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Preface — Why Memory Dominates
Performance

Why Instruction Speed Is No Longer the Bottleneck

On modern CPUs, raw arithmetic and simple integer operations are typically far cheaper

than fetching the data they operate on. Contemporary cores execute multiple instructions per

cycle, overlap independent work, and keep deep pipelines busy through prediction and out-of-

order execution. In contrast, data that is not already close to the core must travel through

the memory hierarchy, and each step away from registers increases latency and reduces

effective throughput. As a result, many real workloads are limited not by how fast the CPU

can compute, but by how efficiently the program can access and reuse data.

The Illusion of “Fast Code” Without Memory Awareness

Many “optimizations” focus on instruction counts, clever arithmetic, or micro-tuning a loop

body. These changes can look impressive in isolation but deliver little improvement when the

program is memory-bound. In memory-bound code, the dominant cost is waiting for cache

lines and translations, not executing the next instruction. A small reduction in instructions

cannot compensate for:
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• cache misses that stall dependent work,

• poor locality that defeats reuse,

• pointer-chasing patterns that serialize access,

• working sets that overflow cache capacity,

• or access patterns that waste bandwidth.

This booklet builds the mental model needed to detect when “faster instructions” are irrelevant

and when data layout and access patterns are the real levers.

What This Booklet Explains — and What It Deliberately

Excludes

This booklet explains the performance-critical concepts that apply across architectures:

• the registers → caches → RAM hierarchy as an execution reality,

• cache lines as the unit of transfer and the meaning of locality,

• a practical latency model for L1/L2/L3 and main memory (conceptual, not vendor-

specific),

• TLB basics and why address translation can become a bottleneck,

• false sharing as a cache-coherence performance hazard (conceptual),

• access-pattern reasoning (sequential, strided, random, pointer chasing).

This booklet deliberately excludes:
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• atomics and memory ordering,

• memory barriers/fences,

• SIMD/vectorization.

These topics require additional contracts and mechanisms. The goal here is to master the

baseline: memory hierarchy behavior and the cost model of access.

How to Read Performance Discussions Correctly

To read performance claims with engineering rigor, apply these rules:

• First classify the bottleneck: is the workload compute-bound or memory-bound?

• Think in units the hardware moves: cache lines and pages, not individual variables.

• Prefer evidence over intuition: speedups must be tied to fewer misses, better locality,

less bandwidth waste, or truly reduced dependency chains.

• Beware single-number explanations: “CPU is fast” or “RAM is slow” is not

actionable; identify which level (L1/L2/L3/TLB/RAM) dominates.

• Respect context: results depend on working set size, access pattern, and data layout; a

micro-benchmark may not represent the real program.

A Minimal Mental Checklist

Before believing an optimization, ask:

1) What data is being touched, and how often is it reused?

2) Does access have locality (spatial/temporal), or is it effectively

random?↪→
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3) Does the working set fit in cache, or does it spill?

4) Are we limited by latency (stalling) or bandwidth (streaming)?

5) Could the same work be faster by changing layout/pattern, not

instructions?↪→

This booklet equips you to answer these questions without relying on platform-specific trivia,

and to reason about performance using the same mental model across x86-64, ARM64, and

RISC-V.



Chapter 1

From Registers to RAM: The Execution
Reality

1.1 The Modern Memory Hierarchy

Modern CPUs execute instructions near the core, but the data they need is stored across a

hierarchy of storage levels, each trading capacity for speed. Conceptually, the hierarchy is:

• Registers: the closest storage to execution units, extremely fast, very small.

• Caches (L1/L2/L3): fast on-chip storage that holds recently used data and instructions

in cache-line units.

• Main memory (RAM): much larger but far higher latency and lower effective

bandwidth per core than on-chip storage.

The CPU continuously moves data between these levels. Performance depends on how often

the working set can be satisfied by the upper levels rather than by RAM.
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1.2 Why Registers Exist

Registers exist because CPUs need immediate, low-latency operands to keep pipelines busy.

They provide:

• Single-cycle (or near) access to values needed by arithmetic, address generation, and

control logic.

• High bandwidth to feed multiple execution units in parallel.

• A stable calling/ABI interface for passing arguments, returning values, and preserving

state efficiently.

If every operand access required memory, instruction throughput would collapse. Registers are

the core enabler of fast execution.

1.3 Why RAM Is Slow (Relative, Not Absolute)

RAM is not “slow” in isolation; it is slow relative to the CPU. The gap comes from physics

and system design:

• Distance and signaling: RAM is off-core (often off-chip), requiring longer paths and

complex signaling compared to on-chip storage.

• Protocol overhead: memory access involves controllers, queues, scheduling, and

row/bank management.

• Latency dominance: the time to fetch a single cache line from RAM is large compared

to a CPU cycle, even if peak bandwidth is high.

Thus, a core can execute many instructions in the time it waits for one miss that must be

serviced from main memory.
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1.4 Cost Gaps Between Hierarchy Levels

The hierarchy exists because no single storage level can simultaneously be very fast, very
large, and low power/cost.
Key cost-gap consequences:

• A cache hit vs a cache miss is often the dominant performance difference in tight loops.

• Moving one cache line from a lower level can stall dependent execution even if the

CPU is otherwise capable of high throughput.

• Latency is not uniform: L1, L2, L3, and RAM represent progressively larger delays

and different bandwidth constraints.

For performance reasoning, what matters is not the exact cycle numbers, but the orders of

magnitude difference: upper levels are close enough to sustain instruction throughput; RAM is

not.

1.5 Performance as a Data-Movement Problem

In many real programs, the limiting factor is not arithmetic, but data movement:

• If the working set fits and reuses well, caches supply most accesses quickly.

• If the working set is large or access is effectively random, misses force frequent fetches

from lower levels, and the CPU spends time waiting.

• Instruction-level optimizations cannot overcome frequent long-latency misses;

improving locality and layout often yields larger gains.

A practical way to think about performance is:

Compute is cheap; fetching the next needed cache line is expensive.
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1.6 Conceptual Summary

• The memory hierarchy exists to bridge the speed gap between cores and RAM.

• Registers enable high-throughput execution by providing immediate operands.

• RAM is slow relative to CPU cycles because of distance, protocol, and latency.

• The largest performance gaps often come from where data is served from (hit vs miss).

• Many workloads are best optimized by reducing data movement, not by reducing

instruction count.



