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Preface

Why This Booklet Exists

Modern CPUs execute nothing but binary operations on fixed-width registers. Yet many

programmers—especially those coming from high-level languages—approach assembly with

mental models borrowed from abstractions that do not exist at the hardware level. This booklet

exists to correct that mismatch.

Its purpose is not to teach assembly syntax, operating systems, or calling conventions, but to

establish a precise and disciplined understanding of how CPUs interpret bits, how arithmetic

truly works at the register level, and how status flags expose the consequences of each

instruction. Without this foundation, any further exploration of assembly programming

becomes fragile, error-prone, and misleading.

This booklet is the first structural pillar in the CPU Programming Series. It defines the mental

model required before stacks, memory models, or system-level mechanisms can be understood

correctly.

What “Binary Reality” Really Means

“Binary Reality” refers to the fact that the processor has no concept of types, intentions, or

abstractions. A register is merely a collection of bits. Whether those bits represent a signed
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integer, an unsigned integer, a character, a pointer, or something else entirely is determined

solely by the instruction that operates on them and by the programmer’s interpretation.

The CPU does not know what is “negative” or “positive”. It does not know what is “overflow”

in a semantic sense. It only sets flags based on well-defined electrical and logical outcomes of

binary operations. Concepts such as signedness, overflow, or comparison are human-imposed

interpretations layered on top of this raw behavior.

Understanding binary reality means learning to think the way the processor works: bit by bit,

boundary by boundary, without assumptions inherited from high-level languages.

What This Booklet Does Not Cover

To preserve conceptual clarity, this booklet intentionally excludes several important topics that

are commonly mixed into early assembly learning:

• Stack behavior and stack frames

• Calling conventions and function mechanics

• Memory hierarchy, caches, and virtual memory

• Instruction pipelines and speculative execution

• Operating system interaction

These topics are not omitted due to lack of importance, but because they rely on a correct

understanding of registers, flags, and data representation. Introducing them prematurely often

leads to false mental models that are difficult to unlearn.

This booklet focuses exclusively on what happens inside the register file and status flags as a

direct consequence of instruction execution.
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How to Read This Booklet Effectively

This booklet is designed to be read sequentially. Each section builds on assumptions and

definitions established earlier. Skipping chapters or treating the material as a quick reference

defeats its purpose.

Readers are encouraged to:

• Mentally simulate each operation at the bit level

• Ignore high-level language analogies unless explicitly stated

• Focus on why flags change, not just that they change

• Re-read sections dealing with signed vs unsigned logic and overflow

All assembly examples use Intel syntax with GAS conventions. Comments follow the # style

to maintain correctness and consistency across modern toolchains.

Mastery of this booklet does not make one an expert assembly programmer—but without

mastering it, expertise is impossible.



Chapter 1

Bits, Registers, and the Machine View

1.1 What a Register Really Is (Beyond the Name)

A register is a fixed-size storage element within the central processing unit (CPU) used to hold

binary data that participates directly in arithmetic, logic, and control operations. Physically

implemented as flip-flops or static memory cells, registers are the fastest storage available

in the computing system. They do not reside in main memory, cache, or any external bus;

they are local to the CPU’s execution units and are accessed without address translation or

memory hierarchy. The name given to a register (e.g., rax, rbx) is for human convenience.

The processor treats a register as a specific bundle of bits wired into its execution logic.

1.2 Bit Width, Lanes, and Hardware Limits

The bit width of a register defines how many binary digits it contains. Common CPU families

such as x86-64 have 64-bit general-purpose registers, meaning each register holds 64

individual bits. The width determines the numeric range of values a register can represent
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and the amount of data that can be processed in a single instruction. Some registers are

conceptually divided into sub-width portions (e.g., the lower 32, 16, or 8 bits of a 64-bit

register), commonly referred to as “lanes”. These lanes are not separate registers; they

represent different views of the same physical bits. The hardware enforces strict limits:

operations that exceed the native bit width either truncate high-order bits or set status flags

that reflect the outcome. There is no implicit extension or growth beyond the defined width.

1.3 Logical vs Physical Interpretation of Bits

Bits themselves are the simplest physical representation of information: they can be in one

of two electrical states corresponding to logical 0 or 1. This state has no inherent meaning

until defined by interpretation rules. Logical interpretation refers to how software or an

instruction set architecture assigns semantic weight to bit patterns (e.g., integer, address,

boolean). Physical interpretation refers strictly to the presence or absence of electrical charge

or transistor state. The CPU hardware operates on the physical level; logical interpretation is a

human and software abstraction layered on top of these physical states.

1.4 Registers as Raw Containers (No Types, No Meaning)

At the hardware level, registers contain raw bits without inherent types. The CPU does

not enforce signedness, floating point semantics, or any high-level type system. A set of

bits loaded into a register is the same whether interpreted as an unsigned integer, a signed

integer in two’s complement, or as a bit mask. The meaning is determined exclusively by

the operation applied to those bits. For example, adding two registers with an unsigned add

instruction versus a signed add instruction uses the same physical bits but produces the same

binary result; only the interpretation of status flags changes. A register is a raw container that

the instruction set interprets according to defined operational semantics.
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1.5 When Meaning Emerges: Instruction Context

Meaning emerges only in the context of instructions. An instruction defines how the binary

patterns in registers are to be processed, how the result is formed, and how the CPU flags

are affected. For instance, a comparison instruction (cmp) evaluates bits according to signed

or unsigned rules specified by the instruction semantics and updates flags accordingly. A

shift instruction like sal (shift arithmetic left) treats bits purely as binary digits to be moved,

without any notion of signedness in the act of shifting, although it affects flags in a defined

way. The combination of a specific opcode, operand size, and the CPU’s defined behavior

yields the semantic meaning of otherwise raw bits. Without instruction context, registers hold

patterns that are semantically inert.



Chapter 2

Bits, Registers, and the Machine View

2.1 What a Register Really Is (Beyond the Name)

A register is a physically realized storage element inside the CPU core, implemented using

high-speed circuitry such as flip-flops or latch-based cells. Unlike memory locations, registers

are not addressed through memory buses, caches, or translation mechanisms. They are directly

wired into the execution units of the processor and participate in instruction execution without

indirection.

From the processor’s perspective, a register is nothing more than a fixed-width collection

of bits that can be read from and written to by specific instructions. The symbolic names

assigned to registers (such as rax, rbx, or r0) exist purely for the benefit of programmers,

assemblers, and documentation. Internally, the CPU identifies registers by encoded indices

within instruction operands.

Registers do not store metadata. They do not remember how a value was produced, whether it

represents a number, an address, or a logical mask. Once written, the previous interpretation of

a register’s contents is completely irrelevant. Only the current bit pattern matters.

This distinction is critical: registers are not variables, objects, or typed storage. They are
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transient, mechanical storage elements optimized for speed and proximity to execution logic.

2.2 Bit Width, Lanes, and Hardware Limits

Every register has a fixed architectural width defined by the processor design. In modern x86-

64 systems, general-purpose registers are 64 bits wide. This width determines the maximum

amount of information that can be represented and manipulated in a single operation.

Sub-registers, often referred to as lanes, provide partial views of the same physical register.

For example, accessing the lower 32 bits of a 64-bit register does not involve a different

storage location; it is a restricted view of the same underlying bits. The hardware enforces

precise rules regarding how these partial accesses interact with the full register, including zero-

extension or preservation of higher bits depending on the instruction.

The hardware imposes strict limits on bit width. When arithmetic or logical operations

exceed the representable range of a register, the excess bits are discarded. This is not an error

condition; it is normal behavior. The processor records information about such events only

through status flags, never by expanding storage or raising exceptions for integer operations.

Understanding these limits is essential. CPUs operate within rigid bit boundaries, and

all higher-level notions of numeric range or safety must be constructed explicitly by the

programmer.

2.3 Logical vs Physical Interpretation of Bits

At the physical level, a bit corresponds to a stable electrical state within the processor’s

circuitry. This state is binary and devoid of meaning. The processor’s logic gates manipulate

these states according to predefined rules, without awareness of any abstract interpretation.

Logical interpretation arises from the instruction set architecture. When an instruction

operates on a register, it defines how the bit pattern should be treated: as an unsigned quantity,
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as a signed quantity in two’s complement form, or as a purely logical pattern. Importantly, this

interpretation does not alter the stored bits themselves; it alters only how the CPU evaluates

conditions and sets flags.

The same bit pattern can simultaneously be a valid unsigned integer, a valid signed integer,

and a meaningful bitmask. The processor does not choose between these interpretations. The

responsibility lies entirely with the instruction semantics and the programmer’s intent.

This separation between physical state and logical meaning is fundamental to understanding

low-level programming.

2.4 Registers as Raw Containers (No Types, No Meaning)

Registers are typeless by design. The CPU does not enforce or track data types for register

contents. There is no distinction between an integer register and a pointer register at the

hardware level. All registers store bit patterns, and all operations manipulate those patterns

according to instruction-defined rules.

For example, the result of an addition instruction is identical at the bit level regardless of

whether the operands are considered signed or unsigned. What changes is how the processor

sets flags such as Carry or Overflow, which reflect different interpretations of the same binary

result.

This lack of inherent meaning is a source of both power and danger. It enables highly efficient

and flexible computation but also allows subtle bugs when programmers apply incorrect

interpretations to register contents.

Registers are therefore best understood as raw containers whose meaning is ephemeral and

entirely contextual.
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2.5 When Meaning Emerges: Instruction Context

Meaning emerges only at the moment an instruction is executed. The opcode, operand size,

and instruction semantics together define how the processor interprets the bits in a register and

how it reacts to the result.

