
1



CPU Programming Series
AArch64 Calling Convention (AAPCS64)

C/C++ Interoperability in Practice

Prepared by Ayman Alheraki

simplifycpp.org

January 2026



Contents

Contents 2

Preface 14

Purpose of This Booklet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

What You Will Be Able to Do After This Booklet . . . . . . . . . . . . . . . . 15

Minimal “Hello ABI” Example . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Where AAPCS64 Fits in the CPU Programming Series . . . . . . . . . . . . . . . . 16

Why This Booklet Exists (Even If You “Know Assembly”) . . . . . . . . . . . 16

A Quick Map to Neighbor Booklets . . . . . . . . . . . . . . . . . . . . . . . 17

Prerequisites and Assumed Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 17

Required C/C++ Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Tooling Assumptions (Minimal) . . . . . . . . . . . . . . . . . . . . . . . . . 18

Scope, Limits, and ABI Discipline Philosophy . . . . . . . . . . . . . . . . . . . . . 18

Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Out of Scope (By Design) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ABI Discipline Philosophy: “Correct First, Fast Second” . . . . . . . . . . . . 19

A “Wrong but Looks Fine” Example (Register Preservation Bug) . . . . . . . . 19

A Minimal Non-Leaf Template (Calls Another Function) . . . . . . . . . . . . 20

2



3

1 AAPCS64 Overview and Design Goals 22
1.1 What a Calling Convention Really Defines . . . . . . . . . . . . . . . . . . . . 22

1.1.1 The Four Things Every Calling Convention Must Define . . . . . . . . 22

1.1.2 What It Does Not Define . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.3 Interoperability Is “State Management” . . . . . . . . . . . . . . . . . 23

1.1.4 Example 1: One-Argument, One-Return (Register Contract) . . . . . . 23

1.1.5 Example 2: Caller-Saved Reality (Why Values “Disappear”) . . . . . . 24

1.2 AAPCS64 in the ARM Architecture Ecosystem . . . . . . . . . . . . . . . . . 25

1.2.1 ISA vs ABI: Two Different Documents . . . . . . . . . . . . . . . . . 25

1.2.2 Ecosystem Layers (Where AAPCS64 Sits) . . . . . . . . . . . . . . . 25

1.2.3 Why AAPCS64 Enables “Mix-and-Match” . . . . . . . . . . . . . . . 26

1.2.4 Example: Mixed Integer and FP Arguments . . . . . . . . . . . . . . . 26

1.3 ABI Stability and Long-Term Compatibility . . . . . . . . . . . . . . . . . . . 27

1.3.1 Why ABI Stability Matters . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 What Makes an ABI “Stable” . . . . . . . . . . . . . . . . . . . . . . 27

1.3.3 Long-Term Compatibility Strategy . . . . . . . . . . . . . . . . . . . . 28

1.3.4 Example: Stable C ABI Wrapper Around C++ . . . . . . . . . . . . . 28

1.4 User Space vs Kernel Space Conventions (High-Level) . . . . . . . . . . . . . 29

1.4.1 Two Worlds, Two Contracts . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.2 High-Level Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.3 Why You Must Not Mix Them Mentally . . . . . . . . . . . . . . . . . 30

1.4.4 Conceptual Example: “Call” vs “Privilege Entry” . . . . . . . . . . . . 30

1.4.5 Booklet Separation Policy . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Fundamental Register Roles in AAPCS64 32
2.1 General-Purpose Registers (X0–X30): Conceptual Roles . . . . . . . . . . . . 32

2.1.1 The ABI View: Registers as an Interface Contract . . . . . . . . . . . . 32

2.1.2 Canonical Concepts You Must Remember . . . . . . . . . . . . . . . . 33



4

2.1.3 A Practical Mental Model . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Argument Registers vs Temporary Registers . . . . . . . . . . . . . . . . . . . 33

2.2.1 Argument Registers Are Not “Yours” After a Call . . . . . . . . . . . . 33

2.2.2 Example 1: Losing an Argument Across a Call (Bug Pattern) . . . . . . 34

2.2.3 Example 2: Preserve the Value Across the Call (Correct) . . . . . . . . 34

2.2.4 When to Use a Preserved Register Instead of the Stack . . . . . . . . . 35

2.3 Callee-Saved vs Caller-Saved Discipline . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Definitions (ABI Contract) . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Why Compilers Rely on This . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Example 3: Clobbering a Preserved Register (Catastrophic Bug) . . . . 36

2.3.4 Example 4: Correct Use of a Callee-Saved Register . . . . . . . . . . . 36

2.3.5 A Reliable Rule for Handwritten Assembly . . . . . . . . . . . . . . . 37

2.4 Zero Register (XZR) and Stack Pointer (SP) Constraints . . . . . . . . . . . . 37

2.4.1 XZR: Reads as Zero, Writes Discard . . . . . . . . . . . . . . . . . . . 37

2.4.2 Example 5: Efficient Zeroing and Zero-Compare . . . . . . . . . . . . 38

2.4.3 SP: Special Register With Hard ABI Constraints . . . . . . . . . . . . 38

2.4.4 The Non-Negotiable SP Rules for This Booklet . . . . . . . . . . . . . 38

2.4.5 Example 6: Correct Stack Allocation (Aligned) . . . . . . . . . . . . . 39

2.4.6 Example 7: Misalignment Bug (Often Silent, Always Dangerous) . . . 39

2.4.7 Practical Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Floating-Point and SIMD Register Convention 41
3.1 V0–V7: Floating-Point Argument Passing . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Example 1: Pure Floating-Point Call Boundary (double) . . . . . . . . 42

3.1.2 Example 2: float Variant (s-register view) . . . . . . . . . . . . . . . . 42

3.1.3 Example 3: Overflow to Stack (Conceptual) . . . . . . . . . . . . . . . 43

3.2 Callee-Saved SIMD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Volatile vs Preserved in the SIMD Bank . . . . . . . . . . . . . . . . . 43



5

3.2.2 Example 4: Volatile SIMD Register Clobber (Bug Pattern) . . . . . . . 43

3.2.3 Example 5: Preserve a Live FP Value Across a Call (Spill to Stack) . . 44

3.2.4 Example 6: Using a Preserved SIMD Register (Template) . . . . . . . 45

3.3 Mixed Integer and Floating-Point Arguments . . . . . . . . . . . . . . . . . . 45

3.3.1 Two Independent Allocation Streams . . . . . . . . . . . . . . . . . . 45

3.3.2 Example 7: Mixed Signature With Clear Mapping . . . . . . . . . . . 46

3.3.3 Example 8: A Common Mistake (Wrong Bank Assumption) . . . . . . 47

3.4 ABI Guarantees for Vector Register Preservation . . . . . . . . . . . . . . . . 47

3.4.1 What the ABI Actually Guarantees . . . . . . . . . . . . . . . . . . . 47

3.4.2 Example 9: Preserving a Vector Across a Call . . . . . . . . . . . . . . 48

3.4.3 Example 10: ABI-Safe Rule Set for SIMD in Handwritten Assembly . 48

3.4.4 One-Page Practical Template (Non-Leaf FP Function) . . . . . . . . . 49

4 Stack Layout and Alignment Rules 50
4.1 Stack Growth Direction and Alignment Requirements . . . . . . . . . . . . . . 50

4.1.1 Downward-Growing Stack (Architectural Convention) . . . . . . . . . 50

4.1.2 What the ABI Requires vs What the CPU Allows . . . . . . . . . . . . 50

4.1.3 Example 1: Minimal Stack Allocation Pattern . . . . . . . . . . . . . . 51

4.2 Mandatory 16-Byte Stack Alignment . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 The Non-Negotiable Rule . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Example 2: Correct Non-Leaf Function (Keeps Alignment) . . . . . . 52

4.2.3 Example 3: Misalignment Bug That Often Appears “Random” . . . . . 52

4.2.4 Practical Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Stack Frame Structure (Conceptual) . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Conceptual Layout (One Common Pattern) . . . . . . . . . . . . . . . 53

4.3.2 Example 4: Canonical Save/Restore of FP and LR . . . . . . . . . . . 54

4.3.3 Example 5: Saving Multiple Callee-Saved Registers . . . . . . . . . . 55

4.4 Red Zone: Why It Does Not Exist in AArch64 . . . . . . . . . . . . . . . . . . 56



6

4.4.1 What “Red Zone” Means (Concept) . . . . . . . . . . . . . . . . . . . 56

4.4.2 AAPCS64 Policy: Do Not Assume Untouched Space Below SP . . . . 56

4.4.3 Example 6: The Temptation (Do Not Do This) . . . . . . . . . . . . . 56

4.4.4 Example 7: Correct Replacement (Allocate and Use) . . . . . . . . . . 57

4.4.5 ABI Discipline Summary . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Function Prologue and Epilogue Mechanics 58
5.1 Minimal Leaf Function Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Example 1: Zero-Frame Leaf (Best Case) . . . . . . . . . . . . . . . . 58

5.1.2 When a Leaf Still Needs a Frame . . . . . . . . . . . . . . . . . . . . 59

5.1.3 Example 2: Leaf With Stack Locals (Aligned) . . . . . . . . . . . . . . 59

5.2 Non-Leaf Function Stack Frames . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Minimal Non-Leaf Requirement: Protect the Return Address . . . . . . 60

5.2.2 Example 3: Minimal Non-Leaf Saving Only LR (Aligned) . . . . . . . 60

5.2.3 Example 4: Non-Leaf With Locals and Saved Registers . . . . . . . . . 61

5.3 Saving and Restoring Registers Correctly . . . . . . . . . . . . . . . . . . . . 61

5.3.1 The Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Correctness Over Style . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.3 Example 5: Correct Save/Restore of a Callee-Saved GPR . . . . . . . . 62

5.3.4 Example 6: Saving/Restoring Multiple Registers Efficiently . . . . . . 63

5.3.5 Example 7: Common Bug — Save Without Restore (Silent Corruption) 63

5.3.6 A Robust Discipline Template . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Frame Pointer (X29) Usage and Optionality . . . . . . . . . . . . . . . . . . . 64

5.4.1 What X29 Means in Practice . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Optionality: You Can Omit FP . . . . . . . . . . . . . . . . . . . . . . 65

5.4.3 Example 8: Conventional FP/LR Frame Setup . . . . . . . . . . . . . . 65

5.4.4 Example 9: FP-Omitted Function (SP-Relative Only) . . . . . . . . . . 66

5.4.5 Choosing FP vs No FP (Engineering Guidance) . . . . . . . . . . . . . 66



7

6 Argument Passing Rules in Detail 67
6.1 Integer and Pointer Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Core Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Example 1: Up to Eight Integer Arguments (All in Registers) . . . . . . 67

6.1.3 Example 2: Pointer Arguments Are Just Integer-Class . . . . . . . . . 68

6.1.4 Example 3: More Than Eight Integer Arguments (Register + Stack

Concept) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Floating-Point Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Core Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Example 4: FP Arguments and Return (double) . . . . . . . . . . . . . 70

6.2.3 Example 5: More Than Eight FP Arguments (Register + Stack Concept) 71

6.3 Struct and Aggregate Passing Rules . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Concept: Classification Determines Where It Goes . . . . . . . . . . . 71

6.3.2 Safe Engineering Guidance . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.3 Example 6: Scalar-Only Wrapper for a Struct Argument . . . . . . . . 72

6.3.4 Example 7: Struct Return via Scalar Boundary . . . . . . . . . . . . . 72

6.4 Large Objects and Indirect Passing . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 The Indirect Passing Model . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.2 Example 8: Explicit Indirect Passing Using Pointers (Recommended) . 74

6.5 Variadic Functions (va list Model) . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.1 Why Variadic Calls Are Special . . . . . . . . . . . . . . . . . . . . . 75

6.5.2 The Practical Rule for Interop . . . . . . . . . . . . . . . . . . . . . . 75

6.5.3 Example 9: Safe Wrapper Pattern Around Variadic . . . . . . . . . . . 75

6.5.4 Key Takeaways for Variadics . . . . . . . . . . . . . . . . . . . . . . . 76

7 Return Value Rules 77
7.1 Scalar Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Core Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



8

7.1.2 Example 1: Return uint64 t in x0 . . . . . . . . . . . . . . . . . . 77

7.1.3 Example 2: Return a Pointer in x0 . . . . . . . . . . . . . . . . . . . . 78

7.1.4 Example 3: 32-bit Return Values . . . . . . . . . . . . . . . . . . . . . 78

7.2 Floating-Point Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.1 Core Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.2 Example 4: Return double in d0 . . . . . . . . . . . . . . . . . . . . 79

7.2.3 Example 5: Return float in s0 . . . . . . . . . . . . . . . . . . . . 80

7.3 Struct and Aggregate Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Concept: Small Aggregates May Return in Registers . . . . . . . . . . 80

7.3.2 Engineering Rule for Interoperability . . . . . . . . . . . . . . . . . . 81

7.3.3 Example 6: Replace Struct Return With Out-Parameters (Recommended) 81

7.3.4 Example 7: Two-Value Return via Two Scalars . . . . . . . . . . . . . 82

7.4 Hidden Return Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4.1 The “sret” Model (Indirect Return) . . . . . . . . . . . . . . . . . . . . 82

7.4.2 Interop Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4.3 Example 8: Explicit “Return Object” Pointer (Recommended

Replacement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4.4 Example 9: Returning a Vector Result Safely . . . . . . . . . . . . . . 84

7.4.5 Summary Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 C and C++ Interoperability Rules 86
8.1 Name Mangling vs ABI Compatibility . . . . . . . . . . . . . . . . . . . . . . 86

8.1.1 Two Different Problems: Calling Convention vs Linkage Encoding . . 86

8.1.2 What Breaks Most Often . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1.3 Example 1: Overloads Cannot Share One Stable Symbol Name . . . . 87

8.2 extern "C" and Symbol Stability . . . . . . . . . . . . . . . . . . . . . . . 87

8.2.1 What extern "C" Actually Does . . . . . . . . . . . . . . . . . . . 87

8.2.2 Example 2: Stable Entry Point for Assembly . . . . . . . . . . . . . . 88



9

8.2.3 Example 3: Exposing a C ABI Wrapper Around C++ Implementation . 88

8.3 Passing C++ Objects Across ABI Boundaries . . . . . . . . . . . . . . . . . . 89

8.3.1 The Interop Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.3.2 Preferred Boundary: Opaque Handles + Explicit Functions . . . . . . . 90

8.3.3 Example 4: Opaque Handle Pattern (Recommended) . . . . . . . . . . 90

8.3.4 Example 5: POD-Only Boundary (When You Must Pass a Struct) . . . 91

8.4 Constructors, Destructors, and ABI Constraints . . . . . . . . . . . . . . . . . 91

8.4.1 Why Constructors/Destructors Are ABI-Hard . . . . . . . . . . . . . . 91

8.4.2 Recommended Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4.3 Example 6: Construction/Destruction Wrapper With Explicit Ownership 92

8.5 Exception Handling Boundaries (Conceptual) . . . . . . . . . . . . . . . . . . 93

8.5.1 Why Exceptions Are Not a Stable Binary Boundary . . . . . . . . . . . 93

8.5.2 Interop Rule: Do Not Let Exceptions Cross the Boundary . . . . . . . 93

8.5.3 Example 7: Translate Exceptions to Error Codes . . . . . . . . . . . . 94

8.5.4 Example 8: Assembly Caller Uses Status + Out-Value . . . . . . . . . 94

8.5.5 Summary Discipline for Interop . . . . . . . . . . . . . . . . . . . . . 95

9 Compiler-Generated Code and ABI Guarantees 96
9.1 What Compilers Must Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.1.1 Mandatory ABI Guarantees at Call Boundaries . . . . . . . . . . . . . 96

9.1.2 Observable Guarantee vs Implementation Freedom . . . . . . . . . . . 97

9.1.3 Example 1: ABI-Visible Function (Compiler Must Preserve Contract) . 97

9.1.4 Example 2: When the Compiler Must Save/Restore . . . . . . . . . . . 98

9.2 What Programmers Must Never Assume . . . . . . . . . . . . . . . . . . . . . 98

9.2.1 Never Assume Specific Prologue/Epilogue Instructions . . . . . . . . . 98

9.2.2 Never Assume Volatile Registers Survive Calls . . . . . . . . . . . . . 99

9.2.3 Never Assume Stack Space Below SP Is Safe . . . . . . . . . . . . . . 99

9.2.4 Never Assume Struct Layout/Passing Without ABI Rules . . . . . . . . 100



10

9.3 Optimization vs ABI Preservation . . . . . . . . . . . . . . . . . . . . . . . . 100

9.3.1 Optimization Changes Everything Except the Contract . . . . . . . . . 100

9.3.2 Example 3: Same Source, Two Different Valid Shapes . . . . . . . . . 100

9.3.3 Example 4: ABI Boundary Wrapper Stabilizes Interop . . . . . . . . . 101

9.4 Inline Functions and ABI Transparency . . . . . . . . . . . . . . . . . . . . . 102

9.4.1 Inlining Removes the Call Boundary . . . . . . . . . . . . . . . . . . . 102

9.4.2 Example 5: Inline Changes Observability . . . . . . . . . . . . . . . . 102

9.4.3 Example 6: Force a Real Boundary for ABI Testing . . . . . . . . . . . 102

9.4.4 Example 7: Assembly Interop Requires Non-Inlined Stable Symbols . . 103

9.5 ABI Guarantee Checklist (Practical) . . . . . . . . . . . . . . . . . . . . . . . 103

10 Interfacing Handwritten Assembly with C/C++ 105
10.1 Writing ABI-Compliant Assembly Functions . . . . . . . . . . . . . . . . . . 105

