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Preface

P.1 Purpose of This Booklet

This booklet teaches x86 control flow as the CPU actually executes it: decisions derived from
flags, redirection of the instruction pointer, and the mechanics of calls and returns. The goal is
not to memorize mnemonics, but to gain the ability to read and reason about real machine
code produced by modern compilers, and to predict how small instruction-level choices
change correctness, security, and performance.

By the end, you should be able to: identify the exact condition tested by a branch, distinguish
signed from unsigned decisions, recognize compiler loop forms, explain direct versus indirect
control transfers, and understand what call and ret do at the micro-mechanical level

(return address handling and stack interaction).

cmp eax, ebx # flags := eax - ebx (result not stored)
1 less_signed # signed: uses SF and OF
Jjb less_unsigned # unsigned: uses CF

P.2 Why Control Flow Deserves a Dedicated Volume

Most low-level bugs that survive review do not come from arithmetic; they come from

misunderstood decisions. In x86, the CPU does not know your variable types. It only sees bit

10
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patterns and flags. Control flow 1s built on this fact, and a single wrong choice of conditional
jump can silently invert program logic.

Control flow also sits at the center of: correctness (wrong branch conditions), security
(unexpected indirect control transfer targets), and performance (branch predictability and

the frequency of mispredictions).

A dedicated volume is necessary because control flow is not one instruction; it is an
ecosystem: flag-producing instructions (cmp, test, arithmetic), flag-consuming instructions
(conditional jumps, conditional moves, setcc), and control-transfer instructions (jmp, call,

ret, indirect transfers).

test rdi, rdi # sets ZF if rdi == 0 (bitwise AND, result

— discarded)

Jje is_null # branches if ZF==
cmp edi, 10 # flags := edi - 10
Jjae ge_10_unsigned # unsigned: CF==

S

jge ge_10_signed signed: SF==0F

P.3 Scope and Boundaries of Coverage

This booklet focuses on control flow inside the ISA boundary: how flags are produced and
consumed, how the instruction pointer is redirected, how near calls and returns operate, and
how compilers typically lower high-level constructs into these mechanisms.

Included topics:
* cmp and test as decision primitives
* Conditional branches and the signed/unsigned distinction

* Direct and indirect jumps
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* Jump tables and common switch lowering patterns
* call and ret mechanics, including return-address handling
* Canonical loop patterns and how compilers form them

Excluded topics (handled in later booklets):

ABI and calling conventions (argument passing, callee/caller-saved rules)

Stack-frame layout policies (prologues/epilogues as ABI artifacts)

OS mechanisms (signals, exceptions, kernel transitions, syscalls)
* Deep microarchitecture topics (prediction structures, speculation internals)

Where performance is mentioned, it is framed only through observable ISA-level behavior
(e.g., branch directionality, fall-through structure, dependency on flags), without relying on

microarchitecture-specific tuning.

P.4 How to Read This Booklet (Concept — Instruction —
Pattern)

Every section follows a strict learning sequence.

Concept: define the mechanism in CPU terms (flags, instruction pointer, stack interaction).
Instruction: show the minimal instruction semantics that implement the concept.

Pattern: show how compilers combine instructions to implement real constructs (if/else,
loops, switch, calls).

Example 1 (concept: boolean test — instruction: test — pattern: null check):

test rax, rax # ZF=1 if rax==

Jne nonzero # common compiler pattern for if (ptr)
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Example 2 (concept: range check — instruction: compare — pattern: jump-table guard):

cmp edi, 7 # max case index = 7
Jja default_case # unsigned: if edi > 7 then default
Jmp gword ptr [rll + rdix8] # indirect jump through table

Example 3 (concept: loop control — instruction: dec/jcc — pattern: counted loop):

mov ecx, 10
.Lloop:

# loop body

dec ecx

jne .Lloop

Read with the mindset: flags are data, and branches are consumers of that data. The

instruction pointer is the true control state. call/ret are specialized control transfers that

additionally use memory (the stack) to preserve return state.

P.5 Relationship to Other Booklets in the CPU Programming

Series

This booklet assumes you already understand x86 registers, the key status flags, and effective

addressing. Those are the static components. Control flow is the dynamic layer built on top of

them.

In the series progression:

 Earlier fundamentals explain how instructions execute and how flags become

meaningful.

* This booklet applies those fundamentals to real decision-making and redirection of

execution.



14

* The next booklet on stack and calling conventions builds on the call/ret mechanics
here, adding ABI rules, function prologues/epilogues, argument passing, and stack

discipline across real-world toolchains.

Practical outcome: after finishing this booklet, you should be able to read disassembly and

answer, with precision:
* What condition is being tested (and is it signed or unsigned)?
* Which instruction produced the flags used by this branch?
* Is this a direct or indirect control transfer, and what are the target computation rules?
* Is this structure a compiler-lowered if/else, loop, or switch?

* What exactly is pushed by call, and what exactly is consumed by ret?



Chapter 1

Control Flow as a CPU Concept

1.1 What “Control Flow” Really Means at the CPU Level

At the CPU level, control flow is the set of rules and mechanisms that determine which
instruction executes next. The processor repeatedly fetches the instruction located at the
address held in the instruction pointer (IP/RIP), decodes it, executes it, and updates IP/RIP

to select the next instruction.

Most instructions advance execution sequentially, but a specific class of instructions modifies
IP/RIP to redirect execution. This redirection is the essence of control flow and is independent
of any programming language construct.

Control flow transfers fall into distinct architectural categories:
* unconditional transfers such as jmp,
* conditional transfers such as je, j1, and jb,
e subroutine transfers such as call and ret,
» computed transfers such as indirect jmp or call.

15
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mov eax, 1

add eax, 2 # sequential execution

Jmp target # control flow redirection
target:

XOr eax, eax

1.2 Sequential Execution vs Flow Redirection

Sequential execution means the instruction pointer advances to the next instruction based on
the current instruction length. This behavior dominates normal execution and is what allows
instruction streams to be linear in memory.

Flow redirection occurs when an instruction explicitly updates IP/RIP to a non-sequential
value. Redirection can be relative, encoded as an offset, or indirect, obtained from a register or
memory location.

A conditional jump always creates two conceptual paths:
* the fall-through path when the condition is false,

* the target path when the condition is true.

cmp edi, O

Jje .Lzero # taken path

mov eax, 1 # fall-through path
Jmp .Ldone

.Lzero:

mov eax, O

.Ldone:
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ret

1.3 Instruction Pointer (IP / RIP) and Its Role

The instruction pointer is the architectural register that holds the address of the next instruction
to execute. In x86-32 this is commonly known as EIP; in x86-64 it is RIP. Software cannot
arbitrarily modify this register using data-movement instructions.

IP/RIP changes only through control-transfer instructions. This guarantees that all redirection

of execution follows explicit architectural rules.

call func # pushes return address; RIP updated

# execution resumes here after ret

func:

ret # RIP restored from stack

In x86-64, RIP is also used implicitly in address computation for position-independent code.

lea rax, [rip + .Ltable]

Jmp gword ptr [rax + rdix8]

1.4 Control Flow vs Data Flow

Data flow describes how values move through registers and memory and how they are
transformed by arithmetic and logic instructions. Control flow describes how execution moves
between instruction sequences.

The two are tightly coupled:
* data-flow instructions often produce flags,

* control-flow instructions consume those flags to select the next execution path.
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cmp eax, ebx # data flow affecting flags

Jne .Lnot_equal # control flow decision

Flags are ephemeral architectural state. Any instruction that sets flags overwrites previous
values, making it essential to identify the precise flag-producing instruction associated with

each conditional branch.

1.5 Why Control Flow Is Central to Performance and

Correctness

Control flow governs which instructions execute and which do not, making it central to
program correctness. An incorrect conditional jump or misinterpreted comparison silently
alters program behavior.

It is also critical for security because indirect transfers and returns rely on memory-resident
targets. Any corruption of these values redirects execution unpredictably.

From a performance perspective, control flow determines the shape of execution paths.
Branch-heavy code, deeply nested decisions, and indirect jumps create execution patterns

that are fundamentally different from straight-line code.

cmp eax, ebx
J1 .Lsigned_less # signed comparison
Jjb .Lunsigned_below # unsigned comparison

Understanding control flow at the ISA level enables precise reasoning about program
behavior, which is a prerequisite for later analysis of calling conventions, stack discipline,

and optimization effects covered in subsequent booklets of this series.



Chapter 2

Flags as the Foundation of Decisions

2.1 Status Flags Involved in Control Flow

Control-flow decisions in x86 are built on a small set of architectural status flags in
RFLAGS/EFLAGS. Conditional branches do not “compare operands” themselves; they only
test flag bits that were produced by an earlier instruction. For control flow, the most important

flags are:

ZF (Zero Flag): set when a result is zero.

SF (Sign Flag): copies the most significant bit of the result (interpreted as a sign bit in

two’s complement).

CF (Carry Flag): indicates carry/borrow in unsigned arithmetic (also used by

shifts/rotates).

OF (Overflow Flag): indicates signed overflow in two’s complement arithmetic.
These four flags are sufficient to express the semantics of the common conditional jumps:

19
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je/jne (ZF), jb/jae/ja/jbe (CF and ZF for unsigned), j1/jge/ jg/jle (SF and OF
and ZF for signed).

2.1.1 ZF, SF, CF, OF (Conceptual Review)

* ZF: 1 if the last flagged result equals O.
» SF: copies the last flagged result’s MSB.

