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Preface

P.1 Purpose of This Booklet

This booklet provides a focused and rigorous foundation in x86 architecture fundamentals,

concentrating on general-purpose registers, FLAGS / RFLAGS, and addressing modes. Its

primary purpose is to establish a correct and durable mental model of how x86 instructions

operate at the architectural level, independent of operating systems, calling conventions, or

compiler-specific behavior.

Rather than teaching assembly as a collection of syntactic rules, this booklet explains why

x86 behaves as it does: how registers alias, how flags encode execution state, how effective

addresses are computed, and how memory operands differ fundamentally from registers. By

the end of this booklet, the reader should be able to reason about instruction behavior before

writing code, predict side effects, and read compiler-generated assembly with confidence.

P.2 Who This Booklet Is For

This booklet is intended for:

• C and C++ programmers seeking a deeper understanding of generated assembly

• Low-level programmers transitioning from conceptual CPU models to real-world x86
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• Systems programmers preparing for ABI, calling convention, or optimization topics

• Learners who already understand basic instruction execution but lack architectural

clarity

It assumes prior familiarity with:

• Binary representation and two’s complement

• Registers and flags at a conceptual (ISA-independent) level

• Basic instruction flow (fetch, decode, execute, retire)

This booklet does not assume prior x86 assembly experience; all x86-specific behavior is

introduced from first principles.

P.3 How to Read This Booklet Effectively

This booklet is designed to be read linearly. Each chapter builds on assumptions and

invariants established earlier. Skipping chapters may result in misunderstanding subtle but

critical behaviors such as partial register writes or flag-dependent logic.

Examples should be read slowly and mentally executed. For instance:

mov eax, 1 # writes to EAX

mov al, 0xFF # modifies only the low 8 bits

The reader should pause and determine:

• The final value of RAX

• Which bits were preserved

• Why this behavior exists architecturally

Readers are encouraged to treat each instruction as a transformation of architectural state

rather than as a textual operation.
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P.4 Relationship to the CPU Programming Series

This booklet is the first x86-specific entry point in the CPU Programming Series.

It builds directly on the shared foundations established in earlier booklets:

• Instruction execution models

• Register and flag concepts

• Signed vs unsigned arithmetic

It intentionally prepares the reader for subsequent booklets covering:

• The stack and calling conventions

• ABI rules and register roles

• Memory hierarchy, caches, and performance

No ABI rules, system calls, or OS interactions are introduced here; this separation ensures

architectural clarity before platform-specific complexity.

P.5 Scope, Assumptions, and Intentional Exclusions

Included in scope:

• General-purpose register structure and aliasing

• FLAGS and RFLAGS behavior

• Address calculation and addressing modes

• Register vs memory operand semantics
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• Instruction-side effects visible at the ISA level

Explicitly excluded:

• Calling conventions and ABI rules

• Operating system concepts

• SIMD, floating-point, and vector registers

• Privileged instructions and control registers

• Microarchitectural optimizations and pipelines

These exclusions are intentional. The goal of this booklet is not breadth, but architectural
correctness. Each excluded topic is addressed in later, dedicated booklets once the reader has

mastered the x86 fundamentals presented here.



Chapter 1

Positioning x86 in the CPU Landscape

1.1 What “x86 Architecture” Really Means

The term x86 architecture refers to a long-lived and evolving Instruction Set Architecture
(ISA) originating from the Intel 8086 and extended continuously over decades. It defines:

• The visible programmer model (registers, flags, memory model)

• The instruction encodings and semantics

• The rules for how instructions affect architectural state

x86 is not a single fixed design. Instead, it is a backward-compatible ISA family that

accumulated features while preserving legacy behavior. This historical continuity explains

why modern x86 processors still support 16-bit registers, segmented memory concepts, and

partial-register semantics alongside 64-bit execution.

At the architectural level, x86 defines what the machine must do, not how it is implemented.

Multiple processors with radically different internal designs can still correctly execute the

same x86 program.
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1.2 ISA vs Microarchitecture (Applied to x86)

The ISA specifies:

• Instruction behavior

• Register visibility and aliasing

• Flag side effects

• Addressing modes

The microarchitecture specifies:

• Pipeline depth

• Instruction decoding strategy

• Execution units

• Caches and internal scheduling

In x86, this distinction is especially important because many instructions that appear complex

at the ISA level are internally decomposed into simpler micro-operations.

For example, this instruction is architecturally atomic:

add qword ptr [rax], 1

Architecturally, it means:

• Read memory at address RAX

• Add 1

• Write back the result
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• Update flags

How this is internally executed is a microarchitectural concern and intentionally ignored at the

ISA level. This booklet remains strictly on the ISA side.

1.3 Why x86 Feels Complex Compared to RISC

x86 often appears more complex than RISC architectures due to several architectural

characteristics:

• Variable-length instructions

• Rich addressing modes

• Memory operands allowed in arithmetic

• Extensive legacy compatibility

Unlike typical RISC designs where instructions operate only on registers, x86 instructions

may directly reference memory:

add eax, dword ptr [rbx + rcx*4 + 8]

This single instruction combines:

• Address calculation

• Memory load

• Arithmetic

• Flag updates

The complexity is not accidental; it reflects a design optimized historically for code density

and expressive instructions. Modern processors internally translate these instructions into

simpler operations, but the architectural contract remains.
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1.4 Execution Model Overview (Without ABI or OS)

At the architectural level, x86 execution follows a simple and deterministic model:

• Instructions are fetched in program order

• Each instruction transforms architectural state

• Side effects are visible through registers, flags, and memory

This booklet intentionally ignores:

• System calls

• Privilege levels

• Interrupts and exceptions

• Calling conventions

For example, this instruction sequence is interpreted purely in terms of architectural state:

mov eax, 5

add eax, 3

The focus is on:

• How EAX changes

• Which flags are updated

• What guarantees the ISA provides

No assumptions are made about stack usage, function calls, or operating system interaction.
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1.5 What This Booklet Covers and What It Deliberately

Avoids

This booklet focuses exclusively on x86 architectural fundamentals required to understand

real assembly behavior.

Covered topics:

• General-purpose register structure and aliasing

• FLAGS and RFLAGS semantics

• Addressing modes and effective address computation

• Register vs memory operand behavior

• Instruction-visible side effects

Deliberately excluded topics:

• ABI and calling conventions

• Stack discipline

• Operating system interaction

• SIMD and floating-point units

• Microarchitectural optimization details

This separation is intentional. A correct understanding of x86 must begin with its architectural

rules before layering platform-specific conventions or performance considerations.



Chapter 2

General-Purpose Registers: Legacy to
Modern

2.1 The Historical Evolution of x86 Registers

General-purpose registers in the x86 family evolved through successive architectural

extensions while preserving backward compatibility. The original 16-bit model provided

eight primary general-purpose registers. The 32-bit era extended these to 32-bit views while

retaining the 16-bit subregister semantics. The 64-bit era extended them again to 64-bit views

and expanded the register file with additional registers, while still keeping legacy naming and

aliasing rules.

This historical layering explains why a single architectural register can be accessed through

multiple names and widths, and why some legacy subregisters can still influence modern 64-

bit code through aliasing effects.
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2.2 Register Naming Across Generations (AX → EAX →
RAX)

The same physical architectural register is presented through different names depending on

operand size. A canonical example is the accumulator register:

• AX is the low 16 bits

• EAX is the low 32 bits

• RAX is the full 64 bits

The naming pattern generalizes across the legacy set:

• BX/EBX/RBX, CX/ECX/RCX, DX/EDX/RDX

• SI/ESI/RSI, DI/EDI/RDI, BP/EBP/RBP, SP/ESP/RSP

In 64-bit mode, additional general-purpose registers exist beyond the legacy eight, but the

crucial point for correctness is that the legacy ones keep their historical subregister layout and

behaviors.

2.3 8-bit, 16-bit, 32-bit, and 64-bit Views

A general-purpose register is not multiple storage locations. It is one architectural register with

multiple overlapping views. For RAX, the relevant views are:

• RAX: bits 63:0

• EAX: bits 31:0

• AX: bits 15:0
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• AL: bits 7:0

• AH: bits 15:8 (legacy high byte)

Understanding these overlaps is mandatory because writes through one view can preserve,

overwrite, or invalidate other bits depending on the rule of the specific subregister width and

generation.

2.4 Low and High Byte Registers (AL / AH and Their

Caveats)

The low byte register (e.g. AL) refers to bits 7:0 of the parent register. The high byte register

(e.g. AH) refers to bits 15:8, and exists for historical reasons.

High-byte registers have important caveats:

• They overlap with the low 16-bit region and can interact badly with partial updates.

• They complicate instruction encoding in 64-bit mode and are constrained in contexts

where certain prefix encodings are used.

For correctness, treat high-byte registers as legacy artifacts and prefer low-byte registers or

32-bit writes when possible.

2.5 Register Aliasing and Partial Register Updates

Because subregisters overlap, a write to a smaller width does not necessarily define the full

register. This can lead to stale high bits remaining unchanged.

Example: writing only the low 8 bits does not change the upper bits:
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mov rax, 0x1122334455667788

mov al, 0xFF # updates only bits 7:0

# RAX becomes 0x11223344556677FF

Similarly, writing only the low 16 bits preserves bits 63:16:

mov rbx, 0xAAAAAAAA55555555

mov bx, 0x1234 # updates only bits 15:0

# RBX becomes 0xAAAAAAAA55551234

A critical architectural rule in 64-bit mode is that writing a 32-bit subregister (e.g. EAX) clears

the upper 32 bits of the corresponding 64-bit register (e.g. RAX) to zero. This is a correctness

and code-generation rule that many compilers use intentionally.

mov rax, 0xFFFFFFFF00000000

mov eax, 1 # write to EAX zero-extends into RAX

# RAX becomes 0x0000000000000001

This behavior is not sign-extension. It is architectural zeroing of the upper half when writing a

32-bit GPR in 64-bit mode.