A comparison instruction does not modify registers but evaluates their contents and updates

flags based on either signed or unsigned rules. A shift instruction moves bits mechanically,

but may interpret the most significant bit differently depending on whether the shift is logical

or arithmetic. Rotate instructions treat the register as a closed loop of bits, ignoring numeric

interpretation entirely.

In all cases, the register itself remains unchanged in nature. Only the processor’s interpretation

during instruction execution creates semantic meaning, and that meaning disappears once

execution moves on.

Understanding this principle is essential before studying control flow, stack usage, or memory

access. Without it, programmers are likely to project abstractions onto hardware that simply

do not exist.



Chapter 3

Signed vs Unsigned: Same Bits, Different
Truths

3.1 Why the CPU Does Not Know “Signed”

The CPU stores and processes bit patterns. At the hardware level, there is no intrinsic notion

of “signed” or “unsigned” values inside a general-purpose register. Integer adders, subtractors,

and logic units operate on bits using fixed rules (carry propagation, bitwise logic) and

produce a fixed-width result. What changes between signed and unsigned reasoning is not

the computed bit pattern, but how software interprets that pattern and which status flags are

considered meaningful for detecting exceptional conditions.

“Signedness” is therefore an interpretation convention defined by the instruction set

architecture (ISA) and by the programmer. The ISA specifies how flags are set and how

conditional branches interpret those flags in signed or unsigned contexts, but the underlying

datapath does not tag values with types.
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3.2 Unsigned Interpretation: Natural Binary Order

Under unsigned interpretation, an N -bit register represents an integer in the range [0, 2N − 1].

The ordering is the natural binary order: higher bits carry greater weight, and the most

significant bit (MSB) is simply the highest place value, not a sign indicator. Arithmetic in

unsigned interpretation is performed modulo 2N : results that exceed the maximum wrap

around by discarding bits beyond width N .

In this model, the Carry Flag (CF) is the primary indicator for overflow of unsigned addition

(a carry out of the MSB) and for borrow behavior in subtraction (as defined by the ISA).

Unsigned comparisons also rely on CF and ZF to express the outcome.

3.3 Signed Interpretation: Human-Defined Semantics

Signed interpretation assigns meaning to the same N bits using a representation convention,

overwhelmingly two’s complement in modern mainstream ISAs. In two’s complement, the

representable range is [−2N−1, 2N−1 − 1]. The MSB participates in the numeric value as a

negative weight, not as a separate “sign bit” field in the way high-level language diagrams

often imply.

Crucially, the bit pattern result of addition/subtraction is identical whether you interpret inputs

as signed or unsigned. What differs is which results are considered outside the representable

signed range. The Overflow Flag (OF) indicates that a signed operation produced a result that

cannot be represented in N -bit two’s complement, even though the bit pattern is well-defined

modulo 2N .
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3.4 Comparison Instructions and Interpretation Rules

Comparison in assembly is performed by instructions that set flags based on subtraction-like

evaluation without necessarily storing a result (e.g., cmp). The comparison itself computes

relationships by updating status flags (notably ZF, SF, OF, CF) and then a conditional branch

instruction interprets those flags according to signed or unsigned rules.

For x86-family semantics in particular:

• Unsigned relations use CF and ZF (e.g., below/above).

• Signed relations use SF and OF (with ZF) (e.g., less/greater).

Thus the ISA provides two families of conditional branches: one for unsigned ordering and

one for signed ordering, both derived from the same flag-setting operation.

# x86-64 GAS, Intel syntax

# unsigned: if (a < b) using CF/ZF

cmp rax, rbx

jb .L_unsigned_less # jump if below (CF=1)

# signed: if (a < b) using SF/OF

cmp rax, rbx

jl .L_signed_less # jump if less (SF != OF)

The key discipline is to choose the conditional jump that matches the intended interpretation

of the operands, not the visual shape of the bit pattern.

3.5 Signed vs Unsigned in Arithmetic Instructions

Integer arithmetic instructions generally compute the same truncated N -bit result regardless of

signedness. The ISA then exposes two distinct diagnostics:
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• CF indicates carry out of the MSB for addition (unsigned overflow) and is used in

unsigned multi-precision arithmetic.

• OF indicates signed overflow: the mathematical signed result does not fit in N bits

(two’s complement range violation).

A concise way to reason about OF in addition is: if two operands have the same signed sign

(same MSB) and the result has a different sign, signed overflow occurred. CF is independent:

it detects bit carry beyond the width boundary and is meaningful for unsigned wraparound

detection.

# x86-64 GAS, Intel syntax

# Example: show that CF and OF are different signals

mov al, 0xFF # 255 unsigned, -1 signed (8-bit)

add al, 0x01 # result = 0x00 (wrap)

# CF=1 (unsigned overflow out of 8 bits)

# OF=0 (signed: -1 + 1 = 0 fits)

mov al, 0x7F # 127 signed max (8-bit)

add al, 0x01 # result = 0x80 (-128 signed)

# CF=0 (no carry out of MSB in this case)

# OF=1 (signed overflow: 127 + 1 cannot be represented)

The arithmetic datapath is the same; the flags provide separate lenses for correctness

depending on interpretation.

3.6 Common Logical Errors in Mixed Interpretation

The most common bugs arise not from wrong instructions, but from mixing interpretation

rules:
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• Using signed branches for unsigned data (or vice versa). A classic error is using

jl/jg when values are intended as sizes, indices, counters, or bitfields, which are

naturally unsigned.

• Treating the MSB as “the sign” in all contexts. The MSB is only a sign indicator

under a chosen signed convention. Under unsigned interpretation it is just the highest

weight bit.

• Detecting unsigned overflow with OF or signed overflow with CF. CF is for unsigned

carry/borrow behavior; OF is for signed range violation.

• Assuming comparisons are “type aware”. The cmp instruction sets flags; the

interpretation happens at the conditional jump. The CPU does not remember intent.

• Implicitly mixing widths. Extending or truncating values without an explicit rule (zero-

extension vs sign-extension) creates silent reinterpretations across widths.

• Confusing wraparound with error. Fixed-width arithmetic wraps by design; “error” is

a higher-level policy that must be checked using the correct flags and rules.

Correct low-level reasoning requires adopting a single interpretation at a time, choosing

the matching extension rule (zero/sign), and using the appropriate conditional branches and

overflow checks for that interpretation.



Chapter 4

Two’s Complement: The Universal Lie We
Agree On

4.1 Why Two’s Complement Exists

Two’s complement exists because it provides a mathematically consistent way to represent

signed integers using fixed-width binary registers while keeping hardware simple. The key

design goal is that the same adder circuit used for unsigned addition can also perform signed

addition and subtraction without extra “sign handling” circuitry. With two’s complement,

subtraction can be implemented as addition of a negated operand, enabling a unified arithmetic

datapath.

Two’s complement also yields a single representation for zero (unlike signed-magnitude and

ones’ complement, which have both +0 and −0), and it makes signed comparisons and sign-

extension well-defined and efficient in hardware and instruction sets.
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4.2 Encoding Positive and Negative Values

For an N -bit register:

• Non-negative values (0 to 2N−1 − 1) are encoded in ordinary binary.

• Negative values (−1 to −2N−1) are encoded such that the most significant bit (MSB)

contributes a negative weight.

Formally, an N -bit pattern bN−1 . . . b1b0 represents the signed value:

−bN−1 · 2N−1 +
N−2∑
i=0

bi · 2i

This is not a “sign bit plus magnitude” model; it is a weighted sum where the MSB has

negative weight. The representable range is:

−2N−1 ≤ x ≤ 2N−1 − 1

4.3 Two’s Complement Arithmetic Rules

Two’s complement arithmetic on N -bit registers is modular arithmetic modulo 2N . The

hardware produces the same N -bit result for addition and subtraction regardless of whether

operands are interpreted as signed or unsigned; interpretation affects only how you judge

correctness (e.g., via overflow detection).

Signed overflow is not “wraparound failure” at the bit level. The bits are always correct

modulo 2N . Signed overflow occurs only when the mathematical signed result lies outside

the representable range [−2N−1, 2N−1 − 1]. In many ISAs, this is reflected by the Overflow Flag

(OF) for relevant operations.
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4.4 Negation, Inversion, and Addition

In two’s complement, negation of an N -bit value x is performed by inverting all bits and

adding 1:

−x ≡∼ x+ 1 (mod 2N)

This identity is the core reason subtraction becomes addition:

a− b ≡ a+ (∼ b+ 1) (mod 2N)

At the machine level, this is why CPUs can implement subtraction using the same adder as

addition: the only additional operation needed is bitwise inversion and the injection of a carry-

in of 1.

# x86-64 GAS, Intel syntax

# Compute -x in AL (8-bit) using NOT + ADD

mov al, 0x2A # x = 42

not al # ˜x

add al, 1 # ˜x + 1 => -x modulo 256

# Subtraction as addition of two's complement:

# a - b == a + (˜b + 1)

mov al, 10

mov bl, 3

mov cl, bl

not cl

add cl, 1

add al, cl # al = 10 - 3 (mod 256)
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4.5 Edge Cases: Minimum Negative Value

The most important edge case in two’s complement is the minimum representable value:

MIN = −2N−1

Its bit pattern is a 1 in the MSB and zeros elsewhere:

1000 . . . 0

This value has no positive counterpart representable in the same width, because the positive

range ends at 2N−1 − 1. Therefore:

−MIN = MIN (mod 2N)

Negating MIN overflows in signed arithmetic. In many ISAs, the negation instruction (or

equivalent subtraction from zero) will indicate signed overflow (OF set) when attempting to

negate the minimum value.