» CF: for addition, 1 if there was a carry out of the MSB; for subtraction, 1 if there was a

borrow (i.e., unsigned underflow).

* OF: 1 if the signed result does not fit in the operand width (two’s complement

overflow).

Minimal flag-driven decisions:

test rax, rax # sets ZF if rax==0; sets SF from MSB; clears OF;
— CF=0

je .Lis_zero # branch if zZF==1

cmp eax, ebx # sets flags from eax - ebx

Jjb .Lbelow_u # unsigned: CF==1 (eax < ebx as unsigned)

Jjl .Lless_s # signed: SF != OF (eax < ebx as signed)

2.2 How Arithmetic Instructions Set Flags

Many arithmetic and logical instructions update flags as a side effect. This is not optional: the
ISA defines which flags are modified and how. In control-flow analysis, you must identify the
exact instruction that produced the flags consumed by a later jcc.

Core flag-producing instructions for control flow:
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* add, sub, adc, sbb, inc, dec

* cmp (like sub but discards the result)

* test (bitwise AND for flags only)

* and, or, xor (common for zero-checks and masking)

e shifts: shl/sal, shr, sar (CF receives shifted-out bit; others depend on result)

Arithmetic example: unsigned vs signed meaning is not stored anywhere; only the chosen

conditional jump interprets flags accordingly.

mov al, 250

add al, 10 # 250 + 10 = 260 -> wraps in 8-bit to 4
# CF=1 (carry out), ZF=0 (result not zero), SF=0
— (MSB of 4 is 0)

jc .Lcarry_taken # unsigned overflow indication (carry)

mov al, 120

add al, 120 # 120 + 120 = 240; as signed int8: 120 + 120

— overflows
# OF=1 (signed overflow), CF may be 0 depending on
< carry-out

jo .Loverflow_taken

Subtraction example: in x86, CF=1 after sub/cmp indicates a borrow, which corresponds to

“below” in unsigned comparisons.

mov eax, 3
cmp eax, 5 # computes 3 - 5 (result discarded)
Jjb .Lbelow # CF==1 means unsigned eax < 5

Why test is preferred for zero checks: it is explicit, does not require an immediate 0, and
keeps the original register unchanged.

test rdi, rdi # sets ZF if rdi==0 without changing rdi
Jje .Lnull



22

2.3 Flag Lifetime and Overwriting Rules

Flags are volatile architectural state. The CPU does not track which instruction “owns” the

flags. Any flag-writing instruction overwrites prior values, which means:

* the flag consumer (jcc) is correct only if no intervening instruction modified the

relevant flags,

* instruction scheduling (by compiler or hand-written assembly) must preserve intended

flag dependencies.

Classic pitfall: inserting any flag-setting instruction between a compare and a jump changes

the meaning.

cmp eax, ebx
add ecx, 1 # overwrites flags (ZF/SF/CF/OF, etc.)
Jje .Lequal # now tests flags from the add, not from cmp (bug)

Correct structure: keep the compare adjacent to the branch, or use a non-flag-setting

instruction in between.

cmp eax, ebx

Jje .Lequal

# or keep flags intact with lea (does not set flags)

cmp eax, ebx
lea ecx, [ecx + 1] # updates ecx without affecting flags
je .Lequal

2.4 Flag Dependencies Between Instructions

A conditional branch depends on flags as inputs. This creates an explicit dependency chain:

flag-producer — flags — flag—-consumer (Jjcc)
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Understanding control flow requires tracing this chain precisely.
Typical producer-consumer patterns:

Pattern A: compare then branch

cmp rax, rbx # producer

jge .Lge_s # consumer (signed: SF==0F)

Pattern B: test/mask then branch

test eax, OxFF # producer: ZF indicates whether low byte is zero

jne .Lhas_lowbyte # consumer

Pattern C: subtract then branch on borrow/carry

sub eax, 1 # producer
jc .Lunderflow_u # consumer: CF indicates unsigned

— underflow/carry/borrow usage

Practical rule when reading disassembly:
* locate the jcc,
* locate the closest preceding instruction that defines the required flags,

« verify no intervening instruction clobbers those flags.

2.5 Common Misconceptions About Flags

* Misconception: “Signed vs unsigned is stored in the CPU.” The CPU stores only
bits and flags. Signedness is implied by how you interpret operands and by which

conditional jump you choose (71 vs jb, jg vs ja).

* Misconception: “CF and OF mean the same thing.”” CF is an unsigned carry/borrow

indicator; OF is a signed overflow indicator. They can differ and frequently do.
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Misconception: “Flags reflect the last arithmetic you care about.” Flags reflect the

last instruction that wrote them, whether you intended it or not.

Misconception: “inc/dec behave like add/sub in every way.” inc/dec do not update
CF, while add/ sub do. This matters when code uses CF later.

Misconception: ‘“cmp stores a result somewhere.” cmp only sets flags; it discards the

subtraction result.

Misconception: “test is a compare.” test performs AND and sets flags based on the

AND result; it is best understood as a masking/zero-check primitive.

Two short, high-signal examples that expose misconceptions:

Example 1: signed vs unsigned divergence:

mov al, OxFF # 255 unsigned, -1 signed (int8)
cmp al, 1
Jjb .Lbelow_u # true: 255 < 1 (unsigned)? false; CF=0 so not

— taken

Jjl .Lless_s # true: -1 < 1 (signed)? true; SF!=0F so taken

Example 2: CF not modified by inc:

stc # CF =1

inc eax # CF unchanged

jc .Lcarry_still_1 # taken because CF remained 1
ale # CF := 0

dec eax # CF unchanged

jc .Lcarry_1 # not taken because CF remained 0
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cmp and test in Depth

3.1 Purpose of cmp (Subtraction Without Storing)

cmp a, b performs an internal subtraction a — b to update status flags, but it discards the
result. Architecturally, it behaves like sub for flag-setting, except that a is not modified. This
makes cmp the canonical instruction for ordering decisions: equality, less/greater (signed),
below/above (unsigned).

Key property: cmp does not encode signedness. Signed vs unsigned meaning is selected later

by the conditional jump (j1 vs jb, jg vs ja, etc.).

cmp eax, ebx # flags := eax - ebx, eax unchanged
je .Lequal # ZF==1

jne .Lne # ZF==0

Jjb .Lbelow_u # unsigned: CF==1

jae .Lge_u # unsigned: CF==0

J1 .Lless_s # signed: SF!=0F

Jjge .Lge_s # signed: SF==0F

25



26

Equality decision is always ZF-based:

cmp rdi, rsi

Jje .Lsame # rdi == rsi

Ordering decision depends on how you interpret the operands:

cmp eax, 10
J1 .Lx_1t_10_signed # signed: eax < 10
Jjb .Lx_1t_10_unsigned # unsigned: eax < 10

3.2 Purpose of test (Bitwise AND for Flags Only)

test a, bcomputesa & b toupdate flags, but discards the result and does not modify

operands. It is a flag-producing instruction specialized for:
e zero checks (test reg, req),
* bit tests and masking (test reg, imm),
* sign checks (test reg, regthen js/jns).

Unlike cmp, test does not express ordering. It expresses bit properties.

test rax, rax # sets ZF if rax==0, sets SF from MSB
Jje .Lis_zero

test eax, 1 # tests bit0

jne .Lodd # (eax & 1) !'= 0

test eax, 0x80000000 # tests sign bit of 32-bit value

jne .Lmsb_set
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3.3 Flag Effects of cmp vs test

Both instructions update ZF and SF from their internal result, but their semantic meaning
differs because their internal operation differs.

cmp a, b:

» conceptually computes a — b (discarded),

 sets ZF/SF based on subtraction result,

* sets CF to indicate unsigned borrow (used by unsigned comparisons),

* sets OF to indicate signed overflow (used by signed comparisons).
test a, b:

» conceptually computes a & b (discarded),

¢ sets ZF/SF based on AND result,

¢ clears OF,

* sets CF to O (architecturally not useful for decisions after test).
Practical consequence:

* cmp enables ordering branches (31, jb, jg, ja, etc.).

* test enables bit/zero/sign branches (je/ jne, js/ jns) but not ordering in the

subtraction sense.

# ordering needs subtraction flags

cmp eax, ebx

J1 .Lless_s # depends on SF and OF
Jjb .Lbelow_u # depends on CF
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# bit/zero property uses AND flags

test eax, eax

Jje .Lzero # depends on ZF

test eax, 0x20

jne .Lbit5_set # depends on ZF after masking

3.4 Typical Compiler Emission Patterns

Modern compilers use cmp and test in highly stereotyped ways.

Pattern A: pointer or integer zero check (most common):

test rdi, rdi

Jje .Lnull

Pattern B: boolean stored in register (0/1) and compared to zero:

test al, al

jne .Ltrue

Pattern C: compare against immediate (range, threshold):

cmp edi, 10
1 .L1lt_10_s

Pattern D: equality against constant (often for enums / tags):

cmp eax, 3

Jje .Lcase3

Pattern E: switch lowering with bounds check:

cmp edi, 7
Jja .Ldefault # unsigned bounds check
Jmp gword ptr [rip + .Ljt + rdix8]
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Pattern F: bitmask test (flags or feature bits):

test edx, 0x40
Jje .Lfeature_off

3.5 When Compilers Prefer test Over cmp

Compilers prefer t est when the question is “is this value zero?” or “is this bit set?”” because
test expresses the intent directly without requiring an explicit 0 immediate and without
consuming an extra constant in the encoding.