2.6 Zero-Extension vs Sign-Extension Behavior

Zero-extension and sign-extension are distinct concepts. Zero-extension fills new high bits

with zeros. Sign-extension copies the sign bit (most significant bit of the source width) into

the new high bits.

The 32-bit write rule above is zero-extension by definition. Sign-extension is obtained only

through specific instructions that explicitly sign-extend a smaller value.

Zero-extension example:

mov eax, 0x80000000 # upper 32 bits cleared

# RAX = 0x0000000080000000
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Sign-extension example using explicit sign-extend instruction forms:

mov eax, 0x80000000 # EAX is negative if interpreted as signed

32-bit↪→

cdqe # sign-extend EAX into RAX

# RAX = 0xFFFFFFFF80000000

Zero-extension from a smaller width can also be done explicitly:

mov al, 0xFF # AL = 255

movzx eax, al # zero-extend AL into EAX, then upper half

cleared↪→

# RAX = 0x00000000000000FF

Sign-extension from a smaller width can be done explicitly:

mov al, 0x80 # AL has sign bit set if treated as int8

movsx eax, al # sign-extend AL into EAX, then upper half

cleared↪→

# RAX = 0x00000000FFFFFF80

To obtain a fully sign-extended 64-bit result from an 8-bit source, combine sign-extension and

then extend to 64-bit if needed:

mov al, 0x80

movsx eax, al # EAX = 0xFFFFFF80

cdqe # RAX = 0xFFFFFFFFFFFFFF80

2.7 Practical Examples

Same register, different widths

mov rax, 0x0123456789ABCDEF
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mov ax, 0x1111 # modifies low 16 only

# RAX = 0x0123456789AB1111

mov eax, 0x22222222 # modifies low 32 and clears high 32

# RAX = 0x0000000022222222

mov al, 0x33 # modifies low 8 only

# RAX = 0x0000000022222233

This sequence demonstrates three different architectural behaviors for the same register

depending on operand width.

Unexpected data corruption

A common source of bugs is assuming a partial write defines the full register. Example: the

high bits remain from a previous value, contaminating an address computation.

mov rdi, 0x00007FFF00000000

mov di, 0x1234 # updates low 16 only

# RDI = 0x00007FFF00001234 (high bits unchanged)

If the programmer expected RDI = 0x1234, the code is wrong and may point to an

unintended memory region.

Correct approach using a 32-bit write when a clean value is required:

mov edi, 0x1234 # zero-extends into RDI in 64-bit mode

# RDI = 0x0000000000001234
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Performance side effects

Partial register updates can create unnecessary dependencies because the processor must

merge old and new bits for the final architectural value. A classic pattern is writing AL and

later using RAX as a full register value.

mov rax, 0

mov al, 1 # partial update

add rax, 2 # uses full register after partial update

A more robust and typically preferable pattern is writing the 32-bit subregister to fully define

the register value and clear upper bits:

mov eax, 1 # defines low 32 and clears high 32

add rax, 2

Rule of thumb for modern 64-bit code:

• Prefer 32-bit writes when you want a clean known value in a GPR.

• Use 8-bit and 16-bit subregisters only when the narrow operation is intentional and the

follow-up usage does not assume a fully defined 64-bit value.



Chapter 3

Special Roles of General-Purpose
Registers

3.1 Implicit Register Usage in Instructions

Many x86 instructions allow flexible register selection, but a significant subset uses

implicit operands: registers that are not written in the assembly text yet are required by the

architectural definition of the instruction. These implicit operands are part of the ISA contract

and must be understood for correctness.

Common forms of implicit register usage include:

• Fixed implicit registers required by the opcode (e.g., accumulator and data registers in

multiply/divide families)

• Implicit address registers in string instructions (source and destination pointers)

• Implicit counters (e.g., repetition count register in repeated string operations)
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A practical consequence is that instruction semantics can depend on registers that appear

nowhere in the line of assembly. This affects correctness, register allocation strategy, and code

reading.

3.2 Accumulator-centric Instructions

Historically, x86 used the accumulator register as a primary operand for many instructions.

Modern x86 supports generalized forms for most operations, but accumulator-centric forms

still exist and matter for:

• Legacy compatibility

• Specific encodings and special forms

• Multiply/divide semantics that inherently use accumulator-related pairs

The most important accumulator-centric families are the multiply and divide instructions,

whose architectural definition binds them to accumulator registers.

Unsigned multiply:

mul rbx # implicit: RAX * RBX -> RDX:RAX

Signed multiply:

imul rbx # implicit: RAX * RBX -> RDX:RAX

(one-operand form)↪→

Unsigned divide:

div rcx # implicit: RDX:RAX / RCX -> quotient in RAX,

remainder in RDX↪→

Signed divide:
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idiv rcx # implicit: RDX:RAX / RCX -> quotient in RAX,

remainder in RDX↪→

The implicit use of RAX and RDX is not optional. The programmer must arrange inputs and

preserve/expect outputs accordingly.

3.3 Index and Base Register Conventions (Conceptual Only)

This booklet does not teach ABI or calling conventions, but some register roles are so

widespread in practice that a conceptual model is useful:

• A base register commonly holds a stable pointer (e.g., base of an object, base of a data

region).

• An index register commonly holds a varying offset (e.g., loop index scaled by element

size).

At the ISA level, these are not special classes of registers. Any general-purpose register can

be used as base or index in addressing forms, with legal addressing constraints defined by the

ISA. The point of the convention is readability and reasoning: base tends to be stable, index

tends to vary.

Example conceptual pattern:

mov rbx, rdi # RBX as base pointer

mov rcx, 7 # RCX as index

mov eax, dword ptr [rbx + rcx*4 + 8]

Here:

• RBX acts as base

• RCX acts as index scaled by 4 (e.g., array of 32-bit elements)

• 8 acts as displacement (e.g., header offset)
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3.4 Registers Commonly Used for Addressing

x86 effective addresses are formed from optional components:

EA = Base + Index × Scale + Displacement

Not all combinations are legal in all forms, but conceptually:

• Base is typically a pointer register used as a starting address.

• Index is typically used for scaled traversal.

• Displacement is an immediate constant offset encoded in the instruction.

Some registers are frequently used as pointers by convention in real code, but architecturally:

• Any GPR can hold an address value.

• Any legal base and index registers can participate in effective address calculation.

Examples of addressing in increasing richness:

Base only:

mov eax, dword ptr [rdi]

Base + displacement:

mov eax, dword ptr [rdi + 16]

Base + index*scale:

mov eax, dword ptr [rdi + rcx*4]

Base + index*scale + displacement:

mov eax, dword ptr [rdi + rcx*4 + 8]
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3.5 Examples

Instructions that require specific registers

Example 1: 64-bit unsigned multiplication produces a 128-bit result in RDX:RAX.

mov rax, 0xFFFFFFFFFFFFFFFF

mov rbx, 2

mul rbx # RDX:RAX = RAX * RBX

Architectural meaning:

• Input multiplicand is implicitly RAX

• Input multiplier is explicit operand (RBX)

• Output is split across RDX (high) and RAX (low)

Example 2: Unsigned division consumes RDX:RAX as the dividend.

mov rax, 100

xor edx, edx # clear high half of dividend

mov rcx, 9

div rcx # quotient -> RAX, remainder -> RDX

If RDX is not prepared correctly, the dividend is not what the programmer expects, and the

divide may raise a fault due to overflow of the quotient.

Example 3: Signed division requires correct sign-extension into RDX.

mov rax, -100

cqo # sign-extend RAX into RDX:RAX

mov rcx, 9

idiv rcx # quotient -> RAX, remainder -> RDX

Here cqo is essential: it prepares the implicit high half of the dividend for signed division.
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Instructions that silently assume registers

Example 1: String move uses implicit source and destination pointers.

mov rsi, rbx # source pointer

mov rdi, rdx # destination pointer

mov ecx, 16 # element count

rep movsb # copies ECX bytes from [RSI] to [RDI]

Architectural meaning:

• Source is implicitly RSI

• Destination is implicitly RDI

• Count is implicitly RCX/ECX

• Pointers are updated implicitly as the instruction proceeds

The instruction line shows only movsb, yet the semantics depend on three registers.

Example 2: Compare string bytes uses implicit pointers and updates them.

mov rsi, rbx

mov rdi, rdx

mov ecx, 8

repe cmpsb # repeats while equal and ECX != 0

Even without explicit operands, the instruction:

• reads memory at RSI and RDI

• updates flags based on comparisons

• advances pointers
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• decrements the count register

Example 3: Loop uses an implicit counter register.

mov ecx, 3

L1:

# work

loop L1 # decrements ECX and jumps if ECX != 0

Here the instruction implicitly depends on ECX. Replacing ECX with another register is not

possible for loop; it is architecturally fixed.

Practical rules for reading and writing

• Always consult the implicit operand set of an instruction family when reasoning about

correctness.

• Treat multiply/divide as RAX/RDX-centric operations that must be staged carefully.

• Treat string instructions as operating on RSI/RDI/RCX even when they appear

operand-free.

• Prefer explicit forms (cmp/jcc, normal load/store loops) unless a string instruction is

intentionally chosen and fully understood.



Chapter 4

FLAGS and RFLAGS: The Hidden State
Machine

4.1 What FLAGS Actually Represent

RFLAGS is an architectural register that records outcomes of many operations and controls

certain execution behaviors. It is best understood as a compact state vector updated as a side

effect of instructions. For most integer code, the most important bits are the status flags that

summarize properties of a result:

• whether the result is zero

• whether the result is negative in two’s complement

• whether an unsigned carry or borrow occurred

• whether a signed overflow occurred

Flags are not computed from “meaning” such as signedness. They are computed from bit-

level arithmetic rules and are later interpreted by instructions such as conditional branches and

29



30

conditional moves.