# x86-64 GAS, Intel syntax

# Demonstrate MIN negation behavior for 8-bit

mov al, 0x80 # -128 in 8-bit two's complement (MIN)

neg al # result is still 0x80; signed overflow

occurs (OF=1)↪→

This is not a bug in the CPU. It is a consequence of asymmetric range in two’s complement.

4.6 Why Two’s Complement Never Needs a Sign Bit

Instruction

Two’s complement does not require a separate instruction to handle a “sign bit” because sign

is not a detachable field. The MSB participates in the numeric value by weight, and arithmetic
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naturally propagates across all bits through the adder.

Sign extension is likewise mechanical: extending an N -bit signed value to a wider register is

performed by replicating the MSB into the new higher bits. No special “convert sign” step is

required beyond this replication rule, because it preserves the weighted-sum interpretation.

As a result, the same fundamental instructions (add, sub, inc, dec, cmp) operate uniformly on

signed and unsigned interpretations. Only:

• the chosen extension rule (zero-extend vs sign-extend),

• the chosen conditional branches (signed vs unsigned),

• and the chosen overflow interpretation (OF vs CF)

determine whether the programmer is reasoning in signed or unsigned terms. The hardware

remains purely bitwise and width-bound.



Chapter 5

Overflow vs Carry: Two Very Different
Failures

5.1 Why Arithmetic “Failure” Is Contextual

Fixed-width CPU integer arithmetic is defined modulo 2N for an N -bit operation: the

hardware always produces an N -bit result by discarding any bits beyond the width boundary.

In that sense, integer arithmetic on the CPU does not “fail”; it deterministically wraps.

What programmers call “failure” is a higher-level semantic notion: the computed

mathematical result (in some interpretation) does not fit the intended representable range.

Because the same bit pattern can be interpreted as unsigned or signed (two’s complement),

the meaning of “out of range” depends on interpretation. The ISA exposes this contextual

information through distinct status flags: Carry Flag (CF) for unsigned boundary events, and

Overflow Flag (OF) for signed range violations.
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5.2 Carry Flag: Unsigned Arithmetic Overflow

The Carry Flag indicates a carry out of the most significant bit (MSB) position in addition,

which corresponds to overflow in unsigned arithmetic. For an N -bit addition:

a+ b = r (mod 2N)

CF is set if the true mathematical sum is ≥ 2N , meaning a (N+1)-th bit would be needed to

represent it. This is exactly the condition required for multi-precision arithmetic: CF becomes

the propagated carry into the next higher word.

For subtraction, many ISAs define CF in a complementary way (borrow-related), but the

conceptual role remains: CF encodes an unsigned boundary event that matters when operands

are interpreted as non-negative integers or as words in a larger integer.

# x86-64 GAS, Intel syntax

# Unsigned overflow example (8-bit): 255 + 1 wraps to 0 with CF=1

mov al, 0xFF # 255

add al, 0x01 # al = 0x00, CF=1

5.3 Overflow Flag: Signed Arithmetic Violation

The Overflow Flag indicates that a signed two’s complement result cannot be represented

within the operand width. For signed N -bit integers, the representable range is:

−2N−1 ≤ x ≤ 2N−1 − 1

OF is set for addition when adding two operands with the same sign yields a result with the

opposite sign. This is the canonical two’s complement overflow condition:

• positive + positive → negative



28

• negative + negative → positive

OF is not about carries; it is about sign consistency under the signed interpretation. The

hardware result remains valid modulo 2N , but it violates the intended signed range.

# x86-64 GAS, Intel syntax

# Signed overflow example (8-bit): 127 + 1 cannot be represented

mov al, 0x7F # 127

add al, 0x01 # al = 0x80 (-128), OF=1

5.4 How the Same Operation Triggers Different Flags

The same binary addition can set CF, OF, both, or neither, because each flag encodes a

different interpretation:

• CF answers: “Did the addition exceed 2N − 1 in unsigned arithmetic?”

• OF answers: “Did the signed result exceed 2N−1 − 1 or go below −2N−1?”

Consider these 8-bit examples:

# x86-64 GAS, Intel syntax

# Case A: CF=1, OF=0 (unsigned overflow only)

mov al, 0xFF # 255 unsigned, -1 signed

add al, 0x01 # 0x00, CF=1, OF=0 (-1 + 1 = 0 fits)

# Case B: CF=0, OF=1 (signed overflow only)

mov al, 0x7F # 127

add al, 0x01 # 0x80, CF=0, OF=1
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# Case C: CF=1, OF=1 (both)

mov al, 0x80 # -128 signed, 128 unsigned

add al, 0x80 # 0x00, CF=1 (128+128=256), OF=1

(-128+-128 out of range)↪→

The arithmetic datapath is identical in all cases; the flags provide two different “range lenses”

over the same bit-level event.

5.5 Visualizing Overflow in Binary Space

A useful mental model is to treat N -bit results as points on a circle of size 2N (modular space).

Addition moves forward around the circle; subtraction moves backward.

• In unsigned interpretation, the valid range is the entire circle labeled 0 to 2N − 1.

“Overflow” corresponds to crossing the boundary from 2N − 1 back to 0, which is exactly

what CF reports.

• In signed interpretation, the same circle is relabeled into a contiguous signed interval

−2N−1 . . .− 1, 0, 1 . . . 2N−1 − 1

“Overflow” occurs when an addition step crosses the signed boundary between 2N−1 − 1

and −2N−1, which OF reports.

Thus CF corresponds to wraparound at the unsigned boundary, while OF corresponds to

wraparound at the signed boundary under two’s complement relabeling.

5.6 Real Bugs Caused by Misreading Flags

Misreading CF and OF produces classic low-level failures:
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• Using OF to validate sizes, indices, or lengths. These quantities are naturally

unsigned; checking OF misses real out-of-range conditions and can accept wrapped

values as “valid”.

• Using CF to validate signed computations. A signed range violation can occur with

CF clear (e.g., 127 + 1 in 8-bit), causing silent corruption when CF is used as the only

overflow test.

• Choosing the wrong conditional jumps after cmp. Signed relations (jl, jg) depend

on SF and OF; unsigned relations (jb, ja) depend on CF and ZF. Mixing them breaks

boundary checks and can introduce security bugs.

• Multi-precision arithmetic implemented with OF. Carry propagation between

words is an unsigned concept; using OF instead of CF yields incorrect high-word

accumulation.

• Incorrect saturation/clamping. Clamping to signed bounds requires OF-aware logic;

clamping to unsigned bounds requires CF-aware logic. Swapping them clamps at the

wrong boundary.

The disciplined rule is simple: use CF for unsigned boundary detection and multi-word

carries; use OF for signed range violation. After comparisons, select conditional branches

that match the intended signedness of the operands.



Chapter 6

CPU Flags: Reading the Processor’s Mind

6.1 Status Flags as Side-Channel Information

Status flags are small pieces of architectural state updated as a by-product of executing many

arithmetic, logical, and compare-class instructions. They are not general storage, and they

are not “types” or “exceptions”. Instead, they are a side-channel: a compact summary of

properties of the last operation (e.g., whether the result became zero, whether a carry-out

occurred, whether a signed overflow happened).

Flags exist to make control flow and multi-precision arithmetic efficient. A single instruction

can compute a result and simultaneously expose conditions needed for branching, bounds

checks, and carry propagation. Critically, flags are ephemeral: they describe the most recent

relevant operation, and most instructions overwrite them. Correct low-level code therefore

treats flags as short-lived signals that must be consumed promptly and intentionally.
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6.2 Zero Flag (Z): Absence of Value

The Zero Flag (ZF) is set when the result of an operation is exactly zero in the operand width.

It does not mean “false” in a high-level sense; it means the computed bit pattern is all zeros.

Many instructions update ZF based on their result, including arithmetic (add, sub), bitwise

logic (and, xor, or), and explicit tests (test, cmp).

ZF is foundational for equality and zero checks because it is width-correct: a 64-bit operation

sets ZF based on the full 64-bit result, not an arbitrary subset.

# x86-64 GAS, Intel syntax

xor eax, eax # eax = 0, ZF=1 (result is zero)

test rax, rax # sets ZF based on rax without modifying it

jz .L_is_zero # jump if ZF=1

6.3 Carry Flag (C): Bit Escaping the Boundary

The Carry Flag (CF) reports a boundary event in fixed-width arithmetic. For addition, CF is

set when there is a carry-out from the most significant bit of the operation width, i.e., the true

mathematical sum does not fit in N bits for an N -bit add. This makes CF the canonical signal

for unsigned overflow and for multi-word carry propagation.

For subtraction, many ISAs define CF in relation to borrow in a specified way; the key idea

remains that CF encodes an unsigned boundary condition tied to the width limit, not a signed

range violation.

# x86-64 GAS, Intel syntax

mov al, 0xFF # 255
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add al, 1 # al = 0, CF=1 (carry out of 8-bit

boundary)↪→

jc .L_carry # jump if CF=1

6.4 Sign Flag (S): The Most Significant Bit

The Sign Flag (SF) mirrors the most significant bit of the result (for the chosen operand

width). It indicates whether the MSB is 1. Under two’s complement signed interpretation,

SF corresponds to “negative” results, but SF itself is purely bit-level: it does not know

“signedness”. It is simply a copy of the MSB.

SF is therefore meaningful when used with signed-interpretation rules (typically in

combination with OF for comparisons), and it is also useful as a direct MSB test in bit-

manipulation logic.

