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Preface

Purpose of This Booklet

This booklet explains the AArch64 exception model as it is actually experienced by

programmers: how control moves between EL0 (user) and EL1 (kernel) during syscalls,

and why faults (page faults, permission faults, alignment faults, illegal instructions) show up

as synchronous exceptions. It also gives a clear conceptual map of EL2 (hypervisor) and

EL3 (secure monitor) so you can understand what they are, what they are not, and when your

code interacts with them indirectly.

The goals are practical:

• Build a correct mental model of exception entry/return: vector selection, saved state,

and return semantics.

• Teach you to diagnose crashes and traps using the key architectural state: ESR ELx,

FAR ELx, ELR ELx, SPSR ELx.

• Show how a Linux syscall is not a normal function call: it is an exception path with

ABI rules, privilege change, and controlled return.

• Explain where virtualization (EL2) and secure world (EL3) sit, without turning the

booklet into a firmware manual.

10
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Core promise. After finishing, you should be able to look at an AArch64 crash report,

disassembly, or kernel trace and say: which exception happened, at which EL, why it

happened, what architectural state proves it, and what the correct fix is.

Target Audience and Prerequisites

This booklet is for:

• C/C++ systems programmers doing Linux user-space work who need to understand

syscalls, signals, and faults.

• Low-level engineers reading disassembly, debugging hard crashes, or doing

performance-sensitive work near the kernel boundary.

• Embedded and platform engineers who must reason about EL1/EL2/EL3 even when

application code runs at EL0.

Prerequisites (assumed knowledge):

• Basic AArch64 register literacy: X0--X30, SP, PC, and the idea of PSTATE.

• Comfort reading short assembly snippets and recognizing BL, RET, MOV, LDR/STR.

• A working concept of user/kernel separation (even if you have never read kernel code).

Not required: You do not need prior firmware experience, virtualization expertise, or a full

Linux kernel tour. When such topics appear, they are introduced only to the extent that they

affect the programmer’s model.
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How This Booklet Fits into the CPU Programming Series

This booklet is positioned where many programmers hit a wall: the first time “normal code”
becomes an exception path. It connects the dots between architectural state, ABI discipline,

and OS behavior.

• Builds on: AArch64 core registers and addressing discipline (the foundation needed to

read exception entry/return code).

• Extends: calling convention knowledge into the syscall boundary (syscalls look like

calls, but they are not).

• Prepares you for: virtualization-aware tracing (EL2) and secure monitor interfaces

(EL3) in later booklets.

Series navigation. If you already know how AArch64 load/store and stack discipline work,

you will move faster. If not, skim the earlier register and ABI booklets first; exceptions assume

that baseline.

Conceptual vs Practical Scope

This booklet deliberately separates architectural invariants from OS-specific
implementation details.

What is treated as conceptual (portable across systems)

• The definition of exception levels (EL0–EL3) and why transitions occur.

• The meaning of synchronous exception vs IRQ/FIQ vs SError.

• The role of exception vectors and the general entry/return mechanism.
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• The meaning of the key system registers: ESR ELx, FAR ELx, ELR ELx, SPSR ELx.

What is treated as practical (Linux-centric, programmer-facing)

• The AArch64 syscall ABI as used from EL0 (register conventions, return values, and

error handling).

• How Linux turns specific faults into signals and how that appears to user programs.

• How to debug an exception from user space and interpret evidence from disassembly

and register state.

What is explicitly out of scope (kept minimal)

• Full EL3 firmware design, secure boot chains, and complete TrustZone runtime

architecture.

• Hypervisor implementation details beyond the minimum needed to understand EL2’s

place in the model.

• Writing a full kernel exception subsystem from scratch.

Rule of thumb. If a detail does not change your ability to reason about program behavior,

debug faults, or understand syscall flow, it is either summarized or deferred to later booklets.

Preview Examples: What You Will Be Able to Explain and

Debug
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Example 1 — Syscall: EL0→ EL1→ EL0 (Not a Normal Call)

A Linux syscall is invoked with SVC #0. Arguments are placed in registers and the kernel

returns with a value in X0. This looks like a call/return from the programmer’s point of view,

but architecturally it is an exception entry/return path.

/* Minimal syscall-style wrapper concept (ABI idea, not a full libc

replacement). */↪→

long my_getpid(void);

/* AArch64 GAS syntax (GNU as). Comments use C-style markers. */

.text

.global my_getpid

.type my_getpid, %function

my_getpid:

/* Place syscall number in x8 (Linux AArch64 convention). */

mov x8, #172 /* __NR_getpid */

/* SVC triggers a synchronous exception from EL0 to EL1. */

svc #0

/* Kernel returns to EL0; result is in x0. */

ret

What you will learn to answer:

• Why svc #0 is classified as a synchronous exception.

• Which state is saved/restored on entry/return, and why eret is the architectural return

mechanism.

• Why syscall conventions are strict (register usage, clobbers, error reporting).
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Example 2 — Fault: Null Pointer Load⇒ Synchronous Exception⇒
Signal

A bad memory access in EL0 does not “just crash”: it triggers a synchronous exception that

the OS turns into a signal.

/* Intentional fault: dereference a null pointer. */

static volatile int *p = (int*)0;

int main(void) { return *p; }

/* Representative pattern in generated code (illustrative). */

.text

.global _start

_start:

/* x0 = 0; attempt to load from [x0] => translation fault in EL0.

*/↪→

mov x0, #0

ldr w1, [x0] /* triggers a synchronous exception */

/* Unreached */

mov x8, #93 /* __NR_exit */

svc #0

What you will learn to answer:

• How the CPU classifies the fault and records evidence in ESR EL1 and FAR EL1.

• Why the fault enters EL1 (kernel), and how the kernel decides to send SIGSEGV.

• How to distinguish a page fault from a permission fault, using the exception syndrome

fields.
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Example 3 — Illegal Instruction vs Privileged Instruction

Some failures are about what you executed, not where you accessed. Trying to execute a

privileged operation at EL0 triggers a trap/fault that is diagnosed differently from a memory

fault.

/* The exact instruction choice is illustrative: the point is

privilege violation at EL0. */↪→

.text

.global demo_priv_violation

.type demo_priv_violation, %function

demo_priv_violation:

/* Attempt to access a privileged system register from EL0

(conceptual example). */↪→

/* The architecture will trap and record syndrome in ESR_EL1. */

mrs x0, sctlr_el1 /* illegal at EL0: traps */

ret

What you will learn to answer:

• How to interpret the syndrome to separate “undefined instruction” from “privileged

access trap”.

• Why the same instruction may be legal at EL1 but illegal at EL0.

Example 4 — Where EL2 and EL3 Appear in a Programmer’s Life

Even if your application runs at EL0, you may still see EL2/EL3 indirectly:

• EL2 can affect timing, trapping behavior, and virtualization-related exits.

• EL3 governs secure monitor transitions (e.g., platform services), often invisible until

debugging platform issues.
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You will not implement a hypervisor or secure monitor here, but you will gain the correct map:

what belongs to EL1 vs EL2 vs EL3, and what evidence indicates their involvement.



Chapter 1

AArch64 Exception Model Overview

1.1 What Is an Exception in ARM?

In AArch64, an exception is any architecturally-defined event that diverts control flow from

the current instruction stream to a privileged handler at the same or higher Exception Level
(EL). The key idea is simple:

• Normal code flow: PC advances sequentially through instructions.

• Exception flow: hardware redirects execution to a vector entry and provides enough

saved state for software to determine why the diversion happened and how to continue

(or terminate).

Exceptions are the unifying mechanism behind:

• System calls (SVC)

• Debug traps / intentional breakpoints (BRK)

• Memory faults (instruction/data aborts, permission faults, translation faults)

18
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• Interrupt delivery (IRQ/FIQ)

• Machine-check style errors (SError)

• Controlled traps used by virtualization (HVC) and secure monitor transitions (SMC)

Programmer’s mental model

Treat an exception like a hardware-enforced control transfer with a structured evidence
package: ELR ELx (where it happened), SPSR ELx (saved state), ESR ELx (what kind of

exception), and sometimes FAR ELx (fault address).

1.2 Synchronous vs Asynchronous Exceptions

ARM separates exceptions into two practical timing classes that matter for debugging and

design.

1.2.1 Synchronous exceptions (precise, instruction-related)

A synchronous exception is caused by executing a specific instruction or by an instruction’s

required memory access. It is architecturally precise: the exception is associated with a

specific point in the instruction stream.

Common synchronous sources in EL0 programs:

• Supervisor call: SVC #imm (syscall entry)

• Breakpoint: BRK #imm (debug/intentional trap)

• Instruction abort: fetch fault (execute permission, translation fault, etc.)

• Data abort: load/store fault (translation, permission, alignment, etc.)
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• Illegal/undefined instruction or privileged instruction at EL0

• Trapped system register access (when configured to trap)

1.2.2 Asynchronous exceptions (not tied to the current instruction)

An asynchronous exception is not caused by the instruction currently executing. It is

delivered due to an external or deferred event. Two common families:

• Interrupts: IRQ and FIQ (external devices, timers, IPIs)

• SError: asynchronous system error signaling (implementation/platform dependent

behavior)

Why this matters

• With synchronous exceptions, your first question is: Which instruction caused it?

• With interrupts, your first question is: What event arrived, and why was it

enabled/unmasked now?

• With SError, your first question is: What part of the system signaled an error, and how

does the platform report it?

1.3 Exceptions vs Interrupts vs Faults

The terminology is often overloaded, so this booklet uses a strict hierarchy:

• Exception (umbrella): any event that diverts control to an exception vector.

• Interrupt: an exception delivered from an external/async source (IRQ/FIQ).
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• Fault/Abort: a synchronous exception triggered by instruction fetch or data access

problems.

1.3.1 Faults (as programmers encounter them)

In AArch64 software practice, the most important fault families are:

• Instruction abort: fault when fetching an instruction (e.g., execute permission,

translation failure).

• Data abort: fault when performing a load/store (e.g., unmapped page, permission fault).

A key observation for debugging:

• A syscall is an exception that you asked for.

• A fault is an exception that your program provoked by violating a rule (memory,

privilege, alignment, etc.).

• An interrupt is an exception that the outside world delivered to you.

Example: three different reasons for leaving EL0

/* AArch64 GAS syntax; comments use C-style markers. */

.text

.global demo_three_exits

.type demo_three_exits, %function

demo_three_exits:

/* (1) Intentional: syscall entry (synchronous exception) */

mov x8, #172 /* __NR_getpid (Linux AArch64) */

svc #0 /* EL0 -> EL1 -> EL0 */
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/* (2) Intentional: debug trap (synchronous exception) */

brk #0 /* Debug exception if enabled/handled

*/↪→

/* (3) Unintentional: data abort (synchronous fault) */

mov x0, #0

ldr x1, [x0] /* Likely translation fault -> EL1

handler */↪→

ret

What changes across (1), (2), and (3) is not “did we take an exception?” (yes in all), but what
the syndrome reports and how the OS chooses to respond.

1.4 Exception Entry and Return (High-Level View)

Exception entry/return is a hardware-defined protocol. Your code does not invent the rules; it

follows them.

1.4.1 High-level entry sequence

When an exception is taken to a target EL (typically EL1 for OS kernels), hardware performs

these conceptual steps:

1. Select the vector base for the target EL (conceptually: a table of entry points).

2. Record the return address into ELR ELx (where execution should resume).

3. Save the prior state into SPSR ELx (saved PSTATE, masks, mode bits, etc.).
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4. Populate syndrome info (for many exceptions) into ESR ELx; for address faults also

set FAR ELx.

5. Update execution state to the target EL (privilege level changes; interrupt masks may

be applied).

6. Branch to the vector entry corresponding to the exception class (sync/IRQ/FIQ/SError

and context).

The result: handler code starts executing at a privileged vector entry with architectural state

that explains why it was entered.

1.4.2 High-level return sequence

Returning from an exception is performed via ERET (exception return):

• ERET restores PSTATE from SPSR ELx

• ERET restores the next PC from ELR ELx

• control resumes in the previous context (often EL0 user-space) as if the exception was a

controlled detour

Conceptual sketch: syscall path

/* Conceptual flow only: illustrates the architectural "entry/return"

contract. */↪→

.text

/* EL0 user code */

.global user_syscall_example
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.type user_syscall_example, %function

user_syscall_example:

mov x8, #64 /* __NR_write (example) */

/* x0=fd, x1=buf, x2=len would be set by caller */

svc #0 /* synchronous exception to EL1 */

ret

/* EL1 kernel-side vector handler (conceptual, not real Linux code)

*/↪→

.global el1_sync_vector_stub

.type el1_sync_vector_stub, %function

el1_sync_vector_stub:

/* On entry:

- ELR_EL1 holds return address into EL0

- SPSR_EL1 holds saved PSTATE from EL0

- ESR_EL1 describes the exception class (e.g., SVC from EL0)

*/

/* Save volatile registers to kernel stack (policy-defined) */

/* Decode ESR_EL1 to route: syscall vs fault vs other */

/* Execute service */

/* Place return value in x0 (ABI policy for syscall return) */

eret /* return to EL0 at ELR_EL1 with state

from SPSR_EL1 */↪→

1.4.3 Conceptual sketch: data abort evidence

A data abort handler typically relies on:

• ESR EL1: tells you what kind of abort and key attributes.

• FAR EL1: gives the faulting virtual address for address-related faults.
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• ELR EL1: points to the instruction address where the fault occurred.

/* Minimal evidence-gathering sketch (conceptual). */

.text

.global el1_data_abort_stub

.type el1_data_abort_stub, %function

el1_data_abort_stub:

mrs x0, esr_el1 /* syndrome: class + details */

mrs x1, far_el1 /* fault address (when applicable) */

mrs x2, elr_el1 /* where it happened */

mrs x3, spsr_el1 /* saved state of the faulting context

*/↪→

/* Now: decide whether to fix up (page-in), signal/kill, or

panic. */↪→

eret

Key takeaway for programmers

• Exceptions are control-flow transfers with proof.

• Synchronous exceptions are about a specific instruction.

• Asynchronous exceptions are about an arriving event.

