
1

CPU Programming Series
AArch64 Core Architecture

Registers, PSTATE, and Addressing

Prepared by Ayman Alheraki

simplifycpp.org

January 2026

Contents

Contents 2

Preface 6
Purpose of This Booklet . 6

Position in the CPU Programming Series . 6

Prerequisites and Assumed Knowledge . 7

What This Booklet Covers — and What It Explicitly Does Not 7

Reading Discipline for AArch64 . 8

1 AArch64 Architecture Overview 9
1.1 AArch64 vs AArch32: Architectural Shift . 9

1.2 64-bit Design Goals and Constraints . 11

1.3 Execution State: AArch64 Fundamentals . 13

1.4 Instruction Length and Encoding Model . 15

1.5 Conceptual Execution Pipeline (ISA View) 17

2 General-Purpose Register File 20
2.1 X Registers (X0–X30): Structure and Width 20

2.2 W Registers and Zero Extension Rules . 22

2.3 Register Aliasing Rules (Xn vs Wn) . 23

2

3

2.4 Architectural Zero Register (XZR / WZR) . 25

2.5 Register Access and Instruction Constraints 27

2.6 Common Misconceptions About Register Width 29

3 Special Registers and Their Roles 31

3.1 Stack Pointer (SP) — Rules and Restrictions 31

3.2 Link Register (LR / X30) — Call Semantics 34

3.3 Program Counter (PC) — Architectural Behavior 36

3.4 Interaction Between PC and Branch Instructions 37

3.5 Register Usage Discipline (Non-ABI View) 39

4 PSTATE: Processor State Register 41

4.1 Conceptual Role of PSTATE . 41

4.2 Condition Flags (N, Z, C, V) . 43

4.3 Interrupt Mask Bits . 45

4.4 Execution Control Bits . 46

4.5 PSTATE vs CPSR (Conceptual Comparison) 47

4.6 Instructions That Affect PSTATE . 48

4.7 Common Flag-Related Pitfalls . 50

5 Data Movement and Register Transfer 54

5.1 Register-to-Register Movement . 54

5.2 Immediate Encoding Constraints . 56

5.3 Zeroing vs Preserving Upper Bits . 57

5.4 MOV, MOVZ, MOVK, MOVN (Conceptual Use) 58

5.5 Register Width Interaction Rules . 60

5.6 Practical Register Transfer Patterns . 61

4

6 AArch64 Addressing Model 64
6.1 Load/Store Architecture Philosophy . 64

6.2 Memory Access vs Register Operations . 66

6.3 Address Calculation Model . 68

6.4 Alignment Rules and Enforcement . 70

6.5 Address Size and Virtual Address Space (Conceptual) 72

7 Addressing Modes in AArch64 74
7.1 Immediate Offset Addressing . 74

7.2 Register Offset Addressing . 76

7.3 Scaled and Unscaled Offsets . 77

7.4 Pre-Indexed and Post-Indexed Addressing . 79

7.5 Common Addressing Mode Mistakes . 81

7.6 Addressing Mode Selection Discipline . 83

8 Load and Store Instruction Behavior 85
8.1 Basic Load/Store Semantics . 86

8.2 Byte, Halfword, Word, and Doubleword Access 88

8.3 Signed vs Unsigned Loads . 90

8.4 Zero-Extension vs Sign-Extension . 92

8.5 Paired Load/Store Instructions (LDP / STP) 94

8.6 Architectural Guarantees and Limitations . 96

9 Addressing, Registers, and Performance (Conceptual) 98
9.1 Instruction Count vs Addressing Choice . 98

9.2 Register Pressure and Access Patterns . 100

9.3 Alignment Impact on Execution . 102

9.4 Addressing Discipline for Predictable Code 104

9.5 What the ISA Guarantees — and What It Does Not 106

5

10 Common Errors and Dangerous Assumptions 108
10.1 Misusing W Registers in 64-bit Contexts . 108

10.2 Assuming PC Is Directly Writable . 111

10.3 Confusing SP with General Registers . 113

10.4 Flag Dependency Bugs . 115

10.5 Addressing Mode Miscalculations . 118

10.6 Debugging Register and Addressing Errors 120

Appendices 122
Appendix A — Minimal Register Reference . 122

Appendix B — Instruction Categories Covered . 126

Appendix C — Preparation for Next Booklets . 132

References 136
ARM Architecture Reference Manuals (Conceptual Use) 136

ISA Documentation and Instruction Semantics . 137

Compiler-Generated Code Observations . 138

Cross-References to Other Booklets in This Series 139

Preface

Purpose of This Booklet

This booklet provides a precise and architecture-focused explanation of the AArch64 core

design, concentrating on three foundational pillars: the general-purpose register file, the

PSTATE processor state, and the AArch64 addressing model. Its purpose is to build a correct

mental model of how 64-bit ARM processors expose state and memory access at the ISA

level, without relying on operating systems, ABIs, or compiler conventions. By the end of

this booklet, the reader should be able to read, reason about, and manually write AArch64

assembly code that uses registers, flags, and addressing modes correctly and predictably.

Position in the CPU Programming Series

This booklet belongs to the architecture-specific phase of the CPU Programming Series and

represents the first dedicated AArch64 volume. It assumes mastery of the shared foundations

introduced earlier in the series, including instruction execution, binary data representation,

flags, and basic stack concepts. This volume serves as a mandatory prerequisite for subsequent

AArch64-focused booklets covering stack discipline, calling conventions, exception levels,

privilege transitions, atomics, and memory ordering.

6

7

Prerequisites and Assumed Knowledge

The reader is expected to already understand:

• How a CPU fetches, decodes, executes, and retires instructions

• Signed and unsigned integer representation and flag semantics

• The conceptual role of registers, memory, and load/store architectures

• Basic assembly reading skills and instruction sequencing

No prior knowledge of ARM-specific syntax is required, but familiarity with at least one other

ISA (such as x86 or ARM 32-bit) is strongly recommended.

What This Booklet Covers — and What It Explicitly Does

Not

This booklet covers:

• AArch64 general-purpose registers and width rules

• Special registers such as SP, LR, and PC

• PSTATE flags and execution control bits

• Address calculation and AArch64 addressing modes

• Load and store behavior at the ISA level

This booklet explicitly does not cover:

• Any ABI or calling convention rules

8

• Operating system interfaces or system calls

• Exception levels, privilege transitions, or MMU internals

• Cache hierarchy, coherence protocols, or memory ordering

• Compiler optimizations or language-level semantics

These topics are intentionally deferred to later, dedicated volumes.

Reading Discipline for AArch64

AArch64 enforces strict architectural rules that differ significantly from legacy ISAs. Readers

are strongly advised to:

• Treat register width rules as mandatory, not advisory

• Never assume implicit behavior beyond what the ISA guarantees

• Distinguish clearly between architectural behavior and ABI conventions

• Validate every addressing mode against its documented constraints

All examples in this booklet are written to emphasize correctness, predictability, and

architectural intent rather than brevity or compiler mimicry. This discipline is essential for

reliable low-level programming, debugging, and performance analysis on modern ARM

systems.

Chapter 1

AArch64 Architecture Overview

1.1 AArch64 vs AArch32: Architectural Shift

AArch64 is a distinct 64-bit execution environment with its own architectural state, instruction

set rules, and system model. While both AArch32 and AArch64 follow a load/store design,

the shift to AArch64 introduces a cleaner core programming model that is optimized for 64-bit

computation, modern address spaces, and uniform register usage.

Key architectural shifts

• Register model modernization: AArch64 exposes a larger, uniform general-purpose

register file with consistent 64-bit semantics; 32-bit access is a defined view of the same

registers.

• State model change: AArch64 uses PSTATE as the architectural processor state for

flags and controls; legacy AArch32 state constructs are not directly preserved as-is.

• Instruction set redesign: AArch64 is not a superset of AArch32; it uses a distinct fixed-

9

10

length encoding space and instruction forms.

• Addressing and pointer reality: 64-bit pointers and addressing rules are first-class in

AArch64, shaping load/store and address calculation patterns.

Example 1: 32-bit writes have architectural meaning in AArch64

In AArch64, Wn is the low 32-bit view of Xn. A fundamental architectural rule is that writing

Wn zero-extends into Xn. This is not “compiler behavior”; it is guaranteed by the ISA.

.text

.global demo_w_to_x

demo_w_to_x:

mov x0, -1

mov w0, 1 /* writing W0 zeros the upper 32 bits of

X0 */↪→

ret

Example 2: Arithmetic stays in registers; memory access is explicit

AArch64 preserves strict load/store discipline: arithmetic instructions operate on registers,

while loads and stores perform memory access.

.text

.global demo_load_store

demo_load_store:

ldr x1, [x0]

add x1, x1, #8

str x1, [x0]

ret

11

1.2 64-bit Design Goals and Constraints

AArch64 is designed to provide a predictable, scalable, and efficient 64-bit architecture.

Its design emphasizes a uniform register model, regular instruction decoding, and explicit

memory operations. These goals reduce ambiguity and make the ISA suitable for both low-

level systems work and high-performance workloads.

Design goals

• Uniformity: consistent register widths, consistent operand rules, and reduced special-

case behavior.

• Scalability: natural support for large address spaces and modern system software

structures.

• Predictability: fixed instruction length and clearly defined interactions between register

views and flags.

• Efficiency: addressing modes and instruction forms that reduce instruction count

without hiding architectural behavior.

Constraints you must treat as hard rules

• Fixed-length instructions: all instructions are 32 bits, shaping decode regularity and

alignment assumptions.

• Load/store separation: memory operands are restricted to load/store instructions;

general arithmetic does not operate directly on memory.

• Immediate encoding limits: many constants cannot fit in a single instruction and

require canonical construction patterns.

12

Example: Efficient address usage without mixing memory and ALU

Addressing modes can reduce instruction count while preserving strict load/store discipline.

.text

.global sum_two_u32

sum_two_u32:

ldr w1, [x0] /* load element 0 */

ldr w2, [x0, #4] /* load element 1 */

add w0, w1, w2 /* sum in registers */

ret

Example: Canonical constant construction

AArch64 commonly constructs a 64-bit constant using MOVZ and MOVK with shifts.

.text

.global build_u64

build_u64:

movz x0, #0x1122, lsl #48

movk x0, #0x3344, lsl #32

movk x0, #0x5566, lsl #16

movk x0, #0x7788, lsl #0

ret

13

1.3 Execution State: AArch64 Fundamentals

A CPU may support multiple execution states. This booklet focuses on the AArch64 execution

state as the environment in which AArch64 instructions execute and architectural state is

defined.

Core architectural state (AArch64 view)

• General-purpose registers: X0--X30 (64-bit) and W0--W30 (32-bit views).

• SP: the stack pointer, with architectural usage rules and instruction constraints.

• LR (X30): link register used by call/return patterns.

• PC: program counter, updated by control-flow instructions (not a general-purpose

register).

• PSTATE: processor state containing condition flags and control bits (detailed in later

chapters).

Example: PC is controlled via branches, not arithmetic

Control flow is expressed through branch instructions; the architectural PC update is implicit

in branch semantics.

.text

.global branch_example

branch_example:

cmp w0, #0

b.eq is_zero

mov w0, #1

14

ret

is_zero:

mov w0, #0

ret

Example: Flag-setting must be intentional

Conditional branches read condition flags in PSTATE. The programmer must track which

instructions set flags.