10.1.1 Minimum ABI Checklist for an Assembly Function . . . . . . . . . . . 106

10.1.2 Example 1: Leaf Function, No Frame (Best Interop Case) . . . . . . . 106

10.1.3 Example 2: Leaf Function With Callee-Saved Local . . . . . . . . . . 106

10.1.4 Example 3: FP Function (double) ABI Boundary . . . . . . . . . . . . 107

10.2 Calling C/C++ Functions from Assembly . . . . . . . . . . . . . . . . . . . . 108

10.2.1 The Contract When You Are the Caller . . . . . . . . . . . . . . . . . 108

10.2.2 Example 4: Assembly Calls a C Function (Scalar Only) . . . . . . . . 108

10.2.3 Example 5: Preserving a Live Value Across the Call . . . . . . . . . . 109

10.2.4 Example 6: Mixed Integer and FP Call . . . . . . . . . . . . . . . . . 109

10.3 Common Prologue/Epilogue Templates . . . . . . . . . . . . . . . . . . . . . 110

10.3.1 Template A: Leaf, No Frame (Fastest) . . . . . . . . . . . . . . . . . . 110

10.3.2 Template B: Non-Leaf Minimal (Save LR Only) . . . . . . . . . . . . 111

10.3.3 Template C: Conventional Frame (Save FP/LR) . . . . . . . . . . . . . 111

10.3.4 Template D: Uses Callee-Saved Locals (Plus Optional FP/LR) . . . . . 112

10.4 Debugging ABI Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



11

10.4.1 The Four Most Common Failure Classes . . . . . . . . . . . . . . . . . 113

10.4.2 Example 7: Stack Misalignment Bug (Diagnostic Pattern) . . . . . . . 113

10.4.3 Correct Fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.4.4 Example 8: Callee-Saved Clobber Bug . . . . . . . . . . . . . . . . . 114

10.4.5 Correct Fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.4.6 A Practical Debugging Workflow (Tool-Agnostic) . . . . . . . . . . . . 115

11 Common Mistakes and Silent ABI Breakage 117
11.1 Stack Misalignment Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1.1 The Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1.2 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.1.3 Bad Example (Misalign Then Call) . . . . . . . . . . . . . . . . . . . 118

11.1.4 Correct Fix (Align Then Call) . . . . . . . . . . . . . . . . . . . . . . 118

11.1.5 Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2 Incorrect Register Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2.1 The Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2.2 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2.3 Bad Example (Clobber Preserved Register) . . . . . . . . . . . . . . . 119

11.2.4 Correct Fix (Save/Restore) . . . . . . . . . . . . . . . . . . . . . . . . 120

11.2.5 Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.3 Mismatched Function Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.3.1 The Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.3.2 The Most Common Mismatches . . . . . . . . . . . . . . . . . . . . . 121

11.3.3 Bad Example (Reads FP Argument From the Wrong Bank) . . . . . . . 121

11.3.4 Correct Fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.3.5 Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.4 Variadic Function Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.4.1 The Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



12

11.4.2 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.4.3 Bad Pattern (Assembly Variadic Callee Without Proper va list) . . . . . 123

11.4.4 Correct Strategy: Keep Variadic in C, Expose Fixed Wrapper . . . . . . 123

11.4.5 Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.5 Mixing ABIs Across Compilation Units . . . . . . . . . . . . . . . . . . . . . 124

11.5.1 The Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.5.2 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.5.3 Example: Packing Mismatch (Classic Silent Corruption) . . . . . . . . 125

11.5.4 Robust Fix Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.6 Practical ABI Breakage Checklist . . . . . . . . . . . . . . . . . . . . . . . . 126

12 Practical ABI Discipline Checklist 127
12.1 Mandatory Rules Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.1.1 Call Boundary Laws (Always True) . . . . . . . . . . . . . . . . . . . 127

12.1.2 One-Line Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.2 Safe Assembly–C/C++ Interoperability Checklist . . . . . . . . . . . . . . . . 128

12.2.1 A. Signature Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.2.2 B. Stack Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.2.3 C. Register Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12.2.4 D. C++ Runtime Discipline . . . . . . . . . . . . . . . . . . . . . . . 129

12.2.5 Example 1: ABI-Safe “Assembly Function Called from C” Template . 129

12.2.6 Example 2: ABI-Safe “Assembly Calls C” Template (Non-Leaf) . . . . 130

12.2.7 Example 3: ABI-Safe Mixed Integer + FP Boundary . . . . . . . . . . 130

12.3 ABI Validation Before Optimization . . . . . . . . . . . . . . . . . . . . . . . 131

12.3.1 Validation Order (Practical) . . . . . . . . . . . . . . . . . . . . . . . 131

12.3.2 Example 4: “ABI Probe” Pattern Using a Known C Callee . . . . . . . 132

12.4 When to Re-Read the Specification . . . . . . . . . . . . . . . . . . . . . . . . 133

12.4.1 Immediate Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



13

12.4.2 Rule of Thumb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.4.3 Final Discipline Statement . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendices 135
Appendix A — Minimal AAPCS64 Reference (Conceptual) . . . . . . . . . . . . . 135

Register Usage Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Argument and Return Rules Summary . . . . . . . . . . . . . . . . . . . . . . 136

Stack Alignment Rules Summary . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendix B — Cross-Architecture Comparison (Conceptual) . . . . . . . . . . . . . 139

AAPCS64 vs x86-64 System V ABI . . . . . . . . . . . . . . . . . . . . . . . 140

AAPCS64 vs Windows x64 ABI . . . . . . . . . . . . . . . . . . . . . . . . . 142

Architectural Reasons for Differences . . . . . . . . . . . . . . . . . . . . . . 144

Appendix C — Preparation for Advanced Topics . . . . . . . . . . . . . . . . . . . 145

Readiness for Exception Unwinding . . . . . . . . . . . . . . . . . . . . . . . 146

Readiness for JIT and FFI Systems . . . . . . . . . . . . . . . . . . . . . . . . 147

Readiness for OS Kernel Boundaries . . . . . . . . . . . . . . . . . . . . . . . 149

Final Readiness Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References 152
ARM Architecture Conceptual Manuals . . . . . . . . . . . . . . . . . . . . . . . . 152

AAPCS64 Specification (Conceptual Use) . . . . . . . . . . . . . . . . . . . . . . . 153

Compiler ABI Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Cross-References to Other Booklets in This Series . . . . . . . . . . . . . . . . . . . 154

Foundational Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Forward Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Final Reference Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Preface

Purpose of This Booklet

This booklet teaches the AArch64 Procedure Call Standard (AAPCS64) as a practical
engineering discipline for building reliable boundaries between:

• C/C++ code compiled by different compilers/flags,

• handwritten AArch64 assembly,

• and independent binary modules (static or dynamic) that must interoperate without

undefined behavior.

The goal is not memorizing register tables; it is mastering the invariants that keep programs

correct under optimization:

• how arguments are passed and returned,

• which registers must survive a call,

• what stack alignment and frame rules must be preserved,

• and where ABI violations become silent data corruption.

14



15

What You Will Be Able to Do After This Booklet

• Write ABI-correct AArch64 assembly functions callable from C/C++.

• Call C/C++ functions from assembly without breaking the compiler’s expectations.

• Diagnose wrong results caused by stack misalignment or register preservation bugs.

• Understand compiler-generated prologues/epilogues and what they guarantee.

Minimal “Hello ABI” Example

The simplest correct boundary is a leaf function that:

• uses only caller-saved registers, and

• does not break stack alignment (and ideally does not touch SP at all).

/* C/C++ side */

#include <cstdint>

extern "C" std::uint64_t add8_u64(std::uint64_t x);

std::uint64_t demo(std::uint64_t a) {

return add8_u64(a); /* must follow AAPCS64 */

}

/* AArch64 GAS side (AAPCS64-compliant leaf) */

.text

.global add8_u64

.type add8_u64, %function

add8_u64:

/* x0 holds the first integer argument and return value */

add x0, x0, #8

ret



16

Where AAPCS64 Fits in the CPU Programming Series

AAPCS64 is the bridge between:

• instruction-level execution (registers, flags, addressing),

• and system-level software (compilers, linkers, OS interfaces, libraries).

In this series, the progression is intentional:

• Earlier booklets explain how CPUs execute instructions and how registers/memory

behave.

• The ABI booklets establish stack and calling discipline as a cross-language contract.

• This booklet focuses on the AArch64 user-space ABI contract used by real C/C++

programs on modern ARM64 platforms.

Why This Booklet Exists (Even If You “Know Assembly”)

Knowing instructions is not enough. Most real bugs at the boundary are not “wrong

instruction” bugs; they are contract violation bugs:

• clobbering a callee-saved register used by the caller,

• misaligning SP (breaking ABI-required alignment),

• returning a value in the wrong register,

• or assuming a layout for aggregates that the ABI defines differently.



17

A Quick Map to Neighbor Booklets

• If you struggle with stack frames, revisit the booklet on stack and calling conventions

(architecture-neutral foundations).

• If you struggle with register meaning, revisit the AArch64 core architecture booklet

(register roles, PSTATE basics, addressing).

• If you need syscall boundary rules, use the syscall/privilege-boundary booklet (user vs

kernel entry discipline).

Prerequisites and Assumed Knowledge

This booklet assumes you can read short AArch64 code sequences and recognize:

• general-purpose registers x0--x30, sp, and lr (x30),

• basic load/store and branch instructions,

• and the idea of a function call changing control flow while preserving a caller-visible

state.

Required C/C++ Concepts

• Function signatures, return types, and parameter passing.

• The meaning of extern "C" as a linkage contract (name mangling boundary).

• Basic understanding that optimization may reorder/register-allocate aggressively, as

long as ABI rules are respected.



18

Tooling Assumptions (Minimal)

• You can build and link C/C++ and assembly together (any modern toolchain).

• You can inspect symbols and disassembly when debugging ABI issues.

Scope, Limits, and ABI Discipline Philosophy

Scope

This booklet covers the AAPCS64 calling convention needed for C/C++ interoperability in
practice:

• integer/pointer argument and return rules,

• floating-point/SIMD argument and return rules (at the ABI contract level),

• caller-saved vs callee-saved register preservation,

• stack alignment and safe frame construction,

• and the minimum rules for mixing compiler code with handwritten assembly.

Out of Scope (By Design)

To keep this booklet focused and reliable, the following are treated only conceptually or

deferred:

• C++ exception unwinding internals and personality routines (toolchain-specific).

• OS kernel ABIs and syscall conventions (separate booklet).

• Microarchitecture performance tuning (separate performance/caches booklets).

• Full DWARF unwind metadata authoring (advanced debugging topic).



19

ABI Discipline Philosophy: “Correct First, Fast Second”

At ABI boundaries, correctness is a property of invariants. Performance only matters after

invariants hold. Follow this discipline:

• Preserve what must be preserved (callee-saved registers).

• Align what must be aligned (stack pointer rules).

• Return where the ABI expects (return registers and conventions).

• Never guess layouts (especially for aggregates); use ABI rules or let the compiler do it.

A “Wrong but Looks Fine” Example (Register Preservation Bug)

The following assembly violates ABI discipline by clobbering a register that the caller expects

to survive across the call. It may work in a small test and fail under optimization or in a larger

program.

/* BAD: clobbers a callee-saved register (example uses x19 as a

preserved register) */↪→

.text

.global bad_clobber

.type bad_clobber, %function

bad_clobber:

/* x19 is commonly treated as callee-saved by the ABI contract */

mov x19, #1234 /* ABI violation: overwrites caller's

state */↪→

add x0, x0, #1

ret

Correct approach: if you use a callee-saved register, save/restore it and keep stack alignment

intact.



20

/* GOOD: saves/restores preserved state and keeps stack aligned */

.text

.global good_preserve

.type good_preserve, %function

good_preserve:

/* Maintain 16-byte alignment when adjusting SP */

sub sp, sp, #16

str x19, [sp, #0] /* save callee-saved register */

/* body */

mov x19, #1234 /* now allowed */

add x0, x0, #1

/* restore */

ldr x19, [sp, #0]

add sp, sp, #16

ret

A Minimal Non-Leaf Template (Calls Another Function)

Any function that calls another function must assume caller-saved registers can be destroyed

by the callee. A safe minimal template saves what it must keep, and keeps SP aligned.

/* Non-leaf example: calls an external C function: uint64_t

g(uint64_t); */↪→

.text

.global f_calls_g

.type f_calls_g, %function

f_calls_g:

/* Save LR if you need it after the call; keep stack aligned */

sub sp, sp, #16

str x30, [sp, #8] /* save return address (LR) */



21

/* x0 already contains the first argument; call g(x0) */

bl g /* may clobber caller-saved regs */

/* Restore LR and return */

ldr x30, [sp, #8]

add sp, sp, #16

ret



Chapter 1

AAPCS64 Overview and Design Goals

1.1 What a Calling Convention Really Defines

A calling convention is a binary contract that allows separately-compiled code to call each

other correctly. It defines what must be true at every call boundary so that:

• a caller can pass arguments and receive results,

• a callee can freely use some CPU state while preserving required state,

• and both sides remain correct under compiler optimization and across translation units.

1.1.1 The Four Things Every Calling Convention Must Define

1. Argument passing: where each parameter goes (registers vs stack) and in what order.

2. Return values: where results are placed (which register(s), or via hidden pointers).

3. Register volatility: which registers a callee may destroy (caller-saved) and which it

must preserve (callee-saved).

22



23

4. Stack discipline: stack direction, alignment rules, and what the callee may assume

about SP.

1.1.2 What It Does Not Define

A calling convention does not define the semantics of the language, algorithms, or the

optimizer. It only defines the interface invariants. For example, it does not require a specific

prologue/epilogue sequence; it requires that the observable contract is satisfied (preservation,

alignment, and correct parameter/result mapping).

1.1.3 Interoperability Is “State Management”

When C/C++ interoperate with assembly, your real job is to manage state across the
boundary:

• preserve what must be preserved,

• align what must be aligned,

• and avoid assuming layouts or side effects not guaranteed by the ABI.

1.1.4 Example 1: One-Argument, One-Return (Register Contract)

In AAPCS64, the first integer/pointer argument is passed in x0, and the integer/pointer return

value is placed in x0. This makes simple leaf functions extremely efficient and safe.

/* C/C++ caller */

#include <cstdint>

extern "C" std::uint64_t inc1(std::uint64_t x);

std::uint64_t demo(std::uint64_t a) {



24

return inc1(a);

}

/* AArch64 GAS callee: x0 = arg0, x0 = return */

.text

.global inc1

.type inc1, %function

inc1:

add x0, x0, #1

ret

1.1.5 Example 2: Caller-Saved Reality (Why Values “Disappear”)

Caller-saved registers may be clobbered by a call. If you keep a live value only in caller-saved

registers and then call another function, you must assume it can be destroyed.

/* Concept: preserve a value across a call using the stack */

.text

.global keep_value_across_call

.type keep_value_across_call, %function

keep_value_across_call:

/* Suppose x0 has some important value we need after calling g */

sub sp, sp, #16

str x0, [sp, #0] /* save live value */

bl g /* g may clobber caller-saved regs */

ldr x0, [sp, #0] /* restore the saved value */

add sp, sp, #16

ret



25

1.2 AAPCS64 in the ARM Architecture Ecosystem

1.2.1 ISA vs ABI: Two Different Documents

AArch64 is the instruction set architecture (ISA): it defines registers, instructions, exception

levels, and the architectural memory model.

AAPCS64 is the procedure call standard (ABI contract): it defines how software uses that
ISA at call boundaries. Two compilers can generate different instruction sequences, but both

must satisfy the same ABI rules to interoperate.

1.2.2 Ecosystem Layers (Where AAPCS64 Sits)

Think in layers:

• ISA layer: AArch64 instructions, registers, exception levels.

• ABI layer: AAPCS64 calling convention, stack alignment rules, register preservation

rules.

• Platform ABI layer: OS runtime choices, object format (ELF/Mach-O/PE), dynamic

linker conventions.

• Language ABI layer: C++ name mangling, exception handling model, RTTI

conventions (toolchain/platform-specific).

This booklet is about AAPCS64 as the interop contract for C/C++ and assembly. Platform-

specific C++ ABI details are referenced only conceptually and are handled in advanced

booklets.



26

1.2.3 Why AAPCS64 Enables “Mix-and-Match”

When a C function compiled by one toolchain can call an assembly function written by you, it

is because both follow:

• the same register argument/return mapping,

• the same definition of preserved registers,

• and the same stack alignment invariants.

1.2.4 Example: Mixed Integer and FP Arguments

AAPCS64 splits integer/pointer and floating-point argument passing into separate register

banks (GPRs and SIMD/FP registers). The contract is what makes mixed signatures callable

without ambiguity.

/* C/C++ signature with mixed arguments */

extern "C" double mix(std::uint64_t a, double x, std::uint64_t b, double

y);↪→

/* AArch64 GAS sketch (concept-only mapping) */

.text

.global mix

.type mix, %function

mix:

/* a in x0, x in v0 (d0), b in x1, y in v1 (d1) */

/* body omitted: the point is distinct register banks */

fadd d0, d0, d1 /* return double in d0 */

ret



27

1.3 ABI Stability and Long-Term Compatibility

1.3.1 Why ABI Stability Matters

Large systems survive for decades because ABI contracts remain stable. ABI stability allows:

• updating a shared library without recompiling every consumer,

• linking modules built by different teams at different times,

• and shipping prebuilt binaries that remain interoperable across toolchain upgrades.

A stable ABI is more valuable than any single optimizer trick because it protects independent
evolution of components.

1.3.2 What Makes an ABI “Stable”

An ABI is stable when its observable rules do not change:

• which registers carry which arguments/returns,

• which registers must be preserved,

• the required stack alignment at public interfaces,

• and the canonical rules for aggregates and variadic calls.

The compiler may change instruction selection, scheduling, and register allocation freely as

long as these invariants remain true.



28

1.3.3 Long-Term Compatibility Strategy

For long-lived software, treat ABI as a public boundary:

• Keep exported interfaces small and explicit.

• Prefer C-compatible boundaries for stable plugin/FFI interfaces.

• Avoid exposing C++ types (templates, exceptions, STL) across module boundaries

unless the entire toolchain and platform ABI are controlled.

1.3.4 Example: Stable C ABI Wrapper Around C++

This pattern keeps the external ABI stable even if internal C++ implementation changes.

/* Public ABI: stable C boundary */

extern "C" void* create_obj();

extern "C" void destroy_obj(void* p);

extern "C" std::uint64_t compute_obj(void* p, std::uint64_t x);

/* Internal: C++ implementation can evolve */

#include <cstdint>

#include <new>

struct Obj {

std::uint64_t bias = 7;

std::uint64_t compute(std::uint64_t x) const { return x + bias; }

};

extern "C" void* create_obj() {

return new (std::nothrow) Obj{};

}

extern "C" void destroy_obj(void* p) {



29

delete static_cast<Obj*>(p);

}

extern "C" std::uint64_t compute_obj(void* p, std::uint64_t x) {

return static_cast<Obj*>(p)->compute(x);

}

1.4 User Space vs Kernel Space Conventions (High-Level)

1.4.1 Two Worlds, Two Contracts

AAPCS64 defines the user-space procedure call standard for typical application code. Kernel

entry/exit is a different boundary:

• user-space function calls preserve an ABI-defined contract between two pieces of user
code,

• kernel transitions preserve an OS-defined contract between user mode and privileged
mode.