# x86-64 GAS, Intel syntax

mov al, 0x01

sub al, 0x02 # al = 0xFF, SF=1 (MSB of 8-bit result is

1)↪→

js .L_msb_set # jump if SF=1

6.5 Overflow Flag (O): Broken Signed Reality

The Overflow Flag (OF) indicates that a signed two’s complement result is not representable

in the operand width. For addition, OF is set when adding two operands with the same signed

sign produces a result with the opposite sign. For subtraction, OF is set when subtracting

operands of different signs produces a result whose sign contradicts the expected signed

outcome.
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OF does not describe carry-out and is not suitable for unsigned bounds checking. It is a

signed-range diagnostic: the computation is still correct modulo 2N , but it violates the

mathematical signed range [−2N−1, 2N−1 − 1].

# x86-64 GAS, Intel syntax

mov al, 0x7F # 127 (8-bit)

add al, 1 # al = 0x80 (-128), OF=1

jo .L_signed_overflow

6.6 Combined Flag Logic in Conditional Jumps

Conditional jumps interpret flags according to signed or unsigned rules. After a cmp

(conceptually a subtraction that updates flags), the ISA provides two families of relational

branches:

• Unsigned ordering uses CF and ZF (e.g., below/above).

• Signed ordering uses SF and OF (with ZF) (e.g., less/greater).

Equality uses ZF for both interpretations, because equality is bit-exact in a fixed width.

# x86-64 GAS, Intel syntax

cmp rax, rbx

je .L_equal # ZF=1

jb .L_u_less # unsigned: CF=1

ja .L_u_greater # unsigned: CF=0 and ZF=0

jl .L_s_less # signed: SF != OF

jg .L_s_greater # signed: ZF=0 and SF == OF
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The discipline is to pick the branch mnemonic that matches the intended interpretation of the

operands. The compare sets flags once; the branch chooses the interpretation.

6.7 Flag Dependency and Instruction Ordering

Because flags are overwritten frequently, correct code must treat them as a dependency

chain: the consumer of flags (a conditional jump, adc/sbb, or a setcc instruction) must

appear immediately after the producer (an arithmetic, logic, or compare instruction) unless

intervening instructions are guaranteed not to modify the relevant flags.

This creates two practical rules:

• Consume flags as soon as possible. Do not insert unrelated arithmetic or logic between

flag-setting and flag-using operations.

• Be explicit about flag clobbering. Many instructions update ZF/SF/OF/CF as part of

their normal behavior; assume flags are not preserved unless the ISA guarantees it.

Multi-precision arithmetic illustrates this dependency clearly: adc and sbb explicitly

consume CF from a prior operation. Any instruction that changes CF between the carry-

producing add and the carry-consuming adc breaks correctness.

# x86-64 GAS, Intel syntax

# Correct: consume CF immediately

add rax, rbx # sets CF

adc rcx, rdx # adds with carry from CF

# Incorrect pattern (conceptual): an intervening instruction may

clobber flags↪→

# add rax, rbx
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# xor r8d, r8d # clobbers ZF/SF and often other flags

# adc rcx, rdx # now CF may not represent the intended

carry↪→

Flags are not stable state; they are transient signals. Treat them like one-instruction-wide

outputs unless proven otherwise by the instruction semantics.



Chapter 7

Shifts and Rotates: Moving Bits with
Consequences

7.1 Logical Shifts vs Arithmetic Shifts

A shift instruction moves bits within a fixed-width operand and discards bits that exit the

width boundary. The vacated bit positions are filled according to the shift kind:

• Logical shift treats the operand as an unsigned bit pattern. Zeros are shifted in from the

side opposite the direction of movement.

• Arithmetic shift is defined to preserve signed two’s complement interpretation for

right shifts by replicating the most significant bit (MSB), often called the sign bit under

signed interpretation.

Left shifts are typically identical for logical and arithmetic variants on many ISAs because

shifting left introduces zeros in the least significant bit (LSB) positions; the distinction

becomes critical primarily for right shifts.
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# x86-64 GAS, Intel syntax

# Logical right shift: zero-fill

shr eax, 1 # shift right, fill MSB with 0

# Arithmetic right shift: sign-fill

sar eax, 1 # shift right, replicate previous MSB

7.2 Left Shifts: Multiplication or Bit Destruction?

A left shift by k positions (shl/sal) is equivalent to multiplication by 2k only when the

shifted-out bits are all zero and the interpretation matches the intended arithmetic domain.

Formally, for an N -bit operand x, the hardware computes:

(x ≪ k) mod 2N

This operation always discards the top k bits that exit the width boundary. Therefore, a left

shift is better understood as bit relocation with truncation, not inherently as multiplication.

The multiplication analogy holds only under a no-overflow condition.

# x86-64 GAS, Intel syntax

# Multiplication analogy holds only if no high bits are lost

mov al, 0x10 # 00010000b (16)

shl al, 1 # 00100000b (32) OK

mov al, 0x90 # 10010000b (144)

shl al, 1 # 00100000b (32) high bit destroyed (wrap)



39

7.3 Right Shifts: Sign Preservation vs Zero Fill

Right shifts move bits toward the LSB side; the key question is what fills the MSB side:

• shr (logical right shift) fills with zeros. This corresponds to division by 2k for unsigned

values when no fractional remainder is needed beyond truncation.

• sar (arithmetic right shift) replicates the original MSB, preserving the sign under

two’s complement interpretation. This corresponds to signed division by 2k with

truncation behavior defined by the ISA (typically toward zero or toward negative infinity

depending on the architecture’s exact semantics for division and shift; the shift itself is a

bit operation that preserves sign bits).

The essential point: sar preserves the sign bit pattern, not a high-level mathematical

guarantee for division semantics in every edge case. It is a representation-preserving shift,

not a “true signed divide” operator.

# x86-64 GAS, Intel syntax

mov al, 0xF0 # 11110000b (240 unsigned, -16 signed)

mov bl, al

shr bl, 1 # 01111000b (120 unsigned) zero-fill

mov cl, al

sar cl, 1 # 11111000b (-8 signed) sign-fill

7.4 Rotate Instructions: Circular Bit Flow

Rotate instructions do not discard bits; they circulate them within the operand width. A

rotate left moves the MSB into the LSB; a rotate right moves the LSB into the MSB. Rotates
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preserve the multiset of bits and are therefore fundamentally different from shifts.

Rotates are common in bit manipulation, hashing, cryptographic primitives, checksum logic,

and certain normalization workflows. They are also useful for extracting or repositioning bit

fields without losing information.

# x86-64 GAS, Intel syntax

mov al, 0b10010001

rol al, 1 # 00100011b (MSB wraps into LSB)

mov al, 0b10010001

ror al, 1 # 11001000b (LSB wraps into MSB)

7.5 Flag Effects of Shift and Rotate Operations

Shift and rotate instructions typically update flags based on the result and on the last bit shifted

out. While exact flag-update rules are ISA-specific, a disciplined model is:

• CF captures the last bit shifted out (or rotated out) for single-bit shifts/rotates; this is

often used for bit-serial logic.

• ZF reflects whether the post-operation result is zero.

• SF reflects the MSB of the post-operation result.

• OF for shifts/rotates is defined only for certain counts (commonly count=1) and reflects

a sign-related condition derived from MSB transitions; it is not a general “overflow”

concept for multi-bit shifts.

Because multi-bit shifts may leave OF undefined or architecturally unspecified depending on

ISA rules, robust code avoids relying on OF for shift counts other than those explicitly defined

by the architecture.
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# x86-64 GAS, Intel syntax

# CF as the bit that falls off the edge

mov al, 0b10000001

shl al, 1 # result 00000010b, CF=1 (old MSB shifted

out)↪→

mov al, 0b00000001

shr al, 1 # result 00000000b, CF=1 (old LSB shifted

out), ZF=1↪→

7.6 When Shifts Break Signed Arithmetic

Shifts easily break signed arithmetic because they are width-bound bit operations, not

mathematical operators with infinite precision.

Key failure modes include:

• Left shift signed overflow. Shifting a signed value left can change the MSB and

therefore change the sign under two’s complement interpretation. Even if the bit pattern

is well-defined, the signed mathematical value may leave the representable range.

• Assuming sar equals signed division in all cases. sar preserves the sign bit pattern.

For negative numbers, the rounding behavior implied by arithmetic shifting can differ

from the rounding model expected in higher-level arithmetic unless the ISA and usage

are aligned.

• Mixing signed and unsigned after shifts. A shr on a value later treated as signed can

silently destroy sign information. Conversely, a sar on data later treated as unsigned

injects ones into high bits.

A disciplined approach is:
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• Choose shr when the value is an unsigned quantity or a bitfield.

• Choose sar only when preserving two’s complement signed interpretation is explicitly

intended.

• Treat left shifts as bit transformations first; only treat them as multiplication when you

have proven that no significant bits are lost for the width in use.



Chapter 8

Alignment: When Bit Patterns Meet
Hardware Rules

8.1 What Alignment Really Means at the CPU Level

Alignment is a property of a memory address relative to a required or preferred boundary. For

an access of size k bytes, an address is k-aligned (often called naturally aligned) when:

address mod k = 0

This is the simplest and most practical definition: the address is a multiple of the access size.

At the CPU level, alignment exists because a load/store instruction is specified to transfer

an N -byte quantity beginning at the given address, but the hardware that implements this

transfer has internal granularities and boundaries. A core does not fetch “an abstract object”; it

fetches bytes from an address, and for multi-byte quantities it must gather a contiguous run of

bytes and assemble them into a register according to the ISA’s rules (including endianness and

width).
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Alignment is therefore not an attribute of the bits inside a register. A register can hold any

bit pattern. Alignment becomes relevant only when the CPU uses a register as an address

(effective address) for memory access. Two memory addresses that contain the same bytes but

start at different offsets may represent the same logical value to a programmer, yet the CPU

may have to perform different internal work to retrieve them efficiently and correctly.