• Entry/return is not optional: vector selection, saved state, syndrome, and ERET form

the contract.
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Exception Levels (EL0–EL3)

2.1 Overview of Privilege Levels

AArch64 defines four Exception Levels (ELs) that represent increasing privilege. The EL

model answers one core question:

Which code is allowed to control the machine, and which code must request

services through controlled entry points?

Privilege is not a moral ranking; it is a safety boundary:

• Higher ELs can control memory translation, interrupt routing, and privileged system

registers.

• Lower ELs run with restrictions and must use exceptions (e.g., SVC, traps, faults) to

cross the boundary.

What changes as EL increases

From a programmer’s perspective, higher EL typically implies access to:
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• privileged system registers and control bits (MMU enable, caches, translation regime

selection)

• exception vector configuration and routing policy

• interrupt masking, prioritization, and controller programming

• memory translation tables and page permissions

Two orthogonal axes you must not mix

• Privilege axis: EL0→ EL3 (who is allowed to do what).

• Security axis: Secure vs Non-secure state (who belongs to which world).

EL0–EL2 are normally in Non-secure state on general-purpose OS systems; EL3 is the secure
monitor boundary manager.

2.2 EL0: User Space

EL0 is where normal applications run: C/C++ programs, runtimes, language VMs, services,

and user-level libraries.

What EL0 can do well

• Execute unprivileged instructions at full speed

• Use the virtual memory view provided by the OS

• Request OS services via syscalls (typically SVC #0 on Linux)
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What EL0 cannot do

• Directly program MMU/translation tables, exception vectors, interrupt controllers

• Access many privileged system registers

• Directly manage device registers mapped as privileged

Programmer-facing view: EL0 exits

In practice, EL0 leaves normal flow through:

• Syscalls (intentional): SVC

• Faults (unintentional): aborts on illegal memory access or privilege violations

• Signals/async events (delivered via kernel mechanisms)

/* EL0 user-space: invoke a syscall by raising a synchronous

exception. */↪→

.text

.global el0_syscall_getpid

.type el0_syscall_getpid, %function

el0_syscall_getpid:

mov x8, #172 /* __NR_getpid on Linux AArch64 */

svc #0 /* EL0 -> EL1 synchronous exception */

ret /* return value in x0 */

2.3 EL1: Kernel Space

EL1 is typically where the OS kernel runs. It is responsible for:
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• defining the process virtual address spaces (translation tables, permissions)

• handling exceptions from EL0 (syscalls, faults, debug traps)

• scheduling, signals, process control, and isolation

• controlling device access (directly or via drivers)

Why EL1 exists (programmer translation)

EL1 is the layer that makes EL0 safe and productive:

• You can crash your process; you should not crash the machine.

• You can request I/O; you should not directly program arbitrary devices.

• You can allocate memory; you should not rewrite translation tables.

What EL1 does on EL0 entry

Conceptually, on an EL0 synchronous exception:

• kernel vectors receive control (EL1 vector table)

• saved state is available via ELR EL1 and SPSR EL1

• the cause is classified via ESR EL1 (and FAR EL1 for address faults)

• kernel decides: perform syscall, fix up fault, deliver signal, or terminate

/* EL1 conceptual handler stub: read evidence then route. Not real

Linux code. */↪→

.text

.global el1_sync_entry_concept
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.type el1_sync_entry_concept, %function

el1_sync_entry_concept:

mrs x0, esr_el1 /* what happened */

mrs x1, elr_el1 /* where it happened */

mrs x2, spsr_el1 /* saved state */

/* If data/instruction abort: FAR_EL1 is meaningful */

mrs x3, far_el1

/* Route to: syscall dispatcher / fault handler / debug handler

*/↪→

eret

2.4 EL2: Hypervisor

EL2 is the virtualization privilege level. When virtualization is used, EL2:

• hosts one or more guest kernels (often running at EL1 in a virtualized context)

• traps and emulates privileged operations performed by guests

• controls stage-2 translation (guest physical→ host physical mapping)

Programmer-facing reality of EL2

Many systems run without a hypervisor; in that case EL2 may be unused or minimally

configured. When present, EL2 changes how you reason about who owns the machine:

• the guest kernel believes it is in charge, but EL2 can intercept sensitive actions

• certain exceptions can be routed to EL2 (configured by the hypervisor)

• performance and timing behavior can differ due to traps/VM exits
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/* Conceptual: hypercall from a guest context (illustrative). */

.text

.global guest_hypercall_example

.type guest_hypercall_example, %function

guest_hypercall_example:

/* HVC triggers a synchronous exception; target typically EL2 if

enabled. */↪→

hvc #0

ret

What you should remember

EL2 is about controlling a guest with strong isolation. If you are debugging odd kernel

behavior in a VM, always consider whether a trap to EL2 is involved.

2.5 EL3: Secure Monitor

EL3 is the secure monitor level. It is the control point for transitions between:

• Secure state (trusted services, secure firmware)

• Non-secure state (normal OS world: EL0/EL1/EL2)

What EL3 typically owns

• secure boot chain coordination and early platform initialization

• secure world entry/exit policy and mediation

• handling secure monitor calls (SMC)
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What EL3 is not (for this booklet)

EL3 is not your day-to-day syscall world. You do not call EL3 to open files. You usually

encounter EL3 when:

• platform firmware provides services via SMC

• secure boot or security policy affects what EL1/EL2 can configure

• debugging early boot, trustzone services, or platform power management paths

/* Conceptual: secure monitor call (platform-specific meaning). */

.text

.global smc_example

.type smc_example, %function

smc_example:

/* Arguments would be placed in x0..xN by a calling convention

defined by firmware. */↪→

smc #0

ret

2.6 Typical EL Transitions in Real Systems

This section maps the abstract EL model to the flows programmers actually see.

2.6.1 Common flow on Linux without virtualization

• Application runs at EL0.

• Syscall uses SVC: EL0→ EL1.

• Kernel handles request and returns with ERET: EL1→ EL0.
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/* EL0 -> EL1 -> EL0 syscall round-trip (illustrative). */

.text

.global write_syscall_roundtrip

.type write_syscall_roundtrip, %function

write_syscall_roundtrip:

/* x0=fd, x1=buf, x2=len */

mov x8, #64 /* __NR_write (Linux AArch64) */

svc #0 /* enter EL1 */

/* x0 holds return value; negative typically indicates an error

convention */↪→

ret

2.6.2 Fault-driven transitions

A bad access in EL0 triggers a synchronous exception into EL1:

• EL0 executes a load/store or instruction fetch that violates translation/permissions.

• hardware takes a synchronous abort: EL0→ EL1.

• kernel may fix up (e.g., page-in) and return, or deliver a signal / kill the process.

/* Typical EL0 mistake: load from an invalid pointer. */

.text

.global el0_fault_example

.type el0_fault_example, %function

el0_fault_example:

mov x0, #0

ldr x1, [x0] /* likely data abort: EL0 -> EL1 */

ret
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2.6.3 With virtualization enabled

Common patterns:

• EL0 (guest user) uses SVC: guest EL0→ guest EL1.

• Guest EL1 may be trapped by EL2 on sensitive operations: guest EL1→ EL2.

• Hypervisor returns control back to the guest via exception return mechanisms.

2.6.4 Secure world interactions

Secure monitor calls are not part of normal syscalls, but may appear in:

• power management, trusted key storage, secure services

• platform-specific firmware interfaces

Flow conceptually: Non-secure EL1/EL2→ EL3→ (secure services)→ return.

Discipline summary

• Syscalls: controlled EL0↔ EL1 transition.

• Faults: rule violation triggers EL0→ EL1 for diagnosis and policy.

• Virtualization: EL2 may intercept guest privileged operations.

• Security: EL3 mediates secure/non-secure boundaries; mostly firmware-driven.
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Execution States and Security Context

3.1 AArch64 vs AArch32 Execution States

ARMv8 and later architectures support two architectural execution states:

• AArch64: 64-bit execution state (general-purpose registers X0--X30, 64-bit address

model, A64 instruction set).

• AArch32: 32-bit execution state (general-purpose registers R0--R15, 32-bit address

model, A32/T32 instruction sets).

What “execution state” means (strictly)

Execution state is not “a mode bit like user/kernel”. It determines:

• the instruction set being decoded and executed

• the register view and operand sizes

• the architectural rules for exceptions, system registers, and context saving
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Modern OS reality

On contemporary 64-bit Linux and most modern mobile/embedded platforms:

• the kernel runs in AArch64

• user programs run in AArch64

AArch32 may exist for legacy compatibility on some systems, but it is not required for

understanding the normal EL0↔EL1 syscall and fault model in this booklet.

Exception-state impact

An exception can change EL, but does not automatically imply a change of execution state.

State transitions (AArch32↔ AArch64) are a configuration and boot-time policy matter.

Practical debugging clue

If you see Xn registers, SP, PC in 64-bit form and A64 mnemonics (ldr x, stp x, eret),

you are in AArch64. If you see Rn, SP, LR, PC in 32-bit form, you are in AArch32.

/* AArch64: 64-bit register names and A64 instructions. */

.text

.global state_aarch64_example

.type state_aarch64_example, %function

state_aarch64_example:

mov x0, #1

ldr x1, [x2]

ret

/* AArch32 syntax varies by toolchain; shown only as a conceptual

contrast. */↪→
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/* The key concept: R0-R15 and different instruction encodings. */

.text

.global state_aarch32_concept

.type state_aarch32_concept, %function

state_aarch32_concept:

/* mov r0, #1 */

/* ldr r1, [r2] */

/* bx lr */

ret

3.2 Secure vs Non-Secure World

The ARM security model introduces a security state orthogonal to privilege level:

• Non-secure state: the “normal world” where general-purpose OSes (Linux/Android)

run.

• Secure state: the “secure world” intended for trusted code and services.

Orthogonality rule

Do not conflate:

• Privilege (EL0–EL3) with

• Security state (Secure vs Non-secure)

In typical systems:

• EL0/EL1 (and EL2 if used) operate in Non-secure state.

• EL3 is the secure monitor responsible for managing transitions between security states.
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Why this matters to programmers

Even if your code never calls secure services directly, security state affects:

• which memory and peripherals are visible

• which system resources can be configured by the normal OS

• how certain platform services (keys, crypto engines, firmware interfaces) are accessed

Practical misconception to avoid

A secure world is not “a more privileged kernel”. It is a separate security domain with its

own isolation policy and service boundary, managed through controlled transitions.

3.3 TrustZone Conceptual Model

TrustZone is ARM’s conceptual framework for two-world isolation:

• a normal world OS and applications (Non-secure state)

• a secure world runtime offering trusted services (Secure state)

Core TrustZone idea

The CPU and interconnect enforce a label (secure vs non-secure) that affects:

• memory regions (secure RAM vs normal RAM)

• device access (secure-only peripherals vs shared devices)

• interrupts (some interrupts can be routed as secure)
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How code crosses the boundary

Cross-world transitions are performed through secure monitor calls using SMC. From a

programmer’s viewpoint, SMC is like:

A synchronous exception used as a portal into the secure monitor, which then

dispatches to secure services.

/* Conceptual: Non-secure world requests a secure service via SMC. */

.text

.global tz_smc_concept

.type tz_smc_concept, %function

tz_smc_concept:

/* x0..xN carry a service identifier and arguments (platform

ABI). */↪→

mov x0, #0 /* service id (illustrative only) */

smc #0 /* enter EL3 secure monitor */

/* return value typically in x0 (platform-defined convention) */

ret

What is guaranteed vs platform-defined

• Guaranteed by architecture: SMC causes an exception-like entry to the monitor with

defined state saving/return rules.

• Platform-defined: the service IDs, argument semantics, and which services exist.

Practical view in OS stacks

In many systems, user code does not issue SMC directly. Instead, the path is often:

• EL0 app requests a service via syscall or driver API
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• EL1 kernel/driver issues SMC to firmware/secure runtime

• EL3 dispatches and returns

3.4 Role of EL3 in Secure Boot and Transitions

EL3 is the control point that:

• runs early in boot on many platforms

• configures initial security policies

• provides the monitor that handles Secure↔ Non-secure transitions

3.4.1 EL3 in secure boot (conceptual sequence)

A secure boot chain is a policy-driven process that aims to ensure only authenticated code runs

at privileged layers. At a high level, EL3 typically participates by:

• establishing a root of trust and verifying subsequent boot stages

• configuring security partitions (which memory/peripherals are secure-only)

• handing off control to the normal-world firmware/OS at EL2 or EL1 (platform-

dependent)

3.4.2 EL3 as the transition authority

After boot, EL3 remains the authority that:

• receives SMC requests and routes them

• enforces policy about what the normal world may request

• can switch context between secure and non-secure execution environments
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What programmers should internalize

• EL3 is not part of the syscall fast-path. Syscalls are EL0→EL1.

• EL3 is a platform security and firmware boundary. You meet it through SMC-

mediated services.

• The architectural mechanism is consistent; the service catalog is platform-specific.

Example: layered request path (common in practice)

/* Conceptual layering: EL0 -> EL1 syscall, then EL1 -> EL3 SMC. */

.text

.global layered_request_concept

.type layered_request_concept, %function

layered_request_concept:

/* EL0: request a privileged operation via syscall */

mov x8, #0 /* syscall number placeholder */

svc #0 /* EL0 -> EL1 */

/* In EL1 (kernel/driver), a secure service might be requested:

*/↪→

/* smc #0 (executed in EL1 context to enter EL3 monitor) */

ret

Boundary discipline

TrustZone and EL3 exist to ensure:

• the normal OS cannot silently take ownership of secure assets
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• secure services remain isolated even if the normal world is compromised

This booklet keeps the focus on what you need as a programmer: how to recognize when

security context is involved, how transitions occur, and what is architecturally guaranteed.
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Exception Types in AArch64

4.1 Synchronous Exceptions

A synchronous exception is taken as a direct, architecturally precise consequence of

executing an instruction or performing the memory access required by that instruction. In

AArch64 practice, this category includes both intentional control transfers (syscalls, debug

traps) and unintentional faults (aborts).

Synchronous exception families (programmer view)

• Supervisor Call (SVC): controlled entry to the OS/service layer.

• Hypervisor Call (HVC): controlled entry to EL2 (when virtualization is present).

• Secure Monitor Call (SMC): controlled entry to EL3 (platform/firmware boundary).

• Breakpoint / Debug trap: BRK and related debug exceptions.