These contracts overlap in the sense that both must preserve architectural correctness, but their

goals differ.

1.4.2 High-Level Differences

• Privilege boundary: kernel entry changes exception level and uses privileged state.

• Entry mechanism: kernel entry is typically via a defined instruction or exception path,

not a normal bl.

• Register meaning: an OS syscall ABI may reuse registers for syscall numbers and

arguments; it is not automatically “the same as AAPCS64 calls”.



30

• State saving: kernel must save/restore enough state to safely return to user code, often

beyond what a normal function call preserves.

1.4.3 Why You Must Not Mix Them Mentally

A common error is to assume:

“If I know AAPCS64, I know the syscall convention.”

This is false. The syscall boundary is an OS-defined ABI layered on top of the architecture

exception mechanism.

1.4.4 Conceptual Example: “Call” vs “Privilege Entry”

/* Normal call boundary: AAPCS64 rules */

.text

.global normal_call_example

.type normal_call_example, %function

normal_call_example:

/* x0 = arg0 */

bl some_function /* normal function call */

ret

/* Privilege boundary: conceptual syscall-style entry (OS-defined

contract) */↪→

.text

.global kernel_entry_concept

.type kernel_entry_concept, %function

kernel_entry_concept:

/* The OS may require a syscall number in a specific register and

args in others */↪→



31

/* Entry instruction triggers an exception-level transition

(concept only) */↪→

/* Do NOT treat this like a normal 'bl' call */

/* placeholder: entry mechanism is OS-specific and handled in a

dedicated booklet */↪→

ret

1.4.5 Booklet Separation Policy

This booklet treats kernel conventions only at a high level to prevent ABI confusion. The

complete syscall entry ABI, register usage, and signal/exception interactions belong to the

dedicated privilege-boundary/syscall booklet in this series.



Chapter 2

Fundamental Register Roles in AAPCS64

2.1 General-Purpose Registers (X0–X30): Conceptual Roles

AArch64 provides 31 general-purpose registers x0--x30 (64-bit). Their architectural
meaning is generic, but the ABI assigns conventional roles so independently built code can

interoperate.

2.1.1 The ABI View: Registers as an Interface Contract

In AAPCS64, registers have roles at call boundaries:

• Parameter/result registers: where values enter and leave a function.

• Temporaries: scratch registers that a call may freely clobber.

• Preserved registers: registers whose values must survive a call.

• Special-purpose: link register and platform register conventions.

32



33

2.1.2 Canonical Concepts You Must Remember

• x0--x7 are the primary integer/pointer argument registers.

• x0 is also the primary integer/pointer return register.

• x30 is the link register (LR) holding the return address after a call.

• x29 is commonly used as a frame pointer (FP) when a frame is established.

• Some registers are callee-saved: if you use them, you must restore them before

returning.

2.1.3 A Practical Mental Model

Treat the call boundary like a strict checkpoint:

• the caller sets up x0--x7 (and stack overflow arguments),

• the callee consumes them and is free to overwrite volatile state,

• then the callee returns the result in x0 (or via defined multi-register/indirect rules),

• while preserved registers remain unchanged from the caller’s view.

2.2 Argument Registers vs Temporary Registers

2.2.1 Argument Registers Are Not “Yours” After a Call

A frequent source of bugs is assuming that argument registers keep their values across calls.

Under AAPCS64:

• argument registers (e.g., x0--x7) are typically caller-saved,



34

• therefore a function call may overwrite them,

• so if a value in x0 matters after a call, you must preserve it.

2.2.2 Example 1: Losing an Argument Across a Call (Bug Pattern)

/* BAD pattern: expects x0 to still hold the original value after

calling helper */↪→

.text

.global bad_use_after_call

.type bad_use_after_call, %function

bad_use_after_call:

/* x0 = input */

bl helper /* helper may clobber x0..x7 */

add x0, x0, #1 /* BUG: x0 may no longer be the

original input */↪→

ret

2.2.3 Example 2: Preserve the Value Across the Call (Correct)

/* GOOD: preserve x0 across the call using the stack (keeps SP

aligned) */↪→

.text

.global good_use_after_call

.type good_use_after_call, %function

good_use_after_call:

sub sp, sp, #16

str x0, [sp, #0] /* save original input */

bl helper /* may clobber caller-saved regs */



35

ldr x0, [sp, #0] /* restore original input */

add sp, sp, #16

add x0, x0, #1

ret

2.2.4 When to Use a Preserved Register Instead of the Stack

If you already need a stack frame, saving values on the stack is straightforward and universal.

If performance or structure suggests using a preserved register, you may do so only if you

follow callee-saved rules.

2.3 Callee-Saved vs Caller-Saved Discipline

2.3.1 Definitions (ABI Contract)

Caller-saved (volatile) registers:

• may be overwritten by the callee,

• so the caller must save them if it needs their values after the call.

Callee-saved (non-volatile) registers:

• must be preserved by the callee,

• so if the callee uses them, it must save/restore them before returning.

This is not “style”. It is the interoperability law that makes separately-compiled code safe.



36

2.3.2 Why Compilers Rely on This

Optimizing compilers allocate long-lived variables into callee-saved registers specifically

because they are guaranteed to survive calls. If you violate that, you cause:

• silent corruption,

• failures that appear only with optimization,

• and bugs that vanish under debugging (Heisenbugs).

2.3.3 Example 3: Clobbering a Preserved Register (Catastrophic Bug)

/* BAD: clobbers a callee-saved register (example uses x19 as

preserved) */↪→

.text

.global bad_clobber_x19

.type bad_clobber_x19, %function

bad_clobber_x19:

mov x19, #0 /* ABI violation */

add x0, x0, #1

ret

2.3.4 Example 4: Correct Use of a Callee-Saved Register

/* GOOD: save/restore x19, keep SP 16-byte aligned */

.text

.global good_use_x19

.type good_use_x19, %function

good_use_x19:

sub sp, sp, #16



37

str x19, [sp, #0] /* save preserved register */

mov x19, x0 /* use x19 as a long-lived local */

add x19, x19, #42

mov x0, x19 /* return in x0 */

ldr x19, [sp, #0] /* restore preserved register */

add sp, sp, #16

ret

2.3.5 A Reliable Rule for Handwritten Assembly

If you are unsure whether a register is preserved or volatile:

• treat it as volatile and save what you need,

• or use a strict function template that saves/restores any preserved register you touch,

• and never ship assembly that “seems to work” without being provably ABI-correct.

2.4 Zero Register (XZR) and Stack Pointer (SP) Constraints

2.4.1 XZR: Reads as Zero, Writes Discard

XZR is not a normal general-purpose register:

• reading xzr produces 0,

• writing to xzr discards the result.

This is useful for common idioms:



38

• zeroing a register without loading an immediate,

• comparisons against zero,

• and forming instructions without dedicating a register to constant zero.

2.4.2 Example 5: Efficient Zeroing and Zero-Compare

/* x1 = 0, then test x0 == 0 without allocating a constant register

*/↪→

.text

.global zero_idioms

.type zero_idioms, %function

zero_idioms:

mov x1, xzr /* x1 = 0 */

cmp x0, xzr /* sets flags based on x0 - 0 */

cset x0, eq /* x0 = 1 if x0 == 0 else 0 */

ret

2.4.3 SP: Special Register With Hard ABI Constraints

SP is not a general register. The ABI requires strict rules because:

• the stack is shared infrastructure for calls, spills, locals, and unwinding,

• and many components (compiler, debugger, unwinder, sanitizer) assume valid stack

discipline.

2.4.4 The Non-Negotiable SP Rules for This Booklet

• SP must remain 16-byte aligned at public call boundaries.



39

• Any SP adjustment must preserve that alignment.

• Stack allocation must be undone before ret.

• Do not treat sp like a scratch register.

2.4.5 Example 6: Correct Stack Allocation (Aligned)

/* Allocate 32 bytes (multiple of 16) for locals */

.text

.global aligned_stack_locals

.type aligned_stack_locals, %function

aligned_stack_locals:

sub sp, sp, #32

/* use [sp, #0..31] as local storage */

add x0, x0, #5

add sp, sp, #32

ret

2.4.6 Example 7: Misalignment Bug (Often Silent, Always Dangerous)

/* BAD: breaks 16-byte alignment */

.text

.global misalign_sp_bug

.type misalign_sp_bug, %function

misalign_sp_bug:

sub sp, sp, #8 /* ABI violation: SP no longer

16-byte aligned */↪→

/* may appear to work until a callee assumes aligned stack for

spills or SIMD */↪→

add x0, x0, #1



40

add sp, sp, #8

ret

2.4.7 Practical Guidance

• Always allocate stack in multiples of 16 bytes.

• Prefer storing paired registers with aligned slots when building larger frames.

• If your function calls other functions, treat stack alignment as a precondition you must
maintain.



Chapter 3

Floating-Point and SIMD Register
Convention

3.1 V0–V7: Floating-Point Argument Passing

AAPCS64 defines a separate register bank for floating-point and SIMD arguments using the

vector registers v0--v31. At the ABI boundary:

• floating-point scalar arguments (float, double) are passed in v0--v7 (using the s

or d view: s0/d0..),

• small vector/SIMD arguments may also be passed in v0--v7 according to their ABI

classification,

• floating-point return values are returned in v0 (e.g., s0 or d0).

This separation is essential: it allows a single function signature to carry both integer/pointer

and FP/vector values efficiently without forcing everything onto the stack.

41



42

3.1.1 Example 1: Pure Floating-Point Call Boundary (double)

/* C/C++ */

extern "C" double add_d(double a, double b);

double demo(double x, double y) {

return add_d(x, y);

}

/* AArch64 GAS: a in d0, b in d1, return in d0 */

.text

.global add_d

.type add_d, %function

add_d:

fadd d0, d0, d1

ret

3.1.2 Example 2: float Variant (s-register view)

/* C/C++ */

extern "C" float mul_f(float a, float b);

float demo_f(float x, float y) {

return mul_f(x, y);

}

/* AArch64 GAS: a in s0, b in s1, return in s0 */

.text

.global mul_f

.type mul_f, %function

mul_f:

fmul s0, s0, s1

ret



43

3.1.3 Example 3: Overflow to Stack (Conceptual)

v0--v7 provide the primary FP argument slots. If a function has more FP arguments than

available registers, the ABI spills remaining arguments to the stack according to the ABI

layout rules. This booklet treats overflow as a conceptual rule now; the exact stack layout

mechanics are covered in the stack/argument chapters.

3.2 Callee-Saved SIMD Registers

3.2.1 Volatile vs Preserved in the SIMD Bank

Just as with general-purpose registers, AAPCS64 defines which SIMD registers are:

• caller-saved (volatile): may be clobbered by a call,

• callee-saved (preserved): must survive across a call.

This matters immediately when you write assembly that:

• uses vector registers for temporaries,

• calls other functions,

• or expects vector state to survive across calls.

3.2.2 Example 4: Volatile SIMD Register Clobber (Bug Pattern)

/* BAD: caller assumes v0 survives a call (it generally must not) */

.text

.global bad_assume_v0_survives

.type bad_assume_v0_survives, %function

bad_assume_v0_survives:



44

/* d0 holds a live value */

bl helper_fp /* helper_fp may clobber v0..v7 and

more */↪→

fadd d0, d0, d0 /* BUG: d0 may no longer be the

original value */↪→

ret

3.2.3 Example 5: Preserve a Live FP Value Across a Call (Spill to Stack)

A safe, universal method is to spill the live FP value to the stack before the call and restore it

after. Keep sp aligned.

/* GOOD: preserves d0 across the call using stack spill */

.text

.global good_preserve_d0_across_call

.type good_preserve_d0_across_call, %function

good_preserve_d0_across_call:

sub sp, sp, #16

str d0, [sp, #0] /* save scalar FP value */

bl helper_fp

ldr d0, [sp, #0] /* restore scalar FP value */

add sp, sp, #16

fadd d0, d0, d0

ret



45

3.2.4 Example 6: Using a Preserved SIMD Register (Template)

If you choose to use a callee-saved SIMD register as a long-lived local, you must save/restore

it. The safest form is storing it to the stack.

/* Template: save/restore a SIMD register before using it as a

long-lived local */↪→

.text

.global use_preserved_simd_template

.type use_preserved_simd_template, %function

use_preserved_simd_template:

sub sp, sp, #32

/* Save a 128-bit vector register (q-view) into aligned stack

space */↪→

str q16, [sp, #0] /* example uses q16 as a preserved

local */↪→

/* body */

fmov d0, #1.0 /* placeholder work */

/* restore */

ldr q16, [sp, #0]

add sp, sp, #32

ret

3.3 Mixed Integer and Floating-Point Arguments

3.3.1 Two Independent Allocation Streams

AAPCS64 allocates integer/pointer arguments primarily from x0--x7 and FP/SIMD

arguments primarily from v0--v7. These are independent streams:



46

• integer arguments do not consume FP slots,

• FP arguments do not consume integer slots,

• the mapping is determined by the function signature and ABI classification.

3.3.2 Example 7: Mixed Signature With Clear Mapping

/* C/C++ */

#include <cstdint>

extern "C" double mix2(std::uint64_t a, double x, std::uint64_t b, double

y);↪→

/* Conceptual ABI mapping:

a -> x0

x -> d0

b -> x1

y -> d1

return -> d0

*/

/* AArch64 GAS: mixed argument bank usage */

.text

.global mix2

.type mix2, %function

mix2:

/* a in x0, b in x1, x in d0, y in d1 */

/* Use integers without touching FP regs, and FP without touching

integer regs */↪→

add x0, x0, x1 /* example integer work (not returned

here) */↪→



47

fadd d0, d0, d1 /* return FP result in d0 */

ret

3.3.3 Example 8: A Common Mistake (Wrong Bank Assumption)

/* BAD: assumes the second parameter (double) is in x1; it is in d0

*/↪→

.text

.global bad_mixed_read

.type bad_mixed_read, %function

bad_mixed_read:

/* WRONG: interpreting x1 as holding a double bits argument */

/* This violates the ABI mapping and yields nonsense */

add x0, x0, x1

ret

3.4 ABI Guarantees for Vector Register Preservation

3.4.1 What the ABI Actually Guarantees

At a call boundary, the ABI guarantees preservation only for the registers designated
as callee-saved. Everything else is assumed volatile and may be clobbered by the call.

Therefore:

• you may keep long-lived FP/vector locals in preserved SIMD registers only if you

follow save/restore rules,

• you must assume argument/temporary SIMD registers can be overwritten by any call,

• and you must preserve alignment and proper stack space when spilling 128-bit vectors.



48

3.4.2 Example 9: Preserving a Vector Across a Call

/* Preserve a 128-bit vector value across a call using stack storage

*/↪→

.text

.global preserve_vector_across_call

.type preserve_vector_across_call, %function

preserve_vector_across_call:

/* q0 holds a live vector value we need after calling helper_vec

*/↪→

sub sp, sp, #32

str q0, [sp, #0] /* save 16 bytes */

/* Keep additional space for alignment and future growth */

bl helper_vec

ldr q0, [sp, #0] /* restore live vector */

add sp, sp, #32

ret

3.4.3 Example 10: ABI-Safe Rule Set for SIMD in Handwritten Assembly

• Treat v0--v7 as argument/return/volatile registers: do not rely on them surviving

calls.

• If you must keep a vector value across a call, spill it (stack) or move it into a preserved

SIMD register and save/restore that preserved register.

• Always allocate stack space in multiples of 16 bytes and keep sp aligned at call

boundaries.



49

• When storing vectors, use qN view (str/ldr qN) and ensure proper alignment and

space.

3.4.4 One-Page Practical Template (Non-Leaf FP Function)

/* Template: non-leaf FP function that needs to keep d0 across a call

*/↪→

.text

.global fp_nonleaf_template

.type fp_nonleaf_template, %function

fp_nonleaf_template:

sub sp, sp, #16

str d0, [sp, #0] /* save incoming d0 */

bl helper_fp /* may clobber v0.. */

ldr d0, [sp, #0] /* restore d0 */

add sp, sp, #16

fadd d0, d0, d0

ret



Chapter 4

Stack Layout and Alignment Rules

4.1 Stack Growth Direction and Alignment Requirements

4.1.1 Downward-Growing Stack (Architectural Convention)

In AArch64 user-space code following AAPCS64, the stack is a contiguous memory region

addressed by SP that conventionally grows toward lower addresses:

• allocating stack space subtracts from SP,

• deallocating stack space adds to SP.

This convention enables efficient call nesting, local storage, register spills, and interoperation

with debuggers and unwinders.

4.1.2 What the ABI Requires vs What the CPU Allows

The CPU allows many address computations, but the ABI imposes constraints so all

components (compiler, assembler, linker, debugger, unwinder, sanitizer) agree on:

50



51

• when the stack is valid,

• how it is aligned,

• and what can be assumed at call boundaries.

4.1.3 Example 1: Minimal Stack Allocation Pattern

/* Allocate 16 bytes, use it, then deallocate (aligned and

reversible) */↪→

.text

.global stack_alloc_16

.type stack_alloc_16, %function

stack_alloc_16:

sub sp, sp, #16

/* local storage: [sp, #0..15] */

add x0, x0, #1

add sp, sp, #16

ret

4.2 Mandatory 16-Byte Stack Alignment

4.2.1 The Non-Negotiable Rule

AAPCS64 requires that SP be 16-byte aligned at public call boundaries. Practically:

• On entry to a function (as called by conforming code), SP % 16 == 0.

• Before executing bl to call another function, SP % 16 == 0 must still hold.

• Any stack allocation must keep alignment intact, so allocate in multiples of 16 bytes.



52

This is a correctness rule, not an optimization hint. Many implementations assume this

alignment for efficient spills and for correct behavior of some instructions and runtime

components.