Most important cases:

Case 1: register compared to zero

# preferred
test rax, rax

je .Lzero

# also correct but often larger / less idiomatic
cmp rax, 0

Jje .Lzero

Case 2: masking then branching

test eax, OxFF

Jje .Llow_byte_zero

Case 3: sign-bit based branch without changing the value

test eax, eax

Js .Lnegative # branches if SF==1 after test

Case 4: preserving flags discipline When code needs a flag-producing instruction whose

operands must not change, test is safe: it is read-only and explicit about AND semantics.
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3.6 Manual Use Cases and Pitfalls

Manual assembly and reverse engineering benefit from using cmp and test with strict

discipline.

3.6.1 Manual use cases

Zero checks:

test rcx, rcx
Jje .Lempty
Bit checks:

test eax, 0x8
jne .Lbit3_set

Range checks (bounds):

cmp edi, 100

Jja .Lout_of_range_u # unsigned
Signed ordering:

cmp esi, -1

Jjg .Lgreater_than_ml_s # signed
3.6.2 Pitfalls

Pitfall 1: wrong signed/unsigned conditional jump after cmp.

cmp eax, ebx
J1 .Lless_s # signed less
jb .Lbelow_u # unsigned below
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If the data is logically unsigned (sizes, indices, lengths), use unsigned jumps
(Jb/ja/jbe/jae). If the data is logically signed, use signed jumps (71/jg/jle/ jge).
Pitfall 2: assuming test can replace ordering comparisons. test cannot answer “is a j b?”
because AND does not encode ordering.

Pitfall 3: clobbering flags between producer and consumer.

cmp eax, ebx
add ecx, 1 # overwrites flags
Jje .Lequal # now tests flags from add (bug)

Pitfall 4: confusing “bit is set” with “value is non-zero” when masking.

test eax, 0x80

jne .ILmsb_set # means bit7 set, not that eax is non-zero

Pitfall 5: partial-register issues in manual code reading. When test targets al/ax/eax, it

tests only that width. Ensure you understand which bits are being tested.

test al, al # tests low 8 bits only
Jje .Llow8_zero # does NOT imply full rax ==

3.6.3 High-signal mini catalog: common jcc pairs

# equality (from cmp or test)
Jje label # ZF==
jne label # ZF==0

# unsigned (from cmp/sub

)
Jjb label # CF== below
Jjae label # CF== above/equal
ja label # CF==0 and ZF== above
jbe label # CF==1 or ZF== below/equal

# signed (from cmp/sub)
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1 label
Jjge label
Jjg label
Jjle label

SE!=0F less
SF==0F greater/equal
ZF==0 and SF==0F greater

S

ZF==1 or SF!=0F less/equal

# sign and zero after test/logic

Js label
jns label

# SF==
# SF==
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Conditional Jumps: The Real Logic

4.1 Anatomy of a Conditional Jump Instruction

A conditional jump (jcc) is a control-transfer instruction whose decision is based entirely on
the state of the status flags in RFLAGS/EFLAGS. A jcc does not compare operands. It does
not read general-purpose registers (except indirectly through earlier flag-setting). It evaluates a

boolean predicate over flags and either:
* takes the branch: IP/RIP becomes the target address, or
* falls through: IP/RIP advances to the next sequential instruction.

Architecturally, the branch target for near conditional jumps is encoded relative to the next
instruction (a signed displacement). This makes jcc position-friendly and naturally suited for
basic blocks.

Minimal structure:

cmp eax, ebx # producer: sets flags

je .Leg # consumer: tests ZF
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# fall-through path

; (do something)

Jmp .Ldone # optional join
.Leqg:

; (equal-path code)

.Ldone:

ret

Control flow has two paths that must be read explicitly:

* the taken path is the jump target block,

* the not-taken path is the fall-through block.

4.2 Signed vs Unsigned Comparisons Explained

The CPU does not store signedness. It stores bit patterns and sets flags according to fixed
arithmetic rules. Signed vs unsigned comparison is a matter of interpretation chosen by the

conditional jump mnemonic:

* Unsigned ordering uses CF (and sometimes ZF) from a - b.

* Signed ordering uses the relationship between SF and OF (and sometimes ZF).
After cmp a, b (conceptually a - Db):

* CF=1 indicates an unsigned borrow, meaning a < b as unsigned.

* SF!=0F indicates signed less-than, meaning a < b as signed.

A single bit pattern can be both large unsigned and negative signed:
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mov al, OxFF # 255 unsigned, -1 signed (int8)

cmp al, 1

Jjb .Lbelow_u # unsigned: 255 < 1 -> false (not taken)
J1 .Lless_s # signed: -1 < 1 -> true (taken)

Practical rule:
* indices, sizes, counts, lengths are typically unsigned decisions

* arithmetic values that can be negative are typically signed decisions
4.3 Mapping Conditions to Flags
Conditional jumps are best learned as flag predicates. The most common groups:

4.3.1 je / jne (Equality)

Equality is sign-independent and driven by ZF.

cmp eax, ebx

je .Lequal # ZF==

Jne .Lnotequal # ZF==0

test rdi, rdi

Jje .Lis_zero # also ZF==1 (zero check)

4.3.2 31/ jg (Signed ordering)

Signed comparisons use SF and OF (and ZF for strictness).
* jl: takenif SF != OF (signed less)

* jg: taken if ZF==0 and SF==OF (signed greater)
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cmp
j1

jge
cmp

jg
jle

eax, ebx
.Lless_s

.Lge_s

eax, ebx
.Lgreater_s

.Lle_s

# signed:

# signed:

signed:

signed:

eax < ebx

eax >= ebx

eax > ebx

eax <= ebx

4.3.3 jb / ja (Unsigned ordering)

Unsigned comparisons use CF (and ZF for inclusive conditions).

cmp
Jjb

Jjae

cmp
Ja

jbe

eax, ebx
.Lbelow_u

.Lge_u

eax, ebx
.Labove_u

.Lbe_u

# unsigned:

# unsigned:

# unsigned:

unsigned:

* jb: taken if CF==1 (unsigned below)

* ja: taken if CF==0 and ZF==0 (unsigned above)

eax < ebx

eax >= ebx

eax > ebx

eax <= ebx

4.3.4 Compact catalog (high-signal)

# equality
Jje label
jne label

# unsigned

jb

Jjae

label
label

(from cmp/sub)

# 7ZF==1
# ZF==
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ja label # CF==0 and ZF==
Jbe label # CF==1 or ZF==1

# signed (from cmp/sub)

jl label # SF!=0F
Jjge label # SF==0F
Jjg label # ZF==0 and SF==0F
jle label # ZF==1 or SF!=OF

4.4 Why Signedness Is Not in the Instruction

x86 conditional jumps are designed to be minimal consumers of state: they test flags only. The
flags were produced by a fixed arithmetic definition (e.g., subtraction for cmp). That definition
is independent of signedness.

Signedness is a semantic choice made by software:
* alanguage decides whether a variable is signed/unsigned,
* the compiler chooses the corresponding conditional jump mnemonic,
* the CPU simply executes the mnemonic’s flag predicate.

This separation is why the same cmp can feed either a signed or unsigned branch without

changing the compare itself:

cmp eax, ebx
Jjl .Lless_s # signed interpretation
Jjb .Lbelow_u # unsigned interpretation

4.5 Common Bugs from Wrong Jump Selection

Most control-flow bugs in low-level code reduce to one of these errors:
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4.5.1 Bug 1: Using signed jumps for unsigned quantities

Lengths, indices, sizes, and pointer-related offsets are typically unsigned. Using j1/jg can

break logic when the high bit is set.

cmp edi, esi

Jjl Lidx_ 1t # bug if idx is unsigned (should be jb)

4.5.2 Bug 2: Using unsigned jumps for signed quantities

Values that can be negative must use signed jumps. Otherwise negative numbers appear “large”

and comparisons invert.

cmp eax, O

Jja .Lpositive # bug for signed test (should be jg or Jjns pattern)

Correct signed positivity checks:

cmp eax, 0O

Jjg .Lpositive # signed: eax > 0
test eax, eax

Js .Lnegative # signed: SF==

4.5.3 Bug 3: Clobbering flags between cmp/test and jcc

cmp eax, ebx
add ecx, 1 # overwrites flags
Jje .Lequal # now tests ZF from add (bug)

4.5.4 Bug 4: Wrong width (partial-register decisions)

Branching on al does not reflect full rax.

test al, al

Jje .Llow8_zero # does not imply rax==
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4.5.5 Bug 5: Wrong condition form (strict vs inclusive)

Confusing ja with jae, or jg with jge, changes boundary behavior.

cmp eax, ebx
Jja .Labove_u # strictly >
Jjae .Laboveeqg_u # >=

4.6 Reading Conditions Like the CPU Does

To read a condition correctly, follow a mechanical procedure:

* Identify the conditional jump instruction (jcc) and write down its flag predicate.

* Find the most recent instruction that definitively sets the needed flags (cmp, test,

arithmetic, logic).
* Ensure no intervening instruction overwrites those flags.

* Determine operand width (8/16/32/64) to know which bits drive SF/ZF and which
arithmetic width defines CF/OF.

* Decide whether the branch is signed or unsigned based on the jcc mnemonic, not on

assumptions.

