, RSB

• Logical: AND, ORR, EOR, BIC

• Move/transform: MOV, MVN

• Shifted operand forms integrated into the instruction

ADD R2, R0, R1 @ R2 = R0 + R1

SUB R3, R2, #16 @ R3 = R2 - 16

77

78

EOR R4, R4, R5 @ R4 = R4 XOR R5

ADD R6, R0, R1, LSL #2 @ R6 = R0 + (R1 << 2)

Conceptual rule: all computation happens in registers; memory values must be loaded first.

Load and Store Instructions

Load/store instructions are the only instructions that access memory. They define access width,

address calculation, and optional base write-back.

• Word: LDR, STR

• Halfword: LDRH, STRH

• Byte: LDRB, STRB

• Signed loads: LDRSB, LDRSH

LDR R1, [R0] @ R1 = *R0

STR R2, [R0, #8] @ *(R0 + 8) = R2

LDRB R3, [R0, #1] @ byte load, zero-extend

STRB R3, [R0, #1] @ byte store

LDRH R4, [R0, #2] @ halfword load, zero-extend

STRH R4, [R0, #2] @ halfword store

LDRSB R5, [R0] @ signed byte load, sign-extend

LDRSH R6, [R0] @ signed halfword load, sign-extend

Write-back and indexing:

LDR R1, [R0], #4 @ post-index: R1 = *R0; then R0 += 4

LDR R2, [R0, #4]! @ pre-index: R0 += 4; then R2 = *R0

Conceptual rule: load/store always has memory side effects; write-back additionally modifies

the base register.

79

Branch Instructions

Branch instructions update control flow by changing PC.

• B — unconditional branch

• BL — call (branch with link; LR updated)

• BX — branch to register (return/indirect branch)

• BLX — indirect call (branch with link to register)

B target

BL func @ LR = return address; branch to func

@ ...

func:

BX LR @ return

BX R0 @ indirect branch to address in R0

Conceptual rule: any BL/BLX overwrites LR; preserve LR in non-leaf functions.

Flag-Setting Instructions

Flag-setting instructions update CPSR condition flags. Flags are short-lived control signals

and must be consumed immediately.

• Compare: CMP, CMN (sets flags, discards result)

• Test: TST, TEQ (sets flags based on logical test)

• Data processing with S suffix: e.g., ADDS, SUBS, ANDS

80

CMP R0, #0

BEQ is_zero

TST R1, #1

BNE bit0_set

ADDS R2, R2, #1 @ updates N,Z,C,V

SUBS R3, R3, #1 @ common loop counter pattern

BNE loop

Conceptual rule: avoid accidental flag clobbering between flag production and flag

consumption.

Appendix B — Preparation for Next Booklets

This appendix defines the exact architectural and mental readiness expected before

progressing to the next booklets in the ARM track. It clarifies what the reader must

already understand and practice correctly, ensuring that later topics (ABI, stack frames, OS

interaction) are built on solid foundations rather than assumptions.

Readiness for ARM Stack Discipline

Before studying stack frames and procedure prologues, the reader must already be

comfortable with the following concepts:

• SP (R13) is a special register with invariants, not a general-purpose register.

• Stack growth direction and alignment must be respected consistently.

• Every modification to SP must be balanced and auditable.

You should be able to reason correctly about stack effects even without ABI rules.

81

@ Allocate local space

SUB SP, SP, #16

@ Use stack slots

STR R0, [SP, #0]

STR R1, [SP, #4]

@ Deallocate local space

ADD SP, SP, #16

Required mindset:

• The stack is memory with strict discipline.

• Every push has a matching pop.

• Misaligned or unbalanced stacks lead to undefined behavior at higher levels.

Readiness for ARM Calling Conventions

Calling conventions formalize rules that you are already applying informally in this booklet.

Before advancing, you must fully understand:

• BL/BLX overwrite LR.

• Non-leaf functions must preserve LR explicitly.

• Registers have lifetimes; some values must survive calls, others do not.

You should already be able to write correct call/return logic without knowing which registers

are caller-saved or callee-saved.

82

@ Non-leaf function skeleton

PUSH {LR}

BL helper

POP {LR}

BX LR

Required mindset:

• A function call is a controlled control-flow transfer.

• Return correctness is architectural, not optional.

• ABI rules will formalize what you already practice.

Readiness for ABI Interoperability

ABI interoperability means your assembly code can safely interact with compiler-generated

code and foreign modules.

Before moving forward, you must already be able to:

• Distinguish architectural rules from ABI rules.

• Preserve control flow, stack integrity, and register state explicitly.

• Avoid relying on undocumented compiler behavior.

Example of ABI-neutral correctness:

@ Preserve state explicitly before external interaction

PUSH {R4, R5, LR}

BL external_function

POP {R4, R5, LR}

BX LR

83

Required mindset:

• ABI is a contract layered on top of the architecture.

• Architecture correctness comes first; ABI correctness builds on it.

• Clean boundaries prevent subtle, hard-to-debug failures.

Readiness for Embedded and OS-Level ARM Code

Embedded systems and OS-level code impose stricter correctness requirements.

Before proceeding, you should already understand:

• Load/store ordering matters when interacting with memory-mapped I/O.

• Read-modify-write sequences are not atomic by default.

• Alignment, access width, and side effects are correctness-critical.

Example of disciplined memory access pattern:

@ Read-modify-write (single-threaded logic)

LDR R1, [R0]

ADD R1, R1, #1

STR R1, [R0]

Required mindset:

• Hardware observes memory operations.

• There is no safety net at this level.

• Predictable, explicit code is more important than clever code.

84

Summary Readiness Checklist

You are ready to move on if you can confidently:

• Track SP, LR, PC, and CPSR effects across instruction sequences.