.text

.global flag_discipline

flag_discipline:

subs x1, x0, #1 /* subtract and set flags */

b.mi was_negative

mov w0, #0

ret

was_negative:

mov w0, #1

ret

15

1.4 Instruction Length and Encoding Model

AArch64 uses a fixed 32-bit instruction length. This creates a regular decode model and

ensures instruction fetch alignment naturally matches 4-byte boundaries. Immediate encoding

is necessarily constrained by the 32-bit instruction size, so the ISA defines canonical multi-

instruction patterns for tasks such as building 64-bit constants or forming full addresses.

Example: PC-relative addressing pattern for position-independent code

A common architectural pattern for forming the address of data near the instruction stream

uses ADRP with a low 12-bit add. This is an ISA-level address formation mechanism.

.text

.global load_data_pc_relative

load_data_pc_relative:

adrp x0, my_data

add x0, x0, :lo12:my_data

ldr w0, [x0]

ret

.data

.align 2

my_data:

.word 123

Example: Branch targets are instruction-aligned

Because instructions are 4-byte units, control-flow targets are naturally expressed on

instruction boundaries.

16

.text

.global simple_loop

simple_loop:

mov w1, #3

loop:

subs w1, w1, #1

b.ne loop

ret

17

1.5 Conceptual Execution Pipeline (ISA View)

This booklet uses an ISA-level execution model to reason about correctness without relying

on implementation-specific microarchitecture. At the ISA view, instruction behavior can be

understood as a sequence of conceptual stages:

• Fetch: obtain the 32-bit instruction at the address in PC.

• Decode: interpret opcode, register operands, and immediates.

• Execute: perform ALU work, compute effective addresses, and decide branches.

• Memory: for loads/stores, access memory using the effective address.

• Writeback: commit results to destination registers and/or architectural flags/state.

Two discipline rules follow directly:

1. Separate effective address calculation from memory effects. Addressing mode

selection defines the effective address; memory access is a distinct architectural action.

2. Treat flags as explicit state. Conditional branches depend on the most recent flag-

setting instruction relevant to the condition.

Example: Effective address calculation vs memory effect

The addressing mode defines the effective address; the load/store performs the memory access

at that address.

.text

.global pipeline_view_load_store

pipeline_view_load_store:

18

ldr x1, [x0, #16] /* EA = X0 + 16; then memory read into X1

*/↪→

add x1, x1, #3 /* ALU work in registers */

str x1, [x0, #16] /* EA = X0 + 16; then memory write from

X1 */↪→

ret

Example: Flags persist unless overwritten by a flag-setting instruction

A non-flag-setting instruction between a flag-setting instruction and a conditional branch does

not change the flags. The branch uses the previously established flags.

.text

.global flag_dependency_is_explicit

flag_dependency_is_explicit:

subs w1, w0, #10 /* sets flags from (W0 - 10) */

add w2, w2, #1 /* does NOT set flags */

b.lt less_than_10 /* uses flags from SUBS */

mov w0, #0

ret

less_than_10:

mov w0, #1

ret

Practical reading method used throughout this series

1. Identify register widths (W vs X) and apply architectural width rules.

2. Mark flag-defining instructions (CMP, TST, ADDS, SUBS, etc.).

19

3. For each load/store, write the effective address: base + offset/register + addressing

mode.

4. Treat branches as architectural PC updates, not arithmetic expressions.

Chapter 2

General-Purpose Register File

2.1 X Registers (X0–X30): Structure and Width

AArch64 defines 31 general-purpose integer registers X0–X30. Each Xn is a full 64-bit
architectural register used for:

• integer arithmetic and logic

• pointer and address calculations

• loop counters and indices

• passing values between instructions and basic control-flow patterns

There is no separate architectural bank for “32-bit registers”. Instead, Wn is a defined

view of the same physical/architectural register (covered next).

Example: 64-bit arithmetic uses X registers

.text

20

21

.global add_u64

add_u64:

add x0, x0, x1 /* X0 = X0 + X1 (64-bit) */

ret

Example: addresses and pointers are 64-bit in core programming

.text

.global add_ptr_offset

add_ptr_offset:

add x0, x0, #32 /* X0 = X0 + 32 (pointer arithmetic) */

ret

22

2.2 W Registers and Zero Extension Rules

W0–W30 are the low 32-bit views of X0–X30. The critical AArch64 rule is:

Any write to a W register zeros the upper 32 bits of the corresponding X
register.

This zero-extension behavior is an architectural guarantee. It is central to correctness when

mixing 32-bit and 64-bit operations.

Example: write to W0 zeroes the upper half of X0

.text

.global w_write_zero_ext

w_write_zero_ext:

mov x0, -1 /* X0 = 0xFFFF_FFFF_FFFF_FFFF */

mov w0, #1 /* X0 becomes 0x0000_0000_0000_0001 */

ret

Example: 32-bit arithmetic produces a zero-extended 64-bit result

.text

.global add_u32_zero_ext

add_u32_zero_ext:

add w0, w0, w1 /* 32-bit add; result is in W0 and

zero-extends into X0 */↪→

ret

23

2.3 Register Aliasing Rules (Xn vs Wn)

For each register number n in 0..30:

• Xn refers to the full 64-bit register.

• Wn refers to bits [31:0] of the same register.

• Writing Wn clears bits [63:32] of Xn.

This aliasing is not optional and not toolchain-dependent; it is a core part of the AArch64

architecture model.

Example: mixing X and W views safely

.text

.global mix_x_w_views

mix_x_w_views:

mov x2, #0

mov w2, #0xFFFF_FFFF /* X2 becomes 0x0000_0000_FFFF_FFFF */

lsr x2, x2, #16 /* shift as 64-bit */

ret

Example: why “preserving upper bits” fails with W writes

A common mistake is assuming W operations preserve the upper 32 bits. They do not.

.text

.global misconception_preserve_upper

misconception_preserve_upper:

mov x0, #0x1122334455667788

24

add w0, w0, #1 /* upper 32 bits are cleared here */

ret

25

2.4 Architectural Zero Register (XZR / WZR)

AArch64 provides a special architectural register:

• XZR acts as a 64-bit constant zero when used as a source.

• WZR acts as a 32-bit constant zero when used as a source.

• When used as a destination, writes are discarded (the result is not stored anywhere).

This is extremely useful for explicit zeroing, comparisons, and intentionally discarding results

without consuming a general-purpose register.

Example: produce zero without immediate encoding concerns

.text

.global zero_with_zr

zero_with_zr:

add x0, xzr, xzr /* X0 = 0 */

ret

Example: compare against zero without materializing a zero register

.text

.global cmp_against_zero

cmp_against_zero:

cmp x0, xzr /* set flags based on X0 - 0 */

cset w0, eq /* W0 = 1 if equal else 0 */

ret

26

Example: discard a computed value intentionally

.text

.global discard_result

discard_result:

add xzr, x0, x1 /* compute but discard */

ret

27

2.5 Register Access and Instruction Constraints

Although X0--X30 are general-purpose, AArch64 imposes architectural constraints:

• Width must match the instruction form: instructions come in 32-bit and 64-bit forms;

using W vs X selects the width.

• SP is not a general-purpose X register: SP is encoded and restricted in many

instruction forms.

• Some encodings accept XZR but not SP (and vice versa): a register name may share

encoding space but still be constrained by the instruction class.

Example: width selection is part of the instruction

.text

.global width_selection

width_selection:

add w0, w0, #1 /* 32-bit add; zero-extends into X0 */

add x1, x1, #1 /* 64-bit add; preserves full 64-bit

state */↪→

ret

Example: SP usage is constrained to specific instruction forms

The stack pointer participates in address calculations for loads/stores and stack adjustments,

but it is not interchangeable with Xn in all arithmetic encodings.

.text

.global sp_stack_adjust

sp_stack_adjust:

28

sub sp, sp, #16 /* allocate 16 bytes on stack */

add sp, sp, #16 /* deallocate */

ret

Example: register moves often use canonical patterns

Moving values is explicit and width-specific.

.text

.global move_examples

move_examples:

mov x0, x1 /* 64-bit move */

mov w2, w3 /* 32-bit move (zero-extends into X2) */

ret

29

2.6 Common Misconceptions About Register Width

Misconception 1: “W and X are separate registers”

False. They are views of the same architectural register number. Writing Wn modifies Xn by

clearing the upper 32 bits.

Misconception 2: “32-bit instructions preserve upper 32 bits”

False. In AArch64, 32-bit writes zero the upper bits by definition.

Misconception 3: “Using W is just an optimization”

Not necessarily. Using W selects a different architectural operation width and may change

results (especially shifts, sign extension, overflow behavior, and pointer computations).

Example: a real bug pattern when mixing pointer math with W registers

.text

.global pointer_bug_pattern

pointer_bug_pattern:

/* X0 holds a 64-bit pointer */

add w0, w0, #4 /* BUG: zero-extends; destroys upper

address bits */↪→

ret

Correct pattern: pointer math must use X registers

.text

.global pointer_correct_pattern

30

pointer_correct_pattern:

add x0, x0, #4 /* correct 64-bit pointer increment */

ret

Example: intentional truncation using W as a feature

Sometimes truncation and zero-extension is exactly what you want.

.text

.global truncate_to_u32

truncate_to_u32:

/* X0 contains a value; return its low 32 bits, zero-extended */

mov w0, w0 /* canonical: keep low 32 bits, clear

upper 32 */↪→

ret

Chapter 3

Special Registers and Their Roles

3.1 Stack Pointer (SP) — Rules and Restrictions

In AArch64, the stack pointer SP is an architectural register with dedicated semantics. It is

not a normal general-purpose Xn register and cannot be treated as freely interchangeable with

X0--X30 in all instruction encodings.

Core rules (architectural discipline)

• SP is used for stack addressing and stack adjustment. It is the architectural anchor

for stack frames and stack-based storage.

• SP has encoding restrictions. Many data-processing instructions only accept Xn

registers; SP may be disallowed or may share encoding space with XZR depending

on the instruction class.

• SP is expected to remain suitably aligned. Correct stack discipline assumes a

consistent alignment policy; breaking alignment leads to faults or unpredictable

31

32

behavior in environments that enforce alignment.

• SP must not be used as a general scratch register. Use Xn registers for temporaries;

reserve SP for stack operations.

Example 1: minimal stack allocation and deallocation

.text

.global stack_alloc_free

stack_alloc_free:

sub sp, sp, #32 /* allocate 32 bytes */

add sp, sp, #32 /* deallocate 32 bytes */

ret

Example 2: saving and restoring registers on the stack

Paired store/load instructions are commonly used for efficient stack save/restore.

.text

.global save_restore_pair

save_restore_pair:

sub sp, sp, #16

stp x19, x20, [sp] /* save two registers */

ldp x19, x20, [sp] /* restore */

add sp, sp, #16

ret

Example 3: stack object access via SP

.text

.global stack_local_u64

33

stack_local_u64:

sub sp, sp, #16

mov x1, #0x42

str x1, [sp, #8] /* store local at SP+8 */

ldr x0, [sp, #8] /* load local */

add sp, sp, #16

ret

34

3.2 Link Register (LR / X30) — Call Semantics

AArch64 provides a dedicated architectural link register LR (alias X30). Call-like control-flow

instructions set LR to the return address. The fundamental mechanism is:

Branch-with-link updates PC to the target and writes the return address into
LR.

Key implications

• LR is live across nested calls. If a function performs another call, the new call

overwrites LR. Therefore, a function that calls other functions must preserve LR

somewhere (typically on the stack or in a non-volatile register), depending on the chosen

convention.