Alignment as a boundary contract

Alignment is best understood as a boundary contract between software and hardware:

• Software promises to place certain objects at addresses that meet alignment

requirements or preferences.

• Hardware promises that aligned accesses have defined behavior, often better

performance, and sometimes stronger guarantees (such as atomicity for specific widths).

Many instruction sets define alignment requirements directly (some accesses may fault if

misaligned), while others permit misaligned accesses but may implement them as a slower

sequence of internal operations.

Operand width matters

Alignment is always relative to the operand width of the access, not to the register width. A

64-bit register holding an address does not force 8-byte alignment; rather, an instruction that

loads 8 bytes from that address tends to be most efficient when the address is 8-byte aligned.

# x86-64 GAS, Intel syntax

# Alignment is a property of the address in rdi and the access width.

# 1-byte load: alignment is irrelevant for correctness on most ISAs.
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movzx eax, byte ptr [rdi]

# 4-byte load: naturally aligned when (rdi % 4 == 0)

mov eax, dword ptr [rdi]

# 8-byte load: naturally aligned when (rdi % 8 == 0)

mov rax, qword ptr [rdi]

Alignment and internal fetch/merge

Even when an ISA allows misaligned loads, the core may internally perform:

• two smaller aligned loads,

• a merge of the relevant bytes,

• and sometimes additional masking and shifting

to synthesize the architectural result. Alignment reduces the need for such splitting and

merging, and it reduces the probability of crossing internal boundaries.

8.2 Natural Alignment and Performance Implications

Natural alignment is the conventional placement rule that gives the hardware its simplest case:

an access whose starting address is a multiple of the access size. This convention tends to

match the natural granularity of many datapaths and interconnects, and it minimizes boundary-

crossing.

Why aligned is usually faster

On typical microarchitectures, aligned accesses tend to be faster for several reasons:
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• Fewer internal micro-operations. A naturally aligned load is more likely to map to

one internal transfer, rather than a split transfer plus merge.

• Fewer boundary hazards. Misaligned accesses are more likely to cross important

boundaries (word boundaries, cache-line boundaries, page boundaries), each of which

can increase internal work or latency.

• Better throughput. Even if a single misaligned load is only slightly slower, repeating it

in a tight loop can reduce load/store throughput and limit overall performance.

The cost is not uniform

The penalty of misalignment is not a constant. It depends on:

• the access width (2, 4, 8, 16 bytes),

• the address offset (how far from the natural boundary),

• whether the access crosses an internal boundary,

• and which instruction form is used (scalar vs vector, atomic vs non-atomic).

The most important practical distinction is whether an access crosses a large boundary (for

example, a cache-line boundary). Crossing such boundaries can force multiple internal

transactions, and in the worst case can involve multiple cache lines or even multiple pages,

making the access significantly slower and sometimes fault-prone at the page level.

Alignment and atomicity

Alignment is tightly related to architectural atomicity guarantees. Many platforms guarantee

that naturally aligned loads/stores of certain sizes (often word-sized) are atomic. Misaligned

access may not be atomic, may not be supported for atomic instructions, or may trap. This
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matters for lock-free algorithms and for correctness under concurrency. Even when your

code is single-threaded, alignment discipline reduces the risk of accidentally relying on non-

guaranteed behaviors when code evolves.

8.3 Misaligned Access: Penalties and Exceptions

ISAs fall broadly into two models: permissive and strict. Real systems also sit on a spectrum:

they may allow some misaligned widths, but not others; they may allow scalar misalignment,

but not vector misalignment; they may allow misalignment for ordinary loads/stores, but

forbid it for atomic operations.

Permissive model: allowed but potentially slower

In a permissive model, a misaligned load/store is architecturally defined: the CPU will

produce the correct value as if bytes were read consecutively, but it may do so with extra

internal work. The extra work can include splitting the transfer, performing multiple aligned

sub-transfers, and merging the bytes.

This model improves software portability and reduces the need for explicit byte-by-byte

fallback in many common cases, but it still penalizes misalignment and does not guarantee

equal performance across different alignments.

Strict model: alignment faults

In a strict model, a misaligned access for certain widths or instructions raises an exception.

This simplifies hardware and enforces discipline: software must ensure correct alignment or

must handle faults. Strict alignment is common in designs that prioritize predictable behavior,

simplicity, or certain guarantees.
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Not all instructions behave the same

Even on architectures that allow many misaligned scalar loads/stores, there are common

categories where alignment constraints become stricter:

• Vector/SIMD loads/stores. Some vector instruction forms historically required

alignment, and some still benefit strongly from it even when misalignment is allowed.

• Atomic read-modify-write instructions. These often impose alignment requirements

because the hardware must lock or coordinate a specific aligned unit.

• Instructions with special semantics. Certain gather/scatter patterns, string operations,

or platform-specific instructions may have distinct rules.

Therefore, a disciplined rule is: do not infer alignment behavior from one instruction class to

another; rely on the ISA definition for each class and maintain alignment where possible.

Misalignment and faults via boundary crossing

Even if an ISA permits misaligned loads, boundary crossing can still introduce exceptional

cases:

• If the access crosses a page boundary and the second page is unmapped, a fault occurs

even though the first byte range was valid.

• If an architecture implements misaligned loads by multiple sub-loads, each sub-load can

fault independently.

This means a misaligned multi-byte access can fault in situations where aligned accesses

would not, because it touches additional address ranges.
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8.4 Alignment vs Data Representation

Alignment answers: “Is this address positioned on a boundary that makes a multi-byte transfer

efficient and well-defined for this instruction?”

Data representation answers: “How do the bytes map to a value (endianness, signedness, field

layout)?”

These concerns are orthogonal and must not be conflated.

Alignment does not change meaning; it changes access semantics

If memory contains a sequence of bytes that represent a value under a chosen representation,

that meaning is independent of alignment. Alignment affects whether you can retrieve those

bytes as a unit using a particular instruction form efficiently and safely.

For example:

• Endianness determines which byte becomes the least significant part of a multi-byte

integer.

• Two’s complement determines how a bit pattern maps to a signed integer.

• Alignment determines whether the CPU can load the multi-byte value starting at that

address in a single efficient operation.

Common pitfall: treating misalignment as “corruption”

Misalignment does not corrupt data. It may:

• slow down access,

• remove atomicity guarantees,

• or trap (fault) depending on the ISA and instruction.
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But the bytes in memory remain unchanged. The “problem” is the mismatch between the

access width and the boundary expectations of the hardware.

Alignment and struct/record layout

While this booklet avoids high-level language ABI details, one universal principle matters:

grouping fields of different sizes often introduces padding so that each field begins at a

boundary that satisfies its alignment. This padding is a layout strategy to maintain alignment

contracts and improve access efficiency.

Even in pure assembly, the same issue exists: if you design a data record, your chosen offsets

determine whether each field can be accessed with naturally aligned loads/stores.

8.5 Why Alignment Is Not a Memory Hierarchy Topic

Alignment is often discussed near caches because misalignment can interact with cache-

line boundaries, but alignment is not fundamentally a cache policy topic. It is primarily a

load/store semantics and hardware interface topic.

Alignment exists even without caches

Imagine a system with no caches. A load/store unit still transfers bytes between memory and

registers. It still has internal granularity (for example, a natural word width). Alignment still

matters because hardware must define how multi-byte transfers are performed and whether

they can start at arbitrary byte offsets.

Caches can amplify the performance penalty (because crossing a cache line can force touching

two lines), but caches do not create alignment requirements. Alignment arises from how the

CPU and its memory interface are designed to fetch and assemble multi-byte values.



51

The core reason: boundary crossing multiplies work

The most general cost model is:

Aligned accesses tend to touch fewer internal blocks; misaligned accesses are

more likely to touch multiple blocks.

Those blocks may be:

• word-aligned internal transfer units,

• cache lines,

• page mappings,

• or bus transaction units.

Memory hierarchy affects which blocks exist and how expensive they are, but alignment is the

concept of placing accesses so they do not straddle those blocks unnecessarily.

Alignment as a correctness boundary in concurrency

Finally, alignment matters for correctness even outside performance considerations, because

many architectures define atomicity and synchronization primitives in terms of aligned

accesses. This is not a cache topic; it is an architectural correctness contract for concurrency

and for instruction semantics.

Practical discipline summary:

• Treat alignment as an address-width contract: address modulo size.

• Prefer natural alignment for multi-byte scalar values and for vector widths when

applicable.
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• Do not assume misaligned access is always safe: instruction class and ISA rules matter.

• Do not confuse alignment with representation: alignment affects access mechanics,

representation affects meaning.

• Remember that alignment is a CPU load/store topic first; memory hierarchy only

changes the cost surface.



Chapter 9

Endianness: Ordering the Same Reality
Differently

9.1 Byte Order vs Bit Order

Endianness is a convention about byte order in memory for values that occupy more than one

byte. It answers exactly one architectural question:

When a multi-byte value is stored in memory, which byte goes at the lowest

address?

This is fundamentally different from bit order. Bit order concerns how bits are numbered and

manipulated within a byte or within a register by the ISA (instruction semantics). Endianness

does not reorder bits inside a byte; it reorders bytes across increasing memory addresses for a

multi-byte quantity.
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Why this distinction matters

Many practical errors come from mixing these two viewpoints:

• Shifts, rotates, masks, and bit tests operate on bit positions within a register value and

are not defined by endianness.

• Memory dumps, packet captures, and file hex views show bytes in address order. If you

interpret those bytes as an integer, you must apply the correct endianness convention to

reconstruct the numeric value.