• Write correct control flow without relying on ABI shortcuts.

• Reason about memory access width, alignment, and side effects.

• Read compiler-generated ARM code and understand why it is correct.

The next booklets will formalize these practices into ABI rules, stack frames, and system-level

interactions. This appendix ensures that the transition is additive, not corrective.

References

ARM Architecture Reference Manuals

This booklet is grounded in the architectural behavior defined by the official ARM 32-bit

architecture specifications. These manuals define the processor-visible contract: registers,

CPSR behavior, instruction semantics, addressing modes, and architectural constraints.

Key conceptual guarantees drawn from these manuals and reflected throughout this booklet:

• The architectural meaning of registers R0--R15, including SP, LR, and PC.

• CPSR flag semantics and their role in conditional execution.

• Load/store-only access to memory.

• Precise definitions of addressing modes and write-back behavior.

All examples in this booklet follow architectural rules that remain valid regardless of:

• specific ARM core implementation,

• operating system presence,

• compiler or toolchain choice.

85

86

ARM Instruction Set Documentation

Instruction behavior described in this booklet follows the canonical ARM instruction

definitions:

• Data processing instruction semantics

• Load/store instruction side effects

• Branch and control-flow behavior

• Flag-setting and conditional execution rules

Examples are written to expose architectural intent rather than encoding detail.

@ Architectural meaning: compute in registers

ADD R2, R0, R1

@ Architectural meaning: explicit memory access

LDR R3, [R4]

STR R3, [R4]

The focus is on what the instruction does, not on opcode formats or binary layouts.

Encoding tables, instruction widths, and binary representations are intentionally excluded,

as they do not affect architectural correctness at this stage.

Compiler-Generated ARM Code Behavior

Modern compilers targeting ARM 32-bit adhere strictly to the architectural rules described in

this booklet. Understanding compiler-generated output requires recognizing the same patterns

presented here.

Common compiler-emitted patterns explained by this booklet:

87

• Load/compute/store sequences

• SUBS + conditional branch loop structures

• Explicit preservation of LR in non-leaf functions

• Use of conditional execution for short decisions

Example of a compiler-style loop pattern:

loop:

LDR R2, [R0], #4

ADD R3, R3, R2

SUBS R1, R1, #1

BNE loop

Understanding this code requires:

• knowledge of write-back semantics,

• awareness of flag dependencies,

• understanding of control-flow discipline.

This booklet equips the reader to read such output confidently and to reason about its

correctness independently of optimization level.

Cross-References to Other Booklets in This Series

This booklet is part of a structured CPU Programming Series and is intentionally scoped to

architectural fundamentals.

It directly builds upon:

• execution model fundamentals,

88

• register and flag semantics,

• binary data representation concepts.

It directly prepares the reader for subsequent booklets covering:

• ARM stack frames and stack discipline

• ARM calling conventions and ABI rules

• Interoperability with C/C++ compilers

• Embedded and OS-level ARM programming

Conceptual dependency example:

@ This booklet explains why this works

PUSH {LR}

BL helper

POP {LR}

BX LR

Later booklets will formalize:

• which registers must be preserved,

• exact stack layout rules,

• ABI-mandated alignment requirements.

This separation ensures that each booklet adds new knowledge without revising or correcting

earlier material, preserving a clean and cumulative learning path.

	Contents
	Preface
	Purpose of This Booklet
	Why ARM Is Different from x86
	How to Read This Booklet
	Scope, Limits, and Design Discipline

	ARM Architecture Overview
	RISC Philosophy and Design Goals
	ARM Execution Model (Conceptual)
	Instruction Set vs Microarchitecture
	ARM 32-bit Operating Modes (Overview Only)

	ARM 32-bit Register Model
	General-Purpose Registers (R0–R12)
	Stack Pointer (SP / R13)
	Link Register (LR / R14)
	Program Counter (PC / R15)
	Banked Registers (Conceptual View)
	Register Usage Discipline

	Program Counter, Link Register, and Control Flow
	PC Semantics and Instruction Fetch
	LR Behavior in Branch-with-Link
	Return Sequences and Pitfalls
	Control Flow without a Stack
	ARM Branch Instructions Overview

	CPSR: Current Program Status Register
	CPSR Layout and Bit Fields
	Condition Flags (N, Z, C, V)
	Flag Updates and Instruction Effects
	Flag Preservation Rules
	Common CPSR Misunderstandings

	Conditional Execution Model
	ARM Condition Codes
	Conditional Instruction Encoding
	Flag-Driven Execution Flow
	Conditional Execution vs Branching
	Advantages and Limitations

	Load/Store Architecture Fundamentals
	Why ARM Is Load/Store
	Memory Access Rules
	Register-to-Register vs Memory Operations
	Side Effects and Ordering Constraints

	Addressing Modes
	Immediate Addressing
	Register Addressing
	Offset Addressing
	Pre-indexed and Post-indexed Modes
	Write-back Semantics

	Data Movement and Alignment
	Byte, Halfword, and Word Access
	Alignment Requirements
	Unaligned Access Behavior
	Endianness Considerations
	Memory Safety at Assembly Level

	Instruction Sequencing Discipline
	Instruction Dependencies
	Flag Dependency Hazards
	Ordering Rules
	Predictable Execution Patterns
	Architectural Constraints

	Common Errors and Dangerous Assumptions
	Misusing LR
	Incorrect PC Assumptions
	CPSR Corruption
	Misaligned Memory Access
	Invalid Load/Store Patterns

	Appendices
	Appendix A — Minimal Instruction Reference (Conceptual)
	Appendix B — Preparation for Next Booklets

	References
	ARM Architecture Reference Manuals
	ARM Instruction Set Documentation
	Compiler-Generated ARM Code Behavior
	Cross-References to Other Booklets in This Series