• return typically branches to LR. The architectural return pattern is a branch to the

value in LR, commonly via RET.

Example 1: leaf function (no nested calls)

A leaf function can often rely on LR remaining intact.

.text

.global leaf_add

leaf_add:

add x0, x0, x1

ret /* returns to LR */

Example 2: non-leaf function must preserve LR (non-ABI demonstration)

The following code shows the architectural necessity, independent of any ABI rule.

35

.text

.global nonleaf_demo

nonleaf_demo:

sub sp, sp, #16

str x30, [sp, #8] /* preserve LR before nested call */

bl callee /* overwrites LR */

ldr x30, [sp, #8] /* restore LR */

add sp, sp, #16

ret

.global callee

callee:

add x0, x0, #1

ret

Example 3: explicit return via branch to LR

.text

.global explicit_return

explicit_return:

br x30 /* explicit branch to LR (RET is

preferred) */↪→

36

3.3 Program Counter (PC) — Architectural Behavior

The program counter PC is the architectural instruction address that drives instruction fetch. In

AArch64:

• PC is not a general-purpose register. You do not treat it as Xn.

• PC changes via control-flow instructions. Sequential execution advances PC;

branches/calls/returns modify PC.

• PC-relative forms exist. Certain instructions form addresses relative to the current

instruction stream, enabling position-independent addressing.

Example 1: PC-relative data address formation pattern

.text

.global pc_relative_load

pc_relative_load:

adrp x0, my_data

add x0, x0, :lo12:my_data

ldr w0, [x0]

ret

.data

.align 2

my_data:

.word 7

37

3.4 Interaction Between PC and Branch Instructions

Branches are architectural PC-update operations. Understanding the branch family is

essential:

Unconditional branch

.text

.global b_uncond

b_uncond:

b target

mov w0, #0 /* not executed */

target:

mov w0, #1

ret

Conditional branch (PSTATE-driven)

Conditional branches test flags in PSTATE (set by compare or flag-setting arithmetic).

.text

.global b_cond

b_cond:

cmp w0, #0

b.eq is_zero

mov w0, #1

ret

is_zero:

mov w0, #0

ret

38

Branch with link (call semantics)

.text

.global call_demo

call_demo:

bl callee2 /* sets LR to return address and updates

PC */↪→

add w0, w0, #10

ret

.global callee2

callee2:

mov w0, #5

ret

Indirect branch (computed target)

.text

.global indirect_branch

indirect_branch:

adr x1, dest /* compute address of dest into X1 */

br x1 /* jump to address in X1 */

mov w0, #0 /* not executed */

dest:

mov w0, #1

ret

39

3.5 Register Usage Discipline (Non-ABI View)

This series separates architectural rules from ABI policy. At the architecture level, the

discipline is:

Principles

• Use Xn for addresses and pointer arithmetic. Never use Wn for pointers unless you

intentionally want truncation.

• Treat SP as dedicated. Use it only for stack allocation and stack-relative addressing.

• Assume LR is volatile across any nested call. Preserve it if your function calls another

function.

• Treat PC as control-flow state only. Modify it only through branches, calls, and

returns.

• Explicitly track width. Choose W vs X forms intentionally; do not mix by accident.

Example: pointer arithmetic must use X registers

.text

.global ptr_plus_8

ptr_plus_8:

add x0, x0, #8 /* correct pointer update */

ret

Example: demonstrate the common pointer-width bug

.text

40

.global ptr_bug

ptr_bug:

add w0, w0, #8 /* BUG: truncates and zero-extends

pointer */↪→

ret

Example: minimal non-leaf skeleton with LR preservation

.text

.global nonleaf_skeleton

nonleaf_skeleton:

sub sp, sp, #16

str x30, [sp, #8] /* preserve LR */

bl worker /* nested call overwrites LR */

ldr x30, [sp, #8] /* restore LR */

add sp, sp, #16

ret

.global worker

worker:

add w0, w0, #1

ret

Chapter 4

PSTATE: Processor State Register

4.1 Conceptual Role of PSTATE

PSTATE is the architectural processor state in AArch64. It is not a general-purpose register

and is not read/written as a single flat 64-bit value in normal code. Instead, its fields are

updated by:

• arithmetic/logic instructions that set condition flags

• explicit system instructions (privileged or constrained) that modify control fields

• exception entry/return mechanisms that save/restore state as part of context changes

From an ISA programming perspective, the essential role of PSTATE is:

• to carry condition flags used for conditional branches and conditional selects

• to carry execution control bits that define how execution is masked or constrained

• to provide architecturally defined state that is consumed by control-flow and system

behavior

41

42

Discipline rule

Treat PSTATE as implicit architectural state. You must explicitly track which instructions

define the flags and which instructions merely consume them.

43

4.2 Condition Flags (N, Z, C, V)

AArch64 defines four primary condition flags in PSTATE:

• N (Negative): reflects the sign bit of the result (in the selected width).

• Z (Zero): set when the result is zero.

• C (Carry): indicates carry out for addition, and no borrow for subtraction.

• V (Overflow): indicates signed overflow in two’s complement arithmetic.

Width rule (critical)

Flags are defined by the instruction width:

• ADDS/SUBS/CMP using W registers set flags as if operating on 32-bit values.

• ADDS/SUBS/CMP using X registers set flags as if operating on 64-bit values.

Example 1: Z flag for equality via CMP

.text

.global is_zero_u32

is_zero_u32:

cmp w0, #0 /* sets Z=1 iff W0 == 0 */

cset w0, eq /* W0 = 1 if equal, else 0 */

ret

Example 2: N flag from signed interpretation (width-dependent)

.text

44

.global is_negative_u32

is_negative_u32:

cmp w0, #0 /* signed compare uses flags from 32-bit

subtraction */↪→

cset w0, mi /* W0 = 1 if negative (N==1), else 0 */

ret

Example 3: C flag for unsigned comparison

For unsigned comparisons, the condition codes use C/Z in defined ways.

.text

.global u32_lt

u32_lt:

/* returns 1 if W0 < W1 (unsigned), else 0 */

cmp w0, w1

cset w0, lo /* LO means unsigned lower */

ret

Example 4: V flag for signed overflow detection

.text

.global add_overflow_i32

add_overflow_i32:

/* returns 1 if W0 + W1 overflows signed 32-bit, else 0 */

adds w2, w0, w1 /* sets V on signed overflow */

cset w0, vs /* VS means overflow set */

ret

45

4.3 Interrupt Mask Bits

PSTATE contains interrupt mask fields that control whether certain classes of interrupts

are masked (blocked) while executing. These bits are part of the architectural state but are

normally manipulated only in privileged contexts (OS, hypervisor, firmware). At user level,

you usually observe their effects indirectly rather than modifying them.

Conceptual model

• Mask bits gate whether the CPU will take specific interrupt classes immediately.

• Masking does not “remove” interrupts; it defers their handling under architectural rules.

• Changes to masking are part of controlled system software design; application code

must not rely on being able to change them.

Discipline rule

In this series, treat interrupt masks as system-level control state:

• understand that they exist and are part of PSTATE

• do not design user-level algorithms that depend on toggling them

46

4.4 Execution Control Bits

Beyond flags and interrupt masks, PSTATE includes execution control fields that affect how

instructions execute or how exceptions are handled. These fields define constraints such as:

• whether single-step behavior is enabled (debug-related control)

• whether certain exception routing or execution constraints apply

• whether specific execution contexts are masked or controlled

Many of these bits are:

• privileged to modify, or

• only meaningful at specific exception levels, or

• architecturally updated as part of exception entry/return.

Discipline rule

For core AArch64 programming in this booklet:

• focus on NZCV as the primary consumable state for control flow

• treat the rest as environment-defined (OS/hypervisor controlled)

47

4.5 PSTATE vs CPSR (Conceptual Comparison)

In AArch32, CPSR is the classic named container for condition flags and control bits. In

AArch64:

• PSTATE represents the architectural state conceptually filling that role.

• The programmer often interacts with specific subsets conceptually (e.g., NZCV flags)

rather than treating the whole state as a single general register.

Key conceptual differences

• Access style: AArch64 emphasizes field-based semantics (flags/control) rather than

direct “read/write CPSR” thinking.

• Instruction set integration: AArch64 provides rich conditional select and conditional

branch usage that consumes NZCV.

• Privilege separation: many control fields are intentionally restricted to privileged

contexts.

48

4.6 Instructions That Affect PSTATE

Flag-producing instructions

These instructions update NZCV (examples, not exhaustive):

• CMP (compare): subtracts operands and sets flags (no destination register)

• CMN (compare negative): adds operands and sets flags

• TST (test): ANDs operands and sets flags (no destination)

• ADDS / SUBS: arithmetic that writes a result and sets flags

• ANDS: logical AND that writes a result and sets flags

Example 1: CMP sets flags; CSET consumes them

.text

.global eq_u64

eq_u64:

/* returns 1 if X0 == X1 else 0 */

cmp x0, x1

cset w0, eq

ret

Example 2: SUBS sets flags for both signed and unsigned decisions

.text

.global classify_u32

classify_u32:

/* returns 1 if W0 < 100 (unsigned), else 0 */

49

subs w1, w0, #100

cset w0, lo /* LO uses C/Z derived from SUBS */

ret

Example 3: TST/ANDS for bit tests

.text

.global has_bit3

has_bit3:

/* returns 1 if bit 3 of W0 is set, else 0 */

tst w0, #(1 << 3) /* sets Z if (W0 & mask)==0 */

cset w0, ne

ret

Example 4: ANDS both computes and sets flags

.text

.global mask_and_check

mask_and_check:

ands w1, w0, #0xFF /* W1 = W0 & 0xFF, sets NZCV based on W1

*/↪→

cset w0, ne /* W0 = 1 if W1 != 0 */

ret

50

4.7 Common Flag-Related Pitfalls

Pitfall 1: Assuming an instruction sets flags when it does not

Only the ...S forms (e.g., ADDS, SUBS, ANDS) update flags. Their non-S counterparts do

not.

.text

.global pitfall_no_flags

pitfall_no_flags:

add w1, w0, #1 /* does NOT set flags */

b.eq was_zero /* BUG: EQ tests old Z flag */

mov w0, #0

ret

was_zero:

mov w0, #1

ret

Correct pattern

.text

.global correct_flags

correct_flags:

adds w1, w0, #1 /* sets flags */

b.eq was_zero /* now EQ is based on this result */

mov w0, #0

ret

was_zero:

mov w0, #1

ret

51

Pitfall 2: Mixing widths and misreading signedness

Flags are produced in the operation width. Using W when you intended X changes the

computed flags.

.text

.global width_pitfall

width_pitfall:

/* X0 contains a 64-bit value */

cmp w0, #0 /* flags computed from low 32 bits only

*/↪→

cset w0, mi /* result may be wrong for 64-bit intent

*/↪→

ret

Correct pattern for 64-bit sign test

.text

.global width_correct

width_correct:

cmp x0, #0

cset w0, mi

ret

Pitfall 3: Confusing carry with overflow

C answers an unsigned carry/borrow question; V answers a signed overflow question. They

are unrelated and must not be substituted.