A disciplined low-level mental model is therefore:

• Bit order is an instruction-level concept inside registers.

• Byte order is a storage/transfer concept at the memory interface.

9.2 Little-Endian vs Big-Endian Explained Precisely

Consider an n-byte integer value V represented by bytes:

V =
n−1∑
i=0

Bi · 256i

where:

• B0 is the least significant byte (LSB),

• Bn−1 is the most significant byte (MSB).

Endianness defines how these bytes are mapped to memory addresses:
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Little-endian

In little-endian, the lowest address holds the least significant byte:

mem[p+ i] = Bi

So significance increases with address.

Big-endian

In big-endian, the lowest address holds the most significant byte:

mem[p+ i] = Bn−1−i

So significance decreases with address.

Concrete example (32-bit)

Let V = 0x12345678 stored at base address p. The bytes are:

B0 = 78, B1 = 56, B2 = 34, B3 = 12

Address offset +0 +1 +2 +3

Little-endian bytes 78 56 34 12

Big-endian bytes 12 34 56 78

Both represent the same value, but the memory layout differs.

Endianness is per-architecture convention

Endianness is part of the ISA or the platform configuration. Some ISAs are fixed-endian;

others are bi-endian (capable of operating in either mode), sometimes with separate

conventions for instruction fetch vs data access depending on the platform.
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9.3 Register View vs Memory View

Endianness is not a property of a register as a physical container of bits. Registers hold a bit

pattern. The question of “which byte comes first” arises only when mapping between:

• a register value (a fixed-width binary pattern interpreted by the ISA), and

• a sequence of bytes in memory (observed in increasing address order).

The assembly point of view

A load instruction reads bytes from consecutive addresses and assembles them into a register

value according to the platform’s endianness rules. A store instruction takes a register value

and decomposes it into bytes written to consecutive addresses according to those same rules.

Thus:

• Memory is naturally viewed as address order.

• Registers are naturally viewed as significance order (bit positions, numeric value).

This explains a classic debugging confusion: a memory dump appears “reversed” compared

to a register printout, because you are viewing the same value under two different coordinate

systems.

# x86-64 GAS, Intel syntax

# Suppose the bytes in memory at [rdi..rdi+3] in address order are:

# 78 56 34 12

# On a little-endian system, the 32-bit value loaded is 0x12345678.

mov eax, dword ptr [rdi] # eax = 0x12345678
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Byte-wise observation makes endianness visible

If you read the same 32-bit value byte-by-byte, you see the physical layout directly:

# x86-64 GAS, Intel syntax

mov al, byte ptr [rdi] # lowest address byte

mov bl, byte ptr [rdi+1]

mov cl, byte ptr [rdi+2]

mov dl, byte ptr [rdi+3]

This sequence is independent of integer interpretation; it is simply memory address order.

Endianness appears only when you interpret these four bytes as a 32-bit integer.

9.4 Endianness in Multi-Byte Values

Endianness affects all multi-byte scalar types stored in memory: 16-bit, 32-bit, 64-bit integers,

pointers, and any packed binary fields whose meaning depends on byte position.

Single-byte values are endianness-neutral

An 8-bit value occupies one byte. There is no ordering choice, so endianness does not apply.

Multi-byte values require explicit reconstruction rules

Given bytes at p..p+n-1, reconstructing the integer value requires endianness:

• Little-endian reconstruction:

V =
n−1∑
i=0

mem[p+ i] · 256i
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• Big-endian reconstruction:

V =
n−1∑
i=0

mem[p+ i] · 256n−1−i

Endianness does not affect arithmetic

Once a value is in a register, arithmetic and logic operate on the bit pattern according to

the ISA. Endianness does not change add, sub, and, shifts, or comparisons on register

operands. Endianness only affects the mapping between memory bytes and register values

during loads/stores or explicit byte-level assembly/disassembly of values.

Endianness and partial-width access

A common low-level operation is reading part of a value (e.g., lowest byte, lowest word). On

little-endian systems, the least significant byte is stored at the lowest address, so [p] often

corresponds to the low byte of the multi-byte value. On big-endian systems, [p] corresponds

to the high byte. This affects parsing, checksums, and manual field extraction from raw

buffers.

# x86-64 GAS, Intel syntax

# On little-endian, this fetches the low byte of the dword at [rdi].

mov al, byte ptr [rdi]

# This fetches the full dword, assembled by the CPU as little-endian.

mov eax, dword ptr [rdi]
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Endianness and bitfields

Bitfields defined in protocols or packed structures are often described in terms of bit positions

within an integer, but those integers still have a byte order when serialized into memory.

Correct handling requires separating:

• how the integer is serialized into bytes (endianness),

• how bits are extracted from the integer once reconstructed (bit operations).

9.5 Cross-Platform and Cross-Protocol Implications

Endianness becomes critical whenever data crosses boundaries where the producer and

consumer may not share the same byte order, or where a specification defines a fixed byte

order independent of the host.

Binary file formats and persistence

Any binary file format that stores multi-byte integers must specify byte order, either implicitly

by platform assumption (fragile) or explicitly by standard. A file written on a little-endian host

and read on a big-endian host will be misinterpreted unless conversion is performed or the

format specifies a fixed canonical order.

Network protocols and canonical byte order

Many protocols define a canonical byte order for multi-byte fields so that all participants

interpret the stream identically. Historically, big-endian is commonly used as a canonical order

(often called “network byte order”). A host must therefore convert between host endianness

and protocol endianness when encoding/decoding multi-byte fields.

The essential discipline:
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• A protocol field is not “an int”; it is a specified sequence of bytes.

• Conversion is the act of mapping between that byte sequence and a host register value.

Cross-language and ABI boundaries

Within a single machine, endianness is usually consistent across languages, but

interoperability still requires agreement on layout and representation for multi-byte fields

in memory (structures, packed messages). When data is exchanged across machines (RPC,

shared files, distributed systems), endianness must be treated as a first-class compatibility

variable.

Debugging implications

When debugging:

• A register display shows a value in numeric significance order.

• A memory view shows bytes in ascending address order.

To avoid mistakes:

• Always label whether you are looking at address order (memory dump) or numeric

value (register/int print).

• When reading a memory dump as an integer, explicitly apply the known byte order.

• When constructing a buffer, write bytes in the protocol/file order, not in the host’s

convenient representation.
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Practical rules for disciplined low-level code

• Treat endianness as a property of serialized byte sequences, not of abstract integers.

• Do not infer protocol/file endianness from the host ISA; assume it must be specified.

• When parsing bytes, reconstruct multi-byte fields explicitly and then apply bit

operations.

• When generating bytes, build the specified byte sequence explicitly rather than storing

host integers directly.

Endianness is therefore not a philosophical detail; it is a concrete rule that determines whether

two systems agree on the meaning of the same bytes.



Chapter 10

Reading Machine State Correctly

10.1 Why Most Assembly Bugs Are Interpretation Bugs

Assembly programming is less about “writing instructions” and more about maintaining

a correct interpretation contract over raw bit patterns. The CPU executes deterministic

operations on fixed-width registers and updates status flags according to the ISA. The

hardware does not track types, units, or programmer intent. As a result, many assembly bugs

are not caused by an incorrect instruction sequence, but by applying the wrong meaning to a

correct bit pattern.

1) Typeless registers invite semantic drift

A register is a bit-vector with a name. The CPU does not store metadata that says:

“this is signed” “this is unsigned” “this is a pointer” “this is a length”

If code reuses a register across phases of computation, the human reader often continues to

interpret it according to a prior phase. This semantic drift is a primary source of defects. The

bit pattern is correct; the interpretation is stale.
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2) The same bits represent multiple valid truths

The same N -bit pattern can simultaneously represent:

• an unsigned integer in [0, 2N − 1],

• a signed two’s complement integer in [−2N−1, 2N−1 − 1],

• a bitmask with independent boolean flags,

• a set of packed fields,

• an address (under a particular addressing model),

• or part of a wider multi-precision value.

The CPU does not choose among these. Only instruction context and programmer intent do.

3) Width mismatches dominate low-level failures

Many failures come from silently changing the active width:

• performing an operation at 32-bit width and then interpreting the destination as 64-bit,

• truncating a value by using a smaller operand size,

• accidentally zero-extending or sign-extending when moving between widths,

• mixing partial-register operations with full-register expectations.

Fixed-width arithmetic is not “approximate”; it is exact modulo 2N . Bugs arise when the

programmer forgets which N is currently in effect.
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4) Signedness mismatches break control flow

A very common class of defects is choosing the wrong relational branch family after a flag-

setting instruction such as cmp. The compare sets flags once; the jump chooses interpretation.

Using signed jumps for naturally unsigned quantities (sizes, indices, counts, lengths) can

produce catastrophic boundary-check errors.

5) Endianness and memory interpretation errors

Memory is a linear array of bytes. Multi-byte values require a byte-order rule to reconstruct.

Bugs appear when developers:

• read bytes in address order but interpret as if they were in numeric significance order,

• treat protocol-serialized data as native host order without conversion,

• interpret partial byte sequences using the wrong endianness assumption.

6) “Overflow” confusion: CF vs OF

Another high-frequency defect is confusing unsigned boundary events (CF) with signed range

violations (OF). The arithmetic result is always produced modulo 2N ; the only question is

whether that result violates an intended domain constraint. Picking the wrong flag means

checking the wrong domain.

Summary principle:

The CPU is almost always correct about bit patterns. Most assembly bugs come

from humans being wrong about meaning.
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10.2 Debugging by Flags, Not by Assumptions

Status flags are the CPU’s official, architectural evidence about the last relevant computation.