• Instruction abort: fault on instruction fetch (translation, permission, etc.).
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• Data abort: fault on load/store (translation, permission, alignment, etc.).

• Illegal/undefined instruction or trapped instruction: execution violates architectural

rules for the current context.

Evidence and diagnosis (what you will read)

For synchronous exceptions taken to EL1, the kernel/handler typically consults:

• ESR EL1: syndrome (exception class + details)

• ELR EL1: address of the faulting/triggering instruction (return PC)

• SPSR EL1: saved state (PSTATE snapshot)

• FAR EL1: fault address for address-related aborts

4.1.1 Example 1: syscall via SVC (intentional synchronous exception)

/* EL0: invoke a Linux syscall using SVC. */

.text

.global demo_svc_getpid

.type demo_svc_getpid, %function

demo_svc_getpid:

mov x8, #172 /* __NR_getpid (Linux AArch64) */

svc #0 /* synchronous exception: EL0 -> EL1 */

/* return value in x0 */

ret

4.1.2 Example 2: debug trap via BRK (intentional synchronous exception)

/* EL0: BRK triggers a debug exception when enabled/handled by the

environment. */↪→
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.text

.global demo_brk

.type demo_brk, %function

demo_brk:

brk #0 /* synchronous debug exception */

ret

4.1.3 Example 3: data abort (unintentional synchronous fault)

/* EL0: invalid memory access typically triggers a data abort. */

.text

.global demo_data_abort

.type demo_data_abort, %function

demo_data_abort:

mov x0, #0

ldr x1, [x0] /* synchronous fault: likely

translation fault */↪→

ret

4.1.4 Example 4: illegal or privileged instruction at EL0

/* EL0: reading many privileged system registers is illegal and

traps/faults. */↪→

.text

.global demo_privileged_mrs

.type demo_privileged_mrs, %function

demo_privileged_mrs:

mrs x0, sctlr_el1 /* illegal at EL0: synchronous

exception */↪→

ret
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Common causes of synchronous exceptions

• explicit trap instructions: SVC, HVC, SMC, BRK

• page not present / unmapped VA (translation fault)

• access permissions (user/kernel, read/write/execute permission faults)

• alignment faults when the architecture/OS configuration requires alignment

• illegal opcode or instruction not permitted in the current execution context

• trapped system register accesses (policy-controlled)

4.2 IRQ and FIQ

IRQ and FIQ are interrupt exception types. They are usually asynchronous: they arrive

due to external events (timers, devices, inter-processor interrupts), not because the current

instruction is invalid.

4.2.1 IRQ (normal interrupt request)

IRQ is the general interrupt class used for most device and timer interrupts. The OS typically:

• receives the interrupt at a configured EL (commonly EL1 for a normal OS kernel)

• queries an interrupt controller to identify the source

• dispatches a device/timer handler

• returns to the interrupted context via ERET
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4.2.2 FIQ (fast interrupt request)

FIQ is a distinct interrupt class intended for high-priority or latency-sensitive interrupts.

Architecturally, it has separate routing and masking controls from IRQ.

Programmer-facing differences

• IRQ and FIQ are not “faults”; your code is not wrong because an interrupt arrived.

• IRQ/FIQ handling quality affects latency, responsiveness, and real-time behavior.

• In kernel debugging, an unexpected IRQ storm is a system condition, not a user bug.

4.2.3 Conceptual example: an interrupt arrives while EL0 runs

/* Conceptual: EL0 code can be interrupted by IRQ/FIQ at almost any

time. */↪→

.text

.global demo_interruptible_loop

.type demo_interruptible_loop, %function

demo_interruptible_loop:

mov x0, #0

1:

add x0, x0, #1

/* An IRQ/FIQ may arrive here; control transfers to the

configured vector. */↪→

b 1b

Common causes of IRQ/FIQ

• periodic timer interrupts (scheduler tick, high-resolution timers)
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• device interrupts (network, storage, UART, GPU, etc.)

• inter-processor interrupts (IPIs) for scheduling and coordination

• performance monitoring or watchdog events (platform dependent)

4.3 SError (System Error)

SError is the AArch64 exception type used to signal system errors, often related to error

reporting from the memory system, interconnect, or other implementation-defined sources.

Key properties

• SError may be asynchronous (reported at a later time than the originating event).

• The precise cause can be more platform-specific than a page fault or syscall.

• Many systems treat certain SErrors as fatal or as conditions requiring immediate

containment.

Why SErrors are different from data aborts

A data abort is usually about a virtual address translation/permission rule being violated by

a specific access. An SError is often about the system fabric reporting an error condition
(e.g., parity/ECC/interconnect faults), and may not map cleanly to one user instruction.

4.3.1 Conceptual example: deferred error reporting

/* Conceptual sketch: the faulting event may occur earlier than when

SError is delivered. */↪→

.text
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.global demo_serror_concept

.type demo_serror_concept, %function

demo_serror_concept:

/* Program executes normal memory operations... */

ldr x1, [x0]

str x1, [x2]

/* ...an internal system error may be reported asynchronously as

an SError. */↪→

ret

Common causes of SError (system-level)

• memory subsystem error reporting (e.g., ECC/parity detection, implementation-defined

handling)

• interconnect or bus fabric errors signaled to the CPU

• platform-specific external aborts that are not modeled as ordinary translation/permission

faults

• error containment or RAS-driven reporting paths (platform dependent)

4.4 Common Causes of Each Exception Type (Quick

Mapping)

This mapping is intentionally operational: it tells you what to suspect first.

Synchronous exceptions (first suspects)

• SVC/HVC/SMC/BRK: intentional trap instruction was executed
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• Data abort: bad pointer, unmapped page, permission violation, alignment violation

• Instruction abort: jump to unmapped memory, execute-permission violation, corrupted

function pointer

• Illegal/trapped instruction: wrong context/privilege, unsupported instruction, trapped

system register access

IRQ/FIQ (first suspects)

• timer tick / high-resolution timers

• device interrupts and interrupt controller routing

• IPIs (multi-core scheduling and coordination)

• interrupt storms (misconfigured device/driver)

SError (first suspects)

• memory or interconnect error reporting (may be deferred)

• platform RAS signaling and containment policy

• external abort-like conditions not represented as normal translation/permission faults

Discipline note

When debugging, do not start with guesses. Start with the architectural evidence: ESR ELx

(class), ELR ELx (where), FAR ELx (address if relevant), and the execution context (EL and

security state).



Chapter 5

Exception Vector Tables

5.1 Vector Table Structure

An AArch64 exception vector table is a fixed-layout block of code containing entry points

for exception handling. When an exception is taken to a given Exception Level (EL), hardware

selects a vector entry based on:

• Exception type: synchronous, IRQ, FIQ, or SError

• Origin and stack context: whether the exception came from the same EL or a lower

EL, and which stack pointer was in use

Conceptual layout (AArch64)

The table provides 16 entries arranged as:

• 4 exception types (Sync, IRQ, FIQ, SError)

• for each type, 4 origin/context cases:
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– from current EL using SP0

– from current EL using SPx

– from lower EL using AArch64

– from lower EL using AArch32 (if applicable)

What the vector entry must do

A vector entry is not the full handler. It is a first-stage landing pad that must quickly:

• establish a safe stack (if needed) and preserve the required registers

• read syndrome/state registers as needed (ESR ELx, FAR ELx, ELR ELx, SPSR ELx)

• branch to the appropriate higher-level handler (syscall, fault, interrupt dispatch, etc.)

Minimal conceptual skeleton

/* Conceptual vector table skeleton (not complete OS code). */

.text

.align 11 /* typical 2KB alignment for a vector

table base */↪→

.global vectors_el1

vectors_el1:

/* Each entry is placed at a fixed offset from the base. */

/* Entry 0x000: Sync from current EL using SP0 */

b el1_sync_sp0

/* Entry 0x080: IRQ from current EL using SP0 */

b el1_irq_sp0

/* Entry 0x100: FIQ from current EL using SP0 */

b el1_fiq_sp0
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/* Entry 0x180: SError from current EL using SP0 */

b el1_serror_sp0

/* Entry 0x200: Sync from current EL using SPx */

b el1_sync_spx

/* Entry 0x280: IRQ from current EL using SPx */

b el1_irq_spx

/* Entry 0x300: FIQ from current EL using SPx */

b el1_fiq_spx

/* Entry 0x380: SError from current EL using SPx */

b el1_serror_spx

/* Entry 0x400: Sync from lower EL using AArch64 */

b el1_sync_lower_a64

/* Entry 0x480: IRQ from lower EL using AArch64 */

b el1_irq_lower_a64

/* Entry 0x500: FIQ from lower EL using AArch64 */

b el1_fiq_lower_a64

/* Entry 0x580: SError from lower EL using AArch64 */

b el1_serror_lower_a64

/* Entry 0x600: Sync from lower EL using AArch32 (if used) */

b el1_sync_lower_a32

/* Entry 0x680: IRQ from lower EL using AArch32 */

b el1_irq_lower_a32

/* Entry 0x700: FIQ from lower EL using AArch32 */

b el1_fiq_lower_a32

/* Entry 0x780: SError from lower EL using AArch32 */

b el1_serror_lower_a32
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This skeleton illustrates the structure and offsets. Real systems often use a compact prologue

within each entry instead of immediate branches, but the fixed offset map remains the same.

5.2 Vector Offsets and Alignment

Vector entry selection is offset-based. Hardware computes:

vector address = vector base + entry offset

Fixed offset spacing

Each vector entry region occupies a fixed-size slot; the canonical AArch64 layout uses 0x80-
byte spacing between consecutive entries in a group. This enables predictable placement of

prologue code (saving context, switching stacks).

Alignment requirement (base address)

The base of the vector table must satisfy a strict architectural alignment constraint (commonly

2KB alignment in AArch64 practice). You should always enforce this at assembly/link time to

avoid undefined or faulting behavior.

/* Enforce a safe base alignment for the vector table. */

.text

.align 11 /* 2ˆ11 = 2048-byte alignment */

.global vectors_el1_aligned

vectors_el1_aligned:

/* entries at fixed offsets relative to this base */

b el1_sync_sp0
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Why spacing matters

If your entry code exceeds the slot capacity or overlaps the next slot, the table becomes invalid.

Therefore:

• keep the immediate vector entry prologue small and deterministic

• branch to larger handlers located elsewhere

5.3 Vector Tables per Exception Level

Each EL that can take exceptions has its own vector base register:

• EL1: VBAR EL1 defines the vector base when exceptions are taken to EL1

• EL2: VBAR EL2 defines the vector base when exceptions are taken to EL2

• EL3: VBAR EL3 defines the vector base when exceptions are taken to EL3

Practical meaning

• On a typical Linux system, the primary vector table you care about for syscalls and

faults is EL1’s.

• In virtualization, guest/host arrangements may involve EL2 vectoring for traps and

hypervisor interrupts.

• In secure firmware, EL3 has its own vectoring for secure monitor duties.

Conceptual diagram (policy, not code)

• EL0 code never directly “sets its own vectors”.

• EL1/EL2/EL3 configure their own VBAR ELx during early boot or initialization.



56

5.4 Selecting the Active Vector Table

Selecting the active vector table is done by writing the appropriate VBAR register at the target

EL. This is a privileged operation and is part of early initialization.

5.4.1 Setting VBAR EL1 (conceptual)

/* Conceptual EL1 initialization: point VBAR_EL1 at the EL1 vector

table base. */↪→

.text

.global setup_vbar_el1_concept

.type setup_vbar_el1_concept, %function

setup_vbar_el1_concept:

/* x0 = address of vectors_el1_aligned */

adr x0, vectors_el1_aligned

msr vbar_el1, x0

isb /* ensure subsequent exceptions use

the new vectors */↪→

ret

5.4.2 Selecting between multiple tables (common pattern)

Many kernels maintain separate vector tables for different phases or configurations:

• early boot vectors (minimal, safe)

• normal runtime vectors (full handlers, per-CPU stacks ready)

• special vectors (debug, crash, or alternate stack policies)

Switching is simply changing VBAR ELx to a different aligned base, then executing an ISB.
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/* Switch EL1 vectors to an alternate table (conceptual). */

.text

.global switch_vbar_el1_concept

.type switch_vbar_el1_concept, %function

switch_vbar_el1_concept:

adr x0, vectors_el1_aligned

msr vbar_el1, x0

isb

ret

Why the ISB matters

The instruction synchronization barrier ensures the processor recognizes the updated vector

base before taking subsequent exceptions. Without it, the change may not take effect

immediately in the way you expect.

Cross-check discipline

When debugging vectoring issues, confirm:

• VBAR ELx points to the intended aligned address

• the table has correct offsets and does not overflow slot boundaries

• the entry reached matches the exception type and origin context (sync/IRQ/FIQ/SError

and SP0/SPx/lower EL)



Chapter 6

Exception Entry Mechanics

6.1 What Happens on Exception Entry

When an exception is taken in AArch64, hardware performs a precise control transfer to an

exception vector entry at a target Exception Level (EL). This transfer is not a normal branch or

call: it is a privileged state transition governed by architectural rules.

At a high level, exception entry performs four categories of work:

1. Choose a vector entry based on exception type (Sync/IRQ/FIQ/SError) and origin

context (current EL vs lower EL, SP0 vs SPx, AArch64 vs AArch32).

2. Record return information so software can resume execution later (or terminate

cleanly).

3. Capture the old state (PSTATE snapshot) and establish the new execution context (new

EL, masks, and routing rules).

4. Populate syndrome information describing the exception cause (for most synchronous

exceptions and aborts).
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The minimal programmer truth

• Exceptions redirect control to a vector base + offset.

• The CPU saves where you were and what state you were in.

• The CPU switches to a privileged context where handler code can inspect the reason

and act.

Conceptual entry sketch (EL0 to EL1)

/* Conceptual flow: an EL0 event causes entry into EL1 vectors. */

.text

.global el0_trigger_example

.type el0_trigger_example, %function

el0_trigger_example:

mov x8, #172 /* syscall number (example) */

svc #0 /* synchronous exception => EL1 entry

*/↪→

ret /* resumed after exception return */

6.2 PC, PSTATE, and SPSR Saving

AArch64 exception entry is centered around three core facts:

• the CPU must know where to return (the PC at the time of exception)

• the CPU must remember what execution state it interrupted (PSTATE snapshot)

• the handler must have evidence about why the exception happened (syndrome registers)
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6.2.1 Return address: ELR ELx

On entry to ELx, hardware sets:

• ELR ELx← return address (the instruction address to resume at)

For many synchronous exceptions, the return address corresponds to the faulting instruction or

the next instruction depending on the exception class and rules.