4.2 Status Flags vs Control Flags (Conceptual Boundary)

Status flags are typically updated by arithmetic, logical, compare, and shift/rotate instructions

and are used for decision-making:

• ZF (Zero Flag)

• SF (Sign Flag)

• CF (Carry Flag)

• OF (Overflow Flag)

Control flags affect processor behavior (direction of string operations, interrupt enable,

trap/step behavior, and others). This booklet focuses on status flags and only treats control

flags conceptually to avoid OS, privilege, and debugging topics.

A key boundary rule in this booklet:

• Status flags are about results and comparisons.

• Control flags are about execution mode and control behavior.

4.3 Core Arithmetic Flags: ZF, SF, CF, OF

The four most important arithmetic status flags:

ZF (Zero Flag)

ZF=1 if the result is exactly zero, otherwise ZF=0.
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mov eax, 1

sub eax, 1 # EAX = 0

# ZF = 1

SF (Sign Flag)

SF copies the most significant bit of the result (the sign bit in two’s complement). It does not

mean “negative” unless the value is interpreted as signed.

mov al, 0x7F

add al, 1 # AL = 0x80

# SF = 1 (MSB set)

CF (Carry Flag)

CF indicates an unsigned carry out from the most significant bit on addition, or an unsigned
borrow on subtraction. CF is the unsigned overflow indicator.

Unsigned carry example:

mov al, 0xFF

add al, 1 # AL = 0x00

# CF = 1

Unsigned borrow example:

mov al, 0x00

sub al, 1 # AL = 0xFF

# CF = 1 (borrow)

OF (Overflow Flag)

OF indicates signed overflow in two’s complement arithmetic. It is set when the signed result

cannot be represented in the operand width.
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Signed overflow example (8-bit):

mov al, 0x7F # +127

add al, 1 # result 0x80 (-128 in int8)

# OF = 1

No signed overflow (even if CF may change):

mov al, 0xFF # -1 in int8

add al, 1 # 0

# OF = 0

4.4 Logical and Shift Instruction Flag Effects

Logical operations (and, or, xor, test) compute bitwise results and update some status

flags:

• ZF and SF reflect the logical result.

• CF and OF are cleared for common logical operations.

Example:

mov eax, 0

or eax, 0 # EAX = 0

# ZF = 1, SF = 0, CF = 0, OF = 0

test is especially important because it performs an AND for flags only without storing the

result:

test eax, eax # checks if EAX is zero without modifying EAX

# ZF = 1 iff EAX == 0

Shift instructions update flags based on the shift result and the bit shifted out:
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• CF becomes the last bit shifted out.

• ZF and SF reflect the result.

• OF is defined in specific cases (notably for shift-by-1) and should not be assumed for

general shift counts.

Example: left shift sets CF from the bit shifted out:

mov al, 0x80

shl al, 1 # AL = 0x00, bit7 shifted out

# CF = 1, ZF = 1, SF = 0

Example: right shift sets CF from the bit shifted out:

mov al, 0x01

shr al, 1 # AL = 0x00, bit0 shifted out

# CF = 1, ZF = 1, SF = 0

4.5 Flag Preservation and Clobbering

Flags are not stable variables. Any instruction that updates flags can destroy the condition

produced by a previous instruction.

Clobber example:

cmp eax, ebx # sets flags based on (EAX - EBX)

add ecx, 1 # clobbers flags

je equal # now tests flags from ADD, not from CMP

Correct pattern: branch immediately after producing flags, or explicitly recompute:

cmp eax, ebx

je equal

add ecx, 1
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Some instructions do not affect flags, but you must never assume this without knowing the

instruction class. A safe mental model:

• Arithmetic, compare, logical, shift, and many bit-manipulation instructions update flags.

• Data movement instructions (mov, lea) do not update flags.

4.6 Why Flags Are Not “Boolean Results”

Flags are not a single true/false output. They are multiple independent bits that describe

different properties of the same operation.

A common misunderstanding is to treat CF or ZF as if they encode the entire meaning of a

comparison. In reality:

• ZF answers: is the result zero

• CF answers: did unsigned arithmetic carry/borrow

• OF answers: did signed arithmetic overflow

• SF answers: is the MSB of the result set

The CPU does not decide signedness. The programmer chooses whether to interpret the flags

as signed or unsigned by selecting different conditional branches.

4.7 Practical Examples

Same operation, different flags

Add 1 to 0xFF in 8-bit:
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mov al, 0xFF

add al, 1 # AL = 0x00

# ZF = 1, CF = 1, SF = 0, OF = 0

Add 1 to 0x7F in 8-bit:

mov al, 0x7F # +127

add al, 1 # 0x80 (-128)

# ZF = 0, CF = 0, SF = 1, OF = 1

Both are “add 1”, but CF and OF differ because CF tracks unsigned carry while OF tracks

signed overflow.

Signed vs unsigned interpretation

The same cmp instruction sets the same flags, but different conditional branches interpret them

differently.

Example: compare 0xFF with 1 (8-bit views):

mov al, 0xFF # 255 unsigned, -1 signed

cmp al, 1 # flags based on (AL - 1)

Unsigned interpretation uses ja/jb (above/below). Signed interpretation uses jg/jl

(greater/less).

Conceptual consequence:

• Unsigned: 255 is above 1

• Signed: -1 is less than 1

This is not two different compares. It is one compare with two interpretations.
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Common flag-logic mistakes

Mistake 1: Branching after clobbering flags:

cmp eax, 0

add ebx, 1

jne not_zero # wrong: tests ADD flags, not CMP flags

Correct:

cmp eax, 0

jne not_zero

add ebx, 1

Mistake 2: Using the wrong condition for signed vs unsigned:

cmp eax, ebx

jl less_signed # signed less-than

If values represent sizes or addresses, signed comparisons are usually wrong. Use unsigned

conditions (jb/jae/ja) when comparing values that are conceptually non-negative

quantities.

Mistake 3: Expecting mov to “keep flags meaningful” across sequences:

cmp eax, ebx

mov ecx, edx # does not modify flags

je equal # OK

But inserting almost any arithmetic or logical instruction between compare and branch

typically breaks the logic:

cmp eax, ebx

xor ecx, ecx # clobbers flags

je equal # wrong
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Correct approach: branch immediately or recompute flags with another compare or test:

cmp eax, ebx

je equal

xor ecx, ecx



Chapter 5

Signed vs Unsigned: Flags in Context

5.1 Why the CPU Does Not Know “Signedness”

At the ISA level, the CPU operates on bit patterns. A register contains bits, and arithmetic

instructions transform those bits using fixed rules. The hardware does not carry metadata such

as “this value is signed” or “this value is unsigned”. Signedness is a human interpretation of

the same bit pattern.

Example: the 8-bit pattern 0xFF can mean:

• 255 if interpreted as unsigned

• -1 if interpreted as signed two’s complement

The CPU performs the same subtraction for a cmp regardless of interpretation:

mov al, 0xFF # bits: 11111111

cmp al, 1 # computes (AL - 1) for flags only

What changes is how later instructions (branches, cmov, setcc) interpret the resulting flags.
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5.2 How Instructions Interpret Flags Differently

The same flags can be interpreted as unsigned or signed conditions. x86 provides different

condition codes for each interpretation.

After cmp a, b (conceptually a subtraction a - b for flags):

• Unsigned comparisons use primarily CF and ZF

• Signed comparisons use relationships among SF and OF, and also ZF

Key unsigned condition meanings:

• jb (below): CF=1

• jae (above or equal): CF=0

• ja (above): CF=0 and ZF=0

• jbe (below or equal): CF=1 or ZF=1

Key signed condition meanings:

• jl (less): SF != OF

• jge (greater or equal): SF == OF

• jg (greater): ZF=0 and SF==OF

• jle (less or equal): ZF=1 or SF!=OF

These are not different comparisons. They are different interpretations of one flag state.
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5.3 Conditional Logic Based on Flags

Flags become useful only when consumed by conditional instructions. The most common

consumers are:

• conditional jumps (jcc)

• conditional moves (cmovcc)

• conditional sets into a byte (setcc)

Example using setcc to materialize a boolean:

cmp eax, ebx

setl dl # DL = 1 if signed less-than (SF != OF), else

0↪→

Example using cmovcc to avoid branches:

mov eax, esi # candidate A

mov ebx, edi # candidate B

cmp eax, ebx

cmovg eax, ebx # if signed greater, EAX = EBX

Conditional logic is correct only if the chosen condition matches the intended meaning of the

data.

5.4 Overflow vs Carry — Revisited in x86

CF and OF answer different questions.

CF (Carry Flag) indicates unsigned overflow for addition, or unsigned borrow for

subtraction. It is the correct flag for reasoning about arithmetic on non-negative quantities

such as sizes, indices, addresses, and modular arithmetic.



41

OF (Overflow Flag) indicates signed overflow in two’s complement. It is relevant when

values are intended to represent signed integers.

Unsigned overflow example (8-bit):

mov al, 0xFF

add al, 1 # AL = 0x00

# CF = 1, OF = 0

Signed overflow example (8-bit):

mov al, 0x7F # +127

add al, 1 # 0x80 (-128)

# CF = 0, OF = 1

Subtraction borrow vs signed overflow:

mov al, 0x00

sub al, 1 # AL = 0xFF

# CF = 1 (borrow), OF = 0

The rule of thumb:

• Use CF-based conditions for unsigned comparisons.

• Use SF/OF-based conditions for signed comparisons.