They are not “debug symbols” and they are not optional decoration. They exist precisely to

make boundary conditions observable without expensive extra computation.

1) Flags are the machine’s boundary signals

Treat flags as boundary signals for fixed-width arithmetic and logic:

• ZF indicates the result is exactly zero for the active width.

• CF indicates an unsigned carry-out (or borrow semantics) at the width boundary.

• OF indicates a signed two’s complement range violation at the representable boundary.

• SF mirrors the MSB of the result (useful in signed relational logic with OF).

2) Consume flags immediately

Flags are ephemeral. Many instructions clobber them. Debugging and correctness require

that flag consumers (jcc, setcc, cmovcc, adc, sbb) appear immediately after the flag

producer unless you have proven intervening instructions do not modify the relevant flags.

3) Use cmp and test as probes

cmp is subtraction for flags without storing the difference. test is bitwise AND for flags

without storing the result. Both exist to observe conditions cheaply.

# x86-64 GAS, Intel syntax
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# Probe for zero without modifying rax:

test rax, rax

jz .L_zero

# Probe ordering without modifying operands:

cmp rax, rbx

je .L_equal

4) Branch mnemonic selection is interpretation selection

After cmp, equality uses ZF for both signed and unsigned interpretations. Ordering differs:

• Unsigned ordering uses CF and ZF (jb, jbe, ja, jae).

• Signed ordering uses SF and OF (with ZF) (jl, jle, jg, jge).

# x86-64 GAS, Intel syntax

cmp rax, rbx

# Unsigned:

jb .L_u_less # CF=1

ja .L_u_greater # CF=0 and ZF=0

# Signed:

jl .L_s_less # SF != OF

jg .L_s_greater # ZF=0 and SF == OF

5) Use CF/OF deliberately for overflow policy

If you want to implement a policy such as “reject values that overflow” you must first define:
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• overflow in unsigned space → check CF,

• overflow in signed space → check OF.

# x86-64 GAS, Intel syntax

# Unsigned add with overflow detection:

add rax, rbx

jc .L_u_overflow # CF=1 indicates wrap beyond width

# Signed add with overflow detection:

add rax, rbx

jo .L_s_overflow # OF=1 indicates signed range violation

6) Debugging discipline: check width, then flags

When debugging unexpected control flow:

1. confirm operand width (8/16/32/64),

2. confirm the compare/operation you think is producing flags is actually the last flag-

producing instruction,

3. confirm you are using the correct signed/unsigned branch family,

4. validate with the relevant flags (ZF/CF/OF/SF) rather than intuition.

10.3 Thinking in Binary Space Instead of Values

A reliable low-level mindset treats computation as transformations on a finite set of bit

patterns. For an N -bit quantity, the machine operates in the space:

{0, 1}N
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All integer arithmetic is performed modulo 2N :

r = f(a, b, . . .) mod 2N

Nothing in the hardware produces “infinite precision” integers. The CPU produces an N -bit

result and discards higher bits. That is not a failure; it is the definition.

1) Two labelings of the same space

The same space can be labeled in different ways:

• Unsigned labeling:

0, 1, 2, . . . , 2N − 1

• Signed (two’s complement) labeling:

−2N−1, . . . ,−1, 0, 1, . . . , 2N−1 − 1

These are not different spaces. They are different interpretations of the same patterns.

2) “Overflow” is boundary crossing under a labeling

In unsigned labeling, the boundary is 2N − 1 → 0 (CF reports this crossing for addition). In

signed labeling, the boundary is 2N−1 − 1 → −2N−1 (OF reports this crossing for addition).

Thus CF and OF are not redundant. They correspond to different boundary crossings in the

same binary space.

3) Value-centric thinking hides truncation

High-level language thinking often assumes arithmetic in mathematical integers with

automatic range growth or checked overflow. In machine arithmetic:
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• truncation is always present,

• wrapping is the default,

• and any “error” policy is software-defined using flags and checks.

4) Debugging method: derive, then interpret

A robust procedure for reasoning about a bug:

1. Fix the width N for the instruction sequence.

2. Treat operands as raw N -bit patterns.

3. Compute the N -bit result under modular arithmetic.

4. Determine which boundary signals (ZF/CF/OF/SF) should be produced.

5. Only then interpret the pattern as signed/unsigned/bitfield and verify the program logic.

This procedure prevents the classic mistake: proving something about mathematical integers

while the CPU was computing modulo 2N .

10.4 Mental Models Used by Real CPU Designers

CPU designers and low-level performance engineers reason about correctness using small,

stable models that map directly to hardware reality. Adopting these models makes assembly

reasoning more deterministic and less fragile.
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1) Bit-vector model (typeless state)

Treat every register as a bit-vector of fixed width:

reg ∈ {0, 1}N

Instructions are functions on bit-vectors. This eliminates type confusion and forces you to

state interpretation explicitly.

2) Width contract (the architecture is width-explicit)

Every instruction has an operand width. Designers treat width as a contract:

• results are truncated to width,

• flags are defined relative to width,

• and extension between widths must be explicit (zero-extend vs sign-extend).

3) Boundary-signal model (flags are detectors)

Designers view flags as detectors attached to arithmetic units:

• ZF is a zero detector on the result bus.

• SF is an MSB tap of the result.

• CF is the carry-out of the adder at bit N − 1 (unsigned boundary event).

• OF is a signed range detector derived from operand MSBs and result MSB (signed

boundary event).

This is why CF and OF can disagree: they detect different boundary events.
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4) “Compare is subtract without writeback”

Compare operations exist to drive boundary signals for control flow without consuming a

register destination. This supports efficient branching and avoids extra data movement.

5) “Memory is bytes; loads/stores are assembly rules”

Designers treat memory as bytes with addresses and treat loads/stores as defined assembly

steps:

• select consecutive bytes,

• assemble/disassemble them according to endianness,

• apply alignment and access semantics.

This prevents the high-level illusion that “memory holds ints.” Memory holds bytes. Integers

are reconstructed.

6) “Correctness before cleverness”

A widely used engineering discipline is to enforce correctness with explicit invariants:

• Define the signedness of each quantity at each program point.

• Define the width at each program point.

• State the overflow policy (wrap accepted vs overflow rejected) and implement it with the

correct flags.

• Keep flag lifetimes short and local.

Expanded discipline checklist:



72

• Confirm operand width at every step (8/16/32/64).

• Treat registers as typeless bit-vectors; attach meaning only by context.

• Choose signed vs unsigned before choosing branch mnemonics.

• Use CF for unsigned boundary events; use OF for signed range violations.

• Use cmp/test as probes; consume flags immediately.

• Interpret memory dumps as byte sequences; reconstruct multi-byte values explicitly.

• Assume flags are clobbered unless you prove otherwise.

• Prefer explicit extension rules when crossing widths (zero vs sign).



Appendices

Appendix A — Binary Truth Tables and Flag Outcomes

This appendix summarizes commonly used flag outcomes as compact reference tables. All

outcomes assume fixed-width two’s complement arithmetic for the operand width in use.

“Carry” refers to a carry out of the most significant bit of the active width. “Overflow” refers

to signed two’s complement range violation for that width.

Arithmetic Flag Outcome Tables

A.1 Result-Class Flags (Most Common Updates)

For many arithmetic and logical instructions, these flags follow direct properties of the result:

• ZF (Zero Flag): set iff result is all zeros.

• SF (Sign Flag): copy of the result MSB (active width).

Condition on Result (width N ) ZF SF

result = 0 1 0

result ̸= 0 and MSB=0 0 0

result ̸= 0 and MSB=1 0 1
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A.2 Unsigned Carry vs Signed Overflow (Addition)

For an N -bit addition r = (a+ b) mod 2N :

• CF is set iff a+ b ≥ 2N (carry out of bit N − 1).

• OF is set iff a and b have the same sign and r has the opposite sign.

Sign(a) Sign(b) Sign(r) OF

0 0 0 0

0 0 1 1

1 1 1 0

1 1 0 1

0 1 0 or 1 0

1 0 0 or 1 0

Note: CF is independent of this sign table. CF depends on the carry out of the MSB in

unsigned addition.

A.3 Signed Overflow (Subtraction)

For subtraction r = (a − b) mod 2N , signed overflow occurs when operands have different

signs and the result sign differs from the sign of a:
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Sign(a) Sign(b) Sign(r) OF

0 1 0 0

0 1 1 1

1 0 1 0

1 0 0 1

0 0 0 or 1 0

1 1 0 or 1 0

A.4 Carry/Borrow Intuition for Subtraction

Many ISAs define subtraction in terms of an internal addition:

a− b ≡ a+ (∼ b+ 1) (mod 2N)

CF for subtraction is therefore tied to the unsigned boundary behavior of this equivalent

operation. The disciplined rule remains:

• use CF for unsigned boundary checks and multi-precision propagation,

• use OF for signed range violations.

Shift and Rotate Flag Behavior

Shift and rotate operations move bits; they do not define numeric overflow in the arithmetic

sense. The most reliable and portable way to reason about them is:

• CF captures the last bit shifted out (or rotated out) for single-bit count.

• ZF reflects whether the result is zero.
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• SF mirrors the MSB of the result.

• OF is defined only for specific counts on some ISAs (commonly count=1); do not rely

on OF for multi-bit shifts unless explicitly specified by the architecture.

A.5 Single-Bit Shift-Out Bit to CF (Concept Table)

Let x be an N -bit operand, and r be the result.