6.2.2 Saved program state: SPSR ELx

Hardware saves the interrupted context’s PSTATE into:

• SPSR ELx← saved PSTATE (condition flags, interrupt masks, execution state, and

other control bits)

6.2.3 Live state in handler: PSTATE at the target EL

The handler begins executing with a new PSTATE appropriate for ELx (privileged), with

masks and routing behavior that allow controlled handling.

6.2.4 Syndrome: ESR ELx and FAR ELx

For most synchronous exceptions, hardware provides:

• ESR ELx: exception class + details (what kind of exception, key attributes)

• FAR ELx: fault address for address-related aborts (when applicable)

Evidence capture stub (conceptual)

/* EL1: capture the architectural evidence at entry. */
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.text

.global el1_capture_evidence

.type el1_capture_evidence, %function

el1_capture_evidence:

mrs x0, elr_el1 /* return address */

mrs x1, spsr_el1 /* saved PSTATE */

mrs x2, esr_el1 /* syndrome */

mrs x3, far_el1 /* fault address (valid for aborts) */

ret

Discipline note

Never assume a crash reason from symptoms. The minimal proof chain is: ESR (class) +

ELR (where) + FAR (which address, if any) + saved state (SPSR).

6.3 Stack Pointer Selection (SP0 vs SPx)

AArch64 provides distinct stack pointer models that matter for exception entry.

6.3.1 The two SP names

• SP0: stack pointer associated with EL0 context

• SPx: stack pointer associated with the current EL (e.g., SP1 at EL1, SP2 at EL2, SP3 at

EL3)

6.3.2 Why the CPU cares

On exception entry, the hardware selects the vector entry based on whether the interrupted

context at the target EL was using:
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• SP0 (often used to service exceptions that must preserve a separate user stack model)

• SPx (the privileged stack for the target EL)

6.3.3 Typical OS policy (conceptual)

Most kernels follow a strict rule:

• EL0 uses an unprivileged user stack.

• EL1 uses a kernel stack (per-thread or per-CPU).

• On entry from EL0 to EL1, the kernel ensures it runs on a safe EL1 stack before doing

heavy work.

Vector-level prologue: switch to a known-safe stack (conceptual)

/* Conceptual entry prologue: establish a safe kernel stack then

branch. */↪→

.text

.global el1_sync_lower_a64

.type el1_sync_lower_a64, %function

el1_sync_lower_a64:

/* In a real kernel, SP is already the EL1 stack per entry

rules/policy.↪→

Some designs still set up per-CPU/thread stacks here. */

/* Save minimal volatile state quickly */

stp x0, x1, [sp, #-16]!

stp x2, x3, [sp, #-16]!

/* Read syndrome and route */

mrs x0, esr_el1

b el1_sync_dispatch
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Common pitfall

If an entry path mistakenly uses an untrusted or corrupted stack, the handler can fault again

before it can even diagnose the original issue. Therefore: keep early entry code short and

stack-safe.

6.4 Privilege and State Changes

Exception entry can change:

• Exception Level (EL0→ EL1 for syscalls/faults in normal OS designs)

• interrupt masks (IRQ/FIQ masking policy on entry)

• access to privileged registers and memory regions

• execution context (security state and virtualization routing are platform-configurable)

6.4.1 Privilege change (EL transition)

The most common transition for programmers is:

• EL0 (user) triggers an exception

• handler executes at EL1 (kernel)

The kernel’s job is to:

• validate and service the request (syscall) or diagnose the fault (abort)

• preserve isolation and prevent escalation

• return to EL0 via ERET with controlled state restoration
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6.4.2 State changes and barriers

After privileged control-register changes (including vector base updates), an ISB is typically

required to ensure subsequent instruction execution and exception behavior observes the new

configuration.

Example: a syscall entry vs a fault entry

Both are synchronous exceptions, but the post-entry policy differs.

/* EL0: syscall (intentional). */

.text

.global el0_syscall_example

.type el0_syscall_example, %function

el0_syscall_example:

mov x8, #64 /* __NR_write (example) */

svc #0 /* EL0 -> EL1 */

ret

/* EL0: fault (unintentional). */

.text

.global el0_fault_example

.type el0_fault_example, %function

el0_fault_example:

mov x0, #0

ldr x1, [x0] /* EL0 -> EL1 data abort */

ret

In both cases, EL1 receives control and reads ESR EL1. For SVC, it dispatches to the syscall

table. For a data abort, it consults FAR EL1 and the memory subsystem state to decide

whether to fix up (e.g., demand paging) or to terminate/deliver a signal.



65

Entry invariants you should memorize

• Return PC is recorded in ELR ELx.

• Interrupted PSTATE is recorded in SPSR ELx.

• Exception cause is described in ESR ELx (and FAR ELx when applicable).

• Control transfers to VBAR ELx + fixed offset, and the handler returns with ERET.
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Exception Return Mechanics

7.1 Restoring Execution Context

Exception return in AArch64 is a hardware-defined restoration of the interrupted context.

Unlike a normal function return, which restores state only by convention, an exception return

restores state using architectural registers captured on exception entry.

A correct return has two responsibilities:

1. Restore general-purpose / SIMD / system-visible state that the handler chose to save

on a stack or in per-CPU storage (this part is an OS/firmware policy decision).

2. Restore architectural execution state (PC + PSTATE) using the exception-link and

saved-state registers ELR ELx and SPSR ELx (this part is architectural, not policy).

Two-layer model (memorize this)

• Policy layer (software): which registers did the entry code save? where? how is the

kernel stack arranged?
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• Architectural layer (hardware): ERET returns to ELR ELx and restores PSTATE from

SPSR ELx.

Typical EL1 return prologue (conceptual)

/* Conceptual: restore a small set of registers, then return via

ERET. */↪→

.text

.global el1_return_concept

.type el1_return_concept, %function

el1_return_concept:

/* Restore registers saved by the entry prologue

(policy-defined). */↪→

ldp x2, x3, [sp], #16

ldp x0, x1, [sp], #16

/* Architectural return: PC and PSTATE restored from

ELR_EL1/SPSR_EL1. */↪→

eret

This skeleton is intentionally minimal: real kernels save many more registers and often

use a structured trap frame. The essential point is that ERET is the final step that restores

architectural state.

7.2 ERET Instruction Semantics

ERET (Exception Return) completes an exception by restoring:

• PC from ELR ELx

• PSTATE from SPSR ELx
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Then execution continues in the restored context, which can be at a lower EL (commonly EL0)

or, in some flows, at the same EL (returning from a nested exception).

What ERET is not

• It is not a normal RET. RET uses X30 (LR) and does not restore PSTATE.

• It is not optional. It is the architectural mechanism for returning from an exception and

restoring privilege state.

Minimal proof: the two registers that matter

If ELR ELx or SPSR ELx is wrong, ERET cannot “fix it later”. The return either:

• resumes the wrong location (bad ELR ELx)

• resumes with the wrong flags/masks/state (bad SPSR ELx)

• or faults immediately due to invalid state

Example: explicitly adjusting return PC (fixup pattern)

Some handlers implement a fixup by modifying ELR ELx before ERET (e.g., skipping a

faulting instruction in a controlled recovery scenario).

/* Conceptual: advance ELR_EL1 to skip an instruction, then return.

*/↪→

.text

.global el1_skip_faulting_insn_concept

.type el1_skip_faulting_insn_concept, %function

el1_skip_faulting_insn_concept:

mrs x0, elr_el1
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add x0, x0, #4 /* A64 instruction width is 4 bytes */

msr elr_el1, x0

eret

This is a powerful mechanism and therefore dangerous: use only when the architecture and OS

policy guarantee correctness.

7.3 Returning Across Exception Levels

Most programmer-visible returns are EL1→ EL0, because syscalls and faults are typically

handled in EL1.

7.3.1 EL0→ EL1→ EL0 (syscall round-trip)

/* EL0: invoke a syscall; kernel returns via ERET. */

.text

.global el0_syscall_roundtrip

.type el0_syscall_roundtrip, %function

el0_syscall_roundtrip:

mov x8, #172 /* __NR_getpid (example) */

svc #0 /* EL0 -> EL1 */

/* After ERET, we're back in EL0 and continue here. */

ret

What the kernel must ensure before returning

Before executing ERET, the handler must ensure:

• ELR EL1 points to the correct EL0 resume PC

• SPSR EL1 encodes a valid EL0 return state (including interrupt masks policy)
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• user-visible registers (e.g., syscall return in X0) are set according to ABI

• stack and trap-frame state are consistent (no corruption, correct alignment)

7.3.2 Nested exceptions and same-EL returns

Exceptions can occur while already in EL1 (e.g., an IRQ arriving while the kernel runs). In

that case:

• the exception may be taken to EL1 (same EL) using a different vector entry (SP0 vs SPx

context)

• ERET returns to the interrupted EL1 context

/* Conceptual: IRQ hits while executing in EL1, then returns back to

EL1. */↪→

.text

.global el1_work_loop_concept

.type el1_work_loop_concept, %function

el1_work_loop_concept:

1:

/* Kernel work... */

add x0, x0, #1

/* IRQ may arrive here -> EL1 IRQ vector -> ERET -> back to this

loop */↪→

b 1b

7.3.3 Crossing EL2/EL3

Returning from EL2 or EL3 also uses ERET with the corresponding ELR EL2/SPSR EL2 or

ELR EL3/SPSR EL3. The mechanics remain the same; what changes is:
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• the security/virtualization routing policy

• which state is permitted on return

7.4 Common Return Pitfalls

Return bugs are among the hardest to debug because they often appear as “random crashes”

far from the cause. These are the highest-frequency failure modes in exception return code.

7.4.1 Pitfall 1: Corrupting ELR ELx or SPSR ELx

• Wrong ELR ELx⇒ return to the wrong address (often immediate instruction abort).

• Wrong SPSR ELx⇒ invalid return state, wrong masks, or privilege mismatch.

7.4.2 Pitfall 2: Using RET instead of ERET

A normal RET does not restore PSTATE and does not perform an exception-level return. If

you RET from a vector path, you typically remain in EL1 and break the return contract.

/* Incorrect pattern (conceptual): returning with RET from an

exception path. */↪→

.text

.global wrong_return_example

.type wrong_return_example, %function

wrong_return_example:

/* ... handler work ... */

ret /* WRONG: does not restore PSTATE/EL

*/↪→
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7.4.3 Pitfall 3: Not restoring registers per the handler’s own save policy

Even if ERET is correct, corrupting general-purpose registers or SIMD state breaks user-space

execution silently. Syscall returns and signal delivery are especially sensitive.

7.4.4 Pitfall 4: Stack misalignment and frame corruption

Many entry paths require strict stack alignment. If your save/restore pairs do not match

exactly, the restore sequence will load the wrong values and the system will fail on return.

/* Common stack bug pattern: mismatched push/pop sizes

(illustrative). */↪→

.text

.global bad_stack_restore_concept

.type bad_stack_restore_concept, %function

bad_stack_restore_concept:

stp x0, x1, [sp, #-16]!

stp x2, x3, [sp, #-16]!

/* ... */

ldp x0, x1, [sp], #16 /* wrong order: x2/x3 not restored

first */↪→

ldp x2, x3, [sp], #16

eret

7.4.5 Pitfall 5: Forgetting required barriers after control changes

When handlers change control registers that affect execution or exception behavior (vectors,

MMU state, masks), architectural barriers (especially ISB) are required to ensure the new

state is observed before returning.
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Return discipline checklist (short)

• Restore exactly what you saved, in reverse order, with correct stack adjustment.

• Ensure ELR ELx and SPSR ELx are valid for the intended return context.

• Return with ERET, not RET.

• Keep vector return paths minimal and deterministic; branch to larger code if needed.
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System Registers for Exceptions

8.1 ELR ELx Registers

ELR ELx (Exception Link Register) holds the return address for an exception taken to ELx.

It is the architectural source of the resumed PC when executing ERET.

Key facts

• ELR EL1 is written on exceptions taken to EL1.

• ELR EL2 is written on exceptions taken to EL2.

• ELR EL3 is written on exceptions taken to EL3.

• ERET returns to PC← ELR ELx.

What ELR ELx answers during debugging

• Where was the CPU about to continue when the exception was taken?
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• In most synchronous cases: Which instruction address is responsible for the trap/fault?

Example: capture ELR at entry

/* EL1: capture the return PC for diagnostics or dispatch. */

.text

.global read_elr_el1

.type read_elr_el1, %function

read_elr_el1:

mrs x0, elr_el1

ret

Common pitfall

ELR ELx is not a general-purpose scratch register. If corrupted, ERET returns to the wrong

address, often producing an immediate instruction abort or another exception loop.

8.2 SPSR ELx

SPSR ELx (Saved Program Status Register) holds a snapshot of the interrupted PSTATE

when the exception was taken to ELx.

Key facts

• SPSR ELx is the saved PSTATE for the interrupted context.

• ERET restores PSTATE from SPSR ELx.

• It encodes condition flags, interrupt masks, and other state fields required to resume

correctly.
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What SPSR ELx answers during debugging

• Was the faulting context EL0 or a higher EL?

• Were IRQ/FIQ masked at the time?

• What were the condition flags (NZCV) when the exception occurred?

Example: capture SPSR at entry

/* EL1: capture saved PSTATE. */

.text

.global read_spsr_el1

.type read_spsr_el1, %function

read_spsr_el1:

mrs x0, spsr_el1

ret

Common pitfall

Incorrectly constructing or modifying SPSR ELx before ERET can cause invalid return state,

wrong interrupt masking, or privilege mismatches that fault immediately on return.

8.3 ESR ELx

ESR ELx (Exception Syndrome Register) is the primary classification and detail register for

exceptions taken to ELx. It answers: What kind of exception was this, and what key attributes

does the architecture provide?
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Key fields (conceptual, without bit tables)

• Exception Class (EC): identifies the broad category (SVC, data abort, instruction abort,

illegal instruction, breakpoint, etc.).