Chapter 2

The Mental Model: Registers → Cache →

Memory

2.1 Conceptual View of the Hierarchy

The memory hierarchy should be understood as a progressive distance from the execution
core. Each level exists to satisfy access requests when closer levels cannot:

• Registers provide immediate operands to execution units.

• Caches hold recently and nearby used data in cache-line granularity.

• Main memory supplies data when it is no longer resident on-chip.

At runtime, the program never “chooses” the level explicitly. The hardware resolves accesses

automatically, but the cost depends entirely on where the data is found. Effective performance

comes from structuring code so that most accesses are resolved at the upper levels.

15
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2.2 Data Movement vs Computation

Modern CPUs can perform many arithmetic and logical operations per cycle, often far

exceeding the rate at which new data can be delivered from memory. As a result:

• Computation is usually cheap once operands are available.

• Data movement dominates when operands are not already in registers or cache.

In practical terms, a loop with minimal arithmetic can be slower than a loop with heavier

computation if the first triggers frequent cache or TLB misses. Performance analysis must

therefore focus on where data comes from, not just what operations are performed.

2.3 Why CPUs Speculate and Prefetch

Because memory latency is high relative to CPU speed, modern processors attempt to predict
future accesses and fetch data before it is explicitly requested. Two key mechanisms exist:

• Speculative execution: the CPU executes instructions along predicted paths to overlap

useful work with potential waiting time.

• Prefetching: hardware detects access patterns and proactively loads cache lines

expected to be needed soon.

These mechanisms do not make memory faster; they attempt to hide latency by ensuring data

arrives before it becomes a blocking dependency. When predictions are correct, execution

proceeds smoothly. When they fail, the cost of misprediction is paid.
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2.4 What “Access” Actually Means in Hardware Terms

An “access” in source code (for example, reading a variable) expands into a sequence of

hardware events:

• address calculation and translation (via the TLB),

• cache lookup at one or more levels,

• potential cache line fill from a lower level,

• update of cache state and coherence metadata.

Only after these steps does the value become available to the execution unit. The programmer-

visible operation is simple, but the underlying cost varies widely depending on which levels

are involved and whether the access can be overlapped with other work.

2.5 Why Latency Hiding Exists

Latency hiding exists because waiting for memory directly would waste most of the CPU’s

execution capacity. Instead, CPUs attempt to overlap latency with useful work:

• out-of-order execution runs independent instructions while waiting,

• speculation keeps pipelines active,

• prefetching reduces the chance of a stall when data is needed.

Latency hiding has limits. When the program’s dependency structure is tight (for example,

pointer chasing), or when working sets exceed cache capacity, latency becomes exposed and

performance collapses to the speed of data delivery.
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2.6 Conceptual Summary

• The hierarchy reflects increasing distance from the core, not just different memories.

• Performance is often constrained by data movement, not computation.

• CPUs speculate and prefetch to overlap work with memory latency.

• A single source-level access can trigger complex hardware activity.

• Latency hiding helps only when sufficient independent work and locality exist.



Chapter 3

Cache Lines: The Unit of Transfer

3.1 What a Cache Line Represents

A cache line is the fixed-size block of memory that the cache moves and stores as a unit.

When the CPU needs a byte or a word that is not already in a cache, it does not fetch only

that item; it fetches the entire cache line containing it. Conceptually, a cache line is:

• the minimum granularity of data movement between cache levels and memory,

• the unit used for caching decisions (hits, misses, replacement),

• and the unit of coherence tracking when multiple cores share memory.

The exact line size is platform-specific, but the key model is universal: memory travels in
lines, not in individual variables.

3.2 Why CPUs Do Not Load Single Bytes

Fetching single bytes from main memory would be inefficient because:
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• Fixed access overhead: memory access has protocol and latency costs that dominate

the cost of transferring a few bytes.

• Bandwidth efficiency: transferring a larger contiguous block amortizes overhead and

better uses the memory bus.

• Locality exploitation: programs often access nearby addresses soon after one another;

bringing a full line increases the chance that subsequent accesses hit in cache.

Caches exist specifically to convert expensive, high-latency memory accesses into fewer,

larger transfers that can be reused many times at low latency.

3.3 Spatial Locality Explained

Spatial locality means: if a program accesses address X , it is likely to access nearby

addresses X + δ soon. Cache lines leverage this by bringing contiguous data together.

Practical consequences:

• Iterating through arrays sequentially often performs well because adjacent elements

share cache lines.

• Structures-of-arrays vs arrays-of-structures trade locality depending on which fields are

accessed.

• Random access patterns defeat spatial locality and convert most accesses into cache

misses or low reuse.

Spatial locality is not a theory; it is the fundamental reason cache lines are effective for

common workloads.
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3.4 Alignment and Cache Line Boundaries

Alignment affects how data maps onto cache lines:

• If an object fits entirely within one cache line and is aligned to avoid crossing a

boundary, fewer line fills are needed.

• If an access spans a cache line boundary, it can require touching two lines, increasing

traffic and potentially doubling the number of cache fills.

At the conceptual level, the important rule is:

Crossing cache line boundaries increases the probability of extra transfers and

extra misses.

This is especially relevant for frequently accessed objects, tight loops, and data structures

where alignment can be controlled.

3.5 Wasted Bandwidth and Overfetching

Because caches move whole lines, the CPU may fetch data that is never used. This is

overfetching. Overfetching wastes bandwidth and pollutes caches:

• Bandwidth waste: memory traffic increases without increasing useful work.

• Cache pollution: fetched but unused bytes occupy cache capacity, evicting data that

would have been reused.

• Miss amplification: once useful data is evicted, future accesses miss more often,

causing further traffic.

Overfetching is a common reason why code that “touches a little data” can still be slow: the

hardware may be forced to move far more bytes than the program logically needs.
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3.6 Conceptual Summary

• Cache lines are the unit of transfer and caching decisions.

• CPUs fetch lines, not single bytes, to amortize access costs and exploit locality.

• Spatial locality is the key property caches rely on to reduce average access cost.

• Alignment and boundary crossing influence how many lines must be touched.

• Overfetching wastes bandwidth and cache capacity, often dominating real performance.



Chapter 4

Temporal and Spatial Locality

4.1 Definition of Locality (Without Math)

Locality is the practical observation that program memory accesses are rarely uniform or

random. Instead, programs tend to reuse the same data and to access nearby data in clusters.

Caches exist because locality is common: if the hardware can keep recently used and nearby

data close to the CPU, the average cost of access drops dramatically.

A good mental definition:

Locality means that the next memory access is often related to the previous ones,

either by reusing the same data or by accessing nearby addresses.