52

Example: distinguish unsigned carry vs signed overflow

.text

.global carry_vs_overflow_demo

carry_vs_overflow_demo:

adds w2, w0, w1 /* sets both C and V as appropriate */

cset w3, cs /* W3 = 1 if unsigned carry occurred */

cset w4, vs /* W4 = 1 if signed overflow occurred */

ret

Pitfall 4: Letting flags “leak” across unrelated code

Flags are global implicit state. If you branch based on flags, ensure the immediately preceding

relevant instruction defines them.

.text

.global flag_leak_bug

flag_leak_bug:

cmp w0, #0

add w1, w1, #1 /* does NOT set flags */

/* more code here could overwrite flags unexpectedly if it sets

them */↪→

b.eq is_zero

mov w0, #0

ret

is_zero:

mov w0, #1

ret

53

Correct discipline: define flags directly before consuming them

.text

.global flag_local_discipline

flag_local_discipline:

/* ... unrelated code ... */

cmp w0, #0

b.eq is_zero

mov w0, #0

ret

is_zero:

mov w0, #1

ret

Chapter 5

Data Movement and Register Transfer

5.1 Register-to-Register Movement

AArch64 provides register-to-register movement for both 64-bit (X) and 32-bit (W) views.

Conceptually, “move” copies bits from a source register to a destination register at the selected

width.

Canonical forms

• mov xD, xS copies 64 bits.

• mov wD, wS copies 32 bits and, because it writes wD, it zero-extends into xD.

• Many mov forms are assembler aliases of logical operations (e.g., ORR with XZR/WZR)

but the architectural intent is a pure register transfer.

Example 1: 64-bit move preserves full value

.text

54

55

.global mov_x_preserve

mov_x_preserve:

mov x0, x1 /* copy 64 bits from X1 to X0 */

ret

Example 2: 32-bit move zero-extends into the X register

.text

.global mov_w_zero_ext

mov_w_zero_ext:

mov x2, -1 /* X2 = 0xFFFF_FFFF_FFFF_FFFF */

mov w2, w3 /* copy low 32 bits; X2 upper 32 cleared

*/↪→

ret

Example 3: explicit “copy” using the zero register

The assembler may accept a logical alias; the architectural meaning is a move.

.text

.global mov_via_zr

mov_via_zr:

orr x0, xzr, x1 /* X0 = X1 */

ret

56

5.2 Immediate Encoding Constraints

AArch64 instructions are fixed 32-bit wide, so immediate fields are limited. As a result:

• not all integers fit as immediate operands in a single instruction,

• different instruction families support different immediate encodings,

• building a 64-bit constant is typically a multi-instruction sequence.

The architecture provides MOVZ/MOVK/MOVN for constructing immediates in 16-bit chunks

at selected shift positions.

57

5.3 Zeroing vs Preserving Upper Bits

AArch64 makes a strict distinction between:

• operations that fully define a register value (overwrite/zero-fill),

• operations that update only part of a register (insert/keep other bits).

Two rules dominate:

1. Writing to Wn always clears the upper 32 bits of Xn.

2. MOVZ/MOVN produce a value defined by 16-bit fields and shift, with the rest filled with
zeros (MOVZ) or ones (MOVN) in the selected width.

Example 1: fastest architectural zeroing patterns

.text

.global zero_patterns

zero_patterns:

mov x0, xzr /* X0 = 0 */

mov w1, wzr /* W1 = 0, and X1 upper cleared */

ret

Example 2: W-write clears upper bits (pitfall or feature)

.text

.global clear_upper_by_w_write

clear_upper_by_w_write:

mov x0, #0x1122334455667788

mov w0, w0 /* keep low 32 bits, clear upper 32 */

ret

58

5.4 MOV, MOVZ, MOVK, MOVN (Conceptual Use)

MOV (conceptual move / alias family)

MOV is used for:

• register-to-register copies,

• certain immediate moves that fit encodings,

• common zeroing idioms (mov xD, xzr).

MOVZ (Move Wide with Zero)

MOVZ writes a 16-bit immediate into a chosen 16-bit halfword lane and zeros the remaining

bits (in the selected width). It is used to start constructing a constant.

.text

.global movz_example

movz_example:

movz x0, #0x1234, lsl #16 /* X0 = 0x0000_0000_1234_0000 */

ret

MOVK (Move Wide with Keep)

MOVK writes a 16-bit immediate into a chosen halfword lane and keeps all other bits

unchanged. It is used to patch in additional pieces of a constant.

.text

.global movk_patch_example

movk_patch_example:

59

movz x0, #0x1122, lsl #48

movk x0, #0x3344, lsl #32

movk x0, #0x5566, lsl #16

movk x0, #0x7788, lsl #0

ret

MOVN (Move Wide with NOT)

MOVN writes the bitwise NOT of a 16-bit immediate into a chosen lane and fills the rest

with ones (in the selected width). It is often useful for generating values with many one bits

efficiently.

.text

.global movn_example

movn_example:

movn w0, #0x0 /* W0 = 0xFFFF_FFFF (all ones) */

ret

Example: building -1 in 64-bit width

.text

.global minus_one_x

minus_one_x:

movn x0, #0x0 /* X0 = 0xFFFF_FFFF_FFFF_FFFF */

ret

60

5.5 Register Width Interaction Rules

Width selection (W vs X) is part of the instruction semantics:

• mov wD, wS writes 32 bits and clears upper 32 bits of xD.

• mov xD, xS writes 64 bits and preserves full width.

• movz/movk/movn in w form define/patch only within 32-bit width and still clear

upper bits via the write to wD.

Example: width changes the produced constant

.text

.global movn_width_demo

movn_width_demo:

movn w0, #0x0 /* W0 = 0xFFFF_FFFF, X0 becomes

0x0000_0000_FFFF_FFFF */↪→

movn x1, #0x0 /* X1 = 0xFFFF_FFFF_FFFF_FFFF */

ret

61

5.6 Practical Register Transfer Patterns

Pattern 1: set register to zero (architectural)

.text

.global set_zero

set_zero:

mov x0, xzr /* clear full 64-bit */

ret

Pattern 2: copy pointer/address (always use X)

.text

.global copy_ptr

copy_ptr:

mov x1, x0 /* pointer copy */

ret

Pattern 3: intentional truncation to 32 bits

.text

.global truncate_u32

truncate_u32:

mov w0, w0 /* keep low 32 bits, clear upper 32 */

ret

Pattern 4: sign extension and zero extension (explicit)

Use explicit extension instructions when moving between widths and signedness.

62

.text

.global extend_examples

extend_examples:

/* assume W0 holds a 32-bit value */

uxtw x1, w0 /* zero-extend W0 into X1 */

sxtw x2, w0 /* sign-extend W0 into X2 */

ret

Pattern 5: load an address of a symbol (position-independent style)

.text

.global addr_of_symbol

addr_of_symbol:

adrp x0, symbol

add x0, x0, :lo12:symbol

ret

.data

.align 3

symbol:

.quad 0

Pattern 6: build a 64-bit constant (canonical wide-move sequence)

.text

.global build_constant_u64

build_constant_u64:

movz x0, #0xCAFE, lsl #48

movk x0, #0xBABE, lsl #32

movk x0, #0x1234, lsl #16

63

movk x0, #0x5678, lsl #0

ret

Pattern 7: build a mask with many ones efficiently

.text

.global build_mask_many_ones

build_mask_many_ones:

movn x0, #0xFFFF, lsl #0 /* lower 16 bits become 0x0000,

others ones */↪→

ret

Chapter 6

AArch64 Addressing Model

6.1 Load/Store Architecture Philosophy

AArch64 is a load/store architecture:

• Loads move data from memory into registers.

• Stores move data from registers into memory.

• Arithmetic and logic operate on registers, not directly on memory operands.

This separation is a core architectural discipline. It makes instruction behavior regular and

keeps memory effects explicit and auditable.

Example: explicit memory access followed by register arithmetic

.text

.global load_compute_store

load_compute_store:

64

65

ldr x1, [x0] /* load 64-bit from *X0 */

add x1, x1, #8 /* compute in registers */

str x1, [x0] /* store 64-bit back to *X0 */

ret

Example: what you do not do in AArch64

There is no “add memory, register” form like in x86. You must load first.

.text

.global not_x86_style

not_x86_style:

/* AArch64 has no instruction that adds directly to a memory

operand. */↪→

ret

66

6.2 Memory Access vs Register Operations

At the ISA level, each instruction belongs to one of two worlds:

• Register world: ALU, shifts, moves, compares, conditional selects.

• Memory world: LDR/STR and their size/extension variants, including paired forms.

A critical consequence is that memory ordering, faults, and alignment are tied to the memory
world instructions only. Pure register instructions do not access memory and cannot fault due

to memory address issues.

Example: one memory access, multiple register operations

.text

.global one_load_many_ops

one_load_many_ops:

ldr w1, [x0] /* one memory read */

add w1, w1, #1

eor w1, w1, #0x5A

lsl w1, w1, #2

str w1, [x0] /* one memory write */

ret

Example: paired load/store emphasize explicit memory effects

.text

.global pair_mem_ops

pair_mem_ops:

ldp x1, x2, [x0] /* load two 64-bit values */

add x1, x1, x2 /* compute */

67

stp x1, x2, [x0] /* store back */

ret

68

6.3 Address Calculation Model

AArch64 forms an effective address (EA) for each memory access. Conceptually:

EA = Base + Offset

Where:

• the base is typically an Xn register (or SP for stack addressing),

• the offset may be an immediate, a register (optionally shifted/extended), or implied by

an addressing mode.

This booklet treats EA computation as a pure architectural step: compute the address first, then

perform the memory access at that address.

Example 1: immediate offset addressing (EA = X0 + imm)

.text

.global ea_imm_offset

ea_imm_offset:

ldr w1, [x0, #12] /* EA = X0 + 12 */

ret

Example 2: register offset addressing (EA = X0 + X1)

.text

.global ea_reg_offset

ea_reg_offset:

ldr w2, [x0, x1] /* EA = X0 + X1 */

ret

69

Example 3: scaled indexing for element access

Scaled addressing is used to index elements by size (e.g., 4 bytes for 32-bit, 8 bytes for 64-

bit).

.text

.global ea_scaled_u64

ea_scaled_u64:

/* load X0 = *(base + (index<<3)) for 8-byte elements */

ldr x0, [x1, x2, lsl #3] /* EA = X1 + (X2 * 8) */

ret

Example 4: SP as base for stack-resident data

.text

.global ea_sp_local

ea_sp_local:

sub sp, sp, #16

mov x1, #0x42

str x1, [sp, #8] /* EA = SP + 8 */

ldr x0, [sp, #8]

add sp, sp, #16

ret

70

6.4 Alignment Rules and Enforcement

Alignment is an architectural property of memory access:

• Many loads/stores have a natural alignment expectation: e.g., 8-byte loads prefer 8-

byte aligned addresses.

• The architecture can enforce alignment (raising an exception) depending on system

configuration and the type of access.

• Even when misaligned access is permitted by the environment, it may be slower and

may interact poorly with atomicity requirements.

Discipline rule

For correct and portable low-level code:

• assume natural alignment is required for the data size,

• treat misalignment as a bug unless you explicitly designed for it and verified system

behavior.

Example: natural alignment for 64-bit data

.text

.global aligned_u64_access

aligned_u64_access:

/* assume X0 is 8-byte aligned */

ldr x1, [x0] /* aligned 8-byte load */

str x1, [x0, #8] /* aligned 8-byte store */

ret

71

Example: alignment bug pattern (conceptual)

The following illustrates a dangerous pattern: forcing an odd address then performing a wide

load/store.