Worked reading example 1 (unsigned bounds check + jump table):

cmp edi, 7 # sets CF/ZF based on edi - 7
Jja .Ldefault # unsigned: taken if edi > 7 (CF==0 and ZF==0)
Jmp gword ptr [rip + .Ljt + rdix8]

Worked reading example 2 (signed less-than):
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cmp eax, ebx

J1 .Lless_s # taken if SF!=0F (signed eax < ebx)

# fall-through implies signed eax >= ebx

Worked reading example 3 (bit test decision):

test edx, 0x20 # checks whether bit5 is set
Jje .Lbit5_clear # taken if (edx & 0x20)==

This CPU-style reading discipline scales: every complex high-level construct reduces to these

local flag predicates and control transfers.
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Control Flow Patterns Built from Jumps

5.11f / Else at the Assembly Level

High-level i f/else lowers to a conditional jump that selects between two basic blocks, plus
an optional join block. There are two canonical shapes:
Shape A: branch over the then-block (fall-through is “then”).

# 1if (x == 0) then A else B

test edi, edi # ZF=1 if x==0

jne .Lelse # 1f x!=0 jump to else
# then-block A (fall-through)

call A

Jmp .Ljoin

.Lelse:

call B

.Ljoin:

ret

Shape B: branch over the else-block (fall-through is “else’’). This form is common when

the “then” block is cold or larger.

41
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# 1if (x != 0) then A else B

test edi, edi

Jje .Lelse

call A # then-block
Jmp .Ljoin

.Lelse:

call B # else-block
.Ljoin:

ret

A third variant removes the explicit join jump by using fall-through placement:

# 1f (cond) A; B; (B always executes)
cmp eax, ebx

jne .LskipA

call A

.LskipA:

call B

ret

5.2 Nested Conditions

Nested i f statements become a sequence of conditional branches. Conceptually, each branch
filters execution into a narrower path.
Nested: if (c1) { if (c2) A; else B; } else C;

# cl
test edi, edi
Jje .LC

# c2 (only evaluated if cl true)
cmp esi, 10

51 .LB
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call A

Jjmp .Ljoin
.LB:

call B

Jjmp .Ljoin

.LC:
call C

.Ljoin:

ret

Common compiler optimization: invert conditions to minimize jumps and keep the most likely

path as fall-through.

# prefer fall-through for likely path:

test edi, edi

je .Lcold_path # cold path out-of-line
# hot path continues here
cmp esi, 10

Jjge .Lhot_A

# still hot

call B

ret

.Lhot_A:

call A

ret

.Lcold_path:
call €

ret
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5.3 Short-Circuit Logic (AND / OR)

Short-circuit semantics are naturally implemented with conditional jumps because evaluation

stops as soon as the result is determined.

5.3.1 AND short-circuit: if (a && b) A else B

For AND: if a is false, skip evaluating b and go directly to else.

# a

test edi, edi

Jje .Lelse # 1f a==0 -> else
# b

test esi, esi

Jje .Lelse # 1f b==0 -> else
call A # (a && b) true
Jmp .Ljoin

.Lelse:

call B

.Ljoin:

ret

5.3.2 OR short-circuit: if (a || b) A else B

For OR: if a is true, do not evaluate b.

# a
test edi, edi
jne .Lthen # 1f a!=0 -> then
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test esi, esi

jne .Lthen # 1f b!=0 -> then

call B # both false
Jjmp .Ljoin

.Lthen:

call A

.Ljoin:

ret

5.3.3 Mixed short-circuit: if (a && (b

# a must be true

test edi, edi

Jje .Lfalse

# (b || ¢

test esi, esi

jne .Ltrue

test edx, edx

jne .Ltrue

.Lfalse:

call F # false path
ret

.Ltrue:

call T # true path

ret

c))
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5.4 Boolean Expressions Without Boolean Types
The CPU has no boolean type. Conditions are represented through:

* flags (ZF/SF/CF/OF) consumed by jcc,

* integer conventions (0 = false, non-zero = true),

* bit masks (specific bits encode condition state).

Boolean from comparison (classic):

cmp eax, ebx # sets ZF
sete al # al := (zF==1) 2 1 : O
movzx eax, al # zero—-extend to int

Boolean from non-zero test:

test rdi, rdi # sets ZF based on rdi
setne al # al := (rdi != 0)
movzx eax, al

Boolean from unsigned ordering:

cmp eax, ebx
setb al # al := (unsigned eax < ebx)
movzx eax, al

Boolean used directly without materializing a 0/1 value:

test eax, eax
Jje .Lfalse
# true-path (eax != 0)

Boolean as bitmask state:

# if (flags & 0x20)
test edx, 0x20
Jje .Lbit_clear
# bit set path
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5.5 Compiler Reordering of Conditions

Compilers may reorder condition evaluation when semantics permit, primarily to:

reduce the number of jumps,

keep hot paths as fall-through,
* merge identical exit paths,

¢ eliminate redundant tests (common-subexpression elimination on conditions).

5.5.1 Branch inversion and fall-through shaping

A source-level if (cond) A else B canbecome either jcc else or jcc then

depending on layout goals.

# form 1

test edi, edi
je .Lelse
call A

Jmp .Ljoin
.Lelse:

call B
.Ljoin:

ret

# form 2 (inverted)

test edi, edi
jne .Lthen
call B

Jjmp .Ljoin

.Lthen:
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call A
.Ljoin:
ret

5.5.2 Early-exit normalization

Many nested conditions compile into a series of early exits:

# if (!p) return;

# 1f (len == 0) return;
test rdi, rdi

Jje .Lret

test esi, esi

Jje .Lret

# work

call Work

> ILTEETE 8

ret

5.5.3 Combining condition checks

Two checks can be merged when they target the same outcome:

# if (x==0 || y==0) fail;
test edi, edi

je .Lfail

test esi, esi

Jje .Lfail

# success path

call OK
ret

.Lfail:

call Fail

ret
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5.5.4 Reordering under short-circuit constraints

Short-circuit order is preserved when observable side effects exist. When operands are pure
tests (no side effects), compilers may choose an equivalent order to improve code shape, but
the key property remains: AND must fail fast, OR must succeed fast.

Reading discipline:

* treat conditional jumps as the truth source for condition meaning,
* reconstruct the boolean structure from branch edges and fall-through,

* identify shared join blocks and early exits.
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Loop Patterns in x86

6.1 Loop Concepts Without High-Level Languages

A loop is a control-flow structure that causes a basic block (or a region of blocks) to execute

repeatedly. At the ISA level, a loop is defined by:
* aloop header (entry point),
* a back-edge (a jump that returns execution to the header),
* an exit condition that eventually prevents taking the back-edge.
Two fundamental loop questions exist in machine code:
* When do we exit? (which flag predicate ends the repetition)
* How do we make progress? (which register/memory state changes each iteration)

In x86, the CPU does not have a loop construct; it has conditional and unconditional jumps.
Loops are built by arranging: flag producer — jcc back-edge or exit.

Minimal infinite loop (no exit condition):

50
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.Lloop:
Jjmp .Lloop

Minimal conditional loop (exit check at top):

.Lhead:

test edi, edi
Jje .Lexit

# body

dec edi

Jjmp .Lhead
.Lexit:

ret

6.2 dec + jnz Pattern

The most recognizable counted loop at the assembly level is: dec reg followed by jnz
label. dec decrements the register and sets ZF if the result becomes zero. jnz loops while
ZF==0.

Canonical form:

mov ecx, 10

.Lloop:

# body

dec ecx # sets ZF when ecx becomes 0
jnz .Lloop # branch back while ecx != 0
Key properties:

* Progress is explicit: the counter moves toward zero.
* The exit condition is zero: loop stops when counter becomes 0.

* The back-edge is the jnz.
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Common variation using sub:

sub ecx, 1

jne .Lloop

Common variation using add with negative step:

add ecx, -1
jne .Lloop

6.3 Count-Controlled Loops

Count-controlled loops repeat a known number of iterations or until a counter reaches a
boundary. Compilers typically implement these using a counter register and a comparison

against an end value.

6.3.1 Down-counter to zero

This is the dec/ jnz family (or sub/ jne):

mov ecx, n
test ecx, ecx
Jje .Lexit
.Lloop:

# body

dec ecx

jnz .Lloop
.Lexit:

ret

6.3.2 Up-counter with compare

Very common for array indexing:
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XOor eax, eax #1 =0
.Lloop:

# body uses 1 in eax

inc eax
cmp eax, esi # compare i with n
Jjl .Lloop # signed 1 < n (works if n is non-negative)

For unsigned lengths (typical for sizes), compilers commonly use unsigned conditions:

Xor eax, eax #1 =0

.Lloop:

# body

inc eax

cmp eax, esi

Jjb .Lloop # unsigned 1 < n

6.3.3 Pointer-walking count loop

Instead of an index, a pointer advances:

mov rdi, base # p = base

lea rsi, [base + rdx]# end = base + size
.Lloop:

cmp rdi, rsi

jae .Lexit # unsigned p >= end

# body uses [rdi]

add rdi, 1
Jmp .Lloop
.Lexit:

ret

6.3.4 Do-while shape (check at bottom)

.Lloop:
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# body executes at least once
dec ecx

Jnz .Lloop

6.4 Condition-Controlled Loops

Condition-controlled loops are driven by a predicate that depends on data, not just a simple

iteration count (e.g., search until match, parse until terminator, iterate while condition holds).