4.2 Temporal Locality: Reuse Over Time

Temporal locality means: if a program accesses an item now, it is likely to access the same

item again soon. This is the foundation of caching.

Typical sources of temporal locality:

23



24

• loop variables and frequently used scalars,

• repeated updates to the same array region,

• hot metadata structures (sizes, counters, state flags),

• working sets that fit in cache across iterations.

When temporal locality is strong, cache hits increase and the effective memory latency seen by

the core decreases.

4.3 Spatial Locality: Reuse Over Space

Spatial locality means: if a program accesses address X , it is likely to access addresses near

X soon. Cache lines exploit this by fetching contiguous blocks.

Typical sources of spatial locality:

• sequential iteration over arrays and contiguous buffers,

• traversing packed structures where the needed fields are near each other,

• processing data in blocks (tiling) that stay close in memory.

Spatial locality is a major reason contiguous data structures often outperform pointer-based

ones for the same logical work.

4.4 How Compilers Try to Exploit Locality

Compilers cannot change the fundamental algorithm, but they can apply transformations that

often improve locality or reduce memory traffic when legality allows. Conceptually, common

strategies include:
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• Inlining: reduces call overhead and can expose larger regions for optimization,

sometimes improving register reuse.

• Loop optimizations: unrolling, fusion, interchange, and blocking (when applicable) to

increase reuse and reduce redundant loads.

• Scalar replacement and promotion: keeping frequently used values in registers rather

than reloading from memory.

• Strength reduction and common subexpression elimination: reducing repeated

address computations and redundant loads.

Important limitation: compilers cannot reliably fix poor data layout or fundamentally random

access patterns. Data structure choice and access order are often the dominant factors.

4.5 When Locality Assumptions Fail

Locality fails when access patterns prevent reuse or prevent contiguous fetching from being

useful. Common failure modes:

• Working set exceeds cache capacity: data is evicted before it can be reused, destroying

temporal locality.

• Pointer chasing: linked structures and irregular graphs often force dependent loads that

serialize progress and reduce spatial locality.

• Large strides: accessing every kth element can touch many cache lines while using

only a small fraction of each line.

• Unpredictable access: input-dependent indexing patterns can defeat hardware

prefetching and speculation.
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• Overfetch and pollution: bringing in lines that are not reused can evict useful lines,

reducing effective locality even when the code seems simple.

When locality fails, performance collapses toward the cost of lower memory levels, and

instruction-level micro-optimizations become largely irrelevant.

4.6 Conceptual Summary

• Locality is the reason caches work: programs reuse data and access nearby data.

• Temporal locality is reuse of the same data over time; spatial locality is reuse of nearby

data over space.

• Compilers can improve some locality through legal transformations and register reuse,

but cannot repair fundamentally poor access patterns.

• Locality fails when working sets overflow caches, access is irregular, or cache lines are

wasted and polluted.



Chapter 5

Cache Levels and Latency Model

5.1 Purpose of Multi-Level Caches

A single cache cannot be simultaneously very fast, very large, and efficient in power/area.

Multi-level caches exist to balance these competing constraints:

• Keep the most frequently used data in the closest and fastest storage.

• Provide larger fallback capacity without forcing every access to pay the latency of

main memory.

• Reduce average memory access time by ensuring most accesses are satisfied above

RAM.

The hierarchy is a practical engineering compromise: small and extremely fast near the core,

larger and slower as you move outward.
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5.2 L1 vs L2 vs L3 (Conceptual Roles)

Although details vary by platform, the conceptual roles are stable:

• L1 cache: the first on-chip cache level, optimized for minimal latency. It is typically

small and designed to feed the core at very high bandwidth.

• L2 cache: a larger, slower cache that reduces the miss rate seen by L1. It is a capacity
and filtering layer that prevents many L1 misses from reaching deeper levels.

• L3 cache (last-level cache): the largest on-chip cache level, optimized for capacity and
sharing. It reduces how often the system must go to RAM and often acts as a shared

reservoir for multiple cores.

The general pattern:

Higher levels prioritize latency; lower cache levels prioritize capacity.

5.3 Latency Differences as Execution Delays

From the perspective of a CPU core, latency is experienced as delay in producing a needed
operand. If an instruction depends on data that is not ready, the core must wait or find

independent work to execute.

Key points:

• A hit in a nearer cache level supplies data quickly, allowing dependent instructions to

proceed.

• A miss forces the request to be serviced by a deeper level, increasing the time before the

value becomes usable.
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• Even with out-of-order execution, latency becomes visible when the dependency chain

is tight or when many misses occur.

Thus, cache latency is not abstract; it directly translates into stalled cycles when the program

cannot proceed without the missing data.

5.4 Why “Cache Miss” Is Not a Single Thing

A “cache miss” is often discussed as one event, but conceptually it can mean several different

situations with very different costs:

• L1 miss but L2 hit: moderate delay; data is still on-chip.

• L2 miss but L3 hit: larger delay; still on-chip but farther and more contended.

• Last-level miss: data must come from RAM, producing the largest delay.

Additionally, misses can arise for different reasons (capacity pressure, conflicts, or first-touch).

The important model is that “miss” is a level-dependent event, not a single universal cost.

5.5 Cost Amplification Across Levels

The hierarchy amplifies cost as requests fall through levels:

• Each deeper level increases latency and often reduces per-core effective bandwidth.

• A miss at a higher level can cause multiple downstream actions: filling a cache line,

updating metadata, and possibly evicting an existing line.

• Evictions can trigger further traffic (for example, if modified data must be written back),

increasing the effective cost beyond the original miss.
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This amplification is why small changes in locality or working set size can create large
performance swings: once the working set stops fitting in an upper cache, the program begins

paying the cost of deeper levels repeatedly.

5.6 Conceptual Summary

• Multi-level caches balance latency, capacity, and cost.

• L1 is latency-first, L2 reduces L1 misses via more capacity, and L3 reduces RAM traffic

and supports sharing.

• Latency differences appear as execution delays when operands are not ready.

• “Cache miss” is level-dependent; an L1 miss may still be an on-chip hit.

• Costs amplify across levels due to longer latency, reduced bandwidth, and eviction side

effects.



Chapter 6

Cache Misses and Their Real Cost

6.1 Cold, Capacity, and Conflict Misses (Conceptual)

A cache miss occurs when the requested data is not present in the cache level being queried,

forcing the request to be satisfied from a deeper level. Conceptually, misses are commonly

classified as:

• Cold (compulsory) miss: the first time a cache line is accessed, it cannot already be

in that cache. Cold misses are unavoidable for first-touch data, but their impact can be

reduced by increasing useful work per fetched line.