4.2.2 Example 2: Correct Non-Leaf Function (Keeps Alignment)

/* Non-leaf: calls another function and preserves 16-byte alignment

*/↪→

.text

.global nonleaf_aligned

.type nonleaf_aligned, %function

nonleaf_aligned:

sub sp, sp, #16

str x30, [sp, #8] /* save LR if needed after the call

*/↪→

bl helper /* SP is aligned here */

ldr x30, [sp, #8]

add sp, sp, #16

ret

4.2.3 Example 3: Misalignment Bug That Often Appears “Random”

/* BAD: subtracts 8 -> SP misaligned, then calls helper */

.text

.global nonleaf_misaligned_bug

.type nonleaf_misaligned_bug, %function

nonleaf_misaligned_bug:



53

sub sp, sp, #8 /* ABI violation: SP no longer

16-byte aligned */↪→

bl helper /* Undefined behavior at the ABI

boundary */↪→

add sp, sp, #8

ret

4.2.4 Practical Rule

If you write assembly that calls anything:

• allocate stack space in multiples of 16 bytes,

• and check alignment before bl.

4.3 Stack Frame Structure (Conceptual)

A stack frame is the region of stack memory a function uses to manage:

• preserved registers (callee-saved) it touches,

• saved return address (LR) if it is non-leaf or if needed for debugging/unwinding,

• local variables and temporary spill slots,

• and outgoing stack arguments for calls (when register arguments overflow).

4.3.1 Conceptual Layout (One Common Pattern)

A typical frame (conceptual) may contain:

• saved FP/LR (if a frame pointer is used),



54

• callee-saved GPRs (x19--x28 as needed),

• callee-saved SIMD (v8--v15 as needed, stored as 128-bit),

• locals/spills (compiler-chosen layout),

• optional outgoing argument area (if needed).

The ABI does not force a single exact layout for all frames; it forces the observable
correctness properties:

• preserved registers must be restored,

• stack must be properly aligned at calls,

• and SP must be restored on return.

4.3.2 Example 4: Canonical Save/Restore of FP and LR

When a function establishes a conventional frame pointer, a common pattern is saving x29

(FP) and x30 (LR), then setting FP.

/* Conceptual framed function (structure example, not the only valid

one) */↪→

.text

.global framed_function

.type framed_function, %function

framed_function:

sub sp, sp, #16

stp x29, x30, [sp, #0] /* save FP and LR */

mov x29, sp /* establish frame pointer */

/* body */



55

add x0, x0, #7

ldp x29, x30, [sp, #0] /* restore FP and LR */

add sp, sp, #16

ret

4.3.3 Example 5: Saving Multiple Callee-Saved Registers

/* Save/restore callee-saved registers in aligned pairs */

.text

.global save_x19_x20

.type save_x19_x20, %function

save_x19_x20:

sub sp, sp, #32

stp x19, x20, [sp, #0] /* preserve regs if used */

stp x29, x30, [sp, #16] /* optional frame bookkeeping */

mov x29, sp

/* body: use x19/x20 safely */

mov x19, x0

mov x20, x1

add x0, x19, x20

ldp x29, x30, [sp, #16]

ldp x19, x20, [sp, #0]

add sp, sp, #32

ret



56

4.4 Red Zone: Why It Does Not Exist in AArch64

4.4.1 What “Red Zone” Means (Concept)

A “red zone” is an ABI feature where a fixed area below the current stack pointer may be used

by leaf functions without adjusting SP. Some ABIs allow it to avoid stack pointer updates.

4.4.2 AAPCS64 Policy: Do Not Assume Untouched Space Below SP

In AAPCS64 practice, you must not assume that memory below SP is safe to use without

allocating it, because:

• asynchronous events (interrupts, exceptions, signals) and runtime mechanisms may use

the stack,

• system software may clobber below SP when handling an event,

• and portable ABI-correct code must treat SP as the boundary of valid stack allocation.

Therefore, there is no red-zone rule you can rely on for correctness in AArch64 AAPCS64

user-space interoperability. If you need stack storage, you must allocate it by adjusting SP.

4.4.3 Example 6: The Temptation (Do Not Do This)

/* BAD idea: using memory below SP without allocating it */

.text

.global redzone_like_bug

.type redzone_like_bug, %function

redzone_like_bug:

/* ABI-unsafe: writing below SP without reserving space */

str x0, [sp, #-8] /* do not rely on this being safe */



57

ldr x0, [sp, #-8]

ret

4.4.4 Example 7: Correct Replacement (Allocate and Use)

/* GOOD: allocate 16 bytes (aligned), then use it */

.text

.global safe_local_store

.type safe_local_store, %function

safe_local_store:

sub sp, sp, #16

str x0, [sp, #0]

ldr x0, [sp, #0]

add sp, sp, #16

ret

4.4.5 ABI Discipline Summary

• No red-zone assumptions.

• If you store to the stack, reserve space first.

• Keep SP 16-byte aligned at call boundaries.

• Restore SP exactly before returning.



Chapter 5

Function Prologue and Epilogue
Mechanics

5.1 Minimal Leaf Function Frames

A leaf function does not call any other function. Under AAPCS64, the safest and fastest leaf

is one that:

• uses only caller-saved registers (x0--x18 as volatile locals),

• does not require stack locals or spills,

• and therefore needs no stack frame at all.

5.1.1 Example 1: Zero-Frame Leaf (Best Case)

/* Leaf: no calls, no stack, returns in x0 */

.text

.global leaf_add8

58



59

.type leaf_add8, %function

leaf_add8:

add x0, x0, #8

ret

5.1.2 When a Leaf Still Needs a Frame

A leaf may still require a frame if it:

• needs local stack storage (arrays, spills, large temporaries),

• uses callee-saved registers that must be preserved,

• or must keep strict unwind/debug conventions in a given build mode.

5.1.3 Example 2: Leaf With Stack Locals (Aligned)

/* Leaf: uses stack local storage, keeps SP aligned */

.text

.global leaf_with_locals

.type leaf_with_locals, %function

leaf_with_locals:

sub sp, sp, #16

str x0, [sp, #0] /* local slot */

ldr x1, [sp, #0]

add x0, x1, #1

add sp, sp, #16

ret



60

5.2 Non-Leaf Function Stack Frames

A non-leaf function calls other functions. The moment you execute bl, you must assume:

• caller-saved registers may be clobbered by the callee,

• LR (x30) is overwritten by the next call,

• and SP must remain 16-byte aligned at the call boundary.

5.2.1 Minimal Non-Leaf Requirement: Protect the Return Address

If a function calls another function and then needs to return, it must ensure its own return

address is not lost. Common strategies:

• save LR on the stack,

• or move it into a callee-saved register (and preserve that register),

• or establish a standard frame with FP/LR save.

5.2.2 Example 3: Minimal Non-Leaf Saving Only LR (Aligned)

/* Non-leaf: saves LR because bl overwrites x30 */

.text

.global nonleaf_save_lr

.type nonleaf_save_lr, %function

nonleaf_save_lr:

sub sp, sp, #16

str x30, [sp, #8] /* save LR in aligned frame */

bl helper /* may clobber volatile regs */



61

ldr x30, [sp, #8]

add sp, sp, #16

ret

5.2.3 Example 4: Non-Leaf With Locals and Saved Registers

/* Non-leaf: keeps a local across a call; uses stack slots */

.text

.global nonleaf_keep_local

.type nonleaf_keep_local, %function

nonleaf_keep_local:

sub sp, sp, #32

str x30, [sp, #24] /* save LR */

str x0, [sp, #0] /* save input local */

bl helper

ldr x1, [sp, #0] /* restore local */

add x0, x1, #1

ldr x30, [sp, #24]

add sp, sp, #32

ret

5.3 Saving and Restoring Registers Correctly

5.3.1 The Rule

If you modify a callee-saved register, you must restore it before returning.



62

This includes:

• preserved GPRs used as locals (commonly x19--x28),

• preserved SIMD registers when used as locals,

• and frame-related registers if you establish a conventional frame.

5.3.2 Correctness Over Style

The ABI does not require a single instruction pattern, but it requires the observable effect:

• on return, preserved registers must hold the same values they had at entry,

• SP must be restored exactly,

• and the function must branch to the correct return address.

5.3.3 Example 5: Correct Save/Restore of a Callee-Saved GPR

/* Uses x19 as a long-lived local; saves/restores it */

.text

.global use_x19_correctly

.type use_x19_correctly, %function

use_x19_correctly:

sub sp, sp, #16

str x19, [sp, #0] /* save preserved register */

mov x19, x0

add x19, x19, #42

mov x0, x19 /* return value */



63

ldr x19, [sp, #0] /* restore preserved register */

add sp, sp, #16

ret

5.3.4 Example 6: Saving/Restoring Multiple Registers Efficiently

Paired load/store reduces instruction count and naturally fits aligned frame layouts.

/* Save/restore two preserved registers as a pair */

.text

.global save_pair_x19_x20

.type save_pair_x19_x20, %function

save_pair_x19_x20:

sub sp, sp, #16

stp x19, x20, [sp, #0]

/* body: safe use */

add x19, x0, #1

add x20, x1, #2

add x0, x19, x20

ldp x19, x20, [sp, #0]

add sp, sp, #16

ret

5.3.5 Example 7: Common Bug — Save Without Restore (Silent
Corruption)

/* BAD: saves x19 but never restores it */

.text



64

.global bad_missing_restore

.type bad_missing_restore, %function

bad_missing_restore:

sub sp, sp, #16

str x19, [sp, #0]

mov x19, #7

add x0, x0, #1

add sp, sp, #16

ret /* ABI violation: x19 modified */

5.3.6 A Robust Discipline Template

If your handwritten assembly is part of a larger system, adopt a template mindset:

• declare which preserved registers you will use,

• save them once in the prologue,

• restore them once in the epilogue,

• never early-return without restoring.

5.4 Frame Pointer (X29) Usage and Optionality

5.4.1 What X29 Means in Practice

x29 is commonly used as the frame pointer (FP) when a function establishes a conventional

frame. This provides:

• stable addressing for locals and saved registers,

• easier debugging and stack walking,



65

• more predictable unwind metadata generation in some build modes.

5.4.2 Optionality: You Can Omit FP

In optimized builds, compilers often omit the frame pointer and address locals relative to SP

directly. This is valid as long as:

• the function preserves ABI-required registers,

• SP alignment is maintained at call boundaries,

• and SP is restored exactly on return.

5.4.3 Example 8: Conventional FP/LR Frame Setup

/* Frame-based function: saves FP/LR, sets FP */

.text

.global fp_based_function

.type fp_based_function, %function

fp_based_function:

sub sp, sp, #16

stp x29, x30, [sp, #0] /* save FP and LR */

mov x29, sp /* set FP */

/* body */

add x0, x0, #3

ldp x29, x30, [sp, #0]

add sp, sp, #16

ret



66

5.4.4 Example 9: FP-Omitted Function (SP-Relative Only)

/* No FP: SP-relative addressing only */

.text

.global no_fp_function

.type no_fp_function, %function

no_fp_function:

sub sp, sp, #16

str x30, [sp, #8] /* save LR if needed */

/* body */

add x0, x0, #3

ldr x30, [sp, #8]

add sp, sp, #16

ret

5.4.5 Choosing FP vs No FP (Engineering Guidance)

• Use FP when you prioritize debugging clarity, stable frame structure, and predictable

stack walking.

• Omit FP when optimizing for register availability and when your build/debug strategy

supports it.

• In handwritten assembly for libraries, a conservative default is to use a clear, consistent

frame template unless performance demands otherwise.



Chapter 6

Argument Passing Rules in Detail

6.1 Integer and Pointer Arguments

6.1.1 Core Rule

For AAPCS64, the first integer/pointer arguments are passed in x0--x7. When there are

more than available registers, remaining arguments are passed on the stack in ABI-defined

slots. The callee must treat:

• x0--x7 as the primary incoming integer/pointer argument locations,

• stack-passed arguments as valid only at the correct stack offsets (after stack setup),

• and must preserve stack alignment and any callee-saved registers it uses.

6.1.2 Example 1: Up to Eight Integer Arguments (All in Registers)

/* C/C++ */

#include <cstdint>

67



68

extern "C" std::uint64_t sum8(std::uint64_t a0, std::uint64_t a1,

std::uint64_t a2, std::uint64_t a3,↪→

std::uint64_t a4, std::uint64_t a5,

std::uint64_t a6, std::uint64_t a7);↪→

/* AArch64 GAS: a0..a7 in x0..x7, return in x0 */

.text

.global sum8

.type sum8, %function

sum8:

add x0, x0, x1

add x0, x0, x2

add x0, x0, x3

add x0, x0, x4

add x0, x0, x5

add x0, x0, x6

add x0, x0, x7

ret

6.1.3 Example 2: Pointer Arguments Are Just Integer-Class

Pointers follow the same rule as integers: the first pointer arguments arrive in x0--x7.

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t load_add(const std::uint64_t* p, std::uint64_t

addend);↪→

/* p in x0, addend in x1 */

.text



69

.global load_add

.type load_add, %function

load_add:

ldr x2, [x0] /* load *p */

add x0, x2, x1 /* return = *p + addend */

ret

6.1.4 Example 3: More Than Eight Integer Arguments (Register + Stack
Concept)

When integer/pointer arguments exceed x0--x7, the overflow is passed on the stack. The

correct stack offset depends on the caller’s outgoing argument area and the callee frame. This

booklet shows the concept and provides a safe inspection method.

/* C/C++ concept */

#include <cstdint>

extern "C" std::uint64_t sum10(std::uint64_t a0, std::uint64_t a1,

std::uint64_t a2, std::uint64_t a3,↪→

std::uint64_t a4, std::uint64_t a5,

std::uint64_t a6, std::uint64_t a7,↪→

std::uint64_t a8, std::uint64_t a9);

/* Concept-only: a0..a7 in x0..x7; a8 and a9 are stack-passed.

Exact offsets depend on the ABI stack argument area and current SP

after any frame setup.↪→

In practice, prefer a C wrapper or inspect compiler-generated code

for the specific platform. */↪→

.text

.global sum10

.type sum10, %function



70

sum10:

/* sum registers first */

add x0, x0, x1

add x0, x0, x2

add x0, x0, x3

add x0, x0, x4

add x0, x0, x5

add x0, x0, x6

add x0, x0, x7

/* stack loads for a8/a9 would follow here (platform-specific

offset details) */↪→

ret

6.2 Floating-Point Arguments

6.2.1 Core Rule

Floating-point scalar arguments (float, double) are passed in v0--v7 using s0/s1/...

or d0/d1/.... Floating-point return values are returned in v0 (s0 or d0).

6.2.2 Example 4: FP Arguments and Return (double)

/* C/C++ */

extern "C" double hypot2(double x, double y);

/* x in d0, y in d1; return in d0 */

.text

.global hypot2

.type hypot2, %function

hypot2:



71

fmul d2, d0, d0

fmul d3, d1, d1

fadd d0, d2, d3

fsqrt d0, d0

ret

6.2.3 Example 5: More Than Eight FP Arguments (Register + Stack
Concept)

FP arguments beyond v0--v7 are passed via the stack according to ABI rules. As with

integer overflow, exact offsets depend on the call frame layout.

6.3 Struct and Aggregate Passing Rules

6.3.1 Concept: Classification Determines Where It Goes

AAPCS64 classifies aggregates (structs/unions) to decide whether they are passed:

• in registers (possibly split across integer and/or FP registers),

• or by reference via a hidden pointer (indirect passing).

The ABI goal is efficiency without ambiguity: small aggregates may travel in registers; large

aggregates travel indirectly.

6.3.2 Safe Engineering Guidance

Because aggregate classification is subtle and depends on exact layout, alignment, and

member types, the safest interop strategy is:

• do not guess register mapping for structs in handwritten assembly,



72

• use a C wrapper that breaks aggregates into scalar arguments,

• or keep the assembly boundary scalar-only and reconstruct aggregates in C/C++.

6.3.3 Example 6: Scalar-Only Wrapper for a Struct Argument

/* C/C++: struct passed at API level, but assembly boundary uses scalars */

#include <cstdint>

struct PairU64 { std::uint64_t a; std::uint64_t b; };

extern "C" std::uint64_t pair_sum_u64(std::uint64_t a, std::uint64_t b);

extern "C" std::uint64_t pair_sum(PairU64 p) {

return pair_sum_u64(p.a, p.b);

}

/* Assembly boundary: scalar-only, stable mapping */

.text

.global pair_sum_u64

.type pair_sum_u64, %function

pair_sum_u64:

/* a in x0, b in x1 */

add x0, x0, x1

ret

6.3.4 Example 7: Struct Return via Scalar Boundary

/* Return two values via scalar returns or out-params instead of struct

return */↪→

#include <cstdint>



73

extern "C" void divmod_u64(std::uint64_t x, std::uint64_t y,

std::uint64_t* q_out, std::uint64_t* r_out);

/* x in x0, y in x1, q_out in x2, r_out in x3 */

.text

.global divmod_u64

.type divmod_u64, %function

divmod_u64:

udiv x4, x0, x1 /* q = x / y */

msub x5, x4, x1, x0 /* r = x - q*y */

str x4, [x2]

str x5, [x3]

ret

6.4 Large Objects and Indirect Passing

6.4.1 The Indirect Passing Model

When an object is too large or otherwise classified as non-register-passable, the ABI uses

indirect passing:

• the caller allocates the object in memory,

• passes a pointer to it as an argument (in an integer register if available),

• and the callee accesses the object through that pointer.

This strategy is also used for some large returns: a hidden “sret” pointer is passed so the callee

writes the return object into caller-provided memory.