5.5 Examples

Comparing signed integers

Suppose EAX and EBX hold signed 32-bit integers. We want: if EAX < EBX then branch.

cmp eax, ebx

jl less_signed # signed less-than: SF != OF
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Why this is correct:

• cmp sets flags as if computing eax - ebx

• jl uses SF != OF which matches signed ordering in two’s complement

Example where signed and unsigned disagree:

mov eax, -1 # 0xFFFFFFFF

mov ebx, 1

cmp eax, ebx

jl signed_less # taken: -1 < 1

ja unsigned_above # also considered: 0xFFFFFFFF > 1 (would be

taken if executed)↪→

Only one of these is meaningful depending on the intended interpretation of the data.

Comparing unsigned integers

Suppose EAX and EBX represent sizes or indices. We want: if EAX < EBX then branch,

unsigned.

cmp eax, ebx

jb below_unsigned # unsigned below: CF = 1

Example where unsigned meaning is essential:

mov eax, 0x80000000 # 2147483648 unsigned, -2147483648 signed

mov ebx, 1

cmp eax, ebx

jb u_below # not taken: 0x80000000 is not below 1

unsigned↪→

jl s_less # taken: negative is less than 1 signed

If these values represent memory sizes, the signed branch is wrong.



43

Subtle logic bugs caused by wrong condition

Bug 1: comparing sizes (unsigned) using signed condition:

cmp eax, ebx

jl smaller # wrong if EAX/EBX are sizes or indices

Correct:

cmp eax, ebx

jb smaller # correct for sizes (unsigned below)

Bug 2: checking for negative using CF instead of SF:

test eax, eax

jc negative # wrong: CF meaning here is not ``negative''

Correct:

test eax, eax

js negative # correct: SF reflects sign bit of result

Bug 3: detecting signed overflow using CF:

add eax, ebx

jc overflow # wrong for signed overflow

Correct for signed overflow detection:

add eax, ebx

jo overflow # OF = 1 indicates signed overflow

Bug 4: using jg/jl for pointers or addresses:

cmp rax, rbx

jg higher_address # wrong for address ordering
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Correct (treat addresses as unsigned):

cmp rax, rbx

ja higher_address # correct unsigned above

Practical rule set:

• If the quantity can never be negative (sizes, indices, addresses), use unsigned conditions.

• If the quantity represents a signed integer domain, use signed conditions.

• To detect unsigned overflow use jc; to detect signed overflow use jo.



Chapter 6

Addressing Modes: The Heart of x86
Power

6.1 What an Addressing Mode Really Is

An addressing mode defines how an instruction forms an effective address (EA) when it

accesses memory. In x86, the effective address is computed from up to four components:

EA = Base + (Index × Scale) + Displacement

Where:

• Base is a general-purpose register holding an address

• Index is a general-purpose register holding an offset

• Scale is a small integer multiplier (1,2,4,8)

• Displacement is an immediate constant encoded in the instruction
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This addressing model is one of x86’s defining features because it makes common data-

structure access patterns expressible in a single memory operand.

6.2 Register-Direct vs Memory-Based Access

x86 instructions can operate on:

• register operands: the value is already in a register

• memory operands: the value is stored in memory, accessed via an effective address

Register-direct example:

add eax, ebx # EAX = EAX + EBX, no memory access

Memory-based example:

add eax, dword ptr [rbx] # EAX = EAX + *(uint32_t*)RBX

The second form implies a memory read as part of the instruction’s semantics. The addressing

mode specifies how the address in brackets is computed.

6.3 Base + Offset Addressing

The simplest useful memory form uses a base register plus an immediate displacement

(offset):

EA = Base + Displacement

Examples:

mov eax, dword ptr [rdi] # EA = RDI

mov eax, dword ptr [rdi + 16] # EA = RDI + 16

mov byte ptr [rbx + 1], 0x7F # EA = RBX + 1
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This pattern naturally models fields within a struct, local variables within a stack frame

(conceptually), and fixed offsets from a base pointer.

6.4 Base + Index + Scale + Displacement

The most general x86 addressing form is:

EA = Base + (Index × Scale) + Displacement

Examples:

mov eax, dword ptr [rdi + rcx*4] # EA = RDI + RCX*4

mov eax, dword ptr [rdi + rcx*4 + 8] # EA = RDI + RCX*4 + 8

mov rdx, qword ptr [rbx + rsi*8 + 24] # EA = RBX + RSI*8 + 24

This directly expresses:

• array indexing (base + index*element size)

• table lookups

• member access with a header offset (+ displacement)

6.5 Legal and Illegal Addressing Combinations

Architecturally, x86 does not allow arbitrary arithmetic expressions in memory operands. Only

specific patterns are legal.

Legal:

• [base]

• [base + disp]
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• [base + index*scale]

• [base + index*scale + disp]

• [index*scale + disp] (base omitted)

Not legal (must be rewritten):

• two scaled indexes: [rdi + rsi*4 + rcx*2]

• general multiplication by non-scale constants: [rdi + rcx*3]

• nested brackets: [[rdi] + 8]

• arbitrary expressions: [rdi + (rcx + rdx)*4]

When an expression is illegal, compute part of it using lea or arithmetic instructions, then use

a legal addressing mode.

Example rewrite for a factor of 3:

lea rdx, [rcx + rcx*2] # RDX = RCX*3

mov eax, dword ptr [rdi + rdx*4] # EA = RDI + (RCX*3)*4 = RDI +

RCX*12↪→

6.6 Scale Factors and Their Hardware Meaning

The scale factor in x86 addressing is limited to 1, 2, 4, or 8. This matches common element

sizes:

• 1 byte

• 2 bytes

• 4 bytes
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• 8 bytes

This is not a general multiplication facility. It is a specialized addressing feature to support

indexed addressing efficiently.

Examples:

mov al, byte ptr [rdi + rcx*1] # byte array

mov ax, word ptr [rdi + rcx*2] # 16-bit array

mov eax, dword ptr [rdi + rcx*4] # 32-bit array

mov rax, qword ptr [rdi + rcx*8] # 64-bit array

If the element size is not 1/2/4/8, you must compute index * element size separately.

Example element size 24:

lea rdx, [rcx*8] # RDX = RCX*8

lea rdx, [rdx + rcx*16] # RDX = RCX*24 (8 + 16)

mov rax, qword ptr [rdi + rdx] # EA = base + index*24

6.7 Practical Examples

Stack-like access

Without introducing ABI rules, stack-like access can be modeled as using a pointer register

that moves and indexing relative to it.

Push-like pattern (conceptual):

sub rsp, 8 # reserve space

mov qword ptr [rsp], rax # store value at top

Pop-like pattern (conceptual):

mov rax, qword ptr [rsp] # load value

add rsp, 8 # release space
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Local-slot access pattern (conceptual):

mov dword ptr [rsp + 12], 7 # store at fixed offset from a

stack pointer↪→

mov eax, dword ptr [rsp + 12] # load from same slot

Array traversal

Assume RDI holds the base of an array of 32-bit integers and RCX is an index.

Single element load:

mov eax, dword ptr [rdi + rcx*4] # A[RCX]

Sequential traversal using pointer increment:

mov rbx, rdi # RBX = current pointer

mov ecx, 4 # count

L1:

mov eax, dword ptr [rbx] # load *RBX

add rbx, 4 # advance to next element

dec ecx

jne L1

Traversal using index and scale:

xor ecx, ecx # i = 0

L2:

mov eax, dword ptr [rdi + rcx*4] # A[i]

inc ecx

cmp ecx, 4

jne L2
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Struct-like memory layouts

Assume RDI points to a struct-like object with fields at fixed offsets. Example layout

(conceptual):

• offset 0: 32-bit id

• offset 4: 32-bit flags

• offset 8: 64-bit pointer

• offset 16: 32-bit length

Access fields:

mov eax, dword ptr [rdi + 0] # id

mov ebx, dword ptr [rdi + 4] # flags

mov rdx, qword ptr [rdi + 8] # pointer

mov ecx, dword ptr [rdi + 16] # length

Combining base+index*scale+disp for an array inside a struct: Assume at offset 32 begins an

array of 64-bit entries and RCX is an index.

mov rax, qword ptr [rdi + rcx*8 + 32] # obj->entries[RCX]

This single addressing mode expresses:

• base pointer to object (RDI)

• index scaling for 8-byte elements (RCX*8)

• member offset within object (+32)



Chapter 7

Memory Operands: Reading and Writing
Correctly

7.1 Memory Is Not a Register

A register operand names an architectural register that already contains a value. A memory

operand names an address and requires memory access to read or write the value stored at

that address. Even when written in one instruction, a memory operand implies work that a

register operand does not.

Register form:

add eax, ebx # purely register operation

Memory form:

add eax, dword ptr [rbx] # reads memory at address RBX

A bracket expression in Intel syntax is not a value. It is a dereference: [addr] means “the

memory located at addr”. Confusing addr with [addr] is a core source of bugs.
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7.2 Operand Size and Explicitness

Every x86 memory access has a size. The CPU must know whether it is reading or writing 1,

2, 4, or 8 bytes (or other sizes for specific instruction families). When the size is not implied

by another operand, it must be made explicit.

If the destination is a register, the size is implied:

mov eax, [rdi] # implies 4-byte load

mov rax, [rdi] # implies 8-byte load

If the destination is memory, the size is often ambiguous unless specified:

mov [rdi], 1 # ambiguous without size

Correct explicit forms:

mov byte ptr [rdi], 1

mov word ptr [rdi], 1

mov dword ptr [rdi], 1

mov qword ptr [rdi], 1

A safe rule:

• If an instruction has a memory operand and no register operand that forces size, specify

byte/word/dword/qword ptr.