• Capacity miss: the working set (the set of actively needed cache lines) exceeds the

cache’s effective capacity, so lines are evicted before they can be reused. Capacity

misses indicate insufficient locality or an oversized working set for the cache level.

• Conflict miss: even if the working set could fit in capacity, cache placement constraints

cause repeated evictions because multiple frequently used lines map to competing

locations. Conflict misses are strongly influenced by access patterns and alignment.
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These labels describe why a line is missing. The performance cost is determined by how far

down the hierarchy the request must go to refill it.

6.2 Miss Penalties and Pipeline Impact

The miss penalty is the time until the requested cache line arrives from a deeper level and the

load can be satisfied. The direct pipeline impact depends on dependencies:

• If later instructions depend on the loaded value, execution of those dependent

instructions must wait.

• Out-of-order execution can continue with independent work, but only until it runs out of

independent instructions or resources.

• When independence is exhausted, the core experiences a stall that exposes the full miss

latency.

Thus, the penalty is not merely “slower memory”; it is a delay that can propagate through

dependent instruction chains.

6.3 Why a Single Miss Can Stall Many Instructions

A single cache miss can stall many instructions because modern code is often structured

around critical dependencies:

• Address dependencies: a pointer load is needed before the next address can be computed

(pointer chasing).

• Data dependencies: the loaded value participates in arithmetic or in a branch decision.
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• Control dependencies: a branch decision depends on a value that is not yet available,

delaying correct-path execution.

Additionally, misses consume internal resources (load buffers, miss status handling structures,

queues). If many misses accumulate, the core can become memory-level parallelism limited,

meaning it cannot issue more outstanding misses efficiently, and stalling increases.

6.4 Why Misses Dominate Tight Loops

Tight loops often perform a small number of instructions per iteration. If each iteration

triggers a miss (or insufficient reuse), the loop becomes dominated by waiting time:

• The instruction body is too small to hide latency.

• The same dependency chain repeats each iteration.

• The CPU may reach peak instruction throughput, yet overall progress is bounded by

data arrival.

This is why “optimized assembly” can still be slow: if each iteration needs a new cache

line from a lower level, the loop runs at the speed of cache line delivery, not at the speed of

arithmetic.

6.5 Memory Stalls vs Instruction Throughput

It is essential to distinguish:

• Instruction throughput: how many instructions the core can execute per unit time

when operands are ready and dependencies allow parallelism.
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• Memory stalls: cycles where execution is limited by waiting for operands to arrive

from the memory hierarchy.

A program can have excellent instruction throughput and still be slow if it spends significant

time stalled on memory. Conversely, a program with more arithmetic per cache line can run

faster because it increases work per fetched data and improves effective utilization of the core.

6.6 Conceptual Summary

• Cold, capacity, and conflict misses describe different reasons data is absent from cache.

• Miss penalties become visible when loads lie on the critical dependency path.

• One miss can stall many instructions due to dependency chains and limited memory-

level parallelism.

• Tight loops are often dominated by misses because they cannot hide latency.

• Real performance is frequently limited by memory stalls rather than instruction

throughput.



Chapter 7

Access Patterns and Performance

7.1 Sequential Access Patterns

Sequential access means touching memory locations in increasing (or decreasing) contiguous

order. This pattern is typically the most cache-friendly because it aligns with how hardware

moves data:

• Cache lines bring adjacent data together, so multiple consecutive accesses often hit after

one line fill.

• Hardware prefetchers can often detect sequential streams and fetch future lines early.

• Translation costs (TLB) are amortized because many accesses fall within the same page

range before moving on.

Sequential access tends to convert expensive memory operations into a streaming pattern

where performance is limited primarily by cache or memory bandwidth rather than by exposed

latency.
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7.2 Strided Access Patterns

Strided access means accessing elements at a fixed step size (stride), such as every kth

element. Stride changes the fraction of each cache line that is actually used:

• Small strides (within a cache line) can still exploit spatial locality.

• Large strides often touch one element per cache line, wasting most of the fetched bytes

(overfetching).

• Certain strides can cause repeated conflicts in caches due to placement constraints,

increasing conflict misses.

Strided access can also confuse or partially defeat hardware prefetching depending on stride

regularity and magnitude. The conceptual rule is:

As stride grows, useful bytes per cache line often shrink, and effective bandwidth

is wasted.

7.3 Random Access Patterns

Random access means addresses appear effectively unpredictable and widely scattered

relative to cache line and page structure. This pattern is typically the most expensive because

it defeats the main mechanisms that make caches effective:

• Spatial locality is weak, so each access may require a new cache line.

• Temporal locality is often weak, so lines are evicted before reuse.

• Prefetchers cannot reliably predict future addresses, exposing full latency.

• TLB misses become more likely because accesses spread across many pages.
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Random access often becomes latency-bound: each access waits for data rather than

streaming efficiently.

7.4 Pointer Chasing and Linked Structures

Pointer chasing is a special case of access that is both irregular and dependency-serialized.

The next address depends on the value loaded from the current address (for example,

following a linked list):

• Each load must complete before the next address is known.

• This limits memory-level parallelism: the core cannot easily have many independent

misses in flight.

• Out-of-order execution cannot hide latency because the dependency chain is inherently

sequential.

This is why linked structures are often much slower than contiguous arrays for the same

logical traversal. The cost is not only cache misses; it is the inability to overlap misses due to

address dependencies.

7.5 Why Algorithms With the Same Complexity Differ

Massively in Speed

Asymptotic complexity describes growth with input size, but it does not capture constant

factors dominated by memory behavior. Two O(n) algorithms can differ by large factors

because of:

• Working set behavior: whether active data fits in cache or spills to lower levels.
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• Locality: whether accesses reuse cache lines efficiently or waste most fetched bytes.

• Bandwidth vs latency: streaming contiguous data can be bandwidth-limited and fast;

scattered data can be latency-limited and slow.

• Dependency structure: pointer chasing serializes access and prevents latency hiding.

• Translation overhead: scattered accesses increase TLB pressure and page working set

size.

Therefore, performance engineering must consider:

Not only how many operations you do, but how your data is laid out and how you

touch it.

7.6 Conceptual Summary

• Sequential access is usually fastest because it matches cache lines and prefetching.

• Strided access can waste cache lines and trigger conflicts as stride grows.