6.4.1 While loop (check at top)

.Lhead:

# condition

cmp eax, ebx

jge .Lexit # while (eax < ebx)
# body

add eax, 1

Jmp .Lhead

.Lexit:

ret

6.4.2 Do-while loop (check at bottom)

.Lbody:

# body

add eax, 1

cmp eax, ebx

jl .Lbody # do { ... } while (eax < ebx)

ret
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6.4.3 Search loop (break on match)

mov rdi, base

lea rsi, [base + rdx] # end
.Lloop:

cmp rdi, rsi

Jjae .Lnot_found

mov al, byte ptr [rdi]
cmp al, cl

je .Lfound

inc rdi

Jmp .Lloop

.Lfound:

# rdi points to match

ret
.Lnot__found:

# not found

ret

6.4.4 Sentinel-driven loop (terminate on zero byte)

mov rdi, s

.Lloop:

mov al, byte ptr [rdi]
test al, al

Jje .Lend

inc rdi

Jmp .Lloop

.Lend:

ret
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6.5 Why the loop Instruction Is Rarely Used

x86 includes the 1 oop family (1oop, loope/loopz, loopne/loopnz), which
decrements (E) CX and branches if the condition holds. Despite being a single mnemonic
for “decrement and branch”, modern compilers rarely emit it for general code.

Practical reasons in modern toolchains:

* Limited register choice: it is tied to (E) CX, while compilers prefer flexible register

allocation.

* Predictable canonical forms: compilers standardize on dec/ jnz or sub/ jne
because these patterns are universally supported, easy to schedule, and interact

predictably with surrounding code.

* Better composition: separate decrement and branch instructions allow more freedom
for instruction scheduling and for inserting other operations without changing

semantics.

Typical form compilers prefer:

dec ecx

Jnz .Lloop

What 1oop looks like when encountered:

mov ecx, 10
.Lloop:
# body

loop .Lloop # ecx := ecx — 1; if ecx != 0 then branch
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6.6 Recognizing Compiler-Generated Loops

To recognize a loop in disassembly, search for a back-edge: a jump to a lower-address label
(often earlier in the function) or a jump to a label that dominates the loop body.

Practical recognition checklist:
* Identify a label that is the target of a backward jmp/ jcc.
* Find the counter or condition updated each iteration.

* Identify the flag producer (cmp/test/dec/add/sub) paired with the loop-

controlling jcc.

* Determine whether the loop is count-controlled (counter vs bound) or condition-

controlled (predicate from data).
* Check for early exits: conditional jumps to an exit label inside the loop body.

Common compiler loop shapes:

6.6.1 Counted loop with compare at bottom

Xor eax, eax #1 =0
.Lloop:

# body

inc eax

cmp eax, esi

J1 .Lloop

6.6.2 Counted loop with pre-check for zero iterations

test esi, esi

Jje .Lexit
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Xor eax, eax
.Lloop:

# body

inc eax

cmp eax, esi
Jjl .Lloop
.Lexit:

ret

6.6.3 Loop with internal break

.Lloop:

# body

cmp eax, O
Jje .Lbreak

# continue path

add edx, 1
Jmp .Lloop
.Lbreak:

ret

6.6.4 Unsigned bounds loop (typical for sizes and pointers)

cmp rdi, rsi
Jjae .Lexit

# body

add rdi, 4
Jmp .Ltop

Reading discipline for loops:

* Translate each jcc into a flag predicate.
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* Reconstruct the loop condition and exit condition from the branch direction (back-edge

Vs exit).

* Decide signed vs unsigned based on the jcc mnemonic, not on assumptions.



Chapter 7

Indirect Jumps and Jump Tables

7.1 What an Indirect Jump Really Is

A direct jump encodes its target in the instruction (typically as a relative displacement). An
indirect jump does not. It obtains the target address from a register or from memory and then
sets IP/RIP to that value. In other words, the destination is data-dependent at runtime.

Forms (Intel syntax):
* jmp reg
* jmp [mem]
* Jmp gword ptr [base + index*scale + disp]

Minimal examples:

Jmp rax # RIP := rax
Jjmp gword ptr [rbx] # RIP := xrbx
Jmp gword ptr [rll + rdix8] # RIP := x(rll + rdi=8)
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Indirect jumps are fundamental for:
* jump tables for switch-like dispatch,
* dynamic dispatch stubs and trampolines,
* computed gotos and state machines,

e return instructions (ret) as an indirect control transfer (target from stack).

7.2 Jump Tables as a Control Flow Optimization

A jump table is a contiguous array of code addresses (or relative offsets) used to implement
multi-way branching efficiently. Instead of multiple comparisons and branches, dispatch

becomes:
* optional bounds check,
* compute table entry address,
* indirect jump to the selected target.
High-level intent:
* reduce the number of conditional branches,
* provide near-constant dispatch time for dense case ranges.

Canonical shape:

cmp edi, MAX_CASE
Jja .Ldefault
Jmp gword ptr [rip + .Ljt + rdix8]
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7.3 Switch Statements at the Assembly Level

Compilers lower a switch using one of several strategies depending on case density and

range:
* jump table for dense ranges,
* binary search / decision tree for sparse sets,

¢ linear chain for small numbers of cases.

7.3.1 Linear chain (small number of cases)

cmp edi, 1
Jje .Lcasel
cmp edi, 3
Jje .Lcase3
Jjmp .Ldefault
.Lcasel:

# ...

Jjmp .Lend
.Lcase3:

# ...

Jmp .Lend
.Ldefault:

# ...

.Lend:

ret

7.3.2 Decision tree (sparse cases)

cmp edi, 100
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Jjl .Llow

Jje .Lcasel00
cmp edi, 1000
Jje .Lcasel000
Jjmp .Ldefault
.Llow:

cmp edi, 7

je .Lcase?
Jjmp .Ldefault

7.3.3 Jump table (dense range)

# switch(x) with cases 0..7

cmp edi, 7

Jja .Ldefault

Jmp gword ptr [rip + .Ljt + rdi=8]

.Lcase0:
#

ret
.Lcasel:
#

ret

.Lcase7:

#

ret
.Ldefault:
#

ret
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7.4 Address Computation for Jump Tables

On x86-64, jump tables are commonly addressed using RIP-relative addressing so code
remains position-independent. The base of the table is computed implicitly by the addressing
mode, and the index selects an entry using scaled indexing.

A typical table entry size is 8 bytes when storing absolute 64-bit addresses, hence index*8.

# rdi holds the case index

Jjmp gword ptr [rip + .Ljt + rdix8] # target := table[rdi]

Another common pattern uses an explicit base register:

lea rll, [rip + .Ljt] # rll = &table[0]
Jmp gword ptr [rll + rdix8] # Jump to table[rdi]

Some toolchains use tables of 32-bit relative offsets instead of full addresses, then add the

base:

lea rll, [rip + .Ljt] # base

movsxd rax, dword ptr [rll + rdix4] # sign-extend 32-bit offset

add rax, rll # absolute target = base + offset
Jmp rax

The offset-table form reduces table size (4 bytes per entry) and is common when targets are

within a nearby code region.

7.5 Bounds Checking Patterns

Because an indirect jump is data-dependent, correct jump-table dispatch requires preventing

out-of-range indices. Compilers emit bounds checks before the indirect jump.
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7.5.1 Unsigned upper-bound check (most common)

For indices, unsigned checks are standard. If x > MAX then default:

cmp edi, 7
Jja .Ldefault # unsigned: edi > 7
Jmp gword ptr [rip + .Lijt + rdix8]

7.5.2 Range normalization (shift to start at 0)

For cases like 10..15, compilers normalize:

sub edi, 10 # x —= 10

cmp edi, 5

Jja .Ldefault # if (x-10) > 5 then default
Jjmp gword ptr [rip + .Ljt + rdix8]

7.5.3 Two-sided bounds check (when needed)

If inputs might be negative but treated as signed, a compiler may guard both sides explicitly:

cmp edi, O

1 .Ldefault # signed: x < O
cmp edi, 7

Jjg .Ldefault # signed: x > 7
Jmp gword ptr [rip + .Ljt + rdix8]

In practice, many compilers avoid signed two-sided checks by converting the index into an

unsigned range via normalization and then using a single unsigned bound check.

7.6 Security and Correctness Considerations

Indirect jumps are powerful and dangerous because the target comes from data. Correctness

and security rely on controlling that data.
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7.6.1 Correctness hazards

* Missing bounds checks: an out-of-range index reads a table entry beyond the intended

region and jumps to an unintended address.

* Wrong scaling: using index«4 for an 8-byte table (or vice versa) produces misaligned

targets and invalid jumps.

* Wrong width: using a 32-bit index where a 64-bit address computation is needed can

accidentally truncate or mis-compute addresses.

* Signedness mismatch: using signed comparisons for an index can allow negative

values to pass if interpreted incorrectly.

Scaling pitfall example:

# bug if table entries are 8 bytes but scale uses x4
Jjmp gword ptr [rip + .Ljt + rdix4] # wrong: reads wrong half-entry

— addresses

7.6.2 Security hazards

* Control-flow hijack potential: if an attacker can influence the table base or index, they

can redirect execution.

* Return is an indirect transfer: ret loads the target from memory (stack). Stack

corruption can redirect control flow.

* Speculative effects: even with architectural bounds checks, unsafe table access
patterns can still be risky if the index is not properly constrained before use in address
computation. The safe design principle is to ensure indices are validated before they

influence any control-transfer target computation.
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Return as indirect control transfer:

ret # RIP

— memory-resident)

rop () (target is

Robust jump-table pattern (normalize + unsigned bound check + indirect jump):

sub edi, BASE_CASE # normalize so first case becomes 0
cmp edi, MAX_INDEX

ja .Ldefault

Jmp gword ptr [rip + .Ljt + rdix8]

Reading discipline:

identify the index, normalization, and bounds check,

confirm the table base computation (RIP-relative or register base),

* confirm entry size and scaling,

confirm the indirect jump consumes the computed address as intended.
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call Instruction Internals

8.1 What call Really Does

At the ISA level, call is a control-transfer instruction that performs two actions atomically

as one architectural operation:

* it computes the return address (the address of the instruction immediately following

the call),
* it transfers control to the target by updating IP/RIP.