7.3 Why Memory-to-Memory Operations Are Limited

Most integer arithmetic and logic instructions do not permit both operands to be memory. This

is a defining characteristic of x86 instruction forms:

• common pattern: reg, reg or reg, mem or mem, reg
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• generally illegal: mem, mem

Illegal example:

add dword ptr [rdi], dword ptr [rsi] # invalid: memory-to-memory

add↪→

Correct rewrite uses a register as a temporary:

mov eax, dword ptr [rsi]

add dword ptr [rdi], eax

Some specialized instructions do support memory-to-memory-like behavior (string moves,

some compare forms), but this is the exception, not the rule.

7.4 Alignment Considerations (Conceptual)

Alignment is the relationship between an address and the size of the data being accessed. For

example, a 4-byte integer is naturally aligned when its address is a multiple of 4.

This booklet treats alignment conceptually:

• Misalignment does not necessarily make an access illegal at the ISA level for ordinary

integer loads/stores.

• Misalignment can affect performance and may matter more for certain instruction

families and platforms.

• Correctness problems arise when code assumes alignment that is not guaranteed by the

data layout.

Conceptual demonstration (not ABI-specific):
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mov eax, dword ptr [rdi] # expects 4 bytes from address RDI

mov eax, dword ptr [rdi + 1] # still reads 4 bytes, but at a

misaligned address↪→

From an ISA viewpoint, both are defined as a 4-byte read at the specified effective address.

From a design viewpoint, the second should only be used intentionally with full awareness of

the data layout.

7.5 Implicit Memory Access in Instructions

Some instructions access memory implicitly, even if the line does not look like a classic

[addr] form, or even if registers are not explicitly listed.

Examples of implicit memory access include:

• stack operations: push, pop

• string operations: movsb, cmpsb (with rep prefixes)

• call/return: call, ret

Stack-like implicit memory access:

push rax # writes memory at [RSP-8], updates

RSP↪→

pop rax # reads memory at [RSP], updates RSP

String move implicit memory access:

rep movsb # reads from [RSI], writes to [RDI],

updates RSI/RDI/RCX↪→

These instructions do not mention explicit memory operands, but their semantics include

memory reads and writes.
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7.6 Examples

Correct memory operand usage

Example 1: load a 32-bit value, update it, store it back:

mov eax, dword ptr [rdi]

add eax, 10

mov dword ptr [rdi], eax

Example 2: increment a memory counter (single memory operand is allowed):

inc dword ptr [rdi]

Example 3: store an immediate with explicit size:

mov qword ptr [rdi + 8], 0

mov dword ptr [rdi + 16], 1

Example 4: compute address with lea and then access memory:

lea rbx, [rdi + rcx*4 + 8]

mov eax, dword ptr [rbx]

Ambiguous operand size errors

Ambiguous store of an immediate:

mov [rdi], 1 # ambiguous size, must be specified

Correct:

mov byte ptr [rdi], 1

Ambiguous bit operation on memory without size:
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and [rdi], 0xFF # ambiguous size

Correct:

and byte ptr [rdi], 0xFF

Ambiguous compare against an immediate:

cmp [rdi], 0 # ambiguous size

Correct:

cmp dword ptr [rdi], 0

Hidden memory accesses

Hidden memory access 1: stack operation:

push rax # implicit write to memory

Hidden memory access 2: call and return:

call target # implicit push of return address to

memory↪→

ret # implicit pop of return address

from memory↪→

Hidden memory access 3: string copy:

mov rsi, rbx

mov rdi, rdx

mov ecx, 8

rep movsb # implicit reads and writes to

memory↪→

Hidden memory access 4: compare string bytes:
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mov rsi, rbx

mov rdi, rdx

mov ecx, 8

repe cmpsb # implicit reads from memory and

flag updates↪→

Practical checklist:

• Always distinguish address (rdi) from dereference ([rdi]).

• Always ensure memory operand size is known; specify it when not implied.

• Expect most arithmetic instructions to require at least one register operand.

• Treat push/pop/call/ret and string ops as memory operations even when operands are

implicit.
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mov vs lea: The Most Misunderstood
Pair

8.1 What mov Actually Does

mov transfers a value from a source operand to a destination operand. The source can be

an immediate, a register, or a memory operand. If the source is memory, mov performs a

memory read. If the destination is memory, mov performs a memory write.

Register to register:

mov rax, rbx # RAX = RBX

Immediate to register:

mov eax, 123 # EAX = 123, upper half of RAX cleared in

64-bit mode↪→

Memory to register (load):

mov eax, dword ptr [rdi] # EAX = *(uint32_t*)RDI
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Register to memory (store):

mov dword ptr [rdi], eax # *(uint32_t*)RDI = EAX

mov does not compute addresses as a result. It either copies a register/immediate value, or it

dereferences memory and copies the loaded value.

8.2 What lea Actually Does

lea means Load Effective Address. It computes an address using the x86 addressing-mode

formula and writes the computed integer result into a register. It does not read memory.

lea rax, [rdi + rcx*4 + 8] # RAX = RDI + RCX*4 + 8

The bracket expression in lea is not a dereference. It is an arithmetic expression restricted to

legal addressing forms:

EA = Base + (Index × Scale) + Disp

lea is an address-calculation instruction that uses the addressing hardware as an integer adder

with optional scaled index.

8.3 Address Calculation vs Data Access

A central mental model:

• mov rax, [addr] reads data from memory at addr

• lea rax, [addr] computes the value addr as an integer

Example:

mov rax, [rdi] # RAX = memory_at(RDI)

lea rbx, [rdi] # RBX = RDI
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Even though both use brackets, only mov dereferences.

This difference is crucial when reading assembly:

• mov with brackets is a memory access.

• lea with brackets is integer arithmetic.

8.4 Why lea Is Not a Load Instruction

The term “load” in lea is historical and refers to loading the computed address into a register,

not loading memory contents.

If lea were a load, this would make sense:

lea eax, dword ptr [rdi] # incorrect idea: "load from memory"

But architecturally lea does this:

lea rax, [rdi] # RAX = RDI

It never touches memory. Therefore:

• lea cannot fault due to reading invalid memory contents.

• lea can still fault if the instruction encoding itself is invalid, but not due to

dereferencing.

8.5 Performance and Semantics Differences

Semantics first:

• mov with a memory source depends on memory and produces the loaded data.
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• lea depends only on registers and immediates and produces an address-sized integer

result.

Practical implications:

• lea is frequently used for pointer arithmetic and index computation without affecting

flags.

• mov is used to transfer values and to actually load/store memory.

Flags:

• lea does not update status flags.

• mov does not update status flags.

Because neither updates flags, both are often used between cmp/test and a conditional

jump without clobbering the condition.

Code-generation reality:

• Compilers commonly use lea as a compact way to compute base + index*scale

+ disp.

• Compilers avoid lea when they need flags from arithmetic instructions.

A critical caution:

• lea can compute many arithmetic forms efficiently, but it is not a general multiply.

• It cannot compute index*3 directly unless represented through allowed scale

combinations (1,2,4,8) and addition.
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8.6 Practical Examples

Pointer arithmetic

Compute p + 32 into RAX without touching memory:

lea rax, [rdi + 32] # RAX = RDI + 32

Dereferencing the pointer to read the value at p + 32:

mov eax, dword ptr [rdi + 32] # EAX = *(uint32_t*)(RDI + 32)

Compute p + i*8 for an array of 64-bit elements:

lea rax, [rdi + rcx*8] # RAX = base + index*8

Array indexing

Load A[i] where elements are 32-bit:

mov eax, dword ptr [rdi + rcx*4] # EAX = A[i]

Compute address of A[i] for later use:

lea rbx, [rdi + rcx*4] # RBX = &A[i]

Then store through that computed address:

mov dword ptr [rbx], 0 # A[i] = 0

Compute address and load can be separated cleanly:

lea rbx, [rdi + rcx*4 + 8] # &A[i] plus a header offset

mov eax, dword ptr [rbx] # load value
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Accidental bugs from misuse

Bug 1: using lea when a load is required:

lea eax, [rdi] # EAX = RDI, not *(uint32_t*)RDI

Correct load:

mov eax, dword ptr [rdi] # EAX = memory_at(RDI)

Bug 2: using mov when the address is required:

mov rax, qword ptr [rdi + 16] # loads value at offset 16

If the goal was to compute the address RDI + 16:

lea rax, [rdi + 16] # computes address only

Bug 3: assuming lea performs bounds checking:

lea rax, [rdi + rcx*8] # computes address even if RCX is out

of bounds↪→

lea does not validate memory. Any later memory access is what may fault:

mov rdx, qword ptr [rax] # this is where invalid address

causes a fault↪→

Bug 4: expecting lea to compute arbitrary expressions:

# desired: RAX = RDI + RCX*12

# illegal as a single addressing mode because scale cannot be 12

Correct decomposition:

lea rdx, [rcx + rcx*2] # RDX = RCX*3

lea rax, [rdi + rdx*4] # RAX = RDI + (RCX*3)*4 = RDI +

RCX*12↪→
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Practical rules:

• Use mov reg, [mem] when you need the value stored in memory.

• Use lea reg, [expr] when you need the computed address or scaled index

arithmetic.

• Brackets mean dereference for most instructions, but mean arithmetic expression for

lea.



Chapter 9

Instruction Encoding Implications
(Conceptual)

9.1 Why Instruction Form Matters

In x86, the same high-level intent can be expressed using different instruction forms.

Instruction form includes:

• which operands are registers vs memory

• which addressing mode is used

• whether immediates are embedded

• operand width selection (8/16/32/64)

• whether the encoding requires prefixes and extended fields

Even when two sequences are logically equivalent, they can differ in:
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• code size (number of bytes fetched and decoded)

• number and type of implicit operations (loads, stores, merges)

• dependency patterns on registers and memory

This chapter stays conceptual: it teaches what changes when form changes, without relying

on specific microarchitecture tables.

9.2 Register vs Memory Operand Cost

A register operand is a value already inside the architectural register file. A memory operand

implies address generation plus a load or store.