• Instruction Length (IL): indicates instruction size for some classes (A64 is fixed-width

4 bytes; the IL field matters for mixed-state contexts).

• Instruction Specific Syndrome (ISS): class-specific details (e.g., abort status, access

type, level, etc.).

What ESR ELx answers during debugging

• Was it a syscall (SVC) or a fault (abort) or a debug trap (BRK)?

• If it was an abort, what kind (translation vs permission vs alignment) and what

attributes were involved?

• If it was an instruction exception, what was trapped/illegal?

Example: read ESR and branch by class (conceptual)

/* EL1: classify exception by ESR_EL1 exception class (EC). */

.text

.global classify_by_esr_concept

.type classify_by_esr_concept, %function

classify_by_esr_concept:

mrs x0, esr_el1

/* Extract EC in a conceptual way:

EC is a high field; exact bit positions are

architecture-defined.↪→
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Here we show the intent: shift and mask to get EC into x1. */

lsr x1, x0, #26 /* place EC into low bits (conceptual)

*/↪→

and x1, x1, #0x3f /* EC is a 6-bit class (conceptual) */

/* Dispatch table lookup would use x1 as the index. */

ret

Common pitfall

Do not treat ESR ELx as “the fault address”. That is FAR ELx when applicable. ESR ELx

tells you the class and attributes, not the address.

8.4 FAR ELx

FAR ELx (Fault Address Register) holds the faulting virtual address for address-related

aborts taken to ELx, when the architecture defines it as valid for the exception class.

Key facts

• Most commonly used for data aborts and instruction aborts.

• It provides the virtual address that caused the fault (not the physical address).

• It is not meaningful for all exception classes (e.g., SVC does not use FAR).

What FAR ELx answers during debugging

• Which virtual address triggered the abort?

• Is the fault address near null, near a freed region, or in a protected mapping?
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Example: capture FAR on abort entry (conceptual)

/* EL1: capture FAR and combine with ESR/ELR for a full diagnosis. */

.text

.global capture_abort_state_concept

.type capture_abort_state_concept, %function

capture_abort_state_concept:

mrs x0, esr_el1 /* class + attributes */

mrs x1, far_el1 /* fault VA (for aborts) */

mrs x2, elr_el1 /* faulting instruction address */

mrs x3, spsr_el1 /* saved state */

ret

Common pitfall

A non-canonical assumption is that FAR is always valid. It is only meaningful for specific

exception classes. Always verify the exception class in ESR before trusting FAR.

8.5 Reading and Interpreting Exception State

A correct exception diagnosis is built from a minimal evidence set:

ESR ELx (what) + ELR ELx (where instruction) + FAR ELx (which address,
if any) + SPSR ELx (what state)

8.5.1 A disciplined triage workflow (EL1 example)

1. Read ESR EL1 and determine the broad class:

• syscall (SVC)
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• abort (instruction/data)

• debug trap (BRK)

• illegal/trapped instruction

• other

2. Read ELR EL1 to locate the responsible instruction address.

3. If and only if ESR indicates an abort/address fault, read FAR EL1.

4. Read SPSR EL1 to determine the interrupted context properties (EL, masks, flags).

8.5.2 Example 1: syscall path evidence

/* EL1: syscall dispatch typically keys off ESR (class indicates SVC

from lower EL). */↪→

.text

.global el1_syscall_dispatch_concept

.type el1_syscall_dispatch_concept, %function

el1_syscall_dispatch_concept:

mrs x0, esr_el1 /* should indicate SVC from EL0 */

mrs x1, elr_el1 /* return PC */

mrs x2, spsr_el1 /* saved state */

/* FAR not needed for SVC */

/* Dispatch to syscall table using x8 from the saved register

frame (policy-defined). */↪→

eret

8.5.3 Example 2: data abort evidence and first interpretation

/* EL1: abort triage combines ESR + FAR + ELR. */



81

.text

.global el1_data_abort_triage_concept

.type el1_data_abort_triage_concept, %function

el1_data_abort_triage_concept:

mrs x0, esr_el1 /* abort class + abort attributes */

mrs x1, far_el1 /* fault VA */

mrs x2, elr_el1 /* faulting instruction address */

mrs x3, spsr_el1 /* context state */

/* Next steps (policy):

- classify translation vs permission vs alignment using ESR

details↪→

- consult page tables / VM subsystem

- fixup (page-in) or signal/kill

*/

eret

8.5.4 Example 3: illegal instruction vs privileged access

/* EL0: attempt to read a privileged register => synchronous

exception. */↪→

.text

.global el0_illegal_priv_example

.type el0_illegal_priv_example, %function

el0_illegal_priv_example:

mrs x0, sctlr_el1 /* illegal at EL0 */

ret

The handler reads:

• ESR EL1 to distinguish undefined instruction vs trapped privileged access
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• ELR EL1 to identify the exact instruction location

• SPSR EL1 to confirm the exception originated from EL0

Practical summary

• ELR answers where to return and where it happened.

• SPSR answers what the interrupted state was.

• ESR answers what kind of exception and why, in architectural terms.

• FAR answers which virtual address, when the exception class defines it as meaningful.
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Linux Syscalls on AArch64

9.1 What Is a System Call?

A system call (syscall) is the controlled mechanism by which an unprivileged program (EL0)

requests a privileged service implemented by the kernel (EL1). It exists because:

• user code must not directly program devices, change page tables, or access privileged

registers

• the kernel must validate requests, enforce permissions, and preserve isolation

Syscall vs function call (the important difference)

A function call:

• stays in the same privilege level

• returns by convention (RET using LR)

A syscall:

83
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• enters the kernel via a synchronous exception

• executes in EL1 with privileged access

• returns to EL0 via ERET (exception return), not a normal RET

What syscalls provide

• file I/O (open/read/write/close)

• process control (fork/exec/exit/wait)

• memory management (mmap/munmap/mprotect/brk)

• signals and timers

• networking and IPC primitives

9.2 Syscall Path: EL0→ EL1

On AArch64 Linux, the syscall path is the most common privilege transition a programmer

triggers.

High-level path

1. EL0 sets up syscall arguments in registers.

2. EL0 places the syscall number into a dedicated register.

3. EL0 executes SVC #0 to raise a synchronous exception.

4. CPU enters the EL1 synchronous exception vector.
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5. Kernel decodes the reason (SVC from EL0), dispatches the syscall handler, and

produces a return value.

6. Kernel returns to EL0 using ERET; user code continues at the instruction after SVC.

Architectural evidence on entry

At EL1 entry, the kernel can read:

• ESR EL1: indicates the exception class is SVC (from lower EL)

• ELR EL1: return PC (address after SVC)

• SPSR EL1: saved EL0 state

Minimal syscall entry/return sketch

/* EL0: syscall request. */

.text

.global el0_syscall_example

.type el0_syscall_example, %function

el0_syscall_example:

/* x0..x5 hold arguments; x8 holds syscall number (Linux

AArch64). */↪→

svc #0

/* After kernel ERET, x0 holds return value. */

ret

9.3 SVC Instruction Semantics

SVC (Supervisor Call) is an instruction that intentionally triggers a synchronous exception. It

is the architectural gateway from unprivileged code to the supervisor/OS layer.
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Semantics (programmer-accurate view)

• SVC #imm causes an exception taken to the configured handler EL (on Linux, this is

EL1).

• The immediate operand (#imm) is not used as a syscall number on AArch64 Linux;

Linux uses a dedicated register for the syscall number.

• The return address recorded in ELR EL1 points to the instruction after SVC.

• The kernel returns using ERET, restoring EL0 state from SPSR EL1.

Minimal SVC example

/* EL0: explicitly call into kernel. */

.text

.global demo_svc

.type demo_svc, %function

demo_svc:

svc #0 /* synchronous exception to EL1 */

ret

Common misconception

SVC does not “jump to the kernel function you want”. It raises an exception; the kernel

inspects state (including the syscall number register) and dispatches.

9.4 Syscall Numbering and ABI Rules

Linux syscalls are identified by an integer syscall number plus a fixed ABI for argument

passing and returns. The ABI is intentionally simple and fast.
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9.4.1 Register convention (Linux AArch64 syscall ABI)

• Syscall number: X8

• Up to 6 arguments: X0--X5

• Return value: X0

Error reporting rule (kernel interface view)

Linux syscalls return a value in X0. On error, the kernel returns a negative value representing

an error code in the kernel ABI. In normal user-space programming, the C library typically

translates this into:

• function returns -1

• errno is set to the positive error number

If you call syscalls directly (without libc), you must handle the raw return convention yourself.

9.4.2 Example 1: direct getpid syscall

/* long getpid_syscall(void); returns pid in x0. */

.text

.global getpid_syscall

.type getpid_syscall, %function

getpid_syscall:

mov x8, #172 /* __NR_getpid (Linux AArch64) */

svc #0

ret
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9.4.3 Example 2: direct write syscall (3-arg syscall)

/* ssize_t write(int fd, const void* buf, size_t len); */

.text

.global write_syscall

.type write_syscall, %function

write_syscall:

/* Expected input:

x0 = fd

x1 = buf

x2 = len

*/

mov x8, #64 /* __NR_write (Linux AArch64) */

svc #0

/* x0 = bytes written, or negative error code */

ret

9.4.4 Example 3: minimal error check without libc

/* If x0 is negative, treat it as an error code (kernel ABI view). */

.text

.global write_syscall_checked

.type write_syscall_checked, %function

write_syscall_checked:

mov x8, #64

svc #0

/* Check sign bit: negative => error */

cmp x0, #0

b.ge 1f
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/* Error path: x0 holds -errno (kernel ABI). Convert to

errno-like positive. */↪→

neg x0, x0 /* x0 = errno (positive) */

1:

ret

9.4.5 ABI rules you must obey

• Do not assume syscalls preserve registers the way function calls do. The kernel

interface is not a normal ABI; treat it as a boundary.

• Pass exactly the required arguments in X0--X5 and the syscall number in X8.

• Assume return in X0 and handle negative error returns if bypassing libc.

• Use SVC #0 as the entry instruction in standard Linux AArch64 user space.

Practical summary

• A syscall is a controlled EL0→EL1 transition implemented as a synchronous exception.

• SVC triggers the transition; X8 selects the syscall; X0--X5 carry arguments.

• The kernel returns via ERET; user-space resumes after SVC with the result in X0.
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Syscall Calling Convention

10.1 Register Usage for Syscalls

On Linux AArch64, a syscall is invoked from EL0 using SVC #0. The kernel interface uses a

fixed register convention that is intentionally small and fast.

Register map (Linux AArch64 syscall ABI)

• Syscall number: X8

• Arguments (up to 6): X0--X5

• Return value: X0

Strictness rule

A syscall ABI is not “flexible like C varargs”. The kernel entry path will interpret registers

exactly as specified. If you place values in the wrong registers, the kernel will execute the

wrong syscall or interpret arguments incorrectly.
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Minimal template

/* Generic syscall template:

x8 = syscall number

x0..x5 = args

result in x0

*/

.text

.global syscall0_template

.type syscall0_template, %function

syscall0_template:

svc #0

ret

10.2 Argument Passing Rules

10.2.1 Argument registers and width

• Arguments are passed in X0--X5.

• Integers and pointers use 64-bit registers in AArch64 user space.

• Smaller integer types are passed in Xn with the usual integer promotion rules applied by

C/C++ calling code.

10.2.2 Pointers and user memory

• Pointer arguments refer to EL0 virtual addresses in the calling process.

• The kernel must validate user pointers and may fail the syscall if the pointer is invalid or

lacks permissions.
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10.2.3 More than 6 arguments

Linux syscalls are designed to fit in 6 registers for the fast path. If a conceptual API needs

more data, it usually passes a pointer to a user-defined structure in memory as one argument.

Example 1: 0-argument syscall (getpid)

/* long getpid_syscall(void) */

.text

.global getpid_syscall

.type getpid_syscall, %function

getpid_syscall:

mov x8, #172 /* __NR_getpid */

svc #0

ret

Example 2: 3-argument syscall (write)

/* ssize_t write_syscall(int fd, const void* buf, size_t len)

x0=fd, x1=buf, x2=len

*/

.text

.global write_syscall

.type write_syscall, %function

write_syscall:

mov x8, #64 /* __NR_write */

svc #0

ret
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Example 3: passing a pointer to a struct (pattern for complex syscalls)

/* Conceptual C layout for a syscall that takes a pointer to a request

structure. */↪→

struct request {

long op;

long flags;

void* buf;

long len;

};

/* EL0: x0 points to a request structure; syscall reads fields from

user memory. */↪→

.text

.global syscall_struct_arg_concept

.type syscall_struct_arg_concept, %function

syscall_struct_arg_concept:

/* x0 = pointer to struct request */

mov x8, #0 /* syscall number placeholder */

svc #0

ret

This pattern keeps the syscall ABI stable: registers remain the same; the structure can evolve

by versioning.

10.3 Return Values and Error Handling

10.3.1 Return value location

• The syscall return value is placed in X0.
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• For syscalls that return two values, Linux typically uses X0 (primary) and sometimes

X1 by convention for specific cases, but the standard expectation is: use X0 unless the

syscall contract says otherwise.

10.3.2 Kernel ABI error rule (raw syscall interface)

At the raw kernel interface, errors are returned as:

• X0 = negative error code (i.e., -errno)

User-space C libraries normally translate this into:

• return -1

• set errno to the positive error code

If you bypass libc, you must implement your own translation.

Example: translate raw negative return to errno-like positive

/* If x0 < 0, convert to a positive errno in x0. */

.text

.global normalize_errno_concept

.type normalize_errno_concept, %function

normalize_errno_concept:

cmp x0, #0

b.ge 1f

neg x0, x0 /* x0 = errno */

1:

ret
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Example: raw openat style pattern (4-arg syscall)

/* long openat(int dirfd, const char* path, int flags, int mode)

x0=dirfd, x1=path, x2=flags, x3=mode

*/

.text

.global openat_syscall_concept

.type openat_syscall_concept, %function

openat_syscall_concept:

mov x8, #56 /* __NR_openat (Linux AArch64) */

svc #0

/* x0 = fd or -errno */

ret

10.3.3 Return vs fault

A syscall can fail in two distinct ways:

• Normal failure: syscall returns -errno in X0 (e.g., permission denied).