Unlike jmp, call preserves a return point so that ret can later resume execution.

Conceptually, call is:
push (return_address); Jmp (target)

Minimal example:

call func # push return address; RIP := func

# execution resumes here after func executes ret
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mov eax, 1
func:

XOor eax, eax
ret

Key idea: the CPU does not know “functions”. It only knows control transfer plus a saved

return address on the stack.

8.2 Pushing the Return Address

The return address pushed by a near call is the next instruction pointer value. In 64-bit
mode, the stack pointer (RSP) is decremented by 8 and the 8-byte return address is written at
[RSP]. In 32-bit mode, ESP is decremented by 4.

64-bit conceptual effect:

# before: RSP = S

call func

# after:

# RSP = S - 8

# [RSP] = address (next instruction)

# RIP = address (func)

You can observe the saved return address by reading [rsp] immediately after a call target
begins, before it changes the stack further.

Example: first instruction in callee reads the return address:

func:

mov rax, gword ptr [rsp] # rax := return address
# ... then usual function work

ret

hnpOﬂﬁﬂtCOUSGQUGHCG&
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* Control integrity depends on stack integrity: if the stored return address is corrupted,

ret will jump to the wrong place.

* Nested calls create a return chain: each call pushes another return address, forming a
LIFO structure.
Nested call chain shape:

call A
# ...

call B

ret

ret

8.3 Near vs Far Calls (Conceptual)

x86 defines near and far calls:

* Near call: changes IP/RIP within the current code segment context.

* Far call: changes both IP and the code segment selector, transferring to a different
segment context (historically used with segmentation and privilege transitions in certain

environments).

In modern 64-bit user-mode code, near calls dominate. Far calls exist architecturally but are
uncommon in typical application code generation. For this booklet’s scope, treat far calls as
a conceptual category that explains why the ISA includes encodings beyond the usual near
call.

Near call forms you will actually see in disassembly:
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e call rel32 (direct relative)

* call r/m64 (indirect via register or memory)

8.4 Direct vs Indirect Calls

A direct call encodes the target in the instruction stream (relative displacement). An indirect

call obtains the target address from a register or memory at runtime.

8.4.1 Direct (relative) call
The common form in position-friendly code is relative-to-next-instruction:

call func # encoded as relative displacement to func

8.4.2 Indirect call through register
Used for function pointers, virtual calls, trampolines, and dynamic dispatch:
mov rax, qgword ptr [rdi] # rax = function pointer

call rax # push return address; RIP := rax

8.4.3 Indirect call through memory
Used when the pointer is stored in memory and called directly:

call gword ptr [rip + fp] # target loaded from memory, then call

8.4.4 Virtual-dispatch style shape (conceptual)

This is the characteristic pattern where a pointer is loaded then called:
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mov rax, gword ptr [rdi] # load vptr-like base
mov rax, gqword ptr [rax + 16] # load method pointer
call rax

8.5 How Compilers Choose Call Forms

Compilers select call forms based on what is known about the target at compile time and how

the code must relocate.

8.5.1 Known symbol target

If the callee is a known function symbol, the compiler prefers a direct relative call because it

is compact and naturally supports position-relative encoding.

call known_function

8.5.2 Unknown target at runtime

If the call target is computed (function pointer, callback, dispatch table), the compiler must use

an indirect call.

call rax

8.5.3 Position-independent and relocation-friendly shapes

Even for known symbols, toolchains may route calls through indirection mechanisms in some
builds (for example through a stub or table entry) to support dynamic linking and late binding.
At the ISA level, what you observe is still either a direct relative call or an indirect call via a
memory-loaded pointer.

Two observable patterns:
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# direct relative call

call func

# indirect call via memory-resident entry
call gword ptr [rip + entry]
8.5.4 Inlining eliminates calls

When profitable and legal, compilers may remove the call entirely by inlining the callee body.
In disassembly, the absence of a call does not mean “no function” in the source; it may

simply mean the call was replaced by straight-line code.

8.5.5 Reading discipline for calls

When you see a call:

identify whether it is direct (relative) or indirect (register/memory),

identify where the target comes from if indirect,

remember the return address is pushed automatically,

verify the next control-transfer after callee completes is typically ret.

Quick recognition examples:

call 0x401000 # direct, absolute shown by disassembler
— (still relative encoding)

call func # direct symbol

call rax # indirect via register

call gword ptr [rdi + 8] # indirect via memory
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ret Instruction and Returning Control

9.1 Stack-Based Return Mechanism

The x86 return mechanism is stack-based. A call transfers control to a target while saving
a return address on the stack. A ret returns by restoring the instruction pointer from that
saved address.

The architectural model is strict LIFO:
* each call pushes one return address,
* each ret pops one return address,
* returns occur in reverse order of calls.

Minimal call-return chain:

call A
# resumes here after A returns

ret
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call B

ret

ret

9.2 How ret Uses the Stack

A near ret is an indirect control transfer whose target is loaded from memory at [SP] and
placed into IP/RIP. Then SP is incremented to remove the popped return address.

Conceptually, in 64-bit mode:

RIP RSP + 8

[RSP] : RSP

In 32-bit mode:

ETIP

[ESP] ; ESP

ESP + 4
This can be modeled as a pop into the instruction pointer:

ret # RIP := pop()

You can observe the mechanism by explicitly popping into a general register, then jumping:

pop rax # rax := return address

Jmp rax # similar control transfer to ret

A callee can also read the return address without returning yet:

mov rax, gword ptr [rsp] # rax := saved return address (top of

— stack)
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9.3 ret immlé6 and Stack Cleanup

x86 defines a form ret imml6 (near return with immediate). It pops the return address into
IP/RIP and then additionally increments SP by an immediate byte count.
Conceptually in 64-bit mode:

RIP

[RSP] ;: RSP

RSP + 8 + immlé6

In 32-bit mode:
EIP

[ESP] ; ESP

ESP + 4 + immlo6

This exists to support conventions where the callee removes argument bytes from the stack.
While common historically in some 32-bit conventions, it is uncommon in typical 64-bit
System V and Windows x64 calling convention usage where stack argument cleanup rules
are different and argument passing is primarily register-based.

Illustration of the effect (conceptual):

# callee returns and discards 16 bytes of caller-provided stack arguments

ret 16

Equivalently observable as:

pop rax # pop return address
add rsp, 16 # discard argument area
Jmp rax # return

Reading discipline:

* treat ret immlé6 as: return + extra stack pointer adjustment,

* never assume it is “optional”: it changes stack layout expectations.
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9.4 What Happens If the Stack Is Corrupted

Because ret loads its destination from memory, a corrupted stack means ret transfers
control to an unintended address. This is not an “exception” at the ISA level; it is simply a
jump to whatever value is at the top of the stack.

Common corruption sources:
» writing beyond a local stack object (overflow),
* mis-matched push/pop sequences,
* incorrect manual stack-pointer adjustment (add rsp, ... /sub rsp, ...),

* returning with a different SP than the one used on entry.

Simple example: mismatch of pushes and pops:

func:

push rbx

# ... body

ret # bug: return address is not on top (rbx value is)

Correct form:

func:

push rbx
# ... body
pop rbx
ret

Example: wrong stack adjustment:

sub rsp, 32 # reserve space
# ... use [rsp]..[rsp+31]
add rsp, 24 # bug: should restore 32

ret # ret reads wrong address
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Example: attacker-influenced return target (conceptual hazard):

# if [rsp] is overwritten, ret Jjumps to overwritten value

ret

Architecturally, the CPU does not validate that the return target is “reasonable”. It only uses

the value provided by memory.

9.5 Why ret Is Simple but Dangerous

ret is among the simplest x86 control-transfer instructions: a single memory read plus a

stack-pointer increment. That simplicity is exactly why it is dangerous:

* it is a control transfer whose target is data,

* the data source is a mutable memory region (the stack),

» small stack discipline errors have catastrophic control-flow consequences.
Practical implications for low-level reasoning:

* When reading code, always identify what value will be at [rsp] at the moment ret

executes.

* Treat every stack adjustment (push/pop/sub/add rsp) as part of the control-flow

correctness proof.

* Recognize that returns are a major boundary between correct execution and control-flow

failure.

A minimal “return correctness checklist” in disassembly:
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# 1) Was every pushed value popped (or accounted for) before ret?

# 2) Is rsp restored to the entry value (modulo the return address)?

# 3) Is there any instruction that overwrote stack memory near [rsp]?

# 4) Is ret immlé6 used, and does it match the expected stack arguments?

ret

This booklet treats ret as a control-flow primitive. Later booklets extend this understanding
into full calling conventions, stack frames, and ABI rules, but the architectural danger remains

the same: ret jumps wherever the stack tells it to.
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Call / Return Flow as a System

10.1 Control Flow vs Data Flow During Calls

A function call is simultaneously a control-flow event and a data-flow event.
Control flow: call changes IP/RIP to the callee and saves the return address; ret restores

IP/RIP from the stack. This creates a strict edge in the control-flow graph:
caller — callee — caller_next

Data flow: arguments, return values, and temporary state move through registers and memory.
Even without committing to a specific ABI in this booklet, two universal data-flow facts

remain:

* a caller must place inputs where the callee expects them (often registers, sometimes

memory),
* a callee must place the return value where the caller expects it (commonly a register).
Control-transfer minimal core:

80
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call func # control: push return address; jump to func

# caller resumes here

Data-flow example (inputs and output as registers, conceptual):

mov edi, 2 # input a
mov esi, 3 # input Db
call add2 # returns result in eax (common convention)

# eax now holds result (data flow)

add2:
lea eax, [rdi + rsi]

ret

Key reading rule: call/ret provide the control skeleton; register/memory moves provide
the data contract. Mixing the two is a common analysis mistake (e.g., assuming call

“passes” values by itself).