Compare these:

Register form:

add eax, ebx # EAX = EAX + EBX

Memory form:

add eax, dword ptr [rbx] # EAX = EAX + *(uint32_t*)RBX

The second form implies:

• effective address computation (base/index/scale/disp)

• a memory read

• then the arithmetic

x86 allows many reg, mem forms to reduce code size, but memory operands introduce:

• dependency on memory latency
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• sensitivity to cache and alignment

• more work for the front-end (decode, address generation)

A common performance-friendly shape is to separate the load from the arithmetic when

reusing data:

mov edx, dword ptr [rbx]

add eax, edx

This avoids repeating the memory operand if the value is used multiple times.

9.3 Addressing Mode Complexity and Decode Cost

x86 memory operands can encode complex effective addresses:

EA = Base + (Index × Scale) + Disp

A simple address:

mov eax, dword ptr [rdi]

A more complex address:

mov eax, dword ptr [rdi + rcx*4 + 128]

Conceptually, complex addressing can increase:

• instruction length (more bytes for SIB and displacement)

• decode work (more fields to parse)

• address-generation work (more add/scale components)
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This does not mean complex addressing is always bad. It means it is not free, and it can

become a bottleneck when overused, especially in tight loops.

A common structural improvement is to hoist repeated address computation:

lea rbx, [rdi + 128]

mov eax, dword ptr [rbx + rcx*4]

Here the constant displacement is paid once, then indexing is simpler and repeated.

9.4 Why Some Instructions “Look Simple but Aren’t”

Some single-line x86 instructions can represent multiple conceptual operations.

Example: incrementing a memory location:

inc dword ptr [rdi]

Conceptually this implies:

• load 32-bit value from memory

• add 1

• store back

• update flags (except CF for inc)

Another example: arithmetic directly from memory:

add eax, dword ptr [rdi + rcx*4]

Conceptually:

• compute effective address

• load from memory
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• add to register

• update flags

These instructions may appear compact, but compactness often combines multiple hidden

costs.

A separate hidden complexity is partial-register behavior. An instruction that writes an 8-bit

subregister may appear small but can create dependencies on the previous full-register value:

mov al, 1 # partial update

add rax, 2 # later use of full register depends

on merge↪→

A 32-bit write often defines the value more cleanly:

mov eax, 1 # defines low 32, clears high 32 in

64-bit mode↪→

add rax, 2

9.5 Examples

Equivalent logic, different encodings

Example 1: adding a constant to a register. Two forms are logically equivalent:

add eax, 1

inc eax

They both increment the register by 1, but they differ in flag behavior:

• add updates all standard arithmetic flags including CF
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• inc does not update CF

Thus the forms are not interchangeable if later code depends on CF.

Example 2: comparing against zero.

cmp eax, 0

test eax, eax

Both can be used to branch on zero/non-zero, but test is purely bitwise AND for flags and is

often a preferred idiom for zero checks because it does not need an immediate constant.

Example 3: computing scaled arithmetic with lea vs explicit arithmetic.

lea rax, [rdi + rcx*8]

mov rax, rcx

shl rax, 3

add rax, rdi

Both compute RDI + RCX*8. The first is one instruction that does not change flags. The

second is multiple instructions and shifts may update flags, affecting later conditional logic

unless planned.

Simpler instruction forms outperforming complex ones

Example 1: avoid repeated complex addressing in a loop.

Complex addressing repeated each iteration:

xor ecx, ecx

L1:

mov eax, dword ptr [rdi + rcx*4 + 128]

add ebx, eax
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inc ecx

cmp ecx, edx

jne L1

Simplify by hoisting base computation:

lea rsi, [rdi + 128]

xor ecx, ecx

L2:

mov eax, dword ptr [rsi + rcx*4]

add ebx, eax

inc ecx

cmp ecx, edx

jne L2

Conceptual benefit:

• shorter and simpler memory operand in the loop body

• the constant displacement is paid once

Example 2: reuse a loaded value instead of reloading from memory.

Reloading twice:

add eax, dword ptr [rdi]

sub ebx, dword ptr [rdi]

Load once, reuse:

mov ecx, dword ptr [rdi]

add eax, ecx

sub ebx, ecx

Conceptual benefit:
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• one memory read instead of two

• clearer dependency structure

Example 3: prefer clean-width writes to avoid partial-register merge effects.

Partial byte write followed by 64-bit use:

mov rax, 0

mov al, 1

add rax, 2

Cleaner 32-bit write:

mov eax, 1

add rax, 2

Conceptual benefit:

• the register value is fully defined in the common 64-bit execution model

• fewer hidden dependencies on previous register contents

Practical rule set:

• Choose instruction forms based on correctness first (especially flags).

• Prefer forms that avoid repeated memory operands when values are reused.

• Prefer addressing simplification when the same base and displacement repeat in loops.

• Prefer operand widths that fully define registers when later code uses the full register.
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Common Beginner and Intermediate
Mistakes

10.1 Partial Register Writes

A partial register write occurs when code writes only a subregister (AL, AH, AX, EAX) while

later treating the full register (RAX) as fully defined. In 64-bit mode, writing EAX clears the

upper 32 bits of RAX, but writing AL or AX does not.

Bug pattern: low-byte write leaves stale high bits.

mov rax, 0x1122334455667788

mov al, 1 # only changes bits 7:0

# RAX = 0x1122334455667701

Correct pattern: if a clean value is required, prefer a 32-bit write.

mov eax, 1 # defines low 32 and clears high 32

# RAX = 0x0000000000000001
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Bug pattern: address computation contaminated by stale upper bits.

mov rdi, 0x00007FFF00000000

mov di, 0x1234 # only changes low 16 bits

# RDI = 0x00007FFF00001234 # not 0x1234

Correct:

mov edi, 0x1234 # zero-extends into RDI

10.2 Assuming Flags Persist

Flags are overwritten by many common instructions. A comparison is only meaningful until

the next flag-clobbering instruction executes.

Bug pattern: clobbering flags between cmp and jcc.

cmp eax, ebx

add ecx, 1 # clobbers flags

je equal # now tests ADD flags, not CMP flags

Correct: branch immediately after producing flags.

cmp eax, ebx

je equal

add ecx, 1

Bug pattern: using xor reg, reg for zeroing without noticing it also sets flags.

cmp eax, 0

xor edx, edx # clobbers flags

jne not_zero # wrong

Correct: either reorder, or re-establish flags.
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xor edx, edx

cmp eax, 0

jne not_zero

10.3 Confusing Address with Value

In Intel syntax, a register like RDI is an integer value. [RDI] is the memory located at the

address stored in RDI. Confusing them produces wrong results and hard-to-debug crashes.

Bug pattern: expecting mov rax, rdi to load memory.

mov rax, rdi # copies the pointer value, no memory

read↪→

Correct load:

mov rax, qword ptr [rdi] # loads value from memory

Bug pattern: computing an address but accidentally loading from memory.

mov rax, qword ptr [rdi + 16] # loads value at offset 16

Correct address computation:

lea rax, [rdi + 16] # computes address only

10.4 Misreading Memory Operand Syntax

Intel syntax uses [base + index*scale + disp] to express an effective address, not

a high-level expression language. The bracket contents are address components, not nested

dereferences.

Correct interpretation:
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mov eax, dword ptr [rdi + rcx*4 + 8]

# EA = RDI + RCX*4 + 8

# EAX = *(uint32_t*)EA

Bug pattern: thinking [rdi] is the same as rdi.

lea rax, [rdi] # RAX = RDI

mov rax, [rdi] # RAX = memory_at(RDI)

Bug pattern: missing operand-size explicitness on memory destinations.

mov [rdi], 1 # ambiguous size

Correct:

mov byte ptr [rdi], 1

Bug pattern: attempting illegal memory-to-memory arithmetic.

add dword ptr [rdi], dword ptr [rsi] # invalid form

Correct:

mov eax, dword ptr [rsi]

add dword ptr [rdi], eax

10.5 Overusing Complex Addressing Modes

Complex addressing is powerful, but overusing it can make code harder to read and can

increase front-end work (longer encodings, more address components). The most common

mistake is repeating a complex base+index+scale+disp inside a loop when part of it is loop-

invariant.

Overused pattern:



78

xor ecx, ecx

L1:

mov eax, dword ptr [rdi + rcx*4 + 128]

add ebx, eax

inc ecx

cmp ecx, edx

jne L1

Better pattern: hoist the invariant displacement.

lea rsi, [rdi + 128]

xor ecx, ecx

L2:

mov eax, dword ptr [rsi + rcx*4]

add ebx, eax

inc ecx

cmp ecx, edx

jne L2

Another overuse is trying to encode expressions that do not match legal forms, leading to

incorrect or overly long sequences. A disciplined approach:

• Use addressing modes to express natural data layouts (arrays, structs).

• Hoist invariants out of loops.

• Use lea to precompute intermediate addresses when needed.

10.6 Real-World Bug Patterns



79

Bug pattern 1: wrong signed/unsigned condition

Using signed branches for quantities that should be unsigned (sizes, indices, addresses) causes

subtle logic errors.

Wrong:

cmp eax, ebx

jl smaller # wrong for sizes

Correct:

cmp eax, ebx

jb smaller # unsigned below

Bug pattern 2: divide without preparing implicit registers

Unsigned division uses RDX:RAX as the dividend. Forgetting to clear RDX changes the

dividend and can raise an exception.

Wrong:

mov rax, 100

mov rcx, 9

div rcx # wrong if RDX is not known

Correct:

mov rax, 100

xor edx, edx # clear high half

mov rcx, 9

div rcx



80

Bug pattern 3: accidental flag dependency

inc/dec do not update CF, while add/sub do. Mixing them can break code that depends

on CF.