.text

.global misaligned_bug_pattern

misaligned_bug_pattern:

add x0, x0, #1 /* likely breaks natural alignment */

ldr x1, [x0] /* may fault or be slow depending on

enforcement */↪→

ret

Example: structure layout discipline

Use correct alignment directives for data objects so that code relying on natural alignment

remains valid.

.data

.align 3 /* 2ˆ3 = 8-byte alignment */

global_u64:

.quad 0x1122334455667788

72

6.5 Address Size and Virtual Address Space (Conceptual)

AArch64 uses 64-bit registers for addresses, but the architecture defines that not all 64 bits

must be used as meaningful address bits in a given configuration. The effective virtual address

size is an architectural/system choice.

Conceptual model (what matters for core programming)

• Pointers live in X registers. Address computations must use Xn, never Wn, unless you

intentionally truncate.

• Virtual addresses are interpreted by the execution environment. Translation,

permissions, and faults are system-controlled (OS/hypervisor/MMU).

• Not all 64-bit patterns are valid addresses. Some bit patterns may be invalid or fault

when used as addresses, depending on configured address size and translation rules.

Example: pointer arithmetic must remain 64-bit

.text

.global ptr_arith_correct

ptr_arith_correct:

/* X0 is a pointer */

add x0, x0, #32 /* correct: preserves full address */

ret

Example: pointer truncation bug (do not do this)

.text

.global ptr_truncation_bug

73

ptr_truncation_bug:

add w0, w0, #32 /* BUG: zero-extends; destroys upper

address bits */↪→

ret

Example: PC-relative addressing stays within architectural rules

PC-relative forms generate addresses in a way that is compatible with position-independent

layout.

.text

.global pc_relative_addressing

pc_relative_addressing:

adrp x0, symbol

add x0, x0, :lo12:symbol

ret

.data

.align 3

symbol:

.quad 0

Chapter 7

Addressing Modes in AArch64

7.1 Immediate Offset Addressing

Immediate offset addressing forms an effective address by adding a constant offset to a base

register:

EA = Base + Imm

The base is typically an Xn register (or SP for stack accesses). Immediate offsets are

constrained by the instruction encoding; many load/store forms support a range of offsets,

often with alignment-related scaling rules.

Example 1: element access with immediate offset

.text

.global imm_offset_u32

imm_offset_u32:

/* load element 3 (4 bytes each): EA = base + 12 */

74

75

ldr w0, [x0, #12]

ret

Example 2: stack local access (SP as base)

.text

.global sp_local_access

sp_local_access:

sub sp, sp, #32

str x0, [sp, #16] /* EA = SP + 16 */

ldr x0, [sp, #16]

add sp, sp, #32

ret

76

7.2 Register Offset Addressing

Register offset addressing forms the effective address by adding a register value (optionally

shifted/extended) to a base:

EA = Base + (Index [shift/extend])

This mode is used for dynamic indexing, pointer chasing, and table lookups.

Example 1: basic register offset

.text

.global reg_offset_basic

reg_offset_basic:

/* EA = X0 + X1 */

ldr w0, [x0, x1]

ret

Example 2: array indexing with scaled register (8-byte elements)

.text

.global reg_offset_scaled_u64

reg_offset_scaled_u64:

/* EA = base + (index * 8) */

ldr x0, [x1, x2, lsl #3]

ret

77

7.3 Scaled and Unscaled Offsets

AArch64 distinguishes between scaled and unscaled immediate offsets.

Scaled immediate offsets

Many LDR/STR forms use a scaled immediate:

• the encoded immediate represents units of the access size

• the effective byte offset is Imm × access size

This makes common aligned accesses compact in encoding.

Unscaled immediate offsets

Unscaled forms use a byte offset directly (often signed and smaller range). These are used

when you need small negative offsets or byte-precise control.

Example 1: scaled offset concept for 64-bit load

.text

.global scaled_imm_concept

scaled_imm_concept:

/* typical aligned access: base + 16 bytes */

ldr x0, [x1, #16]

ret

Example 2: unscaled offset using LDUR/STUR family

Unscaled forms allow byte-granular signed offsets.

78

.text

.global unscaled_signed_offset

unscaled_signed_offset:

/* access at base - 8 bytes */

ldur x0, [x1, #-8]

ret

Example 3: scaled vs unscaled when indexing structure fields

.text

.global struct_field_access

struct_field_access:

/* assume a structure at X0; field at +24 */

ldr x1, [x0, #24] /* aligned field access */

ret

79

7.4 Pre-Indexed and Post-Indexed Addressing

These addressing modes combine memory access with base register update. They are essential

for stack operations and pointer-walking loops.

Pre-indexed

Base := Base + Imm; EA := Base; then memory access

Post-indexed

EA := Base; memory access; then Base := Base + Imm

Example 1: stack push/pop style with pre-indexed

.text

.global push_pop_lr

push_pop_lr:

str x30, [sp, #-16]! /* pre-index: SP = SP - 16; store at

new SP */↪→

ldr x30, [sp], #16 /* post-index: load at SP; then SP =

SP + 16 */↪→

ret

Example 2: walking through an array with post-indexed loads

.text

.global sum_two_u64_post

sum_two_u64_post:

/* X0 = base pointer, returns X0 = a[0] + a[1] */

80

ldr x1, [x0], #8 /* load a[0], then advance pointer */

ldr x2, [x0], #8 /* load a[1], then advance pointer */

add x0, x1, x2

ret

Example 3: repeated stores with post-indexed addressing

.text

.global fill_two_u32

fill_two_u32:

/* X0 = pointer, W1 = value; store twice and advance */

str w1, [x0], #4

str w1, [x0], #4

ret

81

7.5 Common Addressing Mode Mistakes

Mistake 1: Using W registers for addresses

Addresses must live in X registers. Using Wn for address arithmetic truncates and zero-extends,

destroying upper address bits.

.text

.global addr_bug_w_reg

addr_bug_w_reg:

add w0, w0, #8 /* BUG: corrupts pointer */

ldr x1, [x0]

ret

Correct pattern

.text

.global addr_ok_x_reg

addr_ok_x_reg:

add x0, x0, #8

ldr x1, [x0]

ret

Mistake 2: Confusing pre-index vs post-index

Pre-index changes the base before the access; post-index changes it after. Mixing them breaks

stack and pointer-walk logic.

.text

.global pre_post_confusion

82

pre_post_confusion:

/* intended: load then advance; but uses pre-index (advances

first) */↪→

ldr x1, [x0, #8]! /* pointer advanced before load */

ret

Mistake 3: assuming offsets are always byte offsets

Some forms scale immediates by access size; others are unscaled. When exact byte control is

required (especially negative offsets), use unscaled forms.

.text

.global need_byte_precise_negative

need_byte_precise_negative:

/* conceptual: access base - 1 (byte) */

ldurb w0, [x1, #-1] /* byte-granular negative offset */

ret

Mistake 4: breaking alignment accidentally

Indexing mistakes (wrong scale, wrong offset) often produce misalignment. Treat

misalignment as a correctness bug unless explicitly designed and validated.

.text

.global alignment_bug_pattern

alignment_bug_pattern:

add x0, x0, #2 /* likely breaks 4/8-byte alignment */

ldr x1, [x0] /* may fault or degrade performance */

ret

83

7.6 Addressing Mode Selection Discipline

Use this selection discipline to avoid subtle bugs and keep code audit-friendly:

Rule 1: choose addressing to match the access pattern

• Fixed field access: prefer immediate offsets ([base, #imm]).

• Array indexing: prefer scaled register offsets ([base, index, lsl #k]).

• Pointer walking: prefer post-indexed forms ([base], #imm) for clarity.

• Stack push/pop: use pre-indexed store and post-indexed load patterns carefully.

Rule 2: keep pointer arithmetic in X registers

Never compute addresses in W registers.

Rule 3: isolate flag-dependent code from addressing

Addressing mode updates (pre/post-index) modify base registers; keep them readable and

local to avoid mixing with flag-sensitive control flow.

Example: disciplined array loop (post-indexed, aligned)

.text

.global sum_four_u32

sum_four_u32:

/* X0 = base, returns W0 = sum of 4 elements */

mov w3, wzr

84

ldr w1, [x0], #4

add w3, w3, w1

ldr w1, [x0], #4

add w3, w3, w1

ldr w1, [x0], #4

add w3, w3, w1

ldr w1, [x0], #4

add w3, w3, w1

mov w0, w3

ret

Example: disciplined stack save/restore (pre/post-index)

.text

.global save_restore_x19_x20

save_restore_x19_x20:

stp x19, x20, [sp, #-16]! /* push */

/* ... body ... */

ldp x19, x20, [sp], #16 /* pop */

ret

Chapter 8

Load and Store Instruction Behavior

85

86

8.1 Basic Load/Store Semantics

AArch64 is a load/store ISA: memory is accessed only through explicit load and store

instructions. Each load/store performs:

1. effective address (EA) calculation from base + offset (and optional update),

2. a memory read or write of a defined size,

3. a register writeback for loads (with defined extension behavior) or a memory write for

stores.

Loads and stores are size-specific. The access size is part of the instruction semantics and

controls:

• how many bytes are transferred,

• which bits are written in the destination register (loads),

• whether extension (sign/zero) is applied.

Example: classic read-modify-write

.text

.global rmw_u64

rmw_u64:

ldr x1, [x0] /* load 8 bytes from [X0] into X1 */

add x1, x1, #1

str x1, [x0] /* store 8 bytes back to [X0] */

ret

87

Example: load with post-index (pointer walking)

.text

.global load_walk_u32

load_walk_u32:

ldr w1, [x0], #4 /* load 4 bytes; then X0 += 4 */

ldr w2, [x0], #4

add w0, w1, w2

ret

88

8.2 Byte, Halfword, Word, and Doubleword Access

AArch64 provides load/store forms for different element sizes:

• Byte (8-bit): LDRB / STRB

• Halfword (16-bit): LDRH / STRH

• Word (32-bit): LDR (to W) / STR (from W)

• Doubleword (64-bit): LDR (to X) / STR (from X)

Example: store and load each size

.text

.global size_access_demo

size_access_demo:

/* X0 = base address */

mov w1, #0xAA

strb w1, [x0, #0] /* store 1 byte */

mov w1, #0x1234

strh w1, [x0, #2] /* store 2 bytes */

mov w1, #0x89ABCDEF

str w1, [x0, #4] /* store 4 bytes */

mov x1, #0x1122334455667788

str x1, [x0, #8] /* store 8 bytes */

89

ldrb w2, [x0, #0] /* load 1 byte into W2 (zero-extended) */

ldrh w3, [x0, #2] /* load 2 bytes into W3 (zero-extended)

*/↪→

ldr w4, [x0, #4] /* load 4 bytes into W4 (zero-extended

into X4) */↪→

ldr x5, [x0, #8] /* load 8 bytes into X5 */

ret

90

8.3 Signed vs Unsigned Loads

For sub-32-bit loads (byte/halfword) and for many 32-bit-to-64-bit loads, AArch64 offers

explicit signed and unsigned variants:

• Unsigned loads zero-extend the loaded value.

• Signed loads sign-extend the loaded value to the destination width.