10.2 Nested Calls and Return Chains

Nested calls create a return chain stored on the stack. Every call pushes one return address.

Therefore, a sequence of calls produces a stack of return targets:
RA;, RA,, ..., RA,
and ret pops them in reverse order.

Three-level nesting:

call A
# resumes here after A returns

ret



82

call B

ret

call C

ret

C:

ret

Architectural view (64-bit conceptual):

# At entry of A:

# [rsp] = return address into caller
# After A calls B:

# [rsp] = return address into A

# [rsp+8] = return address into caller

Practical implication: the stack top always holds the next return target. If stack discipline is

broken at any level, the whole chain collapses.

10.3 Visualizing Call Depth

Call depth is simply the number of active (not-yet-returned) calls. At the ISA level, depth

correlates with how many return addresses have been pushed and not popped.

A minimal visualization technique for understanding depth in disassembly is to treat each

call as “depth++” and each ret as “depth—". Even without drawing full stack frames, you

can reconstruct call nesting.

Example with explicit depth commentary:

# depth = 0
call A # depth = 1
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# depth = 0 after A returns

ret

A

call B # depth = 2 (while inside B)

ret # depth back to 0 when A returns to caller
B:

call C # depth = 3 (while inside C)

ret # returns to B (depth = 2)

F:

ret # returns to B (depth = 2)

A practical debugging anchor in many environments is that return addresses form a chain that
unwinding tools follow. Architecturally, that chain exists because call stores return targets

on the stack.

10.4 Tail Calls (Conceptual Introduction)

A tail call occurs when a function ends by calling another function and immediately returning

the result of that call. Conceptually:

e normal call: caller calls callee, then returns later

e tail call: caller transfers control to callee as its final action

At the machine-code level, a tail call often appears as a jump (jmp) to the callee instead of
call, because no return to the current function is needed. The return address already on the
stack (from this function’s caller) can remain the one used by the final callee’s ret.

Tail-call shape:

# tail-call style: no new return address pushed

Jmp target_func
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Non-tail-call shape:

call target_func

ret

Conceptual example:

e

# ... prepare args for G ...

Jmp G # tail call: G returns directly to F's caller
EF:

# ... compute

ret

Important constraints (kept conceptual here):
* the call must be in the tail position (no work remains after it),

* the calling contract between caller and callee must be compatible enough to reuse the

return path.

For this booklet, treat tail calls as a control-flow optimization that turns “call then return” into

“jump”, changing the observable call/return structure.

10.5 Control Flow Integrity Basics

Control flow integrity is the principle that control transfers should only go to valid, intended

targets. At the ISA level, the most sensitive transfers are indirect:
* call reg/call [mem]

* jmp reg/ jmp [mem]
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* ret (target from stack memory)

These instructions take their destination from data. Therefore, correctness and security depend
on the integrity of that data.

Key architectural observations:
* ret is a memory-driven jump: RIP := [RSP] then RSP += 8.
* an indirect call/ jmp is register/memory-driven: RIP := target.

* bounds checks and validation patterns in code exist precisely because targets can

become unsafe when indices or pointers are uncontrolled.

Examples of indirect transfers:

call rax # indirect call to address in rax
Jmp gword ptr [rll + rdix8] # indirect Jjump via table
ret # indirect return via stack

Basic correctness discipline for call/return integrity in low-level reasoning:

* ensure stack pointer restoration matches the pushes/pops performed,
* ensure indirect call targets originate from controlled sources,
* ensure jump-table indices are range-checked before indexing,

* ensure no instruction clobbers return addresses or target pointers.

Minimal illustration of why stack integrity matters:

# if [rsp] is corrupted, ret Jjumps to an unintended address

ret
In later booklets, these basics connect directly to ABI rules, stack frames, and hardened
calling/return mechanisms. In this volume, the essential message is architectural: call/return

forms a system whose correctness depends on preserving the return-address chain and

controlling indirect targets.
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Compiler Control Flow Strategies

11.1 Branch Minimization

Modern compilers attempt to reduce the number of conditional branches when it is profitable
and legal, because branches create multiple execution paths and impose control-flow overhead.

At the ISA level, branch minimization usually appears as:
* turning small if/else logic into conditional data selection,
* merging multiple conditions that share an outcome,

* using jump tables for dense multi-way dispatch,

replacing branches with flag-to-value materialization when a boolean value is needed.

11.1.1 Materialize a boolean instead of branching
Instead of:
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cmp eax, ebx
Jne .Lfalse
mowv eax, 1
Jmp .Lend
.Lfalse:

Xor eax, eax
.Lend:

Compilers often do:

cmp eax, ebx
sete al # al := (eax==ebx)
movzx eax, al

11.1.2 Merge conditions that share an exit

# if (!p || n==0) return;
test rdi, rdi

Jje .Lret

test esi, esi

Jje .Lret

# work path
call Work
.Lret:

ret

11.1.3 Use a jump table for dense cases

cmp edi, 7
Jja .Ldefault
Jmp gword ptr [rip + .Ljt + rdix8]
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11.2 Branch Inversion

Branch inversion is the systematic transformation:
if (cond) then A else B <= 1f (!cond) then B else A

Compilers invert branches to:

* make the most likely path fall-through,
* reduce the number of unconditional jumps,

 improve block layout for instruction cache locality.

Two equivalent shapes:

# form 1

test edi, edi
je .Lelse
call A

Jmp .Ljoin
.Lelse:

call B
.Ljoin:

ret

# form 2 (inverted)
test edi, edi
jne .Lthen
call B

Jmp .Ljoin
.Lthen:

call A

.Ljoin:

ret
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Reading discipline: do not attach meaning to the mnemonic alone; attach meaning to the

predicate and which block is fall-through.

11.3 Fall-Through Optimization

Fall-through optimization is the layout decision that places the most frequently executed
successor block immediately after a conditional branch, so that when the branch is not taken,

execution continues sequentially without an extra jump.

Typical shape: “guard then early exit” (hot path is fall-through).

test rdi, rdi
Jje .Lerror # uncommon: Jjump away

# hot path continues here

call FastPath
ret

.Lerror:

call SlowPath
ret

Another shape: late join elimination by layout.

cmp eax, ebx

jne .Lskip

call A # only on equal
.Lskip:

call B # always executes
ret

Compilers also form diamond patterns (then/else) but attempt to place the join block directly

after whichever path is likely to continue.
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11.4 Common Patterns Emitted by Modern Compilers

Control flow in optimized code is dominated by repeated canonical patterns.

11.4.1 Zero and null checks via test

test rdi, rdi
Jje .Lnull

11.4.2 Bounds checks using unsigned jumps

cmp edi, 15

ja .Lout # unsigned x > 15

11.4.3 Loop back-edges using dec/ jnz or compare/jcc

dec ecx

Jnz .Lloop

inc eax

cmp eax, esi

Jjb .Lloop # unsigned 1 < n

11.4.4 Short-circuit logic lowered to multiple conditional branches

# 1if (a && Db)

test edi, edi
Jje .Lfalse
test esi, esi
Jje .Lfalse

# true path



91

11.4.5 Switch lowering: bounds check + indirect jump

sub edi, BASE
cmp edi, MAX
ja .Ldefault
Jjmp gword ptr [rip + .Ljt + rdix8]

11.4.6 Tail-call style end-of-function transfer

# last action is call to another function

Jmp Target

11.4.7 Materialized boolean via setcc

cmp eax, ebx
setl al # signed less
movzx eax, al

11.5 Why Assembly Often Looks “Unnatural”

Assembly generated by modern compilers frequently looks unnatural to programmers
because it is not produced to be readable; it is produced to satisfy correctness constraints
while optimizing multiple cost models (code size, register pressure, control flow shape, and
scheduling freedom).

Primary reasons it looks surprising:

11.5.1 Reason 1: high-level structure is flattened into basic blocks

Source constructs such as 1f/else, for, and switch become jumps between labeled

blocks. The resulting layout reflects optimization choices more than source structure.
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11.5.2 Reason 2: conditions are inverted and reordered

The compiler may invert predicates, reorder checks, or use early exits to keep hot paths as
fall-through. This can reverse the apparent meaning if you assume the first branch corresponds

to the source-level i f directly.

11.5.3 Reason 3: booleans are not booleans

The compiler may avoid branches by materializing predicates into integers (setcc), or by

keeping predicates in flags without ever forming a 0/1 variable.

11.5.4 Reason 4: common subexpressions and dead paths are eliminated

Conditions can disappear or merge. Branches may vanish entirely if code is proven

unreachable or constant-folded, and loops may be transformed.

11.5.5 Reason 5: layout is chosen for execution flow, not for narrative

Blocks may be placed out of source order; cold blocks can be moved far away; join points can
be merged; unconditional jumps can appear simply to reach an arranged layout.