Bug example:

stc # CF = 1

inc eax # CF unchanged

jc carry_path # still taken, not what "overflow check"

intended↪→

If carry behavior matters, use explicit add and check jc.

Bug pattern 4: hidden memory access assumptions

Assuming an instruction is “register-only” when it implicitly accesses memory causes

performance surprises and correctness bugs.

Example:

push rax # implicit memory write at [RSP-8]

pop rbx # implicit memory read at [RSP]

Bug pattern 5: inconsistent operand size across loads/stores

Loading 32-bit and storing 64-bit (or vice versa) unintentionally corrupts adjacent fields.

Bug:

mov eax, dword ptr [rdi] # loads 4 bytes

mov qword ptr [rdi], rax # stores 8 bytes, overwriting next field

Correct: match sizes intentionally.

mov eax, dword ptr [rdi]

mov dword ptr [rdi], eax
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Practical checklist:

• Prefer 32-bit writes to fully define GPRs in 64-bit mode.

• Branch immediately after cmp/test unless you are sure intervening instructions do

not clobber flags.

• Always distinguish address (rdi) from dereference ([rdi]).

• Always make memory operand size explicit when not implied.

• Hoist loop-invariant address components out of tight loops.

• Treat divide and string/stack instructions as having implicit operands and side effects.



Chapter 11

Mental Models for x86 Assembly

11.1 Think in Data Flow, Not Syntax

The fastest way to gain correctness in x86 is to stop reading instructions as text and start

reading them as data flow transformations. Each instruction consumes inputs (registers,

memory, immediates) and produces outputs (registers, memory, flags).

A practical way to read a line is:

• What values does it read (including implicit reads)?

• What state does it write (including flags and implicit writes)?

• Does it define a full value or only partially update it?

Example: do not read this as “add from memory”. Read it as a flow graph:

add eax, dword ptr [rdi + rcx*4]

Data flow interpretation:

• input: RDI, RCX, memory at RDI + RCX*4, EAX
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• output: EAX, flags

This framing prevents mistakes such as assuming the address expression is a value, or

assuming flags persist.

11.2 Separate Address Computation from Data Access

x86 allows memory operands that combine address calculation with data access. This is

expressive but can hide intent and costs. A disciplined mental model separates these phases.

Combined form:

mov eax, dword ptr [rdi + rcx*4 + 8]

Separated form:

lea rbx, [rdi + rcx*4 + 8] # address computation only

mov eax, dword ptr [rbx] # data access only

Both are correct, but the separated form makes it explicit that:

• lea is arithmetic only, no memory access

• mov is the operation that touches memory

This separation is especially useful in loops, in debugging, and when validating bounds or

pointer correctness.

11.3 Read Instructions as Micro-Operations

Even without microarchitecture details, it is useful to mentally decompose instructions into

ISA-visible micro-steps. This improves correctness and helps predict side effects.

Example: memory increment
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inc dword ptr [rdi]

Mental decomposition:

• EA = RDI

• tmp = load32(EA)

• tmp = tmp + 1

• store32(EA, tmp)

• update flags (note: CF not updated by inc)

Example: compare is subtraction for flags only

cmp eax, ebx

Mental decomposition:

• tmp = EAX - EBX

• update flags based on tmp

• EAX and EBX unchanged

Example: division has implicit operands

div rcx

Mental decomposition:

• dividend = RDX:RAX (128-bit)

• divisor = RCX

• quotient -¿ RAX
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• remainder -¿ RDX

• fault if quotient does not fit

This model prevents silent mistakes such as forgetting to clear or sign-extend RDX before

division.

11.4 How to Predict Side Effects Before Writing Code

Before choosing an instruction, predict its side effects by answering these questions.

Does it write flags?

Many instructions clobber flags. If you need flags from a previous compare, do not place a

flag-writing instruction in between.

Wrong:

cmp eax, 0

add ebx, 1

jne not_zero # wrong: tests ADD flags

Correct:

cmp eax, 0

jne not_zero

add ebx, 1

Does it access memory implicitly?

Some instructions access memory without explicit brackets.



86

push rax # implicit store to memory

pop rbx # implicit load from memory

call target # implicit store of return address

ret # implicit load of return address

Does it fully define a register or partially update it?

Byte and word writes preserve upper bits of the full register. 32-bit writes in 64-bit mode clear

the upper 32 bits.

Bug:

mov rax, 0x1122334455667788

mov al, 1 # partial write

If the intent is to set RAX=1:

mov eax, 1 # full definition in common 64-bit model

Is the comparison signed or unsigned?

The CPU does not know signedness. You choose it by selecting conditions.

Unsigned size compare:

cmp eax, ebx

jb smaller # unsigned below

Signed integer compare:

cmp eax, ebx

jl smaller # signed less-than
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11.5 Checklist for Correct x86 Instruction Design

Use this checklist before finalizing an instruction sequence.

• Operand meaning: Are operands values or addresses? Is [reg] intentionally a

dereference?

• Operand size: Is the memory operand size explicit when not implied by a register?

• Register definition: Will any later use depend on upper bits that were not defined due

to partial writes?

• Flags: Does any instruction between cmp/test and jcc/cmov/setcc clobber

flags?

• Signedness: Are you using signed conditions (jl/jg) only for signed domains, and

unsigned conditions (jb/ja) for sizes/addresses?

• Implicit operands: Does any instruction silently consume or produce registers (e.g.

mul/div, string ops, loop)?

• Memory form discipline: Are you avoiding illegal memory-to-memory arithmetic and

using a temporary register when required?

• Addressing reuse: In loops, are loop-invariant address components hoisted (e.g.

constant displacement moved out)?

• mov vs lea: Are you using lea only for address arithmetic and mov for actual

memory data transfer?

• Hidden accesses: Are you accounting for memory touched by

push/pop/call/ret/rep instructions?
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A short discipline that prevents most mistakes:

• Write the intended data-flow in your head.

• Identify every read, every write, and every implicit side effect.

• Then choose the instruction form that matches that model.



Appendices

Appendix A — Minimal Register and Flag Reference

A.1 General-Purpose Register Map

In 64-bit x86, general-purpose registers (GPRs) form a unified architectural register file

with multiple overlapping views. Each name refers to a portion of the same physical register

storage.

Legacy registers extended to 64-bit:

• RAX, RBX, RCX, RDX

• RSI, RDI, RBP, RSP

Additional registers available in 64-bit mode:

• R8, R9, R10, R11

• R12, R13, R14, R15

Architecturally, all general-purpose registers are equivalent. Any register may hold integer

data, pointer values, counters, or addresses.

Example usage:
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mov rax, rbx

lea r10, [rdi + 32]

add r12, r13

A.2 Register Width Relationships

Each general-purpose register exposes multiple overlapping width views. For the accumulator

register:

• RAX : bits 63:0

• EAX : bits 31:0

• AX : bits 15:0

• AL : bits 7:0

• AH : bits 15:8

The same structure applies to:

• RBX / EBX / BX / BL / BH

• RCX / ECX / CX / CL / CH

• RDX / EDX / DX / DL / DH

Registers R8–R15 support:

• 64-bit (R8)

• 32-bit (R8D)

• 16-bit (R8W)



91

• 8-bit low (R8B)

Critical architectural rules:

• Writing a 32-bit subregister clears the upper 32 bits of the 64-bit register.

• Writing an 8-bit or 16-bit subregister preserves upper bits.

Examples:

mov rax, 0x1122334455667788

mov eax, 1

# RAX = 0x0000000000000001

mov rax, 0x1122334455667788

mov al, 1

# RAX = 0x1122334455667701

A.3 Core Flags and Their Meanings

The RFLAGS register contains status and control flags. For integer and control-flow logic, the

core status flags are:

• ZF (Zero Flag): set if the result is zero

• SF (Sign Flag): copy of the most significant bit of the result

• CF (Carry Flag): unsigned carry or borrow

• OF (Overflow Flag): signed overflow in two’s complement

Examples:

Zero result:
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mov eax, 1

sub eax, 1

# ZF = 1

Unsigned carry:

mov al, 0xFF

add al, 1

# CF = 1

Signed overflow:

mov al, 0x7F

add al, 1

# OF = 1

Sign flag reflects MSB:

mov al, 0x80

test al, al

# SF = 1

Comparison interpretation:

Unsigned:

cmp eax, ebx

jb below_unsigned

Signed:

cmp eax, ebx

jl less_signed

The processor does not track signedness. Signed or unsigned meaning is determined entirely

by which conditional instruction consumes the flags.
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Appendix B — Addressing Mode Patterns

B.1 Common Addressing Templates

x86 effective addresses follow a fixed template:

EA = Base + (Index × Scale) + Displacement

where Scale is restricted to 1, 2, 4, 8. The following templates are the patterns you

will see constantly in real code.

Base only:

mov eax, dword ptr [rdi] # EA = RDI

Base + displacement:

mov eax, dword ptr [rdi + 16] # EA = RDI + 16

Index*scale + displacement (no base):

mov eax, dword ptr [rcx*4 + 8] # EA = RCX*4 + 8

Base + index*scale:

mov eax, dword ptr [rdi + rcx*4] # EA = RDI + RCX*4

Base + index*scale + displacement:

mov eax, dword ptr [rdi + rcx*4 + 8] # EA = RDI + RCX*4 + 8

Struct field access (fixed offsets):

mov eax, dword ptr [rdi + 0] # field0

mov ebx, dword ptr [rdi + 4] # field1

mov rdx, qword ptr [rdi + 8] # field2
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Array element access (index scaled by element size):

mov eax, dword ptr [rdi + rcx*4] # int32 A[i]

mov rax, qword ptr [rdi + rcx*8] # int64 A[i]

Two-dimensional array (row-major) common shape:

# A[row][col], element size = 4

# offset = row*stride + col*4

lea rbx, [rdi + rsi*stride] # rsi = row

mov eax, dword ptr [rbx + rcx*4] # rcx = col

When a required multiplier is not 1/2/4/8, compilers synthesize it using lea and shifts.