• Random access defeats locality and prediction, exposing high latency and TLB costs.

• Pointer chasing is especially slow because address dependencies serialize memory

access.

• Big performance gaps between same-complexity algorithms often come from locality,

working set size, and latency hiding limits.



Chapter 8

The Translation Lookaside Buffer (TLB)

8.1 Virtual Memory Recap (Conceptual)

Modern systems use virtual memory to present each program with a contiguous

address space while mapping it onto physical memory managed by the OS and hardware.

Conceptually:

• Programs generate virtual addresses.

• Hardware translates these to physical addresses using page-based mappings.

• Memory protection, isolation, and flexible placement are enforced through this

translation.

The key point for performance is that every memory access requires address translation before

the cache or memory can be accessed.
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8.2 What the TLB Does

The Translation Lookaside Buffer (TLB) is a small, fast cache that stores recent virtual-to-

physical address translations.

Its role is to:

• avoid repeating expensive page table walks,

• provide near-register-speed translation for common accesses,

• allow the cache hierarchy to operate using physical addresses efficiently.

When a translation is found in the TLB (TLB hit), address translation completes quickly.

When it is not found (TLB miss), the hardware must consult page tables, incurring additional

latency.

8.3 Why Address Translation Has a Cost

Address translation is not free because:

• Page tables are multi-level structures stored in memory.

• Walking them may require several dependent memory accesses.

• These accesses themselves are subject to cache and memory latency.

Even when page table entries are cached, translation introduces extra steps before the data

access can proceed. The TLB exists to hide this cost for the common case.
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8.4 TLB Locality and Working Set Size

Just like caches, the TLB benefits from locality:

• Temporal locality: repeated accesses to the same pages reuse cached translations.

• Spatial locality: accessing many addresses within the same page amortizes translation

cost.

The TLB working set is the set of pages actively accessed over a period of time. If this set

fits in the TLB, translation overhead is minimal. If it exceeds TLB capacity, translations are

evicted and misses increase.

8.5 When TLB Misses Become Dominant

TLB misses become a dominant cost when:

• Access patterns touch many pages with little reuse.

• Large data structures are accessed sparsely or randomly.

• Strided or pointer-based access crosses page boundaries frequently.

• The data working set fits in cache but spans too many pages for the TLB.

In such cases, performance can degrade even if cache hit rates are high. The program becomes

translation-bound rather than cache- or compute-bound.
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8.6 Conceptual Summary

• Virtual memory requires translating every address from virtual to physical.

• The TLB caches translations to make this fast in the common case.

• Address translation has real cost due to page table walks and dependencies.

• TLB effectiveness depends on page locality and working set size.

• TLB misses can dominate performance when access spans many pages with little reuse.



Chapter 9

False Sharing: When Cores Fight Over
Data

9.1 What False Sharing Really Is

False sharing is a performance failure mode where multiple cores repeatedly interfere with

each other even though they are not logically sharing the same variable. The interference

happens because caches track and transfer data at the cache line granularity. If two

independent variables reside on the same cache line and different cores modify them, the

entire line becomes a shared point of contention.

Key idea:

False sharing is not about shared variables; it is about shared cache lines.
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9.2 Cache Coherence at a High Level (No Atomics)

In a multi-core system, each core may hold cached copies of memory. Cache coherence is the

hardware mechanism that ensures cores observe a consistent view of memory for shared data.

Conceptually:

• When a core reads a cache line, it may keep a local cached copy.

• When a core writes to a cache line, it must gain the right to modify it and ensure other

cached copies are updated or invalidated.

• Coherence operates at cache-line granularity, not per-variable.

This coherence traffic is essential for correctness, but it can become a major performance cost

when lines bounce between cores due to frequent writes.

9.3 Why Logically Independent Data Can Collide

Two threads may be logically independent (each updates its own counter or slot), yet still

collide if their data sits within the same cache line. This happens because:

• The hardware must treat the whole line as a unit for ownership and modification.

• A write to any byte of the line forces coherence actions for the entire line.

• If two cores alternate writes, the line repeatedly transfers or invalidates across cores,

even though the threads never intend to share.

Therefore, layout creates sharing even when the program logic does not.
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9.4 How False Sharing Destroys Scalability

False sharing is most damaging under increasing core count and write frequency:

• It introduces high coherence traffic that consumes interconnect bandwidth.

• It forces repeated invalidation/ownership transitions, delaying useful work.

• It creates stalls that scale with contention, so adding cores can make performance worse.

The hallmark symptom is poor scaling: a workload that should speed up with more threads

stagnates or slows down because cores spend time synchronizing cache lines instead of

executing.

9.5 Recognizing False Sharing Patterns

False sharing tends to appear in predictable structural patterns:

• Per-thread counters in a contiguous array: adjacent counters may share a cache line.

• Small structs in arrays: different threads update different fields/elements but those

fields/elements share a line.

• Work queues and ring buffers: head/tail indices or flags placed close together.

• Hot flags or state bytes: many threads update small control variables stored densely.

Conceptual recognition rules:

• If independent threads write frequently to data that is close in memory, suspect false

sharing.

• If scaling degrades primarily with write-heavy activity, suspect coherence contention.
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• If separating or padding data improves scaling, the root cause is often cache-line

collision.

9.6 Conceptual Summary

• False sharing is contention on cache lines, not on variables.

• Coherence keeps caches consistent but can generate expensive traffic for write-heavy

patterns.

• Independent variables collide when they share a cache line and are modified by different

cores.

• False sharing destroys scalability by forcing line bouncing and coherence stalls.

• Common patterns include adjacent per-thread data, densely packed flags, and shared

control indices.



Chapter 10

Stack vs Heap vs Global Data (Cache
View)

10.1 How Stack Access Behaves in Caches

Stack allocation typically exhibits strong locality because stack usage follows structured,

predictable patterns:

• Contiguity: stack frames are laid out in contiguous memory regions, so nearby locals

often share cache lines.

• Temporal locality: locals are frequently reused within a function or within a short call

chain.

• Predictability: stack growth and access patterns are often regular, which helps

hardware prefetch and cache behavior.

However, stack locality is not guaranteed for all cases:
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• very large stack frames can exceed cache capacity and evict useful data,

• deep recursion or many active frames can expand the working set,

• spilling under register pressure can increase stack traffic.

The common outcome is that stack-resident data is often cache-friendly relative to scattered

heap allocations, not inherently “fast by definition.”