74

6.4.2 Example 8: Explicit Indirect Passing Using Pointers (Recommended)

/* C/C++: explicit pointer boundary for large data */

#include <cstdint>

struct Big {

std::uint64_t v[8];

};

extern "C" std::uint64_t sum_big(const Big* p);

/* p in x0 */

.text

.global sum_big

.type sum_big, %function

sum_big:

ldr x1, [x0, #0]

ldr x2, [x0, #8]

ldr x3, [x0, #16]

ldr x4, [x0, #24]

ldr x5, [x0, #32]

ldr x6, [x0, #40]

ldr x7, [x0, #48]

ldr x8, [x0, #56]

add x0, x1, x2

add x0, x0, x3

add x0, x0, x4

add x0, x0, x5

add x0, x0, x6

add x0, x0, x7

add x0, x0, x8



75

ret

6.5 Variadic Functions (va list Model)

6.5.1 Why Variadic Calls Are Special

Variadic functions (e.g., printf-style) cannot rely solely on the fixed signature, because

additional unnamed arguments follow ABI-defined rules:

• some arguments arrive in registers,

• some may be on the stack,

• and the callee must use a va list mechanism to retrieve them correctly.

6.5.2 The Practical Rule for Interop

Do not implement variadic functions in handwritten assembly unless you fully implement

the platform’s va list layout and the ABI-required register save areas. The robust interop

approach is:

• keep variadic logic in C/C++,

• expose a non-variadic, explicitly-typed wrapper for assembly boundaries.

6.5.3 Example 9: Safe Wrapper Pattern Around Variadic

/* C/C++: variadic stays in C; assembly boundary is fixed */

#include <cstdint>

#include <cstdarg>

static std::uint64_t sum_va(int n, ...) {



76

std::va_list ap;

va_start(ap, n);

std::uint64_t s = 0;

for (int i = 0; i < n; ++i) {

s += va_arg(ap, std::uint64_t);

}

va_end(ap);

return s;

}

extern "C" std::uint64_t sum3_u64(std::uint64_t a, std::uint64_t b,

std::uint64_t c) {↪→

return sum_va(3, a, b, c);

}

/* Assembly-friendly fixed-arity boundary: a,b,c in x0,x1,x2 */

.text

.global sum3_u64_asm

.type sum3_u64_asm, %function

sum3_u64_asm:

add x0, x0, x1

add x0, x0, x2

ret

6.5.4 Key Takeaways for Variadics

• Variadic retrieval depends on ABI-defined va list structure and register spill areas.

• Cross-module correctness requires using the compiler’s definition of va list.

• For assembly interoperability, prefer fixed-arity wrappers and scalar-only boundaries.



Chapter 7

Return Value Rules

7.1 Scalar Return Values

7.1.1 Core Rule

In AAPCS64, the primary return location for integer and pointer scalars is x0. For common

scalar sizes (up to 64-bit), the callee places the result in x0 and returns with ret. For multi-

register scalar returns (rare in stable interop boundaries), additional registers may be used by

ABI rule, but robust interop boundaries prefer explicit, simple return forms.

7.1.2 Example 1: Return uint64 t in x0

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t add_u64(std::uint64_t a, std::uint64_t b);

std::uint64_t demo(std::uint64_t x, std::uint64_t y) {

return add_u64(x, y);

77



78

}

/* a in x0, b in x1, return in x0 */

.text

.global add_u64

.type add_u64, %function

add_u64:

add x0, x0, x1

ret

7.1.3 Example 2: Return a Pointer in x0

/* C/C++ */

#include <cstdint>

extern "C" const std::uint64_t* next_ptr(const std::uint64_t* p);

/* p in x0, return pointer in x0 */

.text

.global next_ptr

.type next_ptr, %function

next_ptr:

add x0, x0, #8

ret

7.1.4 Example 3: 32-bit Return Values

A 32-bit integer return uses w0 (the lower 32 bits of x0) as the return location.

/* C/C++ */

#include <cstdint>

extern "C" std::uint32_t add_u32(std::uint32_t a, std::uint32_t b);



79

/* a in w0, b in w1, return in w0 */

.text

.global add_u32

.type add_u32, %function

add_u32:

add w0, w0, w1

ret

7.2 Floating-Point Return Values

7.2.1 Core Rule

Floating-point scalar returns use the FP/SIMD register bank:

• float returns in s0,

• double returns in d0,

• and the architectural container is v0.

7.2.2 Example 4: Return double in d0

/* C/C++ */

extern "C" double mul_add(double x, double y, double z);

/* x in d0, y in d1, z in d2, return in d0 */

.text

.global mul_add

.type mul_add, %function

mul_add:

fmul d0, d0, d1



80

fadd d0, d0, d2

ret

7.2.3 Example 5: Return float in s0

/* C/C++ */

extern "C" float half(float x);

/* x in s0, return in s0 */

.text

.global half

.type half, %function

half:

fmov s1, #0.5

fmul s0, s0, s1

ret

7.3 Struct and Aggregate Returns

7.3.1 Concept: Small Aggregates May Return in Registers

AAPCS64 may return some small aggregates in registers (potentially using x0--x1 and/or

v0--v1 depending on classification). However, aggregate classification is subtle and depends

on:

• size,

• alignment,

• member types (integer vs FP),

• and platform/toolchain ABI details at the language boundary.



81

7.3.2 Engineering Rule for Interoperability

For handwritten assembly interoperability, do not rely on implicit aggregate-return

classification unless you lock down the exact ABI and validate against compiler output for

your target. Instead, prefer one of:

• return scalars (or multiple scalars) explicitly,

• or use an explicit out-parameter (pointer) for structured outputs.

7.3.3 Example 6: Replace Struct Return With Out-Parameters
(Recommended)

/* C/C++: stable boundary */

#include <cstdint>

extern "C" void split_u64(std::uint64_t x, std::uint32_t* lo, std::uint32_t*

hi);↪→

/* x in x0, lo* in x1, hi* in x2 */

.text

.global split_u64

.type split_u64, %function

split_u64:

/* lo = low 32 bits */

str w0, [x1]

/* hi = high 32 bits */

lsr x3, x0, #32

str w3, [x2]

ret



82

7.3.4 Example 7: Two-Value Return via Two Scalars

When you control both sides, you can return a second scalar via an out-pointer or by returning

one value and writing the other. This pattern is ABI-stable and easy to debug.

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t divrem_u64(std::uint64_t x, std::uint64_t y,

std::uint64_t* rem_out);↪→

/* x in x0, y in x1, rem_out in x2; return quotient in x0 */

.text

.global divrem_u64

.type divrem_u64, %function

divrem_u64:

udiv x3, x0, x1 /* q */

msub x4, x3, x1, x0 /* r = x - q*y */

str x4, [x2] /* *rem_out = r */

mov x0, x3 /* return q */

ret

7.4 Hidden Return Pointers

7.4.1 The “sret” Model (Indirect Return)

When an aggregate return is not suitable for register return, the ABI uses an indirect return:

• the caller allocates storage for the return object,

• passes a hidden pointer to that storage to the callee,

• the callee writes the result into that memory and returns normally.



83

This is often called an “sret” (structure return) mechanism. The key takeaway is that the

return object may not be returned in registers at all; it is materialized in caller-provided
memory.

7.4.2 Interop Guidance

For handwritten assembly boundaries:

• treat indirect returns as a pointer-based protocol,

• prefer making it explicit in the API rather than relying on a hidden pointer,

• because explicit out-pointers are clearer, easier to audit, and stable across toolchains.

7.4.3 Example 8: Explicit “Return Object” Pointer (Recommended
Replacement)

/* C/C++ explicit replacement for hidden sret */

#include <cstdint>

struct Pair {

std::uint64_t a;

std::uint64_t b;

};

extern "C" void make_pair(std::uint64_t x, std::uint64_t y, Pair* out);

/* x in x0, y in x1, out in x2 */

.text

.global make_pair

.type make_pair, %function

make_pair:



84

str x0, [x2, #0]

str x1, [x2, #8]

ret

7.4.4 Example 9: Returning a Vector Result Safely

Even if a platform/toolchain may support returning small vectors in registers, stable interop

often prefers:

• return status in x0,

• write vector results to caller-provided memory.

/* C/C++ */

#include <cstdint>

extern "C" int compute_vec2(double x, double y, double* out2); /*

out2[0..1] */↪→

/* x in d0, y in d1, out2 in x0 (first integer reg because signature

places it there) */↪→

.text

.global compute_vec2

.type compute_vec2, %function

compute_vec2:

/* Store results explicitly */

fadd d2, d0, d1

fsub d3, d0, d1

str d2, [x0, #0]

str d3, [x0, #8]

mov w0, #0 /* return status = 0 */

ret



85

7.4.5 Summary Discipline

• Scalar integer/pointer returns: x0 (w0 for 32-bit).

• Scalar FP returns: s0/d0 (in v0).

• Aggregate returns: may be registers for small cases, but interop-safe design prefers

explicit scalar/out-pointer boundaries.

• Hidden return pointers exist for large aggregates; making them explicit improves

correctness and auditability.



Chapter 8

C and C++ Interoperability Rules

8.1 Name Mangling vs ABI Compatibility

8.1.1 Two Different Problems: Calling Convention vs Linkage Encoding

AAPCS64 defines the calling convention (register/stack rules). C++ adds another layer:

name mangling, which is how the compiler encodes:

• namespaces,

• classes,

• overload sets,

• templates,

• and parameter types

into symbol names.

Therefore, two functions can be AAPCS64-compatible at the call boundary but not link-
compatible if their symbols do not match.

86



87

8.1.2 What Breaks Most Often

• C++ overloads and templates generate different symbol names across

compilers/toolchains.

• Minor type changes (e.g., int vs long) change mangled names and may also change

ABI classification.

• Different compilation modes or ABI variants can produce incompatible C++ ABIs even

on the same ISA.

8.1.3 Example 1: Overloads Cannot Share One Stable Symbol Name

/* C++ */

int f(int);

double f(double);

/* These are two different symbols in the object file (mangled names). */

An assembly file cannot reliably call f by writing bl f because there is no single unmangled

f symbol.

8.2 extern "C" and Symbol Stability

8.2.1 What extern "C" Actually Does

extern "C" requests C language linkage for a declaration:

• disables C++ name mangling for the symbol name,

• enforces C linkage rules at the symbol level,



88

• and makes the function callable by assembly and C using a stable symbol identifier.

Important: extern "C" does not “switch off” C++ semantics inside the function body. It

only stabilizes the link boundary and the signature form.

8.2.2 Example 2: Stable Entry Point for Assembly

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t add3_u64(std::uint64_t a, std::uint64_t b,

std::uint64_t c);↪→

/* Assembly can reliably call the symbol by name */

.text

.global call_add3

.type call_add3, %function

call_add3:

/* x0,x1,x2 already set by caller */

bl add3_u64

ret

8.2.3 Example 3: Exposing a C ABI Wrapper Around C++
Implementation

/* C ABI boundary */

#include <cstdint>

static std::uint64_t impl(std::uint64_t x) {

return x * 3 + 1;

}



89

extern "C" std::uint64_t stable_api(std::uint64_t x) {

return impl(x);

}

This pattern is the default recommendation for long-lived binary interfaces.

8.3 Passing C++ Objects Across ABI Boundaries

8.3.1 The Interop Rule

Do not pass C++ objects by value across a binary boundary unless you control:

• the exact compiler and version,

• the same standard library implementation,

• the same build flags that affect ABI,

• and the same platform C++ ABI rules.

Reason: C++ object layout and calling conventions for class types depend on:

• padding and alignment,

• vtables and RTTI,

• small-string optimization details,

• exception/runtime models,

• and template instantiations.



90

8.3.2 Preferred Boundary: Opaque Handles + Explicit Functions

Use an opaque pointer (void*) as the ABI-stable handle and provide explicit

create/destroy/operate functions.

8.3.3 Example 4: Opaque Handle Pattern (Recommended)

/* Public C ABI */

#include <cstdint>

#include <new>

struct Obj {

std::uint64_t bias;

std::uint64_t compute(std::uint64_t x) const { return x + bias; }

};

extern "C" void* obj_create(std::uint64_t bias) {

return new (std::nothrow) Obj{bias};

}

extern "C" void obj_destroy(void* p) {

delete static_cast<Obj*>(p);

}

extern "C" std::uint64_t obj_compute(void* p, std::uint64_t x) {

return static_cast<Obj*>(p)->compute(x);

}

Assembly (or other languages) can interoperate using only pointers and scalars.



91

8.3.4 Example 5: POD-Only Boundary (When You Must Pass a Struct)

If you must pass structured data, restrict it to C-compatible POD with fixed layout and no

constructors, no virtual members, no references, and no hidden invariants.

/* POD boundary */

#include <cstdint>

struct PairU64 {

std::uint64_t a;

std::uint64_t b;

};

extern "C" std::uint64_t pair_sum(std::uint64_t a, std::uint64_t b);

/* Scalar boundary remains stable and unambiguous */

.text

.global pair_sum

.type pair_sum, %function

pair_sum:

add x0, x0, x1

ret

8.4 Constructors, Destructors, and ABI Constraints

8.4.1 Why Constructors/Destructors Are ABI-Hard

Constructors and destructors are not just functions:

• they may have hidden parameters (this, allocation context),

• they may participate in exception unwinding,



92

• they may require runtime support for virtual dispatch and base construction,

• and the emitted symbols and calling patterns are toolchain/platform C++ ABI details.

Therefore, calling C++ constructors/destructors directly from handwritten assembly as a stable

interface is not recommended unless you fully lock the platform ABI and inspect compiler

output.

8.4.2 Recommended Strategy

• Keep construction/destruction inside C++.

• Expose explicit create/destroy functions with extern "C" linkage.

• Ensure destroy is always called in the same binary domain that performed allocation

if allocators may differ.

8.4.3 Example 6: Construction/Destruction Wrapper With Explicit
Ownership

/* C ABI with explicit ownership */

#include <new>

#include <cstdint>

struct Buffer {

std::uint64_t size;

std::uint64_t* data;

Buffer(std::uint64_t n) : size(n), data(new (std::nothrow)

std::uint64_t[n]{}) {}↪→

˜Buffer() { delete[] data; }

};



93

extern "C" void* buffer_create(std::uint64_t n) {

return new (std::nothrow) Buffer(n);

}

extern "C" void buffer_destroy(void* p) {

delete static_cast<Buffer*>(p);

}

8.5 Exception Handling Boundaries (Conceptual)

8.5.1 Why Exceptions Are Not a Stable Binary Boundary

C++ exceptions require:

• language-specific runtime (unwind library),

• ABI-defined unwind tables and personality routines,

• consistent typeinfo/RTTI encoding across modules,

• and a stable contract for stack unwinding across call frames.

Even when the underlying unwind mechanism is standardized at a platform level, the C++
language-level exception ABI is toolchain- and platform-dependent.

8.5.2 Interop Rule: Do Not Let Exceptions Cross the Boundary

At a stable C ABI boundary:

• do not throw exceptions across it,

• catch exceptions inside the C++ side,



94

• translate them into error codes or explicit status objects,

• and keep the assembly/caller side exception-free.

8.5.3 Example 7: Translate Exceptions to Error Codes

/* Stable boundary: no exceptions escape */

#include <cstdint>

static std::uint64_t may_fail(std::uint64_t x) {

if (x == 0) { throw 1; }

return 100 / x;

}

extern "C" int safe_api(std::uint64_t x, std::uint64_t* out) {

try {

*out = may_fail(x);

return 0;

} catch (...) {

*out = 0;

return -1;

}

}

8.5.4 Example 8: Assembly Caller Uses Status + Out-Value

/* Calls safe_api(x, &out). Returns status in w0; out written to

memory. */↪→

.text

.global asm_call_safe_api

.type asm_call_safe_api, %function

asm_call_safe_api:



95

/* x0 = input x, x1 = pointer to out */

bl safe_api

/* w0 = status (0 success, -1 failure) */

ret

8.5.5 Summary Discipline for Interop

• Use extern "C" for stable symbols callable from assembly/C.

• Prefer opaque handles and scalar-only APIs across binary boundaries.

• Keep constructors/destructors inside C++ and wrap them with explicit C ABI functions.

• Do not allow exceptions to cross the boundary; translate to status codes.



Chapter 9

Compiler-Generated Code and ABI
Guarantees

9.1 What Compilers Must Guarantee

A compiler targeting AAPCS64 must emit code that satisfies the ABI contract at every

externally-visible call boundary. This is what enables separate compilation, linking, and

interoperability with handwritten assembly.

9.1.1 Mandatory ABI Guarantees at Call Boundaries

For a conforming AAPCS64 interface, compilers must ensure:

• Correct argument placement: integer/pointer arguments are placed in x0--x7 (and

overflow on stack), FP arguments in v0--v7 (and overflow on stack), following ABI

classification rules.

• Correct return placement: integer/pointer results are returned in x0; FP results in v0

96



97

(s0/d0); aggregates follow ABI return rules or indirect return conventions.

• Register preservation: callee-saved registers retain their incoming values on return

from a call.

• Stack pointer alignment: SP is 16-byte aligned at public interfaces and remains

aligned at any call site (bl).

• Stack restoration: on function return, SP is restored to its entry value (modulo ABI-

defined red-zone absence; i.e., do not rely on below-SP space).

9.1.2 Observable Guarantee vs Implementation Freedom

The ABI constrains observable behavior, not the exact instruction sequence. A compiler may

choose different prologues, epilogues, and instruction schedules as long as the contract holds.

9.1.3 Example 1: ABI-Visible Function (Compiler Must Preserve
Contract)

/* External interface: ABI-visible */

#include <cstdint>

extern "C" std::uint64_t api_add(std::uint64_t a, std::uint64_t b) {

return a + b;

}

A compiler may:

• keep everything in registers,

• emit no stack frame at all,

• still satisfy: inputs in x0/x1, output in x0.



98

9.1.4 Example 2: When the Compiler Must Save/Restore

If an ABI-visible function uses callee-saved registers or calls another function, the compiler

must preserve required state.

/* Non-leaf: forces LR management and may force spills */

#include <cstdint>

extern "C" std::uint64_t helper(std::uint64_t);

extern "C" std::uint64_t api_call(std::uint64_t x) {

return helper(x) + 1;

}

The compiler must ensure:

• SP alignment at the call to helper,

• proper return behavior,

• and preservation of callee-saved registers it chooses to use.

9.2 What Programmers Must Never Assume

ABI failures in mixed C/C++/assembly often happen because programmers assume properties

that compilers are not required to maintain.

9.2.1 Never Assume Specific Prologue/Epilogue Instructions

Do not assume:

• that a function always saves x29/x30 in a specific way,

• that a frame pointer is always used,

• or that the stack frame has a fixed layout across builds.