Example: index*12 = index*(8+4):

lea rdx, [rcx*4] # RDX = RCX*4

lea rdx, [rdx + rcx*8] # RDX = RCX*12

mov eax, dword ptr [rdi + rdx] # EA = base + index*12

B.2 What Compilers Tend to Generate

Compilers favor patterns that are:

• legal in a single addressing mode

• easy to schedule and reuse

• predictable in register usage

Typical compiler-generated shapes include:

Hoisting constant displacement out of loops:
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lea rsi, [rdi + 128] # base adjusted once

xor ecx, ecx

L1:

mov eax, dword ptr [rsi + rcx*4] # simpler loop address

add ebx, eax

inc ecx

cmp ecx, edx

jne L1

Using lea for pointer arithmetic without flags:

lea rax, [rdi + rcx*8 + 24] # compute &obj->arr[i] with

header offset↪→

Materializing complex scaling using lea chains:

# compute base + index*24

lea rdx, [rcx + rcx*2] # RDX = RCX*3

lea rax, [rdi + rdx*8] # RAX = base + (RCX*3)*8 =

base + RCX*24↪→

Choosing pointer-increment loops for linear walks:

mov rbx, rdi # current = base

mov ecx, edx # count

L2:

mov eax, dword ptr [rbx]

add rbx, 4 # advance by element size

dec ecx

jne L2

Using 32-bit index registers in 64-bit code when safe, because 32-bit writes/uses are common

and zero-extension rules help keep register values well-defined:

mov eax, dword ptr [rdi + rcx*4] # 32-bit load, RCX as index
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B.3 Patterns You Should Recognize Instantly

These are the addressing shapes that should become automatic to parse.

Pattern 1: field access in a struct-like layout:

mov eax, dword ptr [rdi + 16] # obj->field at +16

Pattern 2: array indexing:

mov eax, dword ptr [rdi + rcx*4] # A[i], 4-byte elements

Pattern 3: array-of-struct field access:

# element_size = 24, field_offset = 8

lea rdx, [rcx + rcx*2] # RDX = i*3

mov rax, qword ptr [rdi + rdx*8 + 8] # base + i*24 + 8

Pattern 4: pointer-chasing (load pointer, then dereference it):

mov rax, qword ptr [rdi + 8] # load ptr = obj->next

mov eax, dword ptr [rax + 16] # load ptr->field

Pattern 5: stack-like slots (conceptual, no ABI assumptions):

mov dword ptr [rsp + 12], 7 # local slot at fixed

offset↪→

mov eax, dword ptr [rsp + 12]

Pattern 6: address vs value distinction:

lea rax, [rdi + 32] # computes address

mov rax, qword ptr [rdi + 32] # loads value from memory

Instant recognition rules:

• [base + disp] is almost always “field at fixed offset”.
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• [base + index*4] or [base + index*8] is almost always “array element”.

• lea reg, [..] is address arithmetic, not a memory load.

• If you see a multiply not in {1,2,4,8}, expect an lea chain or shift+add synthesis.

Appendix C — Preparation for Next Booklets

C.1 Readiness for Stack and Calling Conventions

Before studying stacks and calling conventions, the reader must be fluent in the architectural

rules that govern registers, flags, addressing modes, and implicit operands. The stack is not a

special mechanism; it is memory accessed through disciplined address updates and implicit

instruction behavior.

Key readiness points:

• Understanding that RSP is an ordinary register whose value is interpreted as an address.

• Recognizing that push, pop, call, and ret are memory operations with implicit

address updates.

• Being able to reason about partial register writes and their impact on pointer correctness.

Conceptual stack behavior using explicit memory operations:

sub rsp, 8

mov qword ptr [rsp], rax # manual push

Equivalent implicit form:

push rax # implicit store and RSP update

Conceptual return address handling:
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call target # implicit push of return address

# ...

ret # implicit pop into instruction pointer

A reader is ready for calling conventions when they can:

• Predict how RSP changes across instructions.

• Identify which registers are read or written implicitly by control-transfer instructions.

• Understand that conventions are rules layered on top of these architectural mechanisms.

C.2 Readiness for Memory Hierarchy and Caches

Understanding caches and memory hierarchy requires a precise mental model of when

memory is accessed and how often. This booklet prepares the reader by emphasizing the

difference between register operands and memory operands.

Key readiness points:

• Recognizing every instruction that touches memory, explicitly or implicitly.

• Understanding that complex addressing modes still result in a single memory access.

• Knowing that repeated memory operands imply repeated memory accesses unless

values are cached in registers.

Example of repeated memory access:

add eax, dword ptr [rdi]

add ebx, dword ptr [rdi]

Register-cached form:
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mov ecx, dword ptr [rdi]

add eax, ecx

add ebx, ecx

Conceptual cache-relevant pattern: linear traversal

mov rbx, rdi

mov ecx, edx

L1:

mov eax, dword ptr [rbx]

add rbx, 4

dec ecx

jne L1

The reader is ready for cache discussions when they can:

• Count memory accesses by reading assembly.

• Identify loop bodies with repeated loads and stores.

• Separate address computation cost from memory access cost.

C.3 Mapping These Concepts to ABI-Specific Rules

Application Binary Interfaces (ABIs) impose rules on top of the x86 ISA. They do not change

instruction semantics; they restrict how registers and memory are used across function

boundaries.

Preparation for ABI study requires mastery of:

• General-purpose register equivalence at the ISA level.

• Flag volatility and the fact that flags are not preserved unless explicitly specified by

convention.
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• Implicit register usage in instructions such as mul, div, and string operations.

Example: architectural freedom

mov rax, rbx

add rcx, rdx

Architecturally valid regardless of ABI, but ABI rules may later require:

• certain registers to be preserved across calls

• certain registers to be used for parameter passing

Conceptual ABI boundary example:

# before call

mov rax, 1

mov rbx, 2

call func # ABI defines which registers func may

overwrite↪→

# after call

# reader must know which registers are safe to use

The reader is ready to map ISA knowledge to ABI rules when they can:

• Distinguish architectural behavior from convention-imposed behavior.

• Identify which instructions have implicit side effects that ABIs must account for.

• Understand that ABIs standardize usage patterns without altering x86 semantics.

This appendix marks the transition point from architectural fundamentals to convention-driven

system-level programming. All subsequent booklets build on the models established here

rather than reintroducing them.
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R.1 Official Architecture Manuals (x86 / x86-64)

The primary and authoritative sources for x86 and x86-64 behavior are the vendor architecture

manuals. These documents define the ISA precisely, including register semantics, flags

behavior, addressing modes, instruction encodings, and all architectural corner cases.

Core reference categories:

• Programmer’s reference for integer, control-flow, and system instructions

• Architectural description of registers, flags, and memory models

• Precise definitions of instruction side effects and undefined or reserved behavior

These manuals are the ground truth for:

• which instructions update which flags

• which registers are implicit operands

• how effective addresses are computed

• what is architecturally guaranteed versus microarchitectural

All explanations in this booklet are derived from these architectural definitions, not from

compiler folklore or platform-specific conventions.
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R.2 Compiler Documentation and Generated Code Behavior

Modern compilers provide extensive documentation describing how high-level constructs are

lowered into machine code. While compilers do not define the ISA, they reveal common usage

patterns and idioms that rely on ISA guarantees.

Relevant documentation domains include:

• instruction selection strategies

• register allocation models

• use of addressing modes for arrays and structures

• lowering of arithmetic and comparisons into flag-based logic

Example of compiler-relevant idioms:

test eax, eax

jne L1

This pattern relies on architectural guarantees of test flag behavior. Understanding the ISA

makes such generated code predictable and readable.

Compiler documentation is used here only to confirm patterns that are already architecturally

valid.

R.3 Instruction Set Reference Sources

Instruction set reference material focuses on individual instructions and instruction families.

These sources clarify:

• operand forms and legal combinations
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• implicit operands and side effects

• flag updates and exceptions

• width-specific behavior across 8/16/32/64-bit forms

Example: understanding implicit operands in division:

mov rax, 100

xor edx, edx

mov rcx, 9

div rcx

Only an instruction-level reference explains why RDX:RAX forms the dividend and why

failing to prepare RDX causes faults.

Instruction references are essential for:

• writing correct low-level code

• auditing compiler output

• avoiding undefined or faulting instruction sequences

R.4 Academic and Professional CPU Architecture Materials

Academic and professional architecture texts provide the conceptual framework that explains

why the ISA is designed as it is. They cover:

• instruction execution models

• separation of ISA and microarchitecture

• memory hierarchies and latency hiding



104

• trade-offs between instruction complexity and code density

These materials support the mental models emphasized throughout this booklet:

• reading instructions as state transformations

• separating address computation from data access

• understanding flags as a state machine rather than boolean outputs

While these sources often use simplified or generic architectures for teaching, the principles

apply directly to real x86 processors.

R.5 Cross-References to Other Booklets in This Series

This booklet is part of a structured CPU Programming Series. Its content depends on concepts

introduced earlier and prepares the ground for later volumes.

Relevant backward references:

• execution model and instruction lifecycle

• binary representation and two’s complement arithmetic

• conceptual understanding of registers and flags

Forward references enabled by this booklet:

• stack behavior and calling conventions

• ABI rules layered on top of the ISA

• memory hierarchy, caches, and performance analysis

• instruction scheduling and low-level optimization
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The separation of concerns across booklets ensures that:

• architectural rules are learned before conventions

• correctness precedes optimization

• ISA knowledge remains valid across operating systems and toolchains

All references listed here are used to reinforce architectural correctness and long-term

applicability rather than platform-specific behavior.
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