10.2 Heap Allocation and Locality Loss

Heap allocation often loses locality because allocations are driven by runtime events and

allocator policies rather than by a structured frame layout:

• Fragmentation: objects that are logically related may be physically far apart,

increasing cache misses and TLB pressure.

• Pointer indirection: heap-heavy designs frequently rely on pointer chasing, which

serializes access and defeats latency hiding.

• Allocation churn: frequent allocate/free activity can scatter objects across pages,

expanding the page working set.

Heap data can still be cache-efficient when it is allocated in contiguous blocks (arenas, pools,

vectors, slabs) and traversed sequentially. The performance problem is not “heap” itself, but

uncontrolled layout and indirection.

10.3 Global Data and Sharing Behavior

Global (static-storage) data often interacts with caches through sharing and contention
characteristics:
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• Read-mostly globals can be efficient because shared reads typically do not cause

coherence bouncing.

• Write-shared globals can become severe bottlenecks due to coherence traffic,

especially if many cores update the same cache line.

• False sharing risk: multiple global variables placed near each other can collide on

cache lines and degrade scalability.

Global data is also long-lived and widely visible, which increases the chance it becomes part

of the “hot” shared working set in multi-threaded programs.

10.4 Why Allocation Strategy Affects Performance

Allocation strategy shapes layout, and layout determines locality. Key effects:

• Spatial locality: allocating related objects contiguously increases useful bytes per cache

line.

• Temporal locality: keeping frequently reused objects resident in cache is easier when

they cluster and do not compete with unrelated data.

• TLB behavior: packing data into fewer pages reduces translation overhead and

improves locality at the page level.

• Coherence behavior: separating per-thread write-heavy data prevents cache line

bouncing and false sharing.

This is why two programs with identical algorithms can differ massively in speed: one places

data to match cache lines and pages, the other scatters it.
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10.5 Lifetime vs Locality Trade-Offs

Storage duration choices often trade simplicity and safety against locality:

• Stack (automatic storage): short lifetime, structured layout, often good locality, but

limited size and scope.

• Heap (dynamic storage): flexible lifetime and size, but locality depends on allocator

strategy and data structure design.

• Global (static storage): stable lifetime and easy sharing, but high risk of contention and

false sharing if write-heavy.

A disciplined view:

• Choose lifetime first for correctness.

• Then shape layout for locality using contiguous storage, pooling, and careful separation

of hot write-shared data.

10.6 Conceptual Summary

• Stack access is often cache-friendly due to contiguity, reuse, and predictability, but can

degrade with large frames and heavy spilling.

• Heap access can lose locality due to fragmentation and indirection; it becomes efficient

when allocations are contiguous and traversal is regular.

• Global data is strongly affected by sharing; read-mostly is cheap, write-shared can be

catastrophic due to coherence.
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• Allocation strategy changes layout, and layout controls cache lines, pages, and

coherence behavior.

• Lifetime decisions should be made for correctness; locality should be engineered within

those constraints.



Chapter 11

Reading Performance Without Tools

11.1 Mental Simulation of Cache Behavior

You can often predict performance trends without profiling by simulating what the hardware

must do at a high level. Use a cache-line mental model:

• Memory moves in cache lines, not variables.

• A line is either present (hit) or must be fetched (miss) from a deeper level.

• Performance depends on reuse: how many useful operations occur per fetched line.

A practical mental simulation loop:

1. Identify the data structure touched per iteration.

2. Determine whether accesses are contiguous, strided, random, or pointer-chasing.

3. Estimate how many distinct cache lines are touched for a unit of work.

4. Ask whether those lines are reused soon enough to remain in cache.
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11.2 Predicting Misses From Code Shape

Code shape often reveals likely miss behavior:

• Sequential loops over arrays: typically few misses per many operations because each

fetched line serves multiple elements.

• Large working sets: if the loop touches more data than cache can hold before reuse,

expect capacity misses.

• Strided indexing: if stride approaches or exceeds cache-line size, expect low line

utilization and more misses.

• Indirect indexing/pointer chasing: expect irregular misses and exposed latency due to

address dependencies.

• Nested loops: reuse depends on loop order; the wrong order often destroys locality.

This is not about exact cycle counts; it is about recognizing whether the program forces

frequent fall-through to deeper levels.

11.3 Recognizing Memory-Bound Code

A workload is typically memory-bound when the CPU spends most of its time waiting for

data rather than executing instructions. Conceptual indicators include:

• Low arithmetic intensity: few computations per byte fetched.

• Performance strongly depends on data size: fast for small inputs, dramatically slower

once data exceeds cache.
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• Large gains from improving locality or layout, and small gains from reducing

instruction count.

• Dominance of loads/stores and address generation over arithmetic in the critical path.

A simple mental test:

If speeding up arithmetic would not change how often you fetch new cache lines,

the code is likely memory-bound.

11.4 Why Instruction Counts Lie

Instruction counts can be misleading because instructions do not have uniform cost. The

dominant cost often comes from stall time:

• A program can execute fewer instructions yet run slower if it triggers more cache/TLB

misses.

• A program can execute more instructions yet run faster if it increases reuse (more work

per fetched line) and hides latency.

• Modern cores overlap many instructions; the true limiter can be data availability, not

instruction throughput.

Therefore, “this version uses fewer instructions” is not a sufficient performance argument

unless memory behavior is also improved.

11.5 Common Performance Misinterpretations

Several recurring misconceptions cause poor optimization decisions:
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• “The CPU is slow.” Often false; the CPU is waiting for memory. The bottleneck is data

delivery, not execution capability.

• “Cache miss” is one cost. A miss can be an L1 miss but an L2 hit, or it can fall to RAM.

The cost depends on how far the request travels.

• “My algorithm is O(n) so it must be fast.” Complexity ignores locality, working set

size, translation overhead, and dependency structure.

• “Small code changes cannot cause big slowdowns.” Small changes can shift working

set over a cache boundary, change alignment, or alter access order, causing large miss-

rate changes.

• “If it fits in RAM, it should be fine.” Fitting in RAM is irrelevant to speed. What

matters is fitting in cache (and in the TLB) with reuse.

11.6 A Practical Non-Tool Checklist

1) What is the working set (bytes touched before reuse)?

2) Is access sequential, strided, random, or pointer-chasing?

3) How many cache lines are touched per unit of work?

4) Is there reuse before eviction (temporal locality)?

5) Is the pattern predictable enough for prefetching?

6) Does performance collapse when data exceeds cache (memory-bound

signature)?↪→

11.7 Conceptual Summary

• You can reason about performance by simulating cache-line movement and reuse.
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• Code shape often predicts whether misses are likely (sequential vs irregular patterns).