Common signed-load mnemonics:

• LDRSB load signed byte (extend to 32 or 64 depending on destination)

• LDRSH load signed halfword

• LDRSW load signed word and sign-extend to 64-bit (X destination)

Example: unsigned byte vs signed byte

.text

.global signed_unsigned_byte

signed_unsigned_byte:

/* memory byte at [X0] is treated either as unsigned or signed */

ldrb w1, [x0] /* W1 = zero-extended 0..255 */

ldrsb x2, [x0] /* X2 = sign-extended -128..127 */

ret

Example: load signed 32-bit into 64-bit using LDRSW

.text

.global load_i32_to_i64

load_i32_to_i64:

91

ldrsw x0, [x0] /* X0 = sign-extended 32-bit value from

memory */↪→

ret

92

8.4 Zero-Extension vs Sign-Extension

Extension behavior is a core part of load semantics:

• Zero-extension fills upper bits with zeros.

• Sign-extension copies the sign bit into upper bits.

Two architecture-critical rules:

1. Loads into Wn write 32 bits and therefore clear upper 32 bits of Xn (by the W-write

rule).

2. Signed-load variants that target Xn produce a full 64-bit sign-extended value.

Example: load 32-bit unsigned vs signed into 64-bit

.text

.global load_u32_vs_i32

load_u32_vs_i32:

/* X0 = address */

ldr w1, [x0] /* unsigned interpretation: X1 =

0x00000000XXXXXXXX */↪→

ldrsw x2, [x0] /* signed interpretation: X2 =

sign-extended */↪→

ret

Example: explicit extension after an unsigned sub-word load

.text

93

.global extend_after_ldrb

extend_after_ldrb:

ldrb w0, [x0] /* W0 = 0..255 */

/* optional: treat as signed byte after load */

sxtb w0, w0 /* sign-extend low 8 bits within 32-bit

*/↪→

ret

94

8.5 Paired Load/Store Instructions (LDP / STP)

LDP and STP transfer two registers with one instruction and use a single addressing mode.

They are commonly used for:

• saving/restoring registers on the stack,

• copying small blocks,

• efficient function prolog/epilog patterns.

Example: stack save/restore using paired access

.text

.global save_restore_pair

save_restore_pair:

stp x19, x20, [sp, #-16]! /* push */

/* ... body ... */

ldp x19, x20, [sp], #16 /* pop */

ret

Example: load two adjacent 64-bit elements

.text

.global load_two_u64

load_two_u64:

/* X0 = base pointer */

ldp x1, x2, [x0] /* loads *(X0+0) into X1 and *(X0+8) into

X2 */↪→

add x0, x1, x2

ret

95

Example: store two registers to memory with an immediate offset

.text

.global store_two_u64

store_two_u64:

/* X0 = base pointer */

stp x1, x2, [x0, #16] /* stores at base+16 and base+24 */

ret

96

8.6 Architectural Guarantees and Limitations

What the ISA guarantees at the core level

• Precise access size: each load/store transfers exactly the size encoded by the

instruction.

• Defined extension behavior: signed/unsigned variants and destination width define the

result bits.

• Explicit memory effects: only load/store instructions access memory.

• Addressing mode semantics: pre/post-index updates are architecturally defined.

What the ISA does not guarantee (environment-defined)

• Whether misaligned access faults or works: alignment enforcement depends on

system configuration and access type.

• Atomicity of ordinary loads/stores beyond architectural rules: multi-byte transfers

may not be atomic with respect to concurrency unless the architecture and system

guarantee it for the size and alignment.

• Ordering between different memory operations: memory ordering is governed by the

architecture’s memory model and specific barrier/atomic instructions (covered in later

booklets).

Example: misalignment as a correctness bug pattern

.text

.global misalignment_risk

97

misalignment_risk:

add x0, x0, #1 /* likely breaks 8-byte alignment */

ldr x1, [x0] /* may fault or be slow depending on

enforcement */↪→

ret

Example: keep alignment and size consistent

.text

.global aligned_pair_load

aligned_pair_load:

/* assume X0 is 16-byte aligned for paired 64-bit access */

ldp x1, x2, [x0] /* aligned load of 16 bytes total */

ret

Example: select the correct signed/unsigned load

.text

.global choose_load_variant

choose_load_variant:

/* X0 points to an 8-bit element */

ldrb w1, [x0] /* treat as unsigned */

ldrsb x2, [x0] /* treat as signed */

ret

Chapter 9

Addressing, Registers, and Performance
(Conceptual)

9.1 Instruction Count vs Addressing Choice

In AArch64, addressing mode choice directly affects instruction count because loads/stores

can incorporate:

• immediate offsets,

• scaled register offsets,

• pre/post-index base updates.

The architectural goal is not “micro-optimization” but expressing the access pattern in
fewer instructions without hiding meaning. Fewer instructions can reduce pressure on

fetch/decode and can simplify dependency chains, but correctness and clarity remain primary.

98

99

Example 1: separate pointer update vs post-index (same intent)

Two-instruction pattern (explicit update):

.text

.global load_then_add_ptr

load_then_add_ptr:

ldr w1, [x0] /* load */

add x0, x0, #4 /* advance pointer */

ret

One-instruction pattern (post-index update):

.text

.global load_post_index

load_post_index:

ldr w1, [x0], #4 /* load then advance pointer */

ret

Example 2: scaled register index reduces extra multiply/add

.text

.global scaled_index_u64

scaled_index_u64:

/* load a[index] where elements are 8 bytes */

ldr x0, [x1, x2, lsl #3] /* EA = base + index*8 */

ret

100

9.2 Register Pressure and Access Patterns

Register pressure is the demand for live registers at once. In AArch64, pressure is shaped by:

• the number of simultaneously live pointers, indices, accumulators, temporaries,

• how long values stay live between load and use,

• whether addressing mode choice reduces temporaries (e.g., avoiding a separate “address

register”).

Example 1: avoid extra address temporaries

More pressure (extra address register):

.text

.global extra_addr_temp

extra_addr_temp:

add x3, x0, x1 /* X3 = base + offset */

ldr w2, [x3] /* load via temporary address register */

ret

Less pressure (use register offset addressing):

.text

.global no_addr_temp

no_addr_temp:

ldr w2, [x0, x1] /* EA = X0 + X1, no extra register */

ret

101

Example 2: shorten live ranges to reduce pressure

.text

.global short_live_range

short_live_range:

ldr x1, [x0] /* load */

add x1, x1, #1 /* consume soon */

str x1, [x0] /* store back */

ret

Example 3: pointer-walking loop with minimal live registers

.text

.global sum_four_u32_min_regs

sum_four_u32_min_regs:

/* X0 = base pointer; returns W0 = sum of 4 u32 */

mov w2, wzr /* accumulator */

ldr w1, [x0], #4

add w2, w2, w1

ldr w1, [x0], #4

add w2, w2, w1

ldr w1, [x0], #4

add w2, w2, w1

ldr w1, [x0], #4

add w2, w2, w1

mov w0, w2

ret

102

9.3 Alignment Impact on Execution

Alignment affects both correctness (possible faults) and performance (possible extra

work). AArch64 defines alignment expectations for many access sizes, and the execution
environment may:

• permit misaligned accesses with potential penalties,

• or enforce alignment by raising an exception for misaligned access,

• or impose stricter rules for certain operations (e.g., atomics) than for ordinary

loads/stores.

Discipline rule

For predictable and portable code:

• maintain natural alignment for the access size,

• treat misalignment as a bug unless explicitly designed and validated for the target

environment.

Example: aligned 64-bit sequential access

.text

.global aligned_sequential_u64

aligned_sequential_u64:

/* assume X0 is 8-byte aligned */

ldr x1, [x0]

ldr x2, [x0, #8]

add x0, x1, x2

ret

103

Example: misalignment bug pattern

.text

.global misalignment_bug

misalignment_bug:

add x0, x0, #1 /* likely breaks 8-byte alignment */

ldr x1, [x0] /* may fault or incur penalty */

ret

Example: enforce alignment in data layout

.data

.align 3

aligned_qword:

.quad 0x1122334455667788

104

9.4 Addressing Discipline for Predictable Code

Performance-friendly code is usually the result of predictable addressing and clear
dependency chains, not exotic tricks. The discipline below yields code that is easier for

humans and tools to reason about:

Discipline rules

1. Keep pointers in X registers only. Never compute addresses in W registers.

2. Prefer one canonical style per pattern:

• structure field access: [base, #imm]

• array indexing: [base, index, lsl #k]

• pointer walking: [base], #imm (post-index) or explicit add

• stack access: [sp, #imm] with disciplined allocation

3. Avoid mixing flag-dependent control flow with base-update addressing. Keep

conditional branches close to the flag-setting instruction and keep pointer updates

readable.

4. Keep effective address computation obvious. If EA is not obvious in one glance,

prefer a clearer sequence.

Example: correct pointer arithmetic uses X

.text

.global ptr_increment_ok

ptr_increment_ok:

add x0, x0, #16 /* correct pointer update */

105

ret

Example: incorrect pointer arithmetic uses W (catastrophic on real
systems)

.text

.global ptr_increment_bug

ptr_increment_bug:

add w0, w0, #16 /* BUG: truncates then zero-extends

address */↪→

ret

106

9.5 What the ISA Guarantees — and What It Does Not

What the ISA guarantees

• Exact semantics of addressing modes: how EA is formed and when base writeback

occurs.

• Exact access size and extension behavior: loads/stores transfer a defined number of

bytes and define destination register bits accordingly.

• Defined register-width interactions: W writes clear upper 32 bits of the corresponding

X register.

What the ISA does not guarantee (depends on microarchitecture and
environment)

• Cycle cost of any sequence: decode width, pipeline depth, cache behavior, and memory

subsystem vary across cores.

• Whether misaligned access faults or is handled transparently: can depend on system

configuration and access type.

• Atomicity and ordering of ordinary loads/stores under concurrency: requires the

memory model, barriers, and atomic instructions (handled in later booklets).

Example: writeback is guaranteed, performance is not

Post-index semantics are guaranteed; the speed depends on the core.

.text

.global writeback_semantics

107

writeback_semantics:

ldr w1, [x0], #4 /* guaranteed: X0 updates after the load

*/↪→

ldr w2, [x0], #4

add w0, w1, w2

ret

Example: keep performance reasoning separate from correctness

The following forms are architecturally correct; which is faster is not an ISA guarantee.

.text

.global same_semantics_two_forms

same_semantics_two_forms:

/* form A: explicit update */

ldr w1, [x0]

add x0, x0, #4

/* form B: post-index update */

ldr w2, [x0], #4

add w0, w1, w2

ret

Chapter 10

Common Errors and Dangerous
Assumptions

10.1 Misusing W Registers in 64-bit Contexts

In AArch64, Wn is the low 32-bit view of Xn. The architectural rule is:

Any write to a W register clears the upper 32 bits of the corresponding X
register.

This rule is a frequent source of catastrophic bugs when X registers hold pointers, 64-bit

counters, or 64-bit masks.

Bug pattern 1: pointer arithmetic in W

.text

.global bug_ptr_w

bug_ptr_w:

108

109

/* X0 holds a 64-bit pointer */

add w0, w0, #8 /* BUG: truncates and zero-extends

pointer */↪→

ldr x1, [x0] /* may fault or read wrong memory */

ret

Correct pattern

.text

.global ok_ptr_x

ok_ptr_x:

add x0, x0, #8 /* correct 64-bit pointer update */

ldr x1, [x0]

ret

Bug pattern 2: destroying upper bits of a 64-bit mask

.text

.global bug_mask_w_write

bug_mask_w_write:

mov x0, #0xFFFF000000000000

mov w0, w0 /* BUG: clears upper 32 bits, destroys

the mask */↪→

ret

Correct pattern: preserve full width

.text

.global ok_mask_x

ok_mask_x:

110

/* keep mask in X registers and use X-form operations */

and x0, x0, x1

ret

Intentional truncation (safe use of W)

Using Wn is correct when you explicitly intend 32-bit semantics and want zero-extension.