99

9.2.2 Never Assume Volatile Registers Survive Calls

Do not assume any caller-saved register survives a call. If you need a value after calling

something, preserve it.

/* BAD: assumes x0 remains unchanged after call */

.text

.global bad_assumption_x0

.type bad_assumption_x0, %function

bad_assumption_x0:

/* x0 = important value */

bl helper /* may clobber x0 */

add x0, x0, #1 /* BUG: x0 may not be original */

ret

9.2.3 Never Assume Stack Space Below SP Is Safe

Do not use memory below SP without allocating it. There is no red-zone you can rely on for

portable correctness.

/* BAD: writes below SP without reserving */

.text

.global bad_below_sp

.type bad_below_sp, %function

bad_below_sp:

str x0, [sp, #-8]

ldr x0, [sp, #-8]

ret



100

9.2.4 Never Assume Struct Layout/Passing Without ABI Rules

Do not guess aggregate passing/returning rules in assembly. If you need stable interop:

• use scalar-only boundaries,

• or explicit pointers/out-parameters.

9.3 Optimization vs ABI Preservation

9.3.1 Optimization Changes Everything Except the Contract

Under optimization, compilers may:

• inline functions,

• remove stack frames,

• reorder computations,

• allocate locals to registers,

• eliminate loads/stores,

• and transform control flow.

But they must still preserve ABI invariants at externally-visible boundaries.

9.3.2 Example 3: Same Source, Two Different Valid Shapes

/* The compiler may emit very different machine code for different options

*/↪→

#include <cstdint>



101

extern "C" std::uint64_t f(std::uint64_t x) {

std::uint64_t t = x + 7;

return t * 3;

}

Valid outcomes include:

• a leaf with no stack usage,

• a version using SIMD for strength reduction (if profitable),

• or a version using callee-saved registers if register pressure requires.

All are valid if: input arrives as defined, output returns as defined, preserved registers
remain preserved, and SP alignment rules are satisfied at calls.

9.3.3 Example 4: ABI Boundary Wrapper Stabilizes Interop

When mixing with handwritten assembly, isolate optimization changes behind a stable

wrapper boundary:

/* Wrapper: stable boundary for assembly and other modules */

#include <cstdint>

static std::uint64_t impl(std::uint64_t x) {

return (x + 7) * 3; /* may be optimized freely */

}

extern "C" std::uint64_t stable_entry(std::uint64_t x) {

return impl(x); /* ABI-visible function */

}



102

9.4 Inline Functions and ABI Transparency

9.4.1 Inlining Removes the Call Boundary

When a function is inlined, the calling convention is no longer exercised at that call site

because there is no call. Consequences:

• register usage becomes a local optimization detail,

• stack frames may disappear,

• and assumptions based on “how the function is called” become invalid.

Therefore, do not debug ABI by inspecting an inlined call path. Ensure you inspect true

call boundaries.

9.4.2 Example 5: Inline Changes Observability

/* Candidate for inlining */

static inline std::uint64_t add1(std::uint64_t x) { return x + 1; }

extern "C" std::uint64_t api(std::uint64_t a) {

return add1(a); /* may inline -> no call boundary here */

}

In optimized builds, add1 may vanish entirely. The ABI still matters at api’s boundary

(entry/exit), not inside.

9.4.3 Example 6: Force a Real Boundary for ABI Testing

Use a separate translation unit, avoid static inline, or ensure the function has external

linkage so the compiler cannot trivially inline it across units (still not guaranteed, but more

testable).



103

/* TU1 */

#include <cstdint>

extern "C" std::uint64_t boundary(std::uint64_t x) { return x + 1; }

/* TU2 */

#include <cstdint>

extern "C" std::uint64_t boundary(std::uint64_t);

extern "C" std::uint64_t api2(std::uint64_t a) { return boundary(a); }

9.4.4 Example 7: Assembly Interop Requires Non-Inlined Stable Symbols

If assembly calls into C/C++, you need a stable symbol. Combine:

• extern "C" for stable linkage,

• and a non-header-defined function body for a robust boundary.

/* Assembly calling a stable external symbol */

.text

.global asm_calls_boundary

.type asm_calls_boundary, %function

asm_calls_boundary:

/* x0 holds input */

bl boundary

ret

9.5 ABI Guarantee Checklist (Practical)

• Do not rely on specific prologue/epilogue patterns.

• Preserve your own live values across calls; assume volatile registers are clobbered.

• Keep SP 16-byte aligned at every bl.



104

• Do not assume below-SP space is safe.

• Avoid struct-by-value interop in handwritten assembly; prefer scalar/pointer boundaries.

• Remember: inlining removes call boundaries; debug ABI at true external boundaries.



Chapter 10

Interfacing Handwritten Assembly with
C/C++

10.1 Writing ABI-Compliant Assembly Functions

Handwritten assembly is “ABI-correct” only if it behaves exactly like a compiler-generated

function at the call boundary. This means your assembly must implement the same external

contract:

• accept arguments in the ABI-defined locations,

• return results in the ABI-defined locations,

• preserve callee-saved registers you modify,

• keep SP 16-byte aligned at every call boundary,

• restore SP exactly on return,

• and return to the correct address.

105



106

10.1.1 Minimum ABI Checklist for an Assembly Function

• Read integer/pointer arguments from x0--x7.

• Read FP arguments from v0--v7 (s0/d0..).

• Return integer/pointer in x0; return FP in v0.

• If you touch a callee-saved register (e.g., x19--x28 or preserved SIMD regs),

save/restore it.

• If you call anything (bl), save LR if you need it afterward.

• Keep SP aligned (allocate in multiples of 16 bytes).

10.1.2 Example 1: Leaf Function, No Frame (Best Interop Case)

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t u64_add8(std::uint64_t x);

/* ABI-compliant leaf: x0 in, x0 out */

.text

.global u64_add8

.type u64_add8, %function

u64_add8:

add x0, x0, #8

ret

10.1.3 Example 2: Leaf Function With Callee-Saved Local

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t add_bias(std::uint64_t x);



107

/* Uses x19 (callee-saved) correctly */

.text

.global add_bias

.type add_bias, %function

add_bias:

sub sp, sp, #16

str x19, [sp, #0] /* save preserved register */

mov x19, x0

add x19, x19, #123

mov x0, x19

ldr x19, [sp, #0]

add sp, sp, #16

ret

10.1.4 Example 3: FP Function (double) ABI Boundary

/* C/C++ */

extern "C" double add_d(double a, double b);

/* a in d0, b in d1, return in d0 */

.text

.global add_d

.type add_d, %function

add_d:

fadd d0, d0, d1

ret



108

10.2 Calling C/C++ Functions from Assembly

10.2.1 The Contract When You Are the Caller

When assembly calls into C/C++ you must behave like a compiler-generated caller:

• place arguments in the correct registers (and stack for overflow),

• ensure SP is 16-byte aligned at the call instruction,

• assume caller-saved registers may be clobbered by the callee,

• preserve your own live values across the call (stack or callee-saved regs),

• handle return values from x0 or v0.

10.2.2 Example 4: Assembly Calls a C Function (Scalar Only)

/* C/C++ */

#include <cstdint>

extern "C" std::uint64_t c_mul3(std::uint64_t x) { return x * 3; }

/* Assembly: calls c_mul3(x0) and then adds 1 */

.text

.global asm_calls_c_mul3

.type asm_calls_c_mul3, %function

asm_calls_c_mul3:

sub sp, sp, #16

str x30, [sp, #8] /* save LR for non-leaf */

bl c_mul3 /* x0 is argument and return */



109

ldr x30, [sp, #8]

add sp, sp, #16

add x0, x0, #1

ret

10.2.3 Example 5: Preserving a Live Value Across the Call

/* Preserve x0 across a call (caller-saved) */

.text

.global asm_preserve_x0_then_call

.type asm_preserve_x0_then_call, %function

asm_preserve_x0_then_call:

sub sp, sp, #32

str x30, [sp, #24] /* save LR */

str x0, [sp, #0] /* save live x0 */

bl helper

ldr x0, [sp, #0] /* restore x0 */

ldr x30, [sp, #24]

add sp, sp, #32

ret

10.2.4 Example 6: Mixed Integer and FP Call

/* C/C++ */

#include <cstdint>

extern "C" double mix_call(std::uint64_t a, double x, std::uint64_t b,

double y);↪→

/* Assembly caller: a->x0, x->d0, b->x1, y->d1; return d0 */



110

.text

.global asm_calls_mix_call

.type asm_calls_mix_call, %function

asm_calls_mix_call:

sub sp, sp, #16

str x30, [sp, #8]

/* Assume x0/x1 and d0/d1 are already set by our caller; forward

them */↪→

bl mix_call

ldr x30, [sp, #8]

add sp, sp, #16

ret

10.3 Common Prologue/Epilogue Templates

10.3.1 Template A: Leaf, No Frame (Fastest)

Use when:

• no calls,

• no stack locals,

• no callee-saved registers used.

.text

.global leaf_template

.type leaf_template, %function

leaf_template:



111

/* body: use only volatile regs */

ret

10.3.2 Template B: Non-Leaf Minimal (Save LR Only)

Use when:

• you call another function,

• you do not need callee-saved registers or a frame pointer.

.text

.global nonleaf_lr_template

.type nonleaf_lr_template, %function

nonleaf_lr_template:

sub sp, sp, #16

str x30, [sp, #8]

/* body: may call other functions */

/* bl some_function */

ldr x30, [sp, #8]

add sp, sp, #16

ret

10.3.3 Template C: Conventional Frame (Save FP/LR)

Use when:

• you want predictable stack walking / debugging,

• or you prefer consistent structure for complex functions.



112

.text

.global fp_lr_frame_template

.type fp_lr_frame_template, %function

fp_lr_frame_template:

sub sp, sp, #16

stp x29, x30, [sp, #0]

mov x29, sp

/* body */

ldp x29, x30, [sp, #0]

add sp, sp, #16

ret

10.3.4 Template D: Uses Callee-Saved Locals (Plus Optional FP/LR)

Use when:

• you need a preserved register for long-lived locals,

• you must still preserve stack alignment.

.text

.global callee_saved_template

.type callee_saved_template, %function

callee_saved_template:

sub sp, sp, #32

stp x19, x20, [sp, #0]

stp x29, x30, [sp, #16]

mov x29, sp



113

/* body: safe use of x19/x20 */

ldp x29, x30, [sp, #16]

ldp x19, x20, [sp, #0]

add sp, sp, #32

ret

10.4 Debugging ABI Violations

ABI violations are dangerous because they often:

• work at -O0 and fail at -O2/-O3,

• disappear under debugging (different register allocation),

• appear as random crashes or data corruption far from the call site.

10.4.1 The Four Most Common Failure Classes

1. Stack misalignment at a call (SP not 16-byte aligned at bl).

2. Callee-saved register clobber (e.g., x19 modified without restore).

3. Wrong argument bank (reading FP args from xN instead of dN, or vice versa).

4. Wrong return location (placing return in the wrong register).

10.4.2 Example 7: Stack Misalignment Bug (Diagnostic Pattern)

/* BAD: misaligns SP then calls */

.text

.global bug_misalign_then_call



114

.type bug_misalign_then_call, %function

bug_misalign_then_call:

sub sp, sp, #8 /* ABI violation */

bl helper

add sp, sp, #8

ret

10.4.3 Correct Fix

/* GOOD: allocate 16 bytes (aligned) */

.text

.global fix_align_then_call

.type fix_align_then_call, %function

fix_align_then_call:

sub sp, sp, #16

str x30, [sp, #8]

bl helper

ldr x30, [sp, #8]

add sp, sp, #16

ret

10.4.4 Example 8: Callee-Saved Clobber Bug

/* BAD: clobbers x19 (callee-saved) */

.text

.global bug_clobber_x19

.type bug_clobber_x19, %function

bug_clobber_x19:

mov x19, x0 /* ABI violation unless

saved/restored */↪→



115

add x0, x0, #1

ret

10.4.5 Correct Fix

/* GOOD: save/restore x19 */

.text

.global fix_preserve_x19

.type fix_preserve_x19, %function

fix_preserve_x19:

sub sp, sp, #16

str x19, [sp, #0]

mov x19, x0

add x0, x19, #1

ldr x19, [sp, #0]

add sp, sp, #16

ret

10.4.6 A Practical Debugging Workflow (Tool-Agnostic)

• Step 1: Confirm the signature. Ensure your assembly matches the exact C/C++

prototype (types and order).

• Step 2: Verify call boundary alignment. Ensure SP is 16-byte aligned at every bl.

• Step 3: Audit preserved registers. List every callee-saved register your function

touches; verify save/restore.

• Step 4: Audit argument banks. Scalars in xN, FP in dN/sN, vectors in qN.

• Step 5: Inspect compiler output for a reference implementation. Write the same

function in C and compare its calling pattern and frame discipline.



116

• Step 6: Re-test under optimization. ABI bugs often appear only at -O2/-O3.



Chapter 11

Common Mistakes and Silent ABI
Breakage

ABI bugs are dangerous because they often:

• produce wrong results without crashing,

• appear only under optimization,

• vanish when you add logging or debug prints (register allocation changes),

• and surface far away from the original mistake.

11.1 Stack Misalignment Failures

11.1.1 The Failure

AAPCS64 requires SP to be 16-byte aligned at every public call boundary and at every call

site (bl). Misalignment commonly happens when handwritten assembly allocates 8 bytes or

117



118

any non-multiple of 16 and then calls a function.

11.1.2 Symptoms

• crashes inside unrelated callees,

• wrong floating-point results,

• sporadic failures only under -O2/-O3,

• failures that disappear when you remove a call or add a local variable.

11.1.3 Bad Example (Misalign Then Call)

/* BAD: SP misaligned at call site */

.text

.global bug_misaligned_call

.type bug_misaligned_call, %function

bug_misaligned_call:

sub sp, sp, #8 /* ABI violation */

bl helper

add sp, sp, #8

ret

11.1.4 Correct Fix (Align Then Call)

/* GOOD: allocate multiple of 16 */

.text

.global fix_aligned_call

.type fix_aligned_call, %function

fix_aligned_call:



119

sub sp, sp, #16

str x30, [sp, #8] /* save LR if non-leaf */

bl helper

ldr x30, [sp, #8]

add sp, sp, #16

ret

11.1.5 Rule

• If you adjust SP, do it in multiples of 16.

• Before every bl, ensure SP % 16 == 0.

11.2 Incorrect Register Preservation

11.2.1 The Failure

If your function modifies a callee-saved register and does not restore it, you corrupt the caller’s

state. Compilers rely heavily on callee-saved registers to keep values alive across calls.

11.2.2 Symptoms

• wrong results in the caller after returning,

• corruption that appears only with optimization,

• failures that move when you change unrelated code.

11.2.3 Bad Example (Clobber Preserved Register)

/* BAD: clobbers x19 without saving/restoring */



120

.text

.global bug_clobber_preserved

.type bug_clobber_preserved, %function

bug_clobber_preserved:

mov x19, #123 /* ABI violation */

add x0, x0, #1

ret

11.2.4 Correct Fix (Save/Restore)

/* GOOD: save/restore x19, keep SP aligned */

.text

.global fix_preserved_x19

.type fix_preserved_x19, %function

fix_preserved_x19:

sub sp, sp, #16

str x19, [sp, #0]

mov x19, #123

add x0, x0, #1

ldr x19, [sp, #0]

add sp, sp, #16

ret

11.2.5 Rule

• If you touch a callee-saved register, save it once in the prologue and restore once in the

epilogue.

• Never early-return without restoring preserved state.



121

11.3 Mismatched Function Signatures

11.3.1 The Failure

The assembler does not know your C/C++ prototype. If your assembly function’s assumed

argument types/order do not match the actual C/C++ declaration, you will read the wrong

registers or the wrong register bank.

11.3.2 The Most Common Mismatches

• treating a double as if it were in xN (it is in dN),

• mixing up argument order,

• using int vs long (size/class differences),

• returning FP in x0 instead of d0 (or vice versa).

11.3.3 Bad Example (Reads FP Argument From the Wrong Bank)

/* C/C++ expects: double f(double x); */

extern "C" double f(double x);

/* BAD: assumes x0 holds the double argument; it is in d0 */

.text

.global f

.type f, %function

f:

/* WRONG: x0 is not the FP argument here */

add x0, x0, #1

ret



122

11.3.4 Correct Fix

/* GOOD: use d0 for double input/output */

.text

.global f

.type f, %function

f:

fadd d0, d0, d0

ret

11.3.5 Rule

• Freeze prototypes in a shared header.

• Keep assembly boundaries scalar/pointer-only when possible.

• Validate by comparing compiler-generated code for the same signature.

11.4 Variadic Function Pitfalls

11.4.1 The Failure

Variadic functions (...) depend on ABI-defined va list and register save areas.

Implementing a variadic callee in assembly without fully matching the platform’s va list

model is a classic source of silent corruption.

11.4.2 Symptoms

• wrong values retrieved from va arg,

• failures only when mixing integer and FP variadic arguments,



123

• behavior that changes with optimization or with different callers.

11.4.3 Bad Pattern (Assembly Variadic Callee Without Proper va list)

/* BAD IDEA: variadic callee in assembly without implementing the ABI

va_list model */↪→

.text

.global bad_variadic

.type bad_variadic, %function

bad_variadic:

/* placeholder: any attempt to walk extra args here is

ABI-sensitive and usually wrong */↪→

ret

11.4.4 Correct Strategy: Keep Variadic in C, Expose Fixed Wrapper

/* C/C++: variadic stays in C; wrapper is fixed and assembly-friendly */

#include <cstdint>

#include <cstdarg>

static std::uint64_t sum_va(int n, ...) {

std::va_list ap;

va_start(ap, n);

std::uint64_t s = 0;

for (int i = 0; i < n; ++i) {

s += va_arg(ap, std::uint64_t);

}

va_end(ap);

return s;

}



124

extern "C" std::uint64_t sum3_u64(std::uint64_t a, std::uint64_t b,

std::uint64_t c) {↪→

return sum_va(3, a, b, c);

}

/* Assembly-friendly fixed boundary */

.text

.global sum3_u64_asm

.type sum3_u64_asm, %function

sum3_u64_asm:

add x0, x0, x1

add x0, x0, x2

ret

11.4.5 Rule

• Do not export variadic ABIs across modules as a “stable boundary”.