• Fault during argument access: the kernel may detect invalid user memory and return

an error; but some faults can also surface asynchronously to user space as signals

depending on the path and context.

For direct syscall usage: treat negative X0 as the primary error signal.

10.4 Differences from Function Calls

Syscalls resemble function calls syntactically (set regs then call), but they differ in the most

important ways:
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10.4.1 1) Control transfer mechanism

• Function call: BL / RET within the same EL.

• Syscall: SVC triggers an exception; kernel returns via ERET.

10.4.2 2) ABI ownership

• Function call ABI is defined by the platform C ABI (AAPCS64) and respected by

compilers.

• Syscall ABI is defined by the kernel interface and may clobber state differently than a

normal call.

10.4.3 3) Register preservation expectations

• For function calls, compilers rely on caller/callee-saved conventions.

• For syscalls, do not assume the same preservation model; treat the kernel boundary as a

special interface.

10.4.4 4) Error reporting

• Function calls typically signal errors via return values, exceptions, or out-parameters by

API design.

• Syscalls use the raw kernel ABI: negative return codes, translated by libc into errno.

Side-by-side example: function vs syscall

/* Function call: stays in EL0, uses BL/RET. */

.text
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.global call_local_function

.type call_local_function, %function

call_local_function:

bl local_function

ret

local_function:

add x0, x0, #1

ret

/* Syscall: enters EL1 via SVC, returns via ERET (in kernel). */

.text

.global call_syscall_getpid

.type call_syscall_getpid, %function

call_syscall_getpid:

mov x8, #172

svc #0

ret

Practical discipline

• Use libc wrappers unless you have a specific reason to issue raw syscalls.

• If you do raw syscalls: obey X8, X0--X5, return in X0, and handle -errno.

• Never confuse SVC/ERET control flow with BL/RET.
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Syscall Entry in the Linux Kernel

11.1 Exception Routing for SVC

On AArch64, SVC raises a synchronous exception. Linux configures the system such that an

SVC executed in EL0 is taken to the EL1 synchronous exception vector. In other words:

EL0 executes svc #0⇒ CPU vectors into EL1⇒ kernel dispatches syscall
⇒ return to EL0 via eret

What the kernel relies on at entry

Upon entry to EL1, Linux depends on architectural evidence registers:

• ESR EL1: classifies the exception as SVC from a lower EL

• ELR EL1: return address into user code (instruction after SVC)

• SPSR EL1: saved user PSTATE (origin context and masks)
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Why routing must be strict

If SVC is not routed to the expected vector, the syscall ABI breaks:

• wrong entry path (wrong stack, wrong context, wrong save policy)

• inability to locate syscall number and arguments reliably

• failure to return to user space safely

11.2 Kernel Entry Code (Conceptual Walkthrough)

Linux kernel entry code for syscalls is optimized for:

• fast and deterministic entry from EL0

• correct context capture (registers, flags, return PC)

• quick dispatch based on syscall number

• safe return with the correct ABI-visible result

Conceptual stages of syscall entry

1. Vector landing: control arrives at the EL1 sync vector entry for “lower EL, AArch64”.

2. Minimal save: save the user register state needed to run C code safely (trap frame).

3. Classify: confirm this sync exception is an SVC path (not an abort/debug trap).

4. Extract syscall ABI inputs:

• syscall number from X8

• arguments from X0--X5
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5. Dispatch: index syscall table, call the handler (kernel C implementation) with sanitized

inputs.

6. Finalize: place return value in X0; apply tracing/audit hooks if enabled.

7. Return: restore state and execute ERET.

A minimal conceptual vector entry sketch

/* Conceptual EL1 sync vector entry for exceptions from EL0

(AArch64).↪→

This is not real Linux code; it captures the architectural

mechanics. */↪→

.text

.global el1_sync_from_el0_concept

.type el1_sync_from_el0_concept, %function

el1_sync_from_el0_concept:

/* Save a minimal trap frame (policy-defined). */

stp x0, x1, [sp, #-16]!

stp x2, x3, [sp, #-16]!

stp x4, x5, [sp, #-16]!

stp x6, x7, [sp, #-16]!

stp x8, x9, [sp, #-16]! /* x8 holds syscall number;

preserve it */↪→

/* Read syndrome to classify */

mrs x10, esr_el1

/* Branch to a dispatcher that distinguishes SVC vs abort vs

other sync */↪→
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b el1_sync_dispatch_concept

The essential idea: the vector entry is short; it saves state and jumps to structured dispatch

logic.

11.3 Switching Stacks and Context

Syscall entry must ensure the kernel runs on a trusted EL1 stack with a coherent per-thread

context.

11.3.1 Why stack switching exists

User stacks are untrusted:

• user memory may be unmapped, maliciously altered, or near overflow

• kernel must never rely on EL0 stack integrity

Therefore, Linux arranges that on entry to EL1 from EL0, execution proceeds using a kernel

stack associated with the current thread (or per-CPU stack for early entry stages), then

transitions into the normal per-task kernel stack discipline.

Conceptual stack transition pattern

/* Conceptual: establish a known-safe EL1 stack (policy placeholder).

Real kernels derive the stack from current task/thread info. */

.text

.global establish_el1_stack_concept

.type establish_el1_stack_concept, %function

establish_el1_stack_concept:

/* x0 = pointer to per-thread kernel stack top (conceptual) */
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mov sp, x0

ret

11.3.2 Context capture (trap frame)

To safely call kernel C code, the entry path builds a trap frame containing:

• user GPRs (at least those needed by ABI and syscall dispatch)

• return state (ELR EL1, SPSR EL1)

• sometimes additional metadata (thread flags, syscall tracing state)

Capturing ELR/SPSR (conceptual)

/* Conceptual: capture architectural return state into a frame. */

.text

.global capture_return_state_concept

.type capture_return_state_concept, %function

capture_return_state_concept:

mrs x0, elr_el1

mrs x1, spsr_el1

/* store x0/x1 into the trap frame (not shown) */

ret

11.3.3 Common misconception

The kernel does not “return” to user space by restoring LR and executing RET. It returns by

restoring exception return state and executing ERET.
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11.4 Returning to User Space

Returning to user space is the reverse of entry, but it is not symmetric in code size: the return

path is often even more disciplined because it must restore a correct user-visible state.

11.4.1 What must be true before ERET

Before executing ERET, the kernel ensures:

• ELR EL1 points to the user resume address (after SVC)

• SPSR EL1 encodes a valid EL0 return state

• user registers are restored, with syscall return value in X0

• pending signals or work are handled per kernel policy before re-entering EL0

Conceptual return stub

/* Conceptual: restore saved registers and return to EL0. */

.text

.global return_to_user_concept

.type return_to_user_concept, %function

return_to_user_concept:

/* Restore registers in reverse order (must match saves). */

ldp x8, x9, [sp], #16

ldp x6, x7, [sp], #16

ldp x4, x5, [sp], #16

ldp x2, x3, [sp], #16

ldp x0, x1, [sp], #16
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/* x0 should already hold the syscall return value. */

eret

11.4.2 Example: syscall return value placement

Syscall handlers compute a return value and place it in X0 for user space.

/* Conceptual: set return value then return to user. */

.text

.global set_ret_and_eret_concept

.type set_ret_and_eret_concept, %function

set_ret_and_eret_concept:

mov x0, #0 /* success */

eret

11.4.3 Practical failure modes (high frequency)

• trap-frame mismatch: restore does not match save order/size⇒ corrupted user context

• wrong ELR EL1 or SPSR EL1⇒ return to wrong address or invalid state

• forgetting to preserve X8 before dispatch⇒ wrong syscall executed

• using user stack or untrusted pointers too early⇒ nested faults during entry

Summary

• SVC from EL0 is routed to the EL1 synchronous vector.

• Kernel entry code captures state, switches to a trusted stack, and dispatches by X8.

• Return to user space is done by restoring context and executing ERET.
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Signals, Faults, and Exceptions

12.1 Page Faults vs Syscalls

From a programmer’s perspective, both syscalls and page faults cause an EL0→ EL1
transition. Architecturally, both are synchronous exceptions. The crucial difference is intent

and meaning:

• Syscall: an intentional request for service (SVC #0).

• Page fault: an unintentional exception caused by a memory access that violates the

current translation/permission state.

Evidence difference (kernel view)

• Syscall entry: ESR EL1 indicates an SVC-class exception; FAR EL1 is not relevant.

• Page fault entry: ESR EL1 indicates an abort class (data/instruction abort), and

FAR EL1 holds the faulting virtual address.
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Syscall example (intentional)

/* EL0: syscall entry via SVC. */

.text

.global demo_syscall_entry

.type demo_syscall_entry, %function

demo_syscall_entry:

mov x8, #172 /* __NR_getpid */

svc #0 /* EL0 -> EL1 */

ret

Page fault example (unintentional)

/* EL0: likely page fault by dereferencing a null pointer. */

.text

.global demo_page_fault_null

.type demo_page_fault_null, %function

demo_page_fault_null:

mov x0, #0

ldr x1, [x0] /* data abort: fault VA = 0 */

ret

Why page faults are not always “bugs”

A page fault is a mechanism, not automatically an error:

• Recoverable faults exist (e.g., demand paging, copy-on-write).

• Fatal faults exist (e.g., unmapped address, forbidden access).

Linux often resolves recoverable faults transparently and returns to EL0 as if nothing

happened. If it cannot resolve the fault, it converts it into a signal or terminates the process.
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12.2 Illegal Instructions

An illegal instruction exception occurs when the CPU cannot legally execute the current

instruction in the current context. Common cases include:

• undefined/unallocated instruction encoding

• executing an instruction not permitted at EL0 (privileged instruction)

• trapped instruction due to system configuration (e.g., certain system-register accesses)

Programmer-facing symptoms

• process terminates with SIGILL in many cases

• debugger shows a fault at the instruction address (from ELR EL1)

Example: privileged system register access at EL0

/* EL0: attempt to read a privileged register => synchronous

exception. */↪→

.text

.global demo_illegal_mrs

.type demo_illegal_mrs, %function

demo_illegal_mrs:

mrs x0, sctlr_el1 /* illegal at EL0 */

ret

Example: intentional illegal instruction for testing

/* EL0: BRK is a debug trap; in many contexts it leads to SIGTRAP or

debugger stop. */↪→
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.text

.global demo_brk_trap

.type demo_brk_trap, %function

demo_brk_trap:

brk #0

ret

Kernel classification

Linux classifies the exception using ESR EL1:

• illegal instruction class vs trapped system instruction vs breakpoint

• origin EL and state from SPSR EL1

12.3 Access Violations

Access violations are faults caused by illegal memory access. They typically appear as:

• Data abort: illegal load/store (common)

• Instruction abort: illegal instruction fetch / execute permission violation (common

with bad function pointers)

Common causes

• null pointer dereference

• use-after-free (address still mapped sometimes, but permissions or mapping may

change)

• stack overflow or guard-page hit
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• writing to a read-only mapping (e.g., COW/RO pages)

• executing from non-executable memory (NX/execute permission fault)

Example: write to a read-only location (conceptual)

/* EL0: store through an invalid or protected pointer => data abort.

*/↪→

.text

.global demo_store_violation

.type demo_store_violation, %function

demo_store_violation:

/* Suppose x0 points to a read-only mapping or unmapped page */

mov x1, #123

str x1, [x0] /* data abort if not writable */

ret

Example: execute from a non-executable page (conceptual)

/* EL0: branch to an address that is not executable or not mapped. */

.text

.global demo_execute_violation

.type demo_execute_violation, %function

demo_execute_violation:

br x0 /* may cause instruction abort */

The minimum evidence

For aborts, Linux relies on:

• FAR EL1: faulting virtual address
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• ELR EL1: address of faulting instruction

• ESR EL1: abort attributes (what kind of abort)

12.4 How Linux Converts Exceptions into Signals

Linux uses hardware exceptions as input events and converts many of them into POSIX
signals for user space. The conversion is policy-driven: some exceptions are recoverable,

some are fatal, and some are delivered to a debugger.

Signal mapping (common, programmer-facing)

Typical outcomes for EL0-origin exceptions:

• SIGSEGV: invalid memory access, protection fault (data/instruction abort that cannot

be resolved)

• SIGBUS: certain address errors or bus-related faults (platform/condition dependent)

• SIGILL: illegal instruction / undefined instruction / prohibited execution

• SIGTRAP: breakpoint or debug trap events (e.g., BRK), or single-step

Conceptual kernel decision tree

1. Exception enters EL1; kernel reads ESR EL1, ELR EL1, and possibly FAR EL1.

2. Kernel determines whether it can fix up the condition:

• demand paging: map in the page, update page tables, retry/continue

• copy-on-write: create a private writable page, retry/continue
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3. If not fixable in user context, kernel prepares a signal frame on the user stack and

schedules signal delivery.

4. Kernel returns to EL0 via ERET; on return, user-space observes the signal handler or

default action.

Example: user signal handler for SIGSEGV (C)

/* Demonstration: install a SIGSEGV handler (simplified). */

#include <signal.h>

#include <stdint.h>

#include <unistd.h>

static void on_segv(int sig) {

const char msg[] = "SIGSEGV received\n";

(void)sig;

write(2, msg, sizeof(msg)-1);

_exit(128 + SIGSEGV);

}

int main(void) {

signal(SIGSEGV, on_segv);

volatile int *p = (int*)0;

return *p; /* triggers a fault that becomes SIGSEGV */

}

Example: trap to debugger vs signal

/* BRK may be handled by a debugger, or converted to SIGTRAP if no

debugger intercepts. */↪→

.text

.global demo_brk_signal_path
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.type demo_brk_signal_path, %function

demo_brk_signal_path:

brk #0

ret

Practical diagnosis rule

When a Linux process dies with a signal, interpret it as:

• a kernel policy decision made after reading architectural exception evidence

• not “random behavior”: the original cause is always visible through the exception class

and fault address (when applicable)

Summary

• Syscalls and page faults both enter EL1 via synchronous exceptions; they differ in cause

and evidence.

• Illegal instructions are classified by syndrome and typically map to SIGILL or

SIGTRAP.

• Access violations are aborts; FAR/ELR/ESR form the minimum proof set.

• Linux converts unresolvable user-space exceptions into signals and delivers them by

constructing a signal frame and returning to EL0.