.text

.global intentional_trunc_u32

intentional_trunc_u32:

mov w0, w0 /* keep low 32 bits, clear upper 32 */

ret

111

10.2 Assuming PC Is Directly Writable

In AArch64, PC is not a general-purpose register. You do not write it with normal data-

processing instructions. Control flow changes PC through:

• direct branches (b, b.cond, bl)

• indirect branches (br, blr)

• returns (ret)

Bug assumption: “add to PC” style reasoning

AArch64 does not support treating PC as Xn in ordinary arithmetic.

.text

.global bug_pc_writable_assumption

bug_pc_writable_assumption:

/* There is no correct "add pc, pc, #imm" data-processing model

like a GPR. */↪→

ret

Correct: express control flow with branches

.text

.global ok_branch_flow

ok_branch_flow:

b target

mov w0, #0 /* not executed */

target:

mov w0, #1

ret

112

Correct: computed control flow uses BR/BLR

.text

.global ok_indirect_branch

ok_indirect_branch:

adr x1, dest

br x1

mov w0, #0 /* not executed */

dest:

mov w0, #1

ret

113

10.3 Confusing SP with General Registers

SP is a special register. It is used for stack allocation and stack-relative addressing and has

encoding restrictions. It is not interchangeable with Xn in all instruction classes, and it must

obey a disciplined alignment policy.

Bug pattern: using SP as a scratch register

.text

.global bug_sp_scratch

bug_sp_scratch:

/* DO NOT treat SP as a free temporary register */

add sp, sp, #1 /* breaks alignment and stack discipline

*/↪→

ret

Correct: use SP only for stack adjustment

.text

.global ok_sp_adjust

ok_sp_adjust:

sub sp, sp, #16 /* allocate */

add sp, sp, #16 /* deallocate */

ret

Correct: save/restore using disciplined SP updates

.text

.global ok_sp_save_restore

ok_sp_save_restore:

114

stp x19, x20, [sp, #-16]! /* push */

/* ... */

ldp x19, x20, [sp], #16 /* pop */

ret

115

10.4 Flag Dependency Bugs

NZCV flags in PSTATE are implicit state. Bugs occur when code assumes:

• a non-flag-setting instruction set flags,

• flags remain meaningful across unrelated operations,

• width does not matter for flag computation.

Bug pattern 1: using ADD instead of ADDS

.text

.global bug_missing_flags

bug_missing_flags:

add w1, w0, #1 /* does NOT set flags */

b.eq was_zero /* BUG: tests old Z flag */

mov w0, #0

ret

was_zero:

mov w0, #1

ret

Correct pattern

.text

.global ok_flags

ok_flags:

adds w1, w0, #1 /* sets flags */

b.eq was_zero

mov w0, #0

116

ret

was_zero:

mov w0, #1

ret

Bug pattern 2: width mismatch in compare

.text

.global bug_cmp_width

bug_cmp_width:

/* X0 holds a 64-bit value */

cmp w0, #0 /* flags computed from low 32 bits only

*/↪→

b.mi neg /* may be wrong for 64-bit intent */

mov w0, #0

ret

neg:

mov w0, #1

ret

Correct: compare in the intended width

.text

.global ok_cmp_width

ok_cmp_width:

cmp x0, #0

b.mi neg

mov w0, #0

ret

neg:

117

mov w0, #1

ret

118

10.5 Addressing Mode Miscalculations

Most addressing bugs are EA bugs: computing the wrong effective address due to:

• wrong scale factor,

• confusion between byte offset and element offset,

• mixing pre-index and post-index semantics,

• base corruption (often from W writes).

Bug pattern 1: wrong scale for element size

.text

.global bug_wrong_scale_u64

bug_wrong_scale_u64:

/* X0 = base, X1 = index, elements are 8 bytes */

ldr x2, [x0, x1, lsl #2] /* BUG: uses *4 instead of *8 */

ret

Correct pattern

.text

.global ok_scale_u64

ok_scale_u64:

ldr x2, [x0, x1, lsl #3] /* correct: index * 8 */

ret

Bug pattern 2: pre-index vs post-index confusion

.text

119

.global bug_pre_vs_post

bug_pre_vs_post:

/* intended: load then advance pointer by 8 */

ldr x1, [x0, #8]! /* BUG: advances before load */

ret

Correct pattern: post-index

.text

.global ok_post_index

ok_post_index:

ldr x1, [x0], #8 /* load then advance */

ret

Bug pattern 3: using byte offset when index is in elements (or vice versa)

.text

.global bug_element_vs_byte

bug_element_vs_byte:

/* X1 is element index, but used as byte offset */

ldr w0, [x0, x1] /* BUG unless each element is 1 byte */

ret

Correct: explicitly scale by element size

.text

.global ok_element_index_u32

ok_element_index_u32:

ldr w0, [x0, x1, lsl #2] /* element index * 4 */

ret

120

10.6 Debugging Register and Addressing Errors

When debugging AArch64 register/addressing bugs, use a disciplined, architecture-first

method:

Checklist: register-width and aliasing

1. Search for any W-writes to registers that later act as pointers (X).

2. Verify pointer arithmetic uses X forms (add xN, ...), not W.

3. Confirm extension intent: unsigned loads (LDRB/LDRH) vs signed loads

(LDRSB/LDRSH/LDRSW).

Checklist: effective address validation

1. For each memory instruction, write EA explicitly as Base + Offset.

2. Confirm whether the offset is scaled or unscaled and whether it is byte-granular.

3. If pre/post-index is used, track when the base is updated relative to the access.

Checklist: flags and control flow

1. Identify the exact instruction that sets the flags used by each conditional branch.

2. Ensure no unintended flag-setting instruction sits between flag definition and branch.

3. Verify width of compare matches the intended value width.

121

Example: minimal “EA audit” instrumentation pattern

A useful technique is to compute the effective address into a temporary register (without

changing meaning) and then load via that register. If behavior changes, the addressing mode

or base-update semantics were wrong.

.text

.global ea_audit_pattern

ea_audit_pattern:

/* original intent: load from [X0, X1, lsl #3] */

add x3, x0, x1, lsl #3 /* compute EA explicitly */

ldr x2, [x3] /* load through explicit EA */

ret

Example: catching a W-write pointer corruption

.text

.global detect_w_write_corruption

detect_w_write_corruption:

/* if X0 is a pointer, this is a red flag */

mov w0, w0 /* clears upper 32 bits of X0 */

ldr x1, [x0] /* may fault or read wrong data */

ret

Appendices

Appendix A — Minimal Register Reference

General-Purpose Registers Summary

AArch64 provides 31 general-purpose integer registers. Each register has a 64-bit view (Xn)

and a 32-bit view (Wn).

Register Width Architectural Meaning
X0–X30 64-bit General-purpose integer registers

W0–W30 32-bit Low 32-bit view of X0–X30

X30 (LR) 64-bit Link register (return address)

Core rules:

• Wn aliases the low 32 bits of Xn.

• Writing to Wn clears the upper 32 bits of Xn.

• There is no independent 32-bit register file.

Special Registers Summary

122

123

Register Width Purpose
SP 64-bit Stack pointer (restricted usage)

PC 64-bit Program counter (control-flow state)

XZR 64-bit Zero register (reads as zero, writes discarded)

WZR 32-bit Zero register (32-bit view)

PSTATE — Processor state (flags and control bits)

Discipline:

• SP must remain properly aligned and is not a scratch register.

• PC is not directly writable; control flow changes it.

• Writes to XZR/WZR are discarded.

PSTATE Bit Overview
Only a subset of PSTATE is visible and relevant for core programming.

Bit Name Meaning
N Negative Result sign bit (signed interpretation)

Z Zero Result is zero

C Carry Unsigned carry / no borrow

V Overflow Signed overflow

Notes:

• NZCV are updated only by flag-setting instructions.

• Flag computation depends on operand width (W vs X).

• Other PSTATE fields are managed by system software.

124

Register Access Rules (Quick Lookup)

Rule Meaning
Write to Wn Clears upper 32 bits of Xn

Pointers use Xn Prevents address truncation

SP for stack only Not interchangeable with Xn

Use XZR/WZR Guaranteed zero value

PC via branches No arithmetic writes to PC

Flags persist Until overwritten

Canonical Zeroing Patterns

.text

.global zero_examples

zero_examples:

mov x0, xzr /* clear 64-bit register */

mov w1, wzr /* clear 32-bit register */

ret

Canonical Pointer Discipline

.text

.global pointer_rules

pointer_rules:

add x0, x0, #16 /* correct pointer arithmetic */

/* add w0, w0, #16 */ /* WRONG: truncates pointer */

ret

Canonical Flag Usage Discipline

125

.text

.global flag_rules

flag_rules:

cmp x0, #0 /* defines NZCV */

b.eq is_zero

mov w0, #1

ret

is_zero:

mov w0, #0

ret

Canonical Stack Discipline

.text

.global stack_rules

stack_rules:

stp x19, x20, [sp, #-16]! /* push */

/* ... */

ldp x19, x20, [sp], #16 /* pop */

ret

Mental Checklist (Before Debugging)

• Did any W-write touch a value later used as X?

• Are all addresses computed in X registers?

• Are flags set immediately before being consumed?

• Is SP only adjusted by aligned constants?

• Is each addressing mode intentional and correct?

126

Appendix B — Instruction Categories Covered

This appendix summarizes the instruction categories referenced in Booklet 12 at a core
architectural level. The focus is strictly on instruction groups that interact with: register

state, memory access, addressing modes, and PSTATE (NZCV).

Data Movement Instructions
Conceptual scope:

• Register-to-register data transfer at selected width.

• Immediate constant construction using wide-move sequences.

• Explicit zero-extension and sign-extension between widths.

• PC-relative address materialization for position-independent code.

Representative mnemonics:

• MOV

• MOVZ, MOVK, MOVN

• UXTW, SXTW, SXTB, SXTH

• ADR, ADRP

.text

.global data_movement_examples

data_movement_examples:

mov x0, x1 /* 64-bit register copy */

mov w2, w3 /* 32-bit copy, clears upper X2 */

127

movz x4, #0x1122, lsl #48

movk x4, #0x3344, lsl #32

movk x4, #0x5566, lsl #16

movk x4, #0x7788, lsl #0

uxtw x5, w0 /* zero-extend 32->64 */

sxtw x6, w0 /* sign-extend 32->64 */

adrp x7, some_symbol

add x7, x7, :lo12:some_symbol

ret

.data

.align 3

some_symbol:

.quad 0

Load/Store Instructions
Conceptual scope:

• Size-specific memory access (byte, halfword, word, doubleword).

• Explicit signed vs unsigned load semantics.

• Paired load/store for stack and block operations.

• Immediate, register, pre-index, and post-index addressing.