• Memory-bound code is dominated by data delivery; arithmetic optimizations yield

limited benefit.

• Instruction counts lie when stall time dominates.

• Many misinterpretations come from ignoring cache levels, working sets, and translation

costs.



Chapter 12

What This Booklet Deliberately Excludes

12.1 Why No Atomics

Atomics introduce a separate correctness contract: concurrent access coordination. They

are not merely “faster operations”; they define visibility and ordering rules between threads.

Understanding atomics correctly requires:

• a formal memory model (what can be observed and when),

• the difference between atomicity and ordering,

• and the interaction between language rules and hardware coherence mechanisms.

This booklet focuses on the baseline cost model of ordinary memory access (cache lines,

locality, TLB, misses). Mixing atomics into that discussion would blur the boundary between:

• performance mechanics (how fast data arrives),

• and concurrency correctness contracts (what values are allowed to be observed).
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12.2 Why No Memory Barriers

Memory barriers (fences) exist to constrain reordering and visibility across threads and

devices. They are meaningful only in a context that includes:

• the language concurrency model,

• the allowed reorderings of loads and stores,

• and the architecture-specific ordering guarantees.

A barrier changes what the hardware may overlap and reorder, which directly affects

performance. But without first mastering the non-concurrent memory hierarchy model, barrier

effects are easily misunderstood as “cache tricks” or “speed controls.” This booklet keeps

barriers out to preserve a clean, teachable foundation.

12.3 Why No SIMD

SIMD (vectorization) changes performance through two coupled effects:

• compute throughput: more arithmetic per instruction,

• memory behavior: wider loads/stores, alignment constraints, and different access

granularity patterns.

SIMD is most beneficial when the program already has:

• strong locality,

• predictable access patterns,

• and sufficient data parallelism.
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If the code is memory-bound due to misses, scattered access, or poor locality, SIMD often

yields limited gains. Therefore, SIMD is a later topic that should be built on top of the

memory-hierarchy understanding developed here.

12.4 Separation of Concerns in Performance Learning

This booklet enforces a disciplined learning order:

1. First: understand the cost of access for ordinary loads/stores (hierarchy, cache lines,

locality, misses, TLB).

2. Then: add concurrency ordering (atomics, barriers) as a correctness and performance

layer.

3. Then: add vector execution (SIMD) as a throughput and alignment layer.

This separation prevents common failure modes:

• blaming performance on “slow CPU” when the problem is cache misses,

• misusing fences to “fix” performance or correctness without understanding ordering,

• assuming SIMD automatically speeds up memory-bound code.

12.5 What Comes Next in the Series

After mastering memory hierarchy and the cost model of access, the natural next steps are:

• Concurrency foundations: atomic operations, visibility, and ordering as defined by

language and ABI constraints.
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• Memory ordering and barriers: how to reason about reordering, synchronization, and

their costs.

• Vector memory access (SIMD): alignment discipline, contiguous layout requirements,

and throughput vs bandwidth limits.

• Architecture-specific cache behavior: mapping the concepts here to concrete platform

rules and practical measurement.

This booklet is intentionally the baseline: it provides the universal mental model required

to understand why higher-level performance techniques work, when they fail, and what they

actually cost.

12.6 Conceptual Summary

• Atomics and barriers belong to the concurrency model and require separate ordering

semantics.

• SIMD changes both compute throughput and memory access constraints and is effective

only after locality is understood.

• Separation of concerns produces transferable understanding instead of platform-specific

memorization.

• The next series stages build on this foundation: concurrency ordering, then SIMD and

architecture-specific analysis.



Appendices

Appendix A — Practical Memory Performance Rules

12.6.1 Rules of Thumb That Actually Hold

The following rules are stable across modern CPUs because they follow from cache-line

transfer, locality, and latency fundamentals:

• Think in cache lines and pages, not variables. If you touch one byte, you often pay

for a whole cache line; if you spread across pages, you pay in TLB capacity.

• Prefer contiguous data for hot paths. Contiguous traversal maximizes spatial locality

and makes prefetching effective.

• Maximize reuse before eviction. Improve temporal locality by reusing data while it is

still in upper caches.

• Reduce working set size. The fastest memory is the one you do not touch. Smaller

working sets increase cache residency and reduce TLB pressure.

• Avoid pointer chasing in performance-critical loops. Dependency-serialized loads

expose latency and reduce memory-level parallelism.
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• Use predictable access patterns. Sequential/regular patterns are easier for the hardware

to prefetch; irregular patterns expose misses.

• Separate hot and cold fields. If only a few fields are frequently accessed, keep them

together and move rarely used fields away to reduce cache line waste.

• Avoid false sharing in multi-core code. Do not let independent thread-written data

share the same cache line; coherence traffic can dominate runtime.

12.6.2 When Micro-Optimizations Matter

Micro-optimizations matter primarily when the bottleneck is compute throughput or front-
end overhead, not memory stalls.

They tend to matter when:

• the working set fits in cache and hit rates are high,

• the loop body is compute-heavy relative to bytes moved,

• there is sufficient locality and few cache/TLB misses,

• the code path is extremely hot (executed very frequently).

They tend not to matter when:

• performance collapses as data size exceeds cache,

• the program is dominated by cache misses, TLB misses, or pointer-chasing,

• the critical path is waiting for memory rather than executing instructions.

Discipline rule:

If access patterns force frequent misses, optimize data movement before

optimizing instruction sequences.
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12.6.3 When Data Layout Beats Algorithms

Asymptotic complexity is not the full story for real performance. Data layout can dominate

when memory behavior is the limiting factor.

Layout often beats algorithmic micro-changes when:

• two alternatives have the same big-O but different locality (contiguous vs scattered),

• the working set is near a cache or TLB capacity boundary,

• the access pattern wastes most bytes in each fetched cache line,

• the design introduces indirection (pointers) where direct indexing would be possible.

Practical effect:

• A “worse” algorithm with strong locality can outperform a “better” one with poor

locality, because the latter is dominated by miss latency and translation overhead.

12.6.4 When Caches Help — and When They Don’t

Caches help when locality exists:

• They help when accesses reuse the same lines (temporal locality) or access nearby bytes

(spatial locality).

• They help when the working set fits or is close enough that replacement does not

destroy reuse.

• They help when patterns are predictable enough for prefetching and overlap.

Caches do not help much when locality is weak:
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• They don’t help with random access over a large address range: each access touches a

new line with little reuse.