Chapter 13

Debugging and Observing Exceptions

13.1 Using Disassembly to Trace Exceptions

When an exception happens, your most reliable anchor is the faulting/triggering instruction
address. In Linux user-space failures, you typically observe an address through:

• a crash report or debugger stop at an instruction pointer (PC)

• a kernel log (for fatal paths)

• a signal handler context (ucontext) when installed

The disassembly workflow (disciplined)

1. Identify the PC where execution stopped (or the address reported).

2. Disassemble the region around that address.

3. Classify what the instruction is doing:
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• svc⇒ syscall path

• brk⇒ debug trap / SIGTRAP path

• ldr/str/ldp/stp with a suspicious base register⇒ likely data abort

• indirect br xN / blr xN⇒ bad function pointer can become instruction abort

4. Confirm by reading architectural evidence (ESR/FAR) when available (kernel or low-

level environment).

Example: syscall is visible in disassembly

/* Disassembly-like snippet: syscall path is explicit. */

.text

.global demo_disasm_syscall

.type demo_disasm_syscall, %function

demo_disasm_syscall:

mov x8, #172

svc #0 /* the exception trigger is visible */

ret

Example: a crash often points at the memory instruction

/* If this faults, the PC usually lands on the LDR/STR itself. */

.text

.global demo_disasm_fault

.type demo_disasm_fault, %function

demo_disasm_fault:

ldr x1, [x0] /* data abort if x0 is invalid */

add x1, x1, #1

ret
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Example: bad indirect branch (common for instruction aborts)

/* If x0 is not a valid executable address, BR can trigger

instruction abort. */↪→

.text

.global demo_bad_indirect_branch

.type demo_bad_indirect_branch, %function

demo_bad_indirect_branch:

br x0

What disassembly gives you

• It tells you what kind of operation was attempted at the failure point.

• It helps you reason about which register values matter (base register, index, function

pointer register).

13.2 Reading ESR and FAR for Diagnosis

When you have access to low-level exception state (kernel, hypervisor, firmware, or a

controlled lab environment), the minimum evidence set is:

ESR ELx (what) + ELR ELx (where) + FAR ELx (which address, if any) +

SPSR ELx (context)

13.2.1 Practical interpretation flow

1. Read ESR ELx and extract the exception class:

• SVC⇒ syscall



116

• Data abort / instruction abort⇒ fault analysis

• Breakpoint / debug⇒ trap analysis

• Illegal instruction⇒ SIGILL-like behavior in OS context

2. If class is abort, read FAR ELx and treat it as the faulting virtual address.

3. Use ELR ELx to locate the responsible instruction and disassemble around it.

Example: capture ESR/FAR/ELR at EL1

/* EL1: capture evidence into registers for logging or structured

dispatch. */↪→

.text

.global el1_read_fault_evidence

.type el1_read_fault_evidence, %function

el1_read_fault_evidence:

mrs x0, esr_el1 /* class + attributes */

mrs x1, elr_el1 /* faulting/triggering instruction

address */↪→

mrs x2, far_el1 /* fault address (abort classes) */

mrs x3, spsr_el1 /* saved context */

ret

A strict rule

Never use FAR ELx unless ESR ELx indicates an abort class where FAR is architecturally

meaningful.
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13.3 Common Exception Patterns in User Programs

This section lists the patterns that dominate real crashes and debug sessions.

13.3.1 Pattern 1: Null pointer or wild pointer load/store

• Exception: data abort

• Symptom: SIGSEGV (often), PC points to ldr/str

• FAR: near 0 (null) or a suspicious address (wild)

/* Null dereference. */

.text

.global pat_null_deref

.type pat_null_deref, %function

pat_null_deref:

mov x0, #0

ldr x1, [x0]

ret

13.3.2 Pattern 2: Use-after-free / stale pointer

• Exception: data abort or silent corruption (if mapping still valid)

• Symptom: crashes appear “random” because address may sometimes remain mapped

13.3.3 Pattern 3: Execute permission / bad function pointer

• Exception: instruction abort

• Symptom: crash at indirect branch (br xN / blr xN)
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/* Bad function pointer: x0 points to non-code or unmapped region. */

.text

.global pat_bad_funcptr

.type pat_bad_funcptr, %function

pat_bad_funcptr:

blr x0

ret

13.3.4 Pattern 4: Stack overflow into guard page

• Exception: data abort on stack access

• Symptom: SIGSEGV with FAR near the stack guard boundary

13.3.5 Pattern 5: Intentional traps (debug) mistaken for crashes

• Exception: breakpoint/debug exception

• Symptom: SIGTRAP or debugger stop

/* Intentional debug stop. */

.text

.global pat_debug_brk

.type pat_debug_brk, %function

pat_debug_brk:

brk #0

ret

13.3.6 Pattern 6: Syscall misuse without libc

• Exception: not necessarily; most errors appear as negative return codes
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• Symptom: syscall returns -errno but the program treats it as success

/* Bug: ignores negative x0 error return from syscall. */

.text

.global pat_syscall_ignore_error

.type pat_syscall_ignore_error, %function

pat_syscall_ignore_error:

mov x8, #64 /* write */

svc #0

/* BUG: assumes x0 >= 0 without checking */

ret

13.4 Typical Bugs and Misunderstandings

These are the misunderstandings that repeatedly block correct reasoning for AArch64

exceptions and syscalls.

13.4.1 Bug 1: Confusing syscalls with faults

• Syscall: deliberate svc

• Fault: abort/illegal instruction/debug trap

Disassembly resolves this quickly: if the triggering instruction is svc, it is not a crash by

itself.

13.4.2 Bug 2: Treating FAR as always valid

FAR is meaningful for abort classes, not for SVC/BRK classes. Always gate FAR usage by

ESR class.
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13.4.3 Bug 3: Thinking “exception = interrupt”

An exception is the umbrella mechanism. Interrupts (IRQ/FIQ) are only one subset and are

typically asynchronous. Most user crashes are synchronous (abort/illegal instruction) not

IRQ/FIQ.

13.4.4 Bug 4: Assuming function-call register rules apply to syscalls

Syscalls are a kernel ABI, not the C ABI. If you write raw syscalls, obey: X8 (number),

X0--X5 (args), X0 (result), negative values indicate errors.

13.4.5 Bug 5: Misreading the fault point for instruction aborts

With bad indirect branches, the faulting instruction may be br/blr, but the root cause is the

corrupted function pointer value in the source register.

A concise debugging checklist

• Identify the faulting PC and disassemble around it.

• If available, read ESR to classify (syscall vs abort vs illegal vs debug).

• If abort, read FAR and treat it as the faulting VA.

• Trace the register that produced the address (base/index for loads/stores; target reg for

indirect branches).

• Separate root cause (bad pointer value) from symptom (fault at ldr/str or br/blr).



Chapter 14

Performance and Design Considerations

14.1 Cost of Exceptions and Syscalls

An exception is a control-plane event: it forces the CPU to stop normal instruction flow,

switch context, and run privileged code. Even when the handler is efficient, exceptions and

syscalls have unavoidable costs:

• Pipeline disruption: exception entry breaks sequential execution and prediction.

• Privilege transition overhead: EL0→ EL1 entry and EL1→ EL0 return via ERET.

• State saving/restoring: trap frames, register spill/fill, and kernel bookkeeping.

• Cache and TLB effects: kernel entry touches different code/data footprints.

• Security mitigations and checks: pointer validation, permission checks, and policy

enforcement.
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Two classes of overhead

• Architectural overhead: vectoring, ELR/SPSR management, ERET semantics.

• Kernel policy overhead: scheduling points, tracing/auditing, signal checks, memory

management.

Minimal syscall loop (shows the boundary cost)

/* EL0: repeated syscalls force repeated exception transitions. */

.text

.global tight_syscall_loop_concept

.type tight_syscall_loop_concept, %function

tight_syscall_loop_concept:

mov x8, #172 /* __NR_getpid */

mov x9, #1000

1:

svc #0

subs x9, x9, #1

b.ne 1b

ret

This pattern is functionally correct but performance-hostile: each iteration pays the full

exception entry/return cost.

14.2 Fast Paths vs Slow Paths

Not all syscalls and exceptions have the same effective cost. A good mental model:

• Fast path: simple checks, no blocking, no major memory management work, minimal

bookkeeping.
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• Slow path: involves scheduling, blocking, page faults, heavy validation, device

interaction, or complex subsystem work.

14.2.1 Fast-path examples (typical)

• reading cached process metadata (where applicable)

• syscalls that complete without blocking or complex resource management

• fault handling that resolves quickly (e.g., page already present but needs minor

permission fixup in some policies)

14.2.2 Slow-path examples (typical)

• syscalls that block on I/O (disk/network)

• syscalls that trigger scheduling decisions (sleep, futex contention, waits)

• page faults that require disk I/O (demand paging)

• copy-on-write faults that allocate and copy pages

A page fault can dominate a syscall cost

A syscall without faults may be small compared to a syscall that touches memory and triggers:

• page-in from storage

• major TLB and cache churn
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Conceptual illustration: syscall + possible page fault

/* EL0: write may fault if buf points to an unmapped page (then slow

path). */↪→

.text

.global write_may_fault_concept

.type write_may_fault_concept, %function

write_may_fault_concept:

/* x0=fd, x1=buf, x2=len */

mov x8, #64 /* __NR_write */

svc #0

ret

If the kernel must fault-in user pages while copying from buf, the effective latency becomes a

slow-path event.

14.3 Avoiding Excessive Syscalls

The primary performance rule for system programming is:

Amortize syscalls. Do more work per entry.

14.3.1 Common syscall-amplification mistakes

• reading/writing one byte at a time using read/write

• opening and closing files repeatedly inside hot loops

• using frequent time queries or process queries in tight loops

• using many small mmap/munmap operations instead of pooling
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14.3.2 Better patterns (high-level)

• Batch I/O: larger buffers, fewer read/write calls.

• Reuse resources: keep file descriptors open when appropriate.

• Event-driven designs: wait on multiple events rather than polling.

• Use user-space caching: avoid repeated queries for stable data.

Example: bad vs good syscall granularity

/* BAD: many syscalls (conceptual). */

ssize_t write_bytewise(int fd, const unsigned char* p, size_t n) {

for (size_t i = 0; i < n; ++i) {

/* each call crosses EL0->EL1 */

if (write(fd, &p[i], 1) != 1) return -1;

}

return (ssize_t)n;

}

/* GOOD: amortize syscalls by batching. */

ssize_t write_buffered(int fd, const unsigned char* p, size_t n) {

/* one syscall for many bytes (or a small number of large syscalls) */

return write(fd, p, n);

}

14.3.3 Direct syscalls vs libc wrappers

Most user programs should use libc wrappers because they:

• implement correct errno translation and edge-case handling

• may apply optimized strategies (e.g., vDSO paths where applicable for some operations)
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Direct syscalls are justified in low-level runtimes, special sandboxes, or educational labs—but

should not be the default for application code.

Raw syscall batching example (conceptual)

/* Prefer one write syscall for many bytes over many small writes. */

.text

.global write_once_concept

.type write_once_concept, %function

write_once_concept:

/* x0=fd, x1=buf, x2=len */

mov x8, #64 /* __NR_write */

svc #0

ret

14.4 Exception-Aware System Design

Exception-aware design is the discipline of shaping software so that:

• exceptions are rare in hot paths

• when exceptions happen, they are predictable and recoverable

• the system preserves correctness and isolation under fault conditions

14.4.1 Design principle 1: Separate normal flow from exceptional flow

• Syscalls are part of normal flow, but treat them as boundary crossings.

• Faults (aborts, SIGSEGV, SIGILL) must remain exceptional; if they become common,

your design is broken.
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14.4.2 Design principle 2: Avoid using faults for control flow

Do not rely on SIGSEGV or page faults as a normal conditional branch mechanism in

application logic. Page faults are for memory management; signals are for error containment

and notification.

14.4.3 Design principle 3: Plan for restartable boundaries

In robust systems, a small set of boundaries must be restartable or fail-safe:

• I/O operations (retry strategy, idempotency awareness)

• memory allocation pressure (fallback, pooling)

• concurrency primitives (timeouts, cancellation)

14.4.4 Design principle 4: Prefer fewer, well-defined transitions

• Reduce the number of kernel crossings in performance-critical loops.

• When a crossing is unavoidable, do the maximum useful work per crossing.

14.4.5 Design principle 5: Measure where exceptions occur

For performance and reliability, you should be able to answer:

• Where are syscalls concentrated?

• Which calls trigger blocking or page faults?

• Which faults become signals (SIGSEGV/SIGBUS/SIGILL), and why?
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Example: exception-aware loop structure (conceptual)

/* Conceptual pattern:

- do most work in user space

- perform syscall only when necessary and in batches

*/

void process_stream(int fd) {

unsigned char buf[64 * 1024];

for (;;) {

ssize_t n = read(fd, buf, sizeof(buf)); /* boundary crossing */

if (n <= 0) break;

/* heavy processing in user space */

/* ... */

/* occasional batched output syscall */

}

}

Summary

• Exceptions and syscalls are inherently more expensive than in-process control flow.

• Fast vs slow paths are dominated by kernel work, blocking, and memory faults.

• Reduce syscall count by batching, reuse, and event-driven architecture.

• Design so faults remain exceptional, and measure boundary crossings in hot paths.



Appendices

Appendix A — Common Exception Scenarios

This appendix lists frequent user-space exception scenarios on AArch64 Linux, how they

present, and how to reason about them. For each scenario, the minimum proof set remains:

ESR (what) + ELR (where) + FAR (which address, if any) + user-visible signal outcome.

A.1 Null Pointer Access

Trigger: load/store through address 0 (or near 0).

Exception class: synchronous data abort (usually).

Typical user-space outcome: SIGSEGV.

Key evidence:

• FAR EL1 ≈ 0x0

• ELR EL1 points at the faulting ldr/str

• ESR EL1 indicates a data abort class

Minimal repro (AArch64 user code):

/* Null pointer dereference: likely data abort -> SIGSEGV. */

.text
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.global null_deref_demo

.type null_deref_demo, %function

null_deref_demo:

mov x0, #0

ldr x1, [x0] /* faulting instruction */

ret

Common misunderstanding:

• “It crashed on LDR, so LDR is broken.”