Representative mnemonics:

• LDR, STR

128

• LDRB, STRB, LDRH, STRH

• LDRSB, LDRSH, LDRSW

• LDP, STP

• LDUR, STUR (unscaled forms)

.text

.global load_store_examples

load_store_examples:

mov w1, #0xAA

strb w1, [x0, #0]

mov w1, #0x1234

strh w1, [x0, #2]

mov w1, #0x89ABCDEF

str w1, [x0, #4]

mov x1, #0x1122334455667788

str x1, [x0, #8]

ldrb w2, [x0, #0]

ldrsb x3, [x0, #0]

ldr w4, [x0, #4]

ldrsw x5, [x0, #4]

stp x19, x20, [sp, #-16]!

ldp x19, x20, [sp], #16

129

ldr w6, [x0], #4

str w6, [x0, #-4]!

ret

Flag-Setting Instructions
Conceptual scope:

• Compare and test operations producing NZCV only.

• Arithmetic and logical operations that update NZCV.

• Conditional execution driven by PSTATE flags.

Representative mnemonics:

• CMP, CMN, TST

• ADDS, SUBS, ANDS

• B.{cond}, CSET, CSEL

.text

.global flag_examples

flag_examples:

cmp w0, #0

b.eq is_zero

adds w1, w0, #1

cset w2, mi

tst w0, #(1 << 3)

130

cset w3, ne

subs x4, x5, x6

csel x0, x5, x6, hs

ret

is_zero:

mov w0, #0

ret

Addressing-Relevant Instruction Groups
Conceptual scope:

• Effective address computation in registers.

• Base update via pre-index and post-index modes.

• Scaled register indexing for element access.

• Control-flow and PC-relative address patterns.

Representative mnemonics:

• ADD, SUB (with shifted registers)

• ADR, ADRP

• B, B.{cond}, BL, BR, RET

• LDR/STR with base update addressing

.text

.global addressing_group_examples

addressing_group_examples:

131

add x3, x0, x1, lsl #3

ldr x2, [x3]

ldr w4, [x0], #4

str w4, [x0, #-4]!

stp x29, x30, [sp, #-16]!

ldp x29, x30, [sp], #16

b label

mov w0, #0

label:

ret

132

Appendix C — Preparation for Next Booklets

This appendix defines the exact architectural readiness required before progressing to

subsequent AArch64 booklets in the CPU Programming Series. It connects the concepts

covered in this booklet to the next layers: calling conventions, privilege, memory ordering,

and ABI rules.

Readiness for Stack and Calling Conventions
Before studying AArch64 calling conventions and ABI rules, the reader must be fully

comfortable with the following architectural facts:

• SP is a restricted register used only for stack management.

• Stack growth direction and alignment are architectural constraints.

• Base-update addressing (pre/post-index) is the foundation of stack frames.

• LR (X30) holds return addresses but is not automatically preserved.

Architectural expectation: The reader must be able to read and reason about stack

manipulation without relying on ABI naming conventions.

.text

.global stack_readiness_example

stack_readiness_example:

stp x29, x30, [sp, #-16]! /* allocate stack frame */

mov x29, sp /* frame pointer (conceptual) */

/* function body */

ldp x29, x30, [sp], #16 /* deallocate stack frame */

ret

133

Readiness for Exception Levels and Privilege
This booklet intentionally avoids exception levels and system state, but prepares the reader for

them conceptually.

Required understanding:

• General-purpose registers are shared across exception levels.

• PSTATE contains both user-visible flags and privileged control bits.

• Control flow is always explicit; privilege does not change ISA semantics.

Architectural expectation: The reader must clearly distinguish between: instruction behavior

and execution privilege.

.text

.global privilege_neutral_example

privilege_neutral_example:

cmp x0, #0 /* flag logic independent of

privilege */↪→

b.eq zero_case

mov w0, #1

ret

zero_case:

mov w0, #0

ret

Readiness for Memory Ordering and Atomics
Before introducing atomics and memory ordering rules, the reader must already understand

what the ISA does not guarantee.

Required understanding:

134

• Ordinary loads and stores do not imply ordering across cores.

• Addressing modes define where memory is accessed, not when.

• Instruction order is not the same as memory visibility order.

Architectural expectation: The reader must treat ordinary LDR/STR as non-atomic and non-

ordering unless explicitly constrained by later instructions.

.text

.global non_atomic_example

non_atomic_example:

ldr x1, [x0] /* no ordering or atomicity guarantee */

str x1, [x0, #8]

ret

Mapping Concepts to ABI-Specific Rules
This booklet establishes architecture-first reasoning. ABI rules are layered on top of these

concepts, not replacements for them.

The reader must already understand:

• Which registers are architecturally general-purpose.

• That register preservation is an ABI decision, not an ISA rule.

• That stack layout conventions are ABI-defined.

Architectural expectation: When reading ABI documentation, the reader must be able to

separate:

What the hardware requires vs what the ABI mandates.

135

.text

.global abi_independent_example

abi_independent_example:

/* architecture allows using any X register */

mov x5, x0

add x5, x5, #8

ret

Completion Checklist Before Proceeding
The reader should confidently answer yes to all of the following:

• Can I track register width effects (W vs X) without error?

• Can I compute effective addresses mentally for all addressing modes?

• Do I understand exactly when flags are set and consumed?

• Do I know what the ISA guarantees — and what it explicitly does not?

• Can I read stack and pointer-manipulating code without ABI hints?

If any answer is uncertain, the corresponding chapter in this booklet should be reviewed

before continuing to the next volume.

References

ARM Architecture Reference Manuals (Conceptual Use)

This booklet is grounded in the architectural model defined by the ARMv8-A / AArch64

architecture reference manuals. These manuals are used conceptually, not as verbatim

specifications, to establish:

• precise register semantics (X/W aliasing, zero register behavior),

• PSTATE flag definition and update rules,

• addressing modes and effective address formation,

• architectural guarantees versus system-defined behavior.

Discipline applied in this booklet:

• Only ISA-level guarantees are assumed.

• No ABI, OS, or microarchitectural behavior is inferred unless architecturally defined.

• All examples respect architectural constraints without relying on implementation quirks.

.text

.global arch_reference_example

136

137

arch_reference_example:

/* pure architectural behavior: register move and compare */

mov x0, x1

cmp x0, #0

b.eq zero_case

ret

zero_case:

mov w0, wzr

ret

ISA Documentation and Instruction Semantics

Instruction semantics in this booklet follow the authoritative ISA definitions for:

• operand width selection (W vs X forms),

• flag-setting versus non-flag-setting variants,

• signed versus unsigned loads and extensions,

• base update timing for pre-index and post-index addressing.

Each instruction example is written to make its architectural effect explicit and auditable by

inspection.

Semantic emphasis used throughout:

• instruction width is always intentional,

• extension behavior is never implicit,

• base register modification is always visible in the syntax.

138

.text

.global isa_semantics_example

isa_semantics_example:

ldr w1, [x0] /* zero-extends into X1 */

ldrsw x2, [x0] /* sign-extends into X2 */

adds x3, x1, x2 /* sets NZCV */

ret

Compiler-Generated Code Observations

Although this booklet does not depend on any compiler behavior, practical validation was

performed by examining compiler-generated AArch64 code to confirm alignment with

architectural rules.

Observed patterns used as validation (not as authority):

• consistent use of X registers for pointers,

• systematic W writes to enforce zero-extension,

• paired load/store for stack save/restore,

• post-index addressing for pointer iteration.

Important boundary: Compiler output is treated as an illustration of correct ISA usage,

never as a substitute for architectural specification.

.text

.global compiler_style_observation

compiler_style_observation:

stp x29, x30, [sp, #-16]!

139

mov x29, sp

ldr w0, [x0]

add x0, x0, #4

ldp x29, x30, [sp], #16

ret

Cross-References to Other Booklets in This Series

This booklet intentionally isolates the AArch64 core architectural layer. Subsequent

booklets build directly on these foundations.

Direct conceptual dependencies:

• Stack manipulation and base-update addressing → calling conventions.

• PSTATE flags and condition codes → control flow and ABI rules.

• Addressing modes and alignment → memory ordering and atomics.

• Register width rules → interoperability with higher-level languages.

Series progression discipline:

• Architecture first, ABI second.

• Instruction semantics before optimization.

• Correctness before performance.

.text

.global series_transition_example

series_transition_example:

140

/* architectural foundation for later ABI discussion */

stp x19, x20, [sp, #-16]!

/* ABI rules decide whether x19/x20 must be preserved */

ldp x19, x20, [sp], #16

ret

	Contents
	Preface
	Purpose of This Booklet
	Position in the CPU Programming Series
	Prerequisites and Assumed Knowledge
	What This Booklet Covers — and What It Explicitly Does Not
	Reading Discipline for AArch64

	AArch64 Architecture Overview
	AArch64 vs AArch32: Architectural Shift
	64-bit Design Goals and Constraints
	Execution State: AArch64 Fundamentals
	Instruction Length and Encoding Model
	Conceptual Execution Pipeline (ISA View)

	General-Purpose Register File
	X Registers (X0–X30): Structure and Width
	W Registers and Zero Extension Rules
	Register Aliasing Rules (Xn vs Wn)
	Architectural Zero Register (XZR / WZR)
	Register Access and Instruction Constraints
	Common Misconceptions About Register Width

	Special Registers and Their Roles
	Stack Pointer (SP) — Rules and Restrictions
	Link Register (LR / X30) — Call Semantics
	Program Counter (PC) — Architectural Behavior
	Interaction Between PC and Branch Instructions
	Register Usage Discipline (Non-ABI View)

	PSTATE: Processor State Register
	Conceptual Role of PSTATE
	Condition Flags (N, Z, C, V)
	Interrupt Mask Bits
	Execution Control Bits
	PSTATE vs CPSR (Conceptual Comparison)
	Instructions That Affect PSTATE
	Common Flag-Related Pitfalls

	Data Movement and Register Transfer
	Register-to-Register Movement
	Immediate Encoding Constraints
	Zeroing vs Preserving Upper Bits
	MOV, MOVZ, MOVK, MOVN (Conceptual Use)
	Register Width Interaction Rules
	Practical Register Transfer Patterns

	AArch64 Addressing Model
	Load/Store Architecture Philosophy
	Memory Access vs Register Operations
	Address Calculation Model
	Alignment Rules and Enforcement
	Address Size and Virtual Address Space (Conceptual)

	Addressing Modes in AArch64
	Immediate Offset Addressing
	Register Offset Addressing
	Scaled and Unscaled Offsets
	Pre-Indexed and Post-Indexed Addressing
	Common Addressing Mode Mistakes
	Addressing Mode Selection Discipline

	Load and Store Instruction Behavior
	Basic Load/Store Semantics
	Byte, Halfword, Word, and Doubleword Access
	Signed vs Unsigned Loads
	Zero-Extension vs Sign-Extension
	Paired Load/Store Instructions (LDP / STP)
	Architectural Guarantees and Limitations

	Addressing, Registers, and Performance (Conceptual)
	Instruction Count vs Addressing Choice
	Register Pressure and Access Patterns
	Alignment Impact on Execution
	Addressing Discipline for Predictable Code
	What the ISA Guarantees — and What It Does Not

	Common Errors and Dangerous Assumptions
	Misusing W Registers in 64-bit Contexts
	Assuming PC Is Directly Writable
	Confusing SP with General Registers
	Flag Dependency Bugs
	Addressing Mode Miscalculations
	Debugging Register and Addressing Errors

	Appendices
	Appendix A — Minimal Register Reference
	Appendix B — Instruction Categories Covered
	Appendix C — Preparation for Next Booklets

	References
	ARM Architecture Reference Manuals (Conceptual Use)
	ISA Documentation and Instruction Semantics
	Compiler-Generated Code Observations
	Cross-References to Other Booklets in This Series