Operation (count=1) Result bits CF

shl/sal r = (x ≪ 1) mod 2N old MSB of x

shr r = (x ≫ 1) with 0-fill old LSB of x

sar r = (x ≫ 1) with sign-fill old LSB of x

rol rotate left within N bits old MSB of x

ror rotate right within N bits old LSB of x

A.6 Minimal Demonstrations

# x86-64 GAS, Intel syntax

# CF receives the shifted-out bit (count = 1)

mov al, 0b10000001

shl al, 1 # al = 0b00000010, CF = 1 (old MSB)

mov al, 0b10000001

shr al, 1 # al = 0b01000000, CF = 1 (old LSB)

mov al, 0b10000001

rol al, 1 # al = 0b00000011, CF = 1 (old MSB)
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Signed vs Unsigned Comparison Matrix

Comparisons are performed by setting flags (typically via cmp) and then interpreting them

using the correct conditional branch family.

A.7 Core Flag Meanings after cmp a,b

Conceptually, cmp a,b sets flags as if computing a− b (without storing the result). Then:

• ZF=1 iff a = b (bit-exact equality).

• CF supports unsigned ordering.

• SF and OF support signed ordering.

A.8 Matrix of Common Relational Jumps

Relation Unsigned (after cmp) Signed (after cmp)

a = b je (ZF=1) je (ZF=1)

a ̸= b jne (ZF=0) jne (ZF=0)

a < b jb (CF=1) jl (SF ̸= OF)

a ≤ b jbe (CF=1 or ZF=1) jle (ZF=1 or SF ̸= OF)

a > b ja (CF=0 and ZF=0) jg (ZF=0 and SF = OF)

a ≥ b jae (CF=0) jge (SF = OF)

A.9 Minimal Pattern: Same cmp, Different Truths

# x86-64 GAS, Intel syntax

cmp rax, rbx
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# Unsigned interpretation (sizes, indices, lengths)

jb .L_u_less # CF=1

ja .L_u_greater # CF=0 and ZF=0

# Signed interpretation (two's complement integers)

jl .L_s_less # SF != OF

jg .L_s_greater # ZF=0 and SF == OF

Discipline rule: cmp produces one set of flags. The chosen conditional jump defines whether

the relation is interpreted as signed or unsigned.

Appendix B — Common Misconceptions and Dangerous

Assumptions

This appendix addresses several persistent misconceptions that routinely cause subtle and

severe defects in low-level code. Each misconception arises from projecting high-level

language semantics onto hardware that operates exclusively on fixed-width bit patterns.

“The CPU Knows This Is Signed”

Reality: The CPU has no concept of “signed” or “unsigned” values stored in registers.

Registers contain bit patterns. The arithmetic and logic units operate on those patterns using

fixed rules. The distinction between signed and unsigned exists only in:

• how certain status flags are interpreted (primarily CF vs OF),

• which conditional branch instructions are chosen after flag-setting operations,
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• how values are extended when moving between widths (zero-extension vs sign-

extension).

The same addition instruction produces the same bit pattern regardless of whether the

programmer intends a signed or unsigned computation. Only the interpretation of the flags

differs.

# x86-64 GAS, Intel syntax

# Same bits, same instruction, different truths

mov al, 0xFF # 255 unsigned, -1 signed

add al, 1 # al = 0x00

# CF=1 -> unsigned overflow (255 + 1 wraps)

# OF=0 -> signed result (-1 + 1 = 0) is valid

Danger: Assuming the CPU “remembers” signedness leads to:

• wrong branch selection after cmp,

• incorrect overflow checks,

• silent acceptance of wrapped values.

Discipline: Signedness is a contract you enforce explicitly by choosing the correct extension

rules, flags, and branch mnemonics at every step.

“Overflow and Carry Mean the Same Thing”

Reality: Carry and overflow detect different boundary violations in the same fixed-width

arithmetic.
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• Carry Flag (CF) reports a boundary crossing in unsigned arithmetic: a carry out of the

most significant bit or an unsigned borrow condition.

• Overflow Flag (OF) reports a violation of the representable range in signed two’s

complement arithmetic.

They can be independently set or clear for the same operation.

# x86-64 GAS, Intel syntax

# CF=1, OF=0 (unsigned overflow only)

mov al, 0xFF # 255 unsigned, -1 signed

add al, 1 # result 0x00

# CF=0, OF=1 (signed overflow only)

mov al, 0x7F # 127

add al, 1 # result 0x80 (-128)

Danger: Using OF to validate sizes or lengths, or using CF to validate signed computations,

silently checks the wrong domain.

Discipline:

• Use CF for unsigned bounds, counters, indices, and multi-precision arithmetic.

• Use OF for signed arithmetic range validation.

“Shifts Are Just Fast Multiplication”

Reality: Shifts are bit movement operations with truncation. Any arithmetic interpretation is

conditional and fragile.

A left shift by k computes:

(x ≪ k) mod 2N
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This equals multiplication by 2k only if no significant bits are shifted out. Once a bit exits the

width boundary, information is destroyed.

# x86-64 GAS, Intel syntax

# Safe multiplication analogy

mov al, 0x10 # 16

shl al, 1 # 32 (no bits lost)

# Bit destruction

mov al, 0x90 # 144

shl al, 1 # 32 (high bit lost)

Right shifts introduce an additional trap:

• shr fills with zeros (unsigned interpretation).

• sar replicates the MSB (signed interpretation).

Neither is a general-purpose division operator; both are representation-preserving bit shifts

under specific assumptions.

Danger:

• assuming left shifts are always safe for signed arithmetic,

• assuming sar always matches signed division semantics,

• mixing shift results with inconsistent signed/unsigned interpretation.

Discipline:

• Treat shifts as bitwise transformations first, arithmetic shortcuts second.

• Prove that no significant bits are lost before treating shifts as multiplication or division.



82

• Choose shr or sar explicitly based on the intended interpretation.

Unifying principle:

The CPU operates on bit patterns and width boundaries. Every dangerous

assumption comes from forgetting this fact.

Appendix C — Minimal Instruction Reference

(Concept-Only)

This appendix provides a compact, conceptual reference for the core instruction classes

discussed in this booklet. It is not an opcode catalog and intentionally omits encoding details,

latency, and microarchitectural variations. The goal is to clarify what these instructions mean

at the machine level: how they transform fixed-width bit patterns and how they interact with

status flags.

Arithmetic Instructions (Conceptual View)

Arithmetic instructions operate on fixed-width operands and always produce a truncated result

modulo 2N , where N is the active operand width. They may also update status flags to expose

boundary conditions.

• add — Adds two operands and writes the N -bit result.

– Result: (a+ b) mod 2N

– CF: unsigned carry-out of bit N − 1

– OF: signed two’s complement range violation

• sub — Subtracts the second operand from the first.
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– Result: (a− b) mod 2N

– CF: unsigned borrow-related boundary signal (ISA-defined)

– OF: signed two’s complement range violation

• adc — Adds operands plus the current CF.

– Used for unsigned multi-precision arithmetic

– CF acts as carry-in from a lower word

• sbb — Subtracts operands with borrow using CF.

– Used for unsigned multi-precision subtraction

• inc / dec — Increments or decrements by one.

– Modifies OF/ZF/SF

– Does not modify CF (architecturally significant)

# x86-64 GAS, Intel syntax

add rax, rbx # rax = (rax + rbx) mod 2ˆ64

adc rcx, rdx # rcx = rcx + rdx + CF

sub rax, rbx # rax = (rax - rbx) mod 2ˆ64

sbb rcx, rdx # rcx = rcx - rdx - CF

Comparison and Flag-Setting Instructions

Comparison instructions exist to set flags without retaining a result. They allow control-flow

decisions and boundary checks without destroying register contents.
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• cmp — Compares two operands by subtracting them conceptually.

– Flags set as if computing (a− b) mod 2N

– No result is written back

– ZF: equality (a = b)

– CF: unsigned ordering support

– SF/OF: signed ordering support

• test — Bitwise AND used only to set flags.

– Equivalent to a&b for flags

– Commonly used to test zero or specific bits

– CF and OF cleared

# x86-64 GAS, Intel syntax

cmp rax, rbx # set flags for relational checks

je .L_equal

test rax, rax # probe rax == 0 without modifying it

jz .L_zero

Interpretation rule: cmp sets one set of flags; the chosen conditional jump defines whether

the comparison is signed or unsigned.

Shift and Rotate Instructions

Shift and rotate instructions move bits within a fixed-width operand. Shifts discard bits;

rotates preserve all bits by circulating them.
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• shl / sal — Shift left (logical/arithmetic identical).

– Result: (x ≪ k) mod 2N

– CF: last bit shifted out of the MSB

– OF: defined only for specific counts (commonly k = 1)

• shr — Logical right shift (zero-fill).

– Result: x ≫ k with zeros shifted in

– Used for unsigned interpretation and bitfields

• sar — Arithmetic right shift (sign-fill).

– Replicates the original MSB

– Preserves two’s complement signed interpretation

• rol / ror — Rotate left / right.

– Bits circulate within width

– CF captures the rotated-out bit

– No information loss

# x86-64 GAS, Intel syntax

mov al, 0b10000001

shl al, 1 # al = 00000010b, CF = 1

mov al, 0b10000001

shr al, 1 # al = 01000000b, CF = 1
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mov al, 0b10000001

sar al, 1 # al = 11000000b, CF = 1

mov al, 0b10000001

rol al, 1 # al = 00000011b, CF = 1

Conceptual rule:

• Shifts are bit destruction operations with truncation.

• Rotates are bit rearrangement operations without loss.

• Any arithmetic meaning is conditional on interpretation and boundary checks.

Final discipline note: This reference describes semantic behavior, not performance.

Correctness at the machine level comes from respecting width, interpretation, and flag

meaning before any optimization considerations.
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