The instruction is correct; the base register value is invalid.

Typical root causes:

• uninitialized pointer

• pointer overwritten (buffer overflow, use-after-free corruption)

• NULL returned from an allocator or lookup and not checked

Immediate diagnostic step: inspect the base register used by the memory instruction at the

faulting PC.

A.2 Stack Overflow

Trigger: stack grows into an unmapped guard page or exceeds stack mapping limits.

Exception class: synchronous data abort on a stack access.

Typical user-space outcome: SIGSEGV (commonly).

Key evidence:

• FAR EL1 near the stack boundary / guard region

• ELR EL1 points to an instruction touching stack memory (often in function

prologue/epilogue)
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Common ways this happens:

• deep or infinite recursion

• large local objects (large arrays/structs) on the stack

• alloca-like dynamic stack growth without limits

Conceptual AArch64 prologue that can fault if SP crosses a guard page:

/* Large stack frame allocation can fault if it crosses into an

unmapped guard page. */↪→

.text

.global stack_frame_demo

.type stack_frame_demo, %function

stack_frame_demo:

sub sp, sp, #0x40000 /* allocate 256 KB (illustrative) */

str x0, [sp] /* touch stack: may fault if stack

guard hit */↪→

add sp, sp, #0x40000

ret

Common misunderstanding:

• “The crash points to a store, so the store is wrong.”

The store is correct; SP points to an address that is not mapped/writable.

Immediate diagnostic steps:

• check recursion depth and large locals

• inspect SP at the crash site and compare with expected stack region
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A.3 Privileged Instruction in EL0

Trigger: executing an instruction that requires EL1+ privileges from user space (EL0).

Exception class: synchronous exception (illegal/trapped instruction class).

Typical user-space outcome: SIGILL (often), sometimes SIGSEGV depending on the

specific trap policy.

Key evidence:

• ELR EL1 points to the privileged instruction

• ESR EL1 indicates an illegal/trapped instruction class

• FAR EL1 is typically not relevant for this class

Minimal repro: privileged system register access from EL0:

/* Attempt to read an EL1 system register from EL0: illegal/trapped.

*/↪→

.text

.global privileged_mrs_demo

.type privileged_mrs_demo, %function

privileged_mrs_demo:

mrs x0, sctlr_el1 /* privileged: not allowed in EL0 */

ret

Common misunderstanding:

• “If I can write assembly, I can read any system register.”

Privileged registers are protected by the architecture; EL0 code cannot access them

directly.

Correct design:

• use syscalls, device drivers, or approved interfaces for privileged operations

• if measuring CPU state, use user-allowed facilities (or privileged tooling)
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A.4 Invalid Syscall Numbers

Trigger: executing svc #0 with an undefined syscall number in X8.

Exception class: still an SVC synchronous exception; the kernel dispatch rejects the number.

Typical user-space outcome:

• syscall returns negative error code in X0 at the raw ABI level

• libc wrappers typically translate to -1 with errno set appropriately

Key evidence:

• ESR EL1 indicates SVC from EL0

• ELR EL1 points after the svc instruction

• No FAR usage (not an abort)

Minimal repro:

/* Invalid syscall number: kernel returns an error in x0. */

.text

.global invalid_syscall_demo

.type invalid_syscall_demo, %function

invalid_syscall_demo:

mov x8, #0x7fffffff /* intentionally invalid syscall number

*/↪→

svc #0

/* x0 now holds a negative error code (raw kernel ABI). */

ret

Correct error handling without libc:
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/* Convert negative x0 to a positive errno-like value in x0

(conceptual). */↪→

.text

.global normalize_syscall_error_demo

.type normalize_syscall_error_demo, %function

normalize_syscall_error_demo:

mov x8, #0x7fffffff

svc #0

cmp x0, #0

b.ge 1f

neg x0, x0 /* x0 = errno (positive) */

1:

ret

Common misunderstanding:

• “Invalid syscall should crash the process.”

It usually does not. It is a normal syscall failure handled by the kernel dispatcher.

Summary (Operational)

• Null pointer and stack overflow are typically data aborts→ signals (often SIGSEGV).

• Privileged instructions in EL0 are typically illegal/trapped instruction exceptions→
SIGILL/SIGTRAP depending on context.

• Invalid syscall numbers are normal syscall failures: check return values; do not expect

a crash.
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Appendix B — Exception Flow Diagrams (Conceptual)

This appendix provides conceptual flow diagrams for the most common exception-driven

control paths on AArch64. These are architecture-accurate at the control-flow level while

remaining OS/firmware agnostic.

B.1 EL0→ EL1 Syscall Flow

EL0 User Code

|

| (1) Prepare syscall ABI

| X8 = syscall number

| X0..X5 = arguments

v

SVC #0 (synchronous exception)

|

| (2) Hardware exception entry

| ELR_EL1 = return PC (after SVC)

| SPSR_EL1 = saved PSTATE (EL0 state)

| ESR_EL1 = SVC class + details

v

EL1 Vector Table (VBAR_EL1 + Sync-from-lower-EL entry)

|

| (3) Kernel entry prologue

| - switch to trusted EL1 stack (policy)

| - save user regs into trap frame (policy)

v

Syscall Dispatcher
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|

| (4) Validate + dispatch by X8

| - check syscall number range

| - call syscall handler

v

Syscall Handler (Kernel)

|

| (5) Produce result

| X0 = return value OR -errno (raw kernel ABI)

v

Kernel return-to-user path

|

| (6) Restore user context (policy)

| - restore regs from trap frame

| - ensure ELR_EL1 / SPSR_EL1 correct

v

ERET (exception return)

|

| (7) Hardware return

| PC <- ELR_EL1

| PSTATE <- SPSR_EL1

v

EL0 resumes after SVC

Minimal syscall trigger (EL0)

/* EL0: syscall entry point. */

.text
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.global syscall_trigger_concept

.type syscall_trigger_concept, %function

syscall_trigger_concept:

mov x8, #172 /* __NR_getpid (example) */

svc #0

ret

B.2 Fault Handling Flow

This is the dominant path for page faults, permission violations, and bad pointers in user

programs.

EL0 User Code

|

| (1) Execute memory access or instruction fetch

v

Faulting operation

|

| Examples:

| - load/store to unmapped VA

| - write to read-only page

| - execute from non-executable page

v

Synchronous Abort (exception)

|

| (2) Hardware exception entry to EL1

| ESR_EL1 = abort class + attributes

| ELR_EL1 = faulting instruction address

| FAR_EL1 = faulting virtual address (abort classes)
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| SPSR_EL1 = saved EL0 state

v

EL1 Vector Table (Sync-from-lower-EL entry)

|

| (3) Kernel abort entry

| - switch to trusted stack

| - save minimal context

v

Fault classification

|

| (4) Decode ESR:

| - translation vs permission vs alignment

| - read vs write vs execute attributes (conceptual)

v

Fixup attempt?

|

| (5a) If fixable:

| - map page / handle COW / update permissions

| - possibly retry/continue

| - prepare to return to EL0

|

| (5b) If not fixable:

| - convert to signal (SIGSEGV/SIGBUS, etc.)

| - build signal frame on user stack

v

Return to EL0 (ERET)

|
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| (6a) If fixup succeeded: user code continues

| (6b) If signal pending: user sees handler or default action

v

EL0: continue or terminate

Minimal fault trigger (EL0)

/* EL0: likely data abort by null dereference. */

.text

.global fault_trigger_concept

.type fault_trigger_concept, %function

fault_trigger_concept:

mov x0, #0

ldr x1, [x0]

ret

Kernel evidence capture (EL1 conceptual)

/* EL1: capture abort evidence for diagnosis/dispatch. */

.text

.global el1_capture_abort_evidence_concept

.type el1_capture_abort_evidence_concept, %function

el1_capture_abort_evidence_concept:

mrs x0, esr_el1 /* abort class + attributes */

mrs x1, elr_el1 /* faulting instruction address */

mrs x2, far_el1 /* fault VA (abort classes) */

mrs x3, spsr_el1 /* saved state */

ret
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B.3 Secure World Transition Overview

AArch64 systems that implement TrustZone conceptually split execution into:

• Non-secure world: normal OS and applications

• Secure world: trusted firmware/services (policy-dependent)

The transition is typically orchestrated by EL3 (Secure Monitor). The common conceptual

gateway is an SMC instruction.

Non-secure world (EL0/EL1/EL2)

|

| (1) Request secure service

| - OS/firmware-defined calling convention

v

SMC (Secure Monitor Call)

|

| (2) Exception entry to EL3 (secure monitor)

| - save return state into ELR_EL3 / SPSR_EL3

| - set up secure context routing

v

EL3 Secure Monitor

|

| (3) Validate request + dispatch secure service

| - may switch to secure EL1 runtime or secure payload

v

Secure payload / service (platform-defined)

|

| (4) Perform operation, produce result
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v

Return path to non-secure world

|

| (5) Restore non-secure context

v

ERET (from EL3)

|

| (6) Hardware restores PC/PSTATE to resume non-secure execution

v

Non-secure world resumes

Minimal secure monitor call trigger (conceptual)

/* Conceptual: SMC requests a secure monitor service

(platform-defined semantics). */↪→

.text

.global smc_trigger_concept

.type smc_trigger_concept, %function

smc_trigger_concept:

smc #0 /* secure monitor call */

ret

Operational notes (design discipline)

• SMC is not a Linux syscall. It is a firmware/secure monitor interface.

• The calling convention and service IDs are platform-defined.

• The architectural mechanics remain: exception entry captures return state and returns

via ERET.
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Appendix C — Preparation for Advanced Topics

This appendix prepares you for advanced AArch64 exception and privilege topics that extend

beyond the core EL0→EL1 syscall and fault model. The goal is to establish the minimum

conceptual vocabulary and practical readiness for EL2 virtualization, EL3 secure monitor

flows, and bare-metal exception handling.

C.1 Virtualization and EL2

What changes when EL2 exists:

• EL2 can intercept and virtualize events that would otherwise be handled by EL1.

• Some exceptions and privileged operations are trapped to EL2 depending on

configuration.

• The system now has a host/guest model: guest OS runs at EL1 (or a virtualized EL1

view), while the hypervisor runs at EL2.

Why a systems programmer cares:

• performance: extra trap layers can affect syscall/interrupt latency under virtualization

• correctness: assumptions about privileged operations may fail if trapped/emulated

• debugging: an exception you think is “kernel” may be handled by the hypervisor first

Conceptual trap flow (guest perspective):

Guest EL0 -> Guest EL1 (kernel) does privileged operation

|

| (if configured to trap)

v
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EL2 Hypervisor trap handler

|

| emulate / deny / forward

v

Return to guest context (ERET from EL2)

Minimal readiness checklist:

• understand EL0/EL1 exception entry/return (ELR ELx, SPSR ELx, ESR ELx)

• recognize that “same instruction” can have different outcomes under trapping

• practice reading exception class and origin to detect virtualization involvement

C.2 Secure Monitor Calls (SMC)

SMC in one sentence: SMC is a privileged gateway into the secure monitor (EL3) for

TrustZone-enabled systems.

What it is not:

• not a Linux syscall

• not a normal function call

Conceptual model:

• Non-secure world requests a secure service using SMC

• EL3 secure monitor validates and dispatches

• returns via ERET to the originating world/context

Minimal conceptual trigger:
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/* Conceptual secure monitor call. Service IDs and calling convention

are platform-defined. */↪→

.text

.global smc_call_concept

.type smc_call_concept, %function

smc_call_concept:

smc #0

ret

Readiness checklist:

• distinguish SVC (OS syscall) from SMC (secure monitor)

• understand that EL3 owns secure/non-secure transitions

• treat SMC calling convention as platform/firmware-defined, not universal

C.3 Exception Handling in Bare-Metal Systems

Bare-metal exception handling uses the same architectural exception mechanism, but the

policy is yours: there is no Linux kernel to build trap frames, deliver signals, or manage

user/kernel separation.

What you must implement explicitly:

• vector table placement and VBAR ELx initialization

• stack selection and reliable stacks per EL (and often per exception type)

• context save/restore policy (GPRs, SIMD/FP if used)

• fault reporting (UART/logging), halt, or recovery strategy

Minimal EL1 bare-metal pattern (conceptual):
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/* Bare-metal style: install EL1 vectors and provide a minimal

synchronous handler stub. */↪→

.text

.align 11

.global vectors_el1_bare_concept

vectors_el1_bare_concept:

b el1_sync_sp0_bare_concept

b el1_irq_sp0_bare_concept

b el1_fiq_sp0_bare_concept

b el1_serror_sp0_bare_concept

/* Remaining entries omitted in this conceptual snippet */

.global el1_sync_sp0_bare_concept

.type el1_sync_sp0_bare_concept, %function

el1_sync_sp0_bare_concept:

/* Save minimal state */

stp x0, x1, [sp, #-16]!

/* Capture evidence */

mrs x0, esr_el1

mrs x1, elr_el1

mrs x2, far_el1

/* Policy: log/halt/recover (not shown) */

1:

b 1b

Readiness checklist:

• be able to write a correct vector table skeleton and set VBAR EL1

• enforce stack discipline (alignment, safe prologues, minimal early code)

• define a deterministic policy for unrecoverable exceptions (stop vs reset vs safe-mode)
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C.4 Cross-Reference to Upcoming Booklets

This booklet established the core exception and syscall model (EL0→EL1). The following

advanced areas build directly on it:

• Virtualization (EL2): traps, hypercalls, stage-2 translation, virtual interrupts, and

guest/host exception routing.

• TrustZone and EL3: secure monitor design, world switching, secure payload

invocation, and secure boot integration.

• Bare-metal exception engineering: vector table engineering, per-CPU stacks, minimal

handler design, and crash-dump strategies.

• Kernel deep dive: full Linux AArch64 entry/exit paths, syscall table mechanics, fast

return paths, and tracing hooks.

Practical next steps

• Implement a minimal EL1 vector table in a lab environment and deliberately trigger:

– svc path (if OS-like environment exists)

– data abort via invalid memory access

– brk for debug trap observation

• Practice evidence-first debugging: ESR + ELR + FAR + saved state.

• Separate architecture from policy: architecture defines entry/return registers; your

OS/firmware defines save/restore and recovery.
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