• Keep variadics inside one compilation domain and wrap them with fixed-arity functions.

11.5 Mixing ABIs Across Compilation Units

11.5.1 The Failure

Even on the same ISA, you can accidentally mix incompatible ABI assumptions across

translation units:

• different language linkage (extern "C" missing),

• different structure packing/alignment settings,

• different floating-point ABI modes (platform-dependent),



125

• different calling convention attributes (toolchain-specific),

• mixing C and C++ without consistent headers.

11.5.2 Symptoms

• link succeeds but runtime values are wrong,

• only certain call sites fail,

• struct fields appear swapped or shifted,

• crashes when returning aggregates or passing structs.

11.5.3 Example: Packing Mismatch (Classic Silent Corruption)

/* TU1: packed layout */

#include <cstdint>

#pragma pack(push, 1)

struct S { std::uint8_t a; std::uint64_t b; };

#pragma pack(pop)

extern "C" std::uint64_t get_b(S s);

/* TU2: default layout (NOT packed) */

#include <cstdint>

struct S { std::uint8_t a; std::uint64_t b; };

extern "C" std::uint64_t get_b(S s); /* same name, different ABI layout:

disaster */↪→

This can produce silent corruption because the caller and callee disagree on:

• the size of S,

• the alignment of b,

• and therefore how the argument is passed (registers vs stack) and where its bytes reside.



126

11.5.4 Robust Fix Strategy

• Put all interop declarations in a single shared header.

• Avoid passing structs by value across boundaries; prefer pointers and explicit sizes.

• Avoid build-flag-dependent ABI in public interfaces.

• Prefer scalar-only and pointer-only ABI boundaries for long-term compatibility.

11.6 Practical ABI Breakage Checklist

• Every bl site: SP aligned to 16 bytes.

• Every assembly function: callee-saved registers you touch are saved/restored.

• Every boundary: signature matches exactly (types, order, return type).

• No variadic functions as exported boundaries; wrap with fixed-arity functions.

• No ABI-affecting mismatches across units (packing, linkage, calling convention

attributes).



Chapter 12

Practical ABI Discipline Checklist

12.1 Mandatory Rules Recap

This chapter is a non-negotiable checklist for AAPCS64 correctness. If any item is violated,

your code may work accidentally and then fail under optimization, different toolchains, or

unrelated changes.

12.1.1 Call Boundary Laws (Always True)

• Integer/pointer args: x0--x7 carry the first arguments.

• FP args: v0--v7 carry the first FP/SIMD arguments (s0/d0 views for scalars).

• Integer/pointer return: x0.

• FP return: v0 (s0/d0).

• SP alignment: SP is 16-byte aligned at every public boundary and at every bl.

• No red-zone reliance: do not read/write below SP unless you allocate it.

127



128

• Callee-saved preservation: if you touch a preserved register, you restore it before ret.

• Caller-saved reality: assume volatile regs are clobbered by calls; preserve your own

live values.

12.1.2 One-Line Failure Model

If you cannot prove your function preserves the ABI invariants, it is not ABI-

correct.

12.2 Safe Assembly–C/C++ Interoperability Checklist

12.2.1 A. Signature Discipline

• Keep the C/C++ prototype in a shared header used by all translation units.

• Use extern "C" for any function called from assembly or C.

• Avoid passing structs by value across assembly boundaries; prefer scalars and pointers.

• Avoid returning structs by value across assembly boundaries; prefer out pointers or

scalar returns.

12.2.2 B. Stack Discipline

• Allocate stack in multiples of 16.

• Before any bl, ensure SP % 16 == 0.

• Restore SP exactly before ret.



129

12.2.3 C. Register Discipline

• Callee-saved: save/restore any preserved register you modify.

• Caller-saved: save your live values before calls (stack or preserved regs).

• Save LR (x30) if you are non-leaf and need to return after calling.

12.2.4 D. C++ Runtime Discipline

• Do not let exceptions cross an assembly/C boundary.

• Do not call constructors/destructors directly from assembly as a public interface; wrap

them.

• Use opaque handles (void*) for C++ objects in stable ABIs.

12.2.5 Example 1: ABI-Safe “Assembly Function Called from C”
Template

/* Leaf, scalar-only, ABI-safe */

.text

.global asm_leaf_u64

.type asm_leaf_u64, %function

asm_leaf_u64:

/* x0 = arg0 */

add x0, x0, #1

ret



130

12.2.6 Example 2: ABI-Safe “Assembly Calls C” Template (Non-Leaf)

/* Non-leaf: saves LR, keeps SP aligned, preserves live values if

needed */↪→

.text

.global asm_calls_c_template

.type asm_calls_c_template, %function

asm_calls_c_template:

sub sp, sp, #16

str x30, [sp, #8]

/* optional: preserve live caller-saved values before bl */

/* str x0, [sp, #0] */

bl c_function

/* optional: restore preserved live values */

/* ldr x0, [sp, #0] */

ldr x30, [sp, #8]

add sp, sp, #16

ret

12.2.7 Example 3: ABI-Safe Mixed Integer + FP Boundary

/* C/C++ */

#include <cstdint>

extern "C" double api_mix(std::uint64_t a, double x, std::uint64_t b,

double y);↪→

/* a->x0, x->d0, b->x1, y->d1, return d0 */



131

.text

.global asm_forward_api_mix

.type asm_forward_api_mix, %function

asm_forward_api_mix:

sub sp, sp, #16

str x30, [sp, #8]

bl api_mix

ldr x30, [sp, #8]

add sp, sp, #16

ret

12.3 ABI Validation Before Optimization

Optimization does not create ABI bugs; it exposes them. Validate ABI correctness before

turning performance work into a moving target.

12.3.1 Validation Order (Practical)

1. Freeze prototypes: one shared header; extern "C" where required.

2. Force real boundaries: compile in separate translation units so calls remain calls.

3. Test at -O0 and -O2: if behavior changes, suspect ABI violations.

4. Audit stack: confirm 16-byte alignment at every bl.

5. Audit preserved regs: list every callee-saved register used and verify save/restore.

6. Compare with compiler output: implement the same function in C and compare the

ABI-visible behavior.



132

12.3.2 Example 4: “ABI Probe” Pattern Using a Known C Callee

A simple way to detect stack/reg problems is to call a known function and then use values

after it. If your ABI discipline is wrong, corruption appears quickly.

/* Calls a known function; checks that our preserved state remains

valid */↪→

.text

.global abi_probe

.type abi_probe, %function

abi_probe:

sub sp, sp, #32

stp x19, x20, [sp, #0] /* preserve regs we will rely on

*/↪→

str x30, [sp, #24] /* save LR */

mov x19, x0 /* keep a live value in

preserved reg */↪→

bl known_c_function /* must not corrupt x19

(callee-saved from our view) */↪→

add x0, x19, #1 /* if x19 corrupted -> visible

failure */↪→

ldr x30, [sp, #24]

ldp x19, x20, [sp, #0]

add sp, sp, #32

ret



133

12.4 When to Re-Read the Specification

Re-read the specification whenever you change anything that could alter ABI classification or

call-boundary behavior.

12.4.1 Immediate Triggers

• You add or remove an argument, or change a type (int vs long, pointer vs integer,

float vs double).

• You introduce aggregates (structs/unions) or return them by value.

• You add ... (variadic arguments) or introduce va list.

• You change packing/alignment pragmas or compiler flags that affect layout.

• You move code across compilation units or mix toolchains.

• You add a function call inside assembly (turning leaf into non-leaf).

• You start using SIMD registers as long-lived locals across calls.

12.4.2 Rule of Thumb

Re-read the ABI spec when the signature, the frame, or the toolchain changes.

12.4.3 Final Discipline Statement

• ABI correctness is a proof obligation.

• Performance comes after correctness.



134

• The simplest stable boundary is: scalars + pointers + explicit ownership + no
exceptions.



Appendices

Appendix A — Minimal AAPCS64 Reference (Conceptual)

This appendix provides a concise, audit-oriented reference for AAPCS64. It is intended for

last-minute ABI verification when writing or reviewing assembly that interoperates with

C/C++.

Register Usage Summary

General-Purpose Registers (Conceptual Roles)

• x0–x7: Integer / pointer argument registers (caller-saved)

• x0: Primary integer / pointer return register

• x8: Indirect result location register (hidden structure return)

• x9–x15: Temporary registers (caller-saved)

• x16–x17: Intra-procedure call temporaries (caller-saved; linker veneers)

• x18: Platform register (treat as caller-saved unless platform specifies otherwise)

• x19–x28: Callee-saved registers (must be preserved by callee)

135



136

• x29: Frame Pointer (FP) when used (callee-saved)

• x30: Link Register (LR)

SIMD / Floating-Point Registers

• v0–v7: FP / SIMD argument registers (caller-saved)

• v0: FP return register (s0 for float, d0 for double)

• v8–v15: Callee-saved SIMD registers

• v16–v31: Temporary SIMD registers (caller-saved)

Special Registers

• SP: Stack Pointer (must remain 16-byte aligned at call boundaries)

• XZR: Zero register (reads as zero, writes are discarded)

Argument and Return Rules Summary

Integer and Pointer Arguments

• Arguments 1–8: x0--x7

• Additional arguments: passed on the stack

• Pointer types follow integer rules

Floating-Point Arguments

• FP scalar arguments (float, double): v0--v7 using sN/dN

• Additional FP arguments: passed on the stack



137

Return Values

• Integer / pointer return: x0

• 32-bit integer return: w0

• float return: s0

• double return: d0

• Small aggregates: may return in registers (ABI classification dependent)

• Large aggregates: returned indirectly via hidden pointer (commonly x8)

Scalar Boundary Example

/* x0 = arg0, x1 = arg1, return in x0 */

.text

.global ref_add

.type ref_add, %function

ref_add:

add x0, x0, x1

ret

Floating-Point Boundary Example

/* d0 = arg0, d1 = arg1, return in d0 */

.text

.global ref_fadd

.type ref_fadd, %function

ref_fadd:

fadd d0, d0, d1

ret



138

Stack Alignment Rules Summary

Core Stack Rules

• Stack grows toward lower addresses

• SP must be 16-byte aligned:

– on function entry

– before every bl

– at function return

• Stack allocation must be in multiples of 16 bytes

• No red zone: memory below SP is not safe unless explicitly allocated

Minimal Aligned Stack Allocation

/* ABI-correct stack allocation */

.text

.global ref_stack_alloc

.type ref_stack_alloc, %function

ref_stack_alloc:

sub sp, sp, #16

/* use [sp, #0..15] */

add sp, sp, #16

ret

Common Alignment Violation

/* BAD: misaligned SP */

.text



139

.global ref_bad_align

.type ref_bad_align, %function

ref_bad_align:

sub sp, sp, #8 /* ABI violation */

add sp, sp, #8

ret

Canonical Non-Leaf Frame

/* Canonical FP/LR frame */

.text

.global ref_frame

.type ref_frame, %function

ref_frame:

sub sp, sp, #16

stp x29, x30, [sp, #0]

mov x29, sp

/* body */

ldp x29, x30, [sp, #0]

add sp, sp, #16

ret

Appendix B — Cross-Architecture Comparison (Conceptual)

This appendix provides a conceptual comparison between AAPCS64 and the dominant x86-

64 ABIs. The goal is not memorization, but understanding why ABI rules differ and how

architecture shapes calling conventions.



140

AAPCS64 vs x86-64 System V ABI

Register-Based Argument Passing

• AAPCS64:

– Integer / pointer arguments: x0--x7

– FP arguments: v0--v7

– Clean separation between integer and FP register banks

• x86-64 System V ABI:

– Integer / pointer arguments: RDI, RSI, RDX, RCX, R8, R9

– FP arguments: XMM0--XMM7

– Mixed integer and FP arguments share a unified calling sequence

Return Value Rules

• AAPCS64:

– Integer / pointer return: x0

– FP return: v0 (s0/d0)

– Indirect (large struct) return commonly via hidden pointer in x8

• x86-64 System V ABI:

– Integer / pointer return: RAX

– FP return: XMM0

– Large struct returns via hidden pointer in RDI



141

Stack Alignment and Red Zone

• AAPCS64:

– Stack must be 16-byte aligned at all call boundaries

– No red zone; memory below SP is unsafe unless allocated

• x86-64 System V ABI:

– Stack must be 16-byte aligned at call sites

– 128-byte red zone exists below RSP for leaf functions

Conceptual Example: Leaf Function

/* AAPCS64: leaf function, no red zone */

.text

.global aarch64_leaf

.type aarch64_leaf, %function

aarch64_leaf:

add x0, x0, #1

ret

/* x86-64 SysV: leaf function may use red zone */

.text

.global sysv_leaf

.type sysv_leaf, %function

sysv_leaf:

add rax, rdi, 1

ret



142

AAPCS64 vs Windows x64 ABI

Argument Registers

• AAPCS64:

– Integer / pointer args: x0--x7

– FP args: v0--v7

• Windows x64 ABI:

– Integer / pointer args: RCX, RDX, R8, R9

– FP args: XMM0--XMM3

– Remaining arguments always passed on the stack

Shadow Space vs Explicit Stack Discipline

• AAPCS64:

– No mandatory shadow space

– Stack space allocated only when needed

• Windows x64 ABI:

– Mandatory 32-byte shadow space reserved by the caller

– Callee may spill argument registers into this space

Register Preservation Model

• AAPCS64:

– Callee-saved: x19--x28, x29



143

– Clear separation of volatile vs preserved registers

• Windows x64 ABI:

– Larger set of callee-saved registers

– Strong emphasis on predictable stack frames for debugging and unwinding

Conceptual Example: Call Preparation

/* AAPCS64: no mandatory outgoing stack space */

.text

.global aarch64_call

.type aarch64_call, %function

aarch64_call:

sub sp, sp, #16

str x30, [sp, #8]

bl callee

ldr x30, [sp, #8]

add sp, sp, #16

ret

/* Windows x64: caller allocates shadow space */

.text

.global win64_call

.type win64_call, %function

win64_call:

sub rsp, rsp, 32

call callee

add rsp, rsp, 32

ret



144

Architectural Reasons for Differences

RISC vs CISC Design Philosophy

• AArch64 follows a RISC philosophy:

– large uniform register file

– explicit load/store model

– simple, regular calling convention rules

• x86-64 evolved from a CISC lineage:

– fewer architectural registers historically

– strong backward compatibility constraints

– ABI designs that accommodate legacy behavior

Register File Size and ABI Design

• AArch64 has 31 general-purpose registers, enabling:

– more arguments in registers

– reduced stack traffic

– simpler ABI rules

• x86-64 has fewer architectural GPRs, leading to:

– earlier stack spilling

– ABI features like red zones or shadow space



145

Operating System and Toolchain Influence

• Windows prioritizes:

– consistent stack layout

– structured exception handling

– debugger-friendly unwinding

• Unix-like systems prioritize:

– performance

– leaf-function optimization

– flexible compiler optimization strategies

Final Conceptual Takeaway

• ABI rules are not arbitrary; they reflect architectural and OS design goals.

• AAPCS64 emphasizes simplicity, regularity, and performance.

• x86-64 ABIs reflect historical constraints and OS-specific priorities.

• Understanding the reasoning behind ABIs makes cross-architecture work predictable

and safe.

Appendix C — Preparation for Advanced Topics

This appendix defines the readiness criteria required before moving beyond basic AAPCS64

interoperability. Each subsection identifies what must already be correct at the ABI level

before advanced mechanisms are safe to introduce.



146

Readiness for Exception Unwinding

Why Exception Unwinding Is ABI-Sensitive

Exception unwinding depends on:

• precise stack frame construction,

• correct save/restore of callee-saved registers,

• consistent use (or non-use) of frame pointers,

• accurate call-return linkage.

If any ABI rule is violated, the unwinder may:

• skip frames,

• restore incorrect register state,

• or terminate execution during unwinding.

Minimum ABI Requirements Before Enabling Unwinding

• Every non-leaf function saves and restores x30 correctly.

• Any used callee-saved register (x19--x28, x29) is preserved.

• SP is restored exactly to its entry value on all exit paths.

• Stack frames follow a consistent pattern suitable for unwinding.



147

Canonical Unwind-Friendly Frame

/* Frame suitable for unwinding and debugging */

.text

.global unwind_ready_fn

.type unwind_ready_fn, %function

unwind_ready_fn:

sub sp, sp, #16

stp x29, x30, [sp, #0]

mov x29, sp

/* body */

ldp x29, x30, [sp, #0]

add sp, sp, #16

ret

Rule of Readiness

If your function cannot be unwound safely, it is not ready for exceptions.

Readiness for JIT and FFI Systems

Why JIT/FFI Environments Amplify ABI Errors

JIT and FFI systems:

• generate calls dynamically,

• cannot rely on compile-time verification,

• and often bridge multiple languages and runtimes.



148

Any ABI ambiguity becomes a runtime failure that is difficult to diagnose.

Mandatory ABI Constraints for JIT/FFI

• Only use documented ABI-visible registers.

• Do not rely on compiler-specific register allocation behavior.

• Keep boundaries strictly scalar/pointer-based.

• Do not expose variadic or template-heavy interfaces.

• Ensure stack alignment before every generated call.

FFI-Safe Function Shape

/* FFI-friendly: scalar args, scalar return, no hidden behavior */

.text

.global ffi_safe_add

.type ffi_safe_add, %function

ffi_safe_add:

/* x0 = a, x1 = b */

add x0, x0, x1

ret

JIT Call Stub (Conceptual)

/* JIT-generated call stub must obey ABI rules */

.text

.global jit_call_stub

.type jit_call_stub, %function

jit_call_stub:



149

sub sp, sp, #16

str x30, [sp, #8]

/* x0..xN populated by JIT runtime */

bl target_function

ldr x30, [sp, #8]

add sp, sp, #16

ret

Rule of Readiness

If your ABI contract is not explicit, a JIT or FFI will eventually break it.

Readiness for OS Kernel Boundaries

Why Kernel Boundaries Are Different

Crossing into kernel mode introduces:

• privilege level changes,

• strict entry/exit conventions,

• architectural state preservation requirements,

• and security constraints.

User-space ABI mistakes that appear benign can become fatal at kernel boundaries.