• They don’t help with pointer chasing: the next address depends on the last load,

exposing latency.

• They don’t help when the working set is far larger than cache capacity and reuse

happens only after eviction.

A core mental model:

Caches accelerate reuse; they cannot accelerate absence of reuse.

12.6.5 Operational Checklist

1) Identify the working set (bytes touched before reuse).

2) Identify the pattern (sequential / strided / random / pointer

chasing).↪→

3) Estimate cache-line utilization (useful bytes per fetched line).

4) Check reuse distance (will the line still be resident when

reused?).↪→

5) Watch for page spread (TLB working set).

6) In multi-core code, check if independent writers share cache

lines.↪→

12.6.6 Summary

• Stable performance rules follow from cache lines, locality, and working set size.

• Micro-optimizations matter mostly when code is not dominated by memory stalls.

• Data layout can dominate performance even when algorithmic complexity is unchanged.
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• Caches help when reuse exists; they cannot rescue fundamentally non-local access.

Appendix B — Common Misconceptions

12.6.7 “Caches are automatic, I don’t need to think about them”

Caches are automatic in operation, but not automatic in outcome. Hardware transparently

moves data, yet performance depends on access patterns the programmer creates.

Clarifications:

• Caches exploit locality; if locality is weak, caches cannot help.

• Hardware cannot infer program intent beyond observed address streams.

• Poor layout, large working sets, or irregular access defeat caching regardless of cache

size.

Correct mental model:

Caches work best when the program gives them something to exploit.

12.6.8 “My algorithm is optimal, so it must be fast”

Asymptotic complexity describes growth with input size, not constant factors dominated by

memory behavior.

Why this fails in practice:

• Two algorithms with the same big-O can have radically different locality.

• Cache and TLB misses introduce costs not reflected in complexity analysis.

• Dependency structure (e.g., pointer chasing) can serialize execution regardless of

instruction count.
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Practical consequence:

• An algorithm with worse asymptotic complexity but strong locality can outperform an

“optimal” one with poor memory behavior.

12.6.9 “The CPU is slow”

Modern CPUs are rarely slow at executing instructions. When programs underperform, the

core is often idle waiting for data.

Common indicators:

• Performance collapses as data size exceeds cache.

• Increasing clock speed or instruction-level tuning yields little improvement.

• Reordering data or improving locality yields large gains.

Correct reframing:

The CPU is fast; the program is waiting.

12.6.10 “RAM speed is the only thing that matters”

Main memory speed matters, but it is not the dominant factor for most workloads.

Why this is misleading:

• Most accesses are served from caches, not directly from RAM.

• Cache hit rates, cache-level residency, and TLB behavior often dominate observed

performance.

• Faster RAM does not compensate for poor locality that forces frequent misses.

What actually matters:
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• How often data is reused before eviction.

• How many useful bytes are consumed per cache line.

• How much access can be overlapped (latency hiding).

12.6.11 Correct Mental Model

• Caches are automatic mechanisms, not automatic optimizers.

• Algorithmic optimality does not imply cache efficiency.

• CPUs are usually waiting on memory, not limited by execution units.

• RAM speed is only one component; cache behavior and locality usually dominate.

Understanding these misconceptions prevents wasted effort on instruction tuning when the

real bottleneck is data movement and layout.

Appendix C — Preparation for Advanced Topics

12.6.12 Readiness for Atomics and Memory Ordering

You are ready to study atomics and memory ordering when you can reason about performance

before introducing concurrency semantics:

• You understand ordinary loads/stores as cache-line transfers with locality and miss costs.

• You can distinguish latency-bound behavior from bandwidth-bound behavior.

• You recognize that correctness (visibility and ordering) is a separate contract layered on

top of cache behavior.
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This preparation is critical because atomics do not merely add cost; they restrict reordering

and visibility. Without a solid baseline memory model, atomic costs are often misattributed to

“slow caches” rather than to enforced ordering constraints.

12.6.13 Readiness for SIMD and Vector Memory Access

SIMD effectiveness depends as much on memory behavior as on arithmetic width. You are

ready for SIMD when you can already predict:

• whether data is contiguous enough to feed wide loads/stores efficiently,

• whether alignment and cache-line boundaries will amplify or reduce traffic,

• whether the workload is compute-bound or already memory-bound.

SIMD increases work per access. If memory access dominates due to misses or poor locality,

wider computation alone yields limited benefit. This booklet ensures SIMD is approached as a

throughput multiplier, not a substitute for locality.

12.6.14 Readiness for Multithreaded Cache Behavior

Before studying multi-threaded performance, the reader should already understand single-

thread cache behavior well enough to identify what changes under sharing:

• You can reason about cache-line residency and eviction.

• You understand false sharing as cache-line contention, not as a logical bug.

• You can predict how write-heavy patterns increase coherence traffic.

With this foundation, multi-threaded topics become additive:

• coherence protocols add constraints,
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• ownership transfer adds latency,

• contention amplifies costs already present in single-thread access.

12.6.15 Mapping Concepts to Architecture-Specific Manuals

Architecture manuals are precise but dense. This booklet provides the abstraction needed to

read them effectively:

• Cache sections: map line size, associativity, and levels to locality and working set

concepts.

• Memory ordering sections: interpret rules as constraints layered on top of the baseline

access model.

• Performance sections: separate throughput limits from latency exposure.

When reading architecture-specific documents, focus on answering:

• What is the cache-line size and alignment requirement?

• What are the observable penalties for misses at each level?

• What additional constraints does concurrency or vectorization impose on access?

12.6.16 Preparation Checklist

1) Can I identify the working set and access pattern?

2) Can I predict cache-line reuse and eviction?

3) Can I tell whether latency or bandwidth dominates?

4) Can I recognize false sharing risks from layout?

5) Can I explain performance changes without referencing instructions

first?↪→
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12.6.17 Summary

• Atomics and ordering require a solid baseline memory cost model.

• SIMD is effective only when memory access patterns are already favorable.

• Multithreaded cache behavior amplifies single-thread locality issues.

• Architecture manuals become readable when mapped onto cache lines, locality, and

access costs.

This appendix marks the transition from foundational memory reasoning to advanced

performance and concurrency topics built on the same principles.
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Scope Note

This booklet intentionally relies on stable fundamentals and broadly consistent definitions

across authoritative sources. Architecture-specific numerical latencies and vendor-dependent

microarchitectural details are treated as implementation variation and are reserved for

architecture-specific study later in the series.
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