Minimum Discipline Before Kernel Interfaces

• Do not assume user-space calling conventions extend into kernel internals.



150

• Preserve only what the kernel ABI explicitly requires.

• Never leak user-space stack assumptions across the boundary.

• Treat kernel calls as strict ABI black boxes.

User-to-Kernel Call Shape (Conceptual)

/* User-space syscall-style boundary (conceptual) */

.text

.global user_kernel_call

.type user_kernel_call, %function

user_kernel_call:

/* x0..xN contain arguments */

/* transition instruction omitted (conceptual) */

ret

Kernel-Safe Assembly Discipline

• Never assume kernel preserves user registers beyond its contract.

• Never assume user SP survives unchanged.

• Validate all pointers before passing across the boundary.

• Treat the boundary as hostile and minimal.

Rule of Readiness

If your code is sloppy with ABI rules, it has no place near the kernel.



151

Final Readiness Summary

• Exception unwinding requires perfectly disciplined frames.

• JIT and FFI require explicit, minimal, and verifiable ABI contracts.

• Kernel boundaries require absolute correctness and zero assumptions.

• Advanced topics magnify ABI mistakes; they do not tolerate them.

Mastery of the ABI is not optional preparation for advanced systems work—it is

the prerequisite.



References

This chapter summarizes the authoritative conceptual sources that underpin this booklet. It

intentionally focuses on categories of trusted material rather than URLs, ensuring long-term

validity and academic clarity.

ARM Architecture Conceptual Manuals

The conceptual foundation of AAPCS64 rests on ARM’s architectural documentation, which

defines:

• the AArch64 execution state,

• general-purpose and SIMD/FP register files,

• privilege levels and exception models,

• instruction execution semantics independent of operating systems.

These manuals are essential for understanding:

• why argument registers are plentiful in AArch64,

• why stack alignment rules are strict,

• how architectural state is preserved across calls and exceptions.

152



153

Within this booklet, ARM architecture manuals are used:

• conceptually (not as instruction listings),

• to justify ABI design choices,

• to explain architectural constraints that shape calling conventions.

AAPCS64 Specification (Conceptual Use)

The AAPCS64 specification defines the contract between separately compiled units. It

specifies:

• argument classification and placement,

• return value rules,

• callee-saved vs caller-saved registers,

• stack alignment and frame discipline,

• indirect passing and return mechanisms.

In this booklet, the specification is used:

• as a source of invariants, not recipes,

• to explain what must always be true at call boundaries,

• to derive safe assembly–C/C++ interoperability patterns.

The emphasis is on:

• stable ABI behavior,

• cross-toolchain correctness,

• long-term maintainability rather than compiler-specific quirks.



154

Compiler ABI Documentation

Modern compilers implement AAPCS64 while retaining freedom in:

• prologue/epilogue generation,

• register allocation,

• frame pointer usage,

• optimization strategies.

Compiler ABI documentation is used in this booklet to clarify:

• what compilers must guarantee versus what they may change,

• how optimization interacts with ABI preservation,

• why inspecting compiler-generated code is a valid validation strategy.

The guiding principle applied throughout:

If the ABI does not guarantee it, your code must not rely on it.

Cross-References to Other Booklets in This Series

This booklet is part of a structured CPU Programming Series. Its content builds directly on

concepts introduced earlier and prepares the ground for later topics.

Foundational Dependencies

Readers are expected to be comfortable with:

• instruction execution models,



155

• register semantics and flag behavior,

• stack mechanics and call/return flow.

These are covered in earlier booklets focusing on:

• CPU execution pipelines,

• registers and binary data representation,

• stack discipline and calling conventions at a conceptual level.

Forward Connections

The ABI discipline established here is a prerequisite for:

• exception unwinding and runtime support,

• foreign-function interfaces and JIT systems,

• OS kernel boundaries and syscall interfaces,

• mixed-language and multi-architecture systems.

Later booklets in the series assume:

• strict adherence to AAPCS64 rules,

• confidence in reading compiler-generated assembly,

• and the ability to reason about call boundaries without guesswork.



156

Final Reference Note

This booklet intentionally avoids transient sources. Its reference model is based on:

• architectural specifications,

• formal ABI definitions,

• and compiler contracts that evolve slowly and predictably.

Mastering the ABI is not about memorizing rules—it is about understanding the

guarantees that make large systems possible.


	Contents
	Preface
	Purpose of This Booklet
	What You Will Be Able to Do After This Booklet
	Minimal ``Hello ABI'' Example
	Where AAPCS64 Fits in the CPU Programming Series
	Why This Booklet Exists (Even If You ``Know Assembly'')
	A Quick Map to Neighbor Booklets
	Prerequisites and Assumed Knowledge
	Required C/C++ Concepts
	Tooling Assumptions (Minimal)
	Scope, Limits, and ABI Discipline Philosophy
	Scope
	Out of Scope (By Design)
	ABI Discipline Philosophy: ``Correct First, Fast Second''
	A ``Wrong but Looks Fine'' Example (Register Preservation Bug)
	A Minimal Non-Leaf Template (Calls Another Function)

	AAPCS64 Overview and Design Goals
	What a Calling Convention Really Defines
	The Four Things Every Calling Convention Must Define
	What It Does Not Define
	Interoperability Is ``State Management''
	Example 1: One-Argument, One-Return (Register Contract)
	Example 2: Caller-Saved Reality (Why Values ``Disappear'')

	AAPCS64 in the ARM Architecture Ecosystem
	ISA vs ABI: Two Different Documents
	Ecosystem Layers (Where AAPCS64 Sits)
	Why AAPCS64 Enables ``Mix-and-Match''
	Example: Mixed Integer and FP Arguments

	ABI Stability and Long-Term Compatibility
	Why ABI Stability Matters
	What Makes an ABI ``Stable''
	Long-Term Compatibility Strategy
	Example: Stable C ABI Wrapper Around C++

	User Space vs Kernel Space Conventions (High-Level)
	Two Worlds, Two Contracts
	High-Level Differences
	Why You Must Not Mix Them Mentally
	Conceptual Example: ``Call'' vs ``Privilege Entry''
	Booklet Separation Policy


	Fundamental Register Roles in AAPCS64
	General-Purpose Registers (X0–X30): Conceptual Roles
	The ABI View: Registers as an Interface Contract
	Canonical Concepts You Must Remember
	A Practical Mental Model

	Argument Registers vs Temporary Registers
	Argument Registers Are Not ``Yours'' After a Call
	Example 1: Losing an Argument Across a Call (Bug Pattern)
	Example 2: Preserve the Value Across the Call (Correct)
	When to Use a Preserved Register Instead of the Stack

	Callee-Saved vs Caller-Saved Discipline
	Definitions (ABI Contract)
	Why Compilers Rely on This
	Example 3: Clobbering a Preserved Register (Catastrophic Bug)
	Example 4: Correct Use of a Callee-Saved Register
	A Reliable Rule for Handwritten Assembly

	Zero Register (XZR) and Stack Pointer (SP) Constraints
	XZR: Reads as Zero, Writes Discard
	Example 5: Efficient Zeroing and Zero-Compare
	SP: Special Register With Hard ABI Constraints
	The Non-Negotiable SP Rules for This Booklet
	Example 6: Correct Stack Allocation (Aligned)
	Example 7: Misalignment Bug (Often Silent, Always Dangerous)
	Practical Guidance


	Floating-Point and SIMD Register Convention
	V0–V7: Floating-Point Argument Passing
	Example 1: Pure Floating-Point Call Boundary (double)
	Example 2: float Variant (s-register view)
	Example 3: Overflow to Stack (Conceptual)

	Callee-Saved SIMD Registers
	Volatile vs Preserved in the SIMD Bank
	Example 4: Volatile SIMD Register Clobber (Bug Pattern)
	Example 5: Preserve a Live FP Value Across a Call (Spill to Stack)
	Example 6: Using a Preserved SIMD Register (Template)

	Mixed Integer and Floating-Point Arguments
	Two Independent Allocation Streams
	Example 7: Mixed Signature With Clear Mapping
	Example 8: A Common Mistake (Wrong Bank Assumption)

	ABI Guarantees for Vector Register Preservation
	What the ABI Actually Guarantees
	Example 9: Preserving a Vector Across a Call
	Example 10: ABI-Safe Rule Set for SIMD in Handwritten Assembly
	One-Page Practical Template (Non-Leaf FP Function)


	Stack Layout and Alignment Rules
	Stack Growth Direction and Alignment Requirements
	Downward-Growing Stack (Architectural Convention)
	What the ABI Requires vs What the CPU Allows
	Example 1: Minimal Stack Allocation Pattern

	Mandatory 16-Byte Stack Alignment
	The Non-Negotiable Rule
	Example 2: Correct Non-Leaf Function (Keeps Alignment)
	Example 3: Misalignment Bug That Often Appears ``Random''
	Practical Rule

	Stack Frame Structure (Conceptual)
	Conceptual Layout (One Common Pattern)
	Example 4: Canonical Save/Restore of FP and LR
	Example 5: Saving Multiple Callee-Saved Registers

	Red Zone: Why It Does Not Exist in AArch64
	What ``Red Zone'' Means (Concept)
	AAPCS64 Policy: Do Not Assume Untouched Space Below SP
	Example 6: The Temptation (Do Not Do This)
	Example 7: Correct Replacement (Allocate and Use)
	ABI Discipline Summary



	Function Prologue and Epilogue Mechanics
	Minimal Leaf Function Frames
	Example 1: Zero-Frame Leaf (Best Case)
	When a Leaf Still Needs a Frame
	Example 2: Leaf With Stack Locals (Aligned)

	Non-Leaf Function Stack Frames
	Minimal Non-Leaf Requirement: Protect the Return Address
	Example 3: Minimal Non-Leaf Saving Only LR (Aligned)
	Example 4: Non-Leaf With Locals and Saved Registers

	Saving and Restoring Registers Correctly
	The Rule
	Correctness Over Style
	Example 5: Correct Save/Restore of a Callee-Saved GPR
	Example 6: Saving/Restoring Multiple Registers Efficiently
	Example 7: Common Bug — Save Without Restore (Silent Corruption)
	A Robust Discipline Template

	Frame Pointer (X29) Usage and Optionality
	What X29 Means in Practice
	Optionality: You Can Omit FP
	Example 8: Conventional FP/LR Frame Setup
	Example 9: FP-Omitted Function (SP-Relative Only)
	Choosing FP vs No FP (Engineering Guidance)


	Argument Passing Rules in Detail
	Integer and Pointer Arguments
	Core Rule
	Example 1: Up to Eight Integer Arguments (All in Registers)
	Example 2: Pointer Arguments Are Just Integer-Class
	Example 3: More Than Eight Integer Arguments (Register + Stack Concept)

	Floating-Point Arguments
	Core Rule
	Example 4: FP Arguments and Return (double)
	Example 5: More Than Eight FP Arguments (Register + Stack Concept)

	Struct and Aggregate Passing Rules
	Concept: Classification Determines Where It Goes
	Safe Engineering Guidance
	Example 6: Scalar-Only Wrapper for a Struct Argument
	Example 7: Struct Return via Scalar Boundary

	Large Objects and Indirect Passing
	The Indirect Passing Model
	Example 8: Explicit Indirect Passing Using Pointers (Recommended)

	Variadic Functions (va_list Model)
	Why Variadic Calls Are Special
	The Practical Rule for Interop
	Example 9: Safe Wrapper Pattern Around Variadic
	Key Takeaways for Variadics


	Return Value Rules
	Scalar Return Values
	Core Rule
	Example 1: Return uint64_t in x0
	Example 2: Return a Pointer in x0
	Example 3: 32-bit Return Values

	Floating-Point Return Values
	Core Rule
	Example 4: Return double in d0
	Example 5: Return float in s0

	Struct and Aggregate Returns
	Concept: Small Aggregates May Return in Registers
	Engineering Rule for Interoperability
	Example 6: Replace Struct Return With Out-Parameters (Recommended)
	Example 7: Two-Value Return via Two Scalars

	Hidden Return Pointers
	The ``sret'' Model (Indirect Return)
	Interop Guidance
	Example 8: Explicit ``Return Object'' Pointer (Recommended Replacement)
	Example 9: Returning a Vector Result Safely
	Summary Discipline


	C and C++ Interoperability Rules
	Name Mangling vs ABI Compatibility
	Two Different Problems: Calling Convention vs Linkage Encoding
	What Breaks Most Often
	Example 1: Overloads Cannot Share One Stable Symbol Name

	extern "C" and Symbol Stability
	What extern "C" Actually Does
	Example 2: Stable Entry Point for Assembly
	Example 3: Exposing a C ABI Wrapper Around C++ Implementation

	Passing C++ Objects Across ABI Boundaries
	The Interop Rule
	Preferred Boundary: Opaque Handles + Explicit Functions
	Example 4: Opaque Handle Pattern (Recommended)
	Example 5: POD-Only Boundary (When You Must Pass a Struct)

	Constructors, Destructors, and ABI Constraints
	Why Constructors/Destructors Are ABI-Hard
	Recommended Strategy
	Example 6: Construction/Destruction Wrapper With Explicit Ownership

	Exception Handling Boundaries (Conceptual)
	Why Exceptions Are Not a Stable Binary Boundary
	Interop Rule: Do Not Let Exceptions Cross the Boundary
	Example 7: Translate Exceptions to Error Codes
	Example 8: Assembly Caller Uses Status + Out-Value
	Summary Discipline for Interop



	Compiler-Generated Code and ABI Guarantees
	What Compilers Must Guarantee
	Mandatory ABI Guarantees at Call Boundaries
	Observable Guarantee vs Implementation Freedom
	Example 1: ABI-Visible Function (Compiler Must Preserve Contract)
	Example 2: When the Compiler Must Save/Restore

	What Programmers Must Never Assume
	Never Assume Specific Prologue/Epilogue Instructions
	Never Assume Volatile Registers Survive Calls
	Never Assume Stack Space Below SP Is Safe
	Never Assume Struct Layout/Passing Without ABI Rules

	Optimization vs ABI Preservation
	Optimization Changes Everything Except the Contract
	Example 3: Same Source, Two Different Valid Shapes
	Example 4: ABI Boundary Wrapper Stabilizes Interop

	Inline Functions and ABI Transparency
	Inlining Removes the Call Boundary
	Example 5: Inline Changes Observability
	Example 6: Force a Real Boundary for ABI Testing
	Example 7: Assembly Interop Requires Non-Inlined Stable Symbols

	ABI Guarantee Checklist (Practical)


	Interfacing Handwritten Assembly with C/C++
	Writing ABI-Compliant Assembly Functions
	Minimum ABI Checklist for an Assembly Function
	Example 1: Leaf Function, No Frame (Best Interop Case)
	Example 2: Leaf Function With Callee-Saved Local
	Example 3: FP Function (double) ABI Boundary

	Calling C/C++ Functions from Assembly
	The Contract When You Are the Caller
	Example 4: Assembly Calls a C Function (Scalar Only)
	Example 5: Preserving a Live Value Across the Call
	Example 6: Mixed Integer and FP Call

	Common Prologue/Epilogue Templates
	Template A: Leaf, No Frame (Fastest)
	Template B: Non-Leaf Minimal (Save LR Only)
	Template C: Conventional Frame (Save FP/LR)
	Template D: Uses Callee-Saved Locals (Plus Optional FP/LR)

	Debugging ABI Violations
	The Four Most Common Failure Classes
	Example 7: Stack Misalignment Bug (Diagnostic Pattern)
	Correct Fix
	Example 8: Callee-Saved Clobber Bug
	Correct Fix
	A Practical Debugging Workflow (Tool-Agnostic)



	Common Mistakes and Silent ABI Breakage
	Stack Misalignment Failures
	The Failure
	Symptoms
	Bad Example (Misalign Then Call)
	Correct Fix (Align Then Call)
	Rule

	Incorrect Register Preservation
	The Failure
	Symptoms
	Bad Example (Clobber Preserved Register)
	Correct Fix (Save/Restore)
	Rule

	Mismatched Function Signatures
	The Failure
	The Most Common Mismatches
	Bad Example (Reads FP Argument From the Wrong Bank)
	Correct Fix
	Rule

	Variadic Function Pitfalls
	The Failure
	Symptoms
	Bad Pattern (Assembly Variadic Callee Without Proper va_list)
	Correct Strategy: Keep Variadic in C, Expose Fixed Wrapper
	Rule

	Mixing ABIs Across Compilation Units
	The Failure
	Symptoms
	Example: Packing Mismatch (Classic Silent Corruption)
	Robust Fix Strategy

	Practical ABI Breakage Checklist


	Practical ABI Discipline Checklist
	Mandatory Rules Recap
	Call Boundary Laws (Always True)
	One-Line Failure Model

	Safe Assembly–C/C++ Interoperability Checklist
	A. Signature Discipline
	B. Stack Discipline
	C. Register Discipline
	D. C++ Runtime Discipline
	Example 1: ABI-Safe ``Assembly Function Called from C'' Template
	Example 2: ABI-Safe ``Assembly Calls C'' Template (Non-Leaf)
	Example 3: ABI-Safe Mixed Integer + FP Boundary

	ABI Validation Before Optimization
	Validation Order (Practical)
	Example 4: ``ABI Probe'' Pattern Using a Known C Callee

	When to Re-Read the Specification
	Immediate Triggers
	Rule of Thumb
	Final Discipline Statement



	Appendices
	Appendix A — Minimal AAPCS64 Reference (Conceptual)
	Register Usage Summary
	Argument and Return Rules Summary
	Stack Alignment Rules Summary
	Appendix B — Cross-Architecture Comparison (Conceptual)
	AAPCS64 vs x86-64 System V ABI
	AAPCS64 vs Windows x64 ABI
	Architectural Reasons for Differences
	Appendix C — Preparation for Advanced Topics
	Readiness for Exception Unwinding
	Readiness for JIT and FFI Systems
	Readiness for OS Kernel Boundaries
	Final Readiness Summary

	References
	ARM Architecture Conceptual Manuals
	AAPCS64 Specification (Conceptual Use)
	Compiler ABI Documentation
	Cross-References to Other Booklets in This Series
	Foundational Dependencies
	Forward Connections

	Final Reference Note


