Example that looks unnatural but is structurally optimal (guard then early return):

test rdi, rdi
Jje .LretO

# main work

call Work

mov eax, 1
ret

.LretO:

XOor eax, eax

ret
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Reading discipline for compiler-generated control flow:

treat each label as a basic block,

translate each jcc into a flag predicate,

follow edges: taken target vs fall-through,

* reconstruct the high-level meaning from the graph, not from linear order.



Chapter 12

Reading and Debugging Control Flow

12.1 Tracing Execution with the Instruction Pointer

To trace control flow, treat IP/RIP as the single source of truth for “where execution is”. Every

step of execution is:

¢ fetch instruction at IP/RIP,

e execute it,

 update IP/RIP to next sequential address or a branch/call/return target.
Practical tracing rule:

 for jcc: evaluate the flag predicate to decide taken vs fall-through,

 for jmp: always taken (IP/RIP becomes target),

e for call: IP/RIP becomes target and a return address is pushed,

 for ret: IP/RIP is popped from the stack.
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Minimal trace example (two-path branch):

test edi, edi

je .Lzero # if ZF==1 -> jump
mov eax, 1 # fall-through path
ret

.Lzero:

XOr eax, eax # taken path

ret

Trace procedure:

* compute ZF from test edi,edi,

e if ZF==1, next IP/RIP is .Lzero,

* else, next IP/RIP is the mov instruction.

Call/return trace (return chain):

call A # push RAQ; RIP:=A
mov eax, 7 # resumes here (RAO)
ret

A

call B # push RAl; RIP:=B
ret # pops RAO

B:

ret # pops RAL

Key invariant: at any moment, [rsp] holds the next return target for ret.
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12.2 Understanding Disassembly Output

Disassembly is a rendering of bytes into instructions plus labels and addresses. Correct

reading requires separating:
e instruction semantics (architectural truth),
* symbolization (names added by tools),
* layout (block order chosen by compiler and linker).

Common disassembly elements:

addresses and offsets: where each instruction resides,

labels: basic block entry points (tool-generated or symbol-based),

* operand forms: registers, immediates, and memory addressing modes,

control-flow annotations: conditional/unconditional targets.

Example of typical annotated output shape:

.LO:

cmp edi, 7

ja .Ldefault

Jjmp gword ptr [rip + .Ljt + rdix8]
.Ldefault:

Xor eax, eax

ret

Interpretation rule:

* ignore label naming style; treat labels as nodes,
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* focuson jcc/jmp/call/ret edges,

* confirm operand width (8/16/32/64) for correct flag meaning.

12.3 Recognizing High-Level Constructs in Assembly

High-level constructs map to repeatable control-flow graphs.

12.3.1 If statement
test edi, edi

Jje .Lskip

call A

.Lskip:

ret

12.3.2 If/else diamond

cmp eax, ebx
Jjne .Lelse
call ThenPath
Jmp .Ljoin
.Lelse:

call ElsePath
.Ljoin:

ret

12.3.3 While loop (top-tested)

.Lhead:
cmp eax, ebx

jge .Lexit
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# body

inc eax
Jmp .Lhead
.Lexit:

ret

12.3.4 Do-while loop (bottom-tested)

.Lbody:

# body

dec ecx
Jnz .Lbody
ret

12.3.5 Switch with jump table

cmp edi, 5
Ja .Ldefault
Jmp gword ptr [rip + .Lijt + rdix8]

12.3.6 Short-circuit AND

test edi, edi
Jje .Lfalse
test esi, esi
Jje .Lfalse
# true path

call T

ret

.Lfalse:

call F

ret
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Recognition method:

* identify the edges (jumps) first,

* classify the structure by its shape (diamond, back-edge, multi-way),

* then attach meaning by mapping each jcc to its flag predicate.

12.4 Debugging Wrong Jumps

Wrong jumps are usually one of five root causes:

* wrong signed/unsigned jcc selection,

* wrong boundary condition (jg vs jge, ja vs jae),

flags clobbered between producer and consumer,

» wrong operand width (partial register),

* wrong condition source (branch tests flags from the wrong instruction).

12.4.1 Signed vs unsigned bug

cmp eax, ebx
Jjl .Lless
Fix:

cmp eax, ebx

Jjb .Lbelow_u

# bug if values are unsigned

(should be

Jjb)
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12.4.2 Boundary bug (strict vs inclusive)

cmp edi, 10
Jja .Lgt_u # strictly >
# if intended: >= then should be jae

12.4.3 Flags clobbered bug

cmp eax, ebx
add ecx, 1 # overwrites flags
Jje .Lequal # now tests ZF from add (bug)

Fix approach: keep compare adjacent to branch or use a non-flag-setting instruction where

needed (e.g., 1ea for arithmetic updates).

12.4.4 Wrong width bug
test al, al
je .Lzero # tests only low 8 bits

Fix: test the intended width:

test eax, eax # 32-bit
Jje .Lzero
Debugging procedure:

* write down the jcc predicate in flags,

locate the last flag-producing instruction,

ensure nothing between them changes the required flags,

confirm the correct signed/unsigned family was used,

* confirm operand width matches the source-level intent.
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12.5 Control Flow Bugs That Look Like Data Bugs

Many failures appear as corrupted values but are actually wrong-path execution. A wrong

branch causes the program to:

* skip initialization,

call the wrong helper,

miss bounds checks,

* execute a cleanup path twice,

fall through into code that assumes a different state.

Example: missing initialization due to wrong condition:

test edi, edi
jne .Lskip_init # bug: should be je to skip init only when x==
mov dword ptr [rbx], 0 # init (skipped unexpectedly)

.Lskip_init:

# later code reads [rbx] and seems "corrupted"

Example: wrong signedness causes out-of-range access that looks like data corruption:

# index in edi should be unsigned

cmp edi, esi

J1 .Lin_range # bug: signed compare

# out-of-range path not taken for large unsigned values with high bit set
.Lin_range:

mov eax, dword ptr [rdix4 + rbx] # reads unintended memory

Example: wrong early-exit leads to double-use of resources:
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test rdi, rdi

Jje .Lcleanup

call UseResource

.Lcleanup:

call ReleaseResource # runs even when resource was never acquired
ret

Practical debugging mindset:
* when data looks impossible, first verify the control path that produced it,
» prove which branch was taken by reconstructing flags and predicates,
* confirm that required setup code executed before dependent code.

Control flow is the gatekeeper of state. If execution enters the wrong block, the resulting state

can mimic random data corruption even when memory operations are technically correct.



Appendices

Appendix A — Control Flow Instruction Summary

This appendix provides a compact, architecture-accurate summary of the x86 control-flow
instructions used throughout this booklet. Each group is organized by what architectural state

it consumes or produces, not by source-language meaning.

cmp and test

cmp a, b performs an internal subtraction (a — b) and updates flags without storing the
result. It is the primary instruction for equality and ordering decisions.

test a, b performs an internal bitwise AND (a & b) and updates flags without storing
the result. It is used for zero checks, bit tests, and sign checks.

Flag effects summary:
* cmp: sets ZF, SF, CF, OF according to subtraction rules
e test: sets ZF, SF; clears OF; CF is setto 0

Canonical forms:

cmp eax, ebx # ordering and equality (signed/unsigned via jcc)
test rax, rax # zero / non-zero check
test eax, 0x20 # bit test (mask)

103



104

Conditional Jumps (Grouped by Logic)

Conditional jumps consume flags produced by prior instructions. They do not compare
operands themselves.
Equality (ZF-based):

Jje label # ZF== (equal / zero)

jne label # ZF== (not equal / non-zero)

Unsigned ordering (CF and ZF):

b label # CF== below
jae label # CF== above or equal
Jja label # CF==0 and ZF== above
Jjbe label # CF==1 or ZF== below or equal

Signed ordering (SF and OF, plus ZF):

jl label # SF!=0F less

Jjge label # SF==0F greater or equal
Jjg label # ZF==0 and SF==0F greater

jle label # ZF==1 or SF!=0F less or equal

Sign-based (from test/logic):

Js label # SF== (negative)

jns label # SEF==0 (non—-negative)

Reading rule: signedness is selected by the jump mnemonic, not by cmp.

jmp (Direct and Indirect)

jmp unconditionally updates IP/RIP. It does not push a return address.

Direct jump (target encoded as relative displacement):
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Jmp label

Indirect jump (target from register or memory):

Jmp rax
Jjmp gword ptr [rbx]
Jmp gword ptr [rip + table + rdix8]

Indirect jumps are used for:
* jump tables (switch lowering),
¢ state machines,
* computed control transfer.

Correctness requires bounds checking before indirect targets are computed.

call and ret
call performs a control transfer while saving the return address on the stack.

call target # push return address; RIP := target

Direct call (relative target):

call func

Indirect call (target from register or memory):

call rax

call gword ptr [rip + fp]

ret restores control by loading IP/RIP from the stack.

ret # RIP := pop()
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ret immlé6 additionally adjusts the stack pointer after popping the return address.

ret 16 # pop return address; add extra stack adjustment
Key architectural facts:

* call creates a return chain by pushing addresses

* ret is an indirect control transfer driven by memory

* stack integrity is essential for correct control flow

This summary table is intended as a quick architectural reference when reading or debugging

control flow in x86 disassembly.

Appendix B — Common Errors and Dangerous Assumptions

This appendix catalogs high-frequency control-flow errors observed in real x86 code. Each
item explains the faulty assumption, why it fails architecturally, and how to recognize or avoid

it when reading or writing assembly.

Mixing Signed and Unsigned Jumps

Faulty assumption: signedness is carried by registers or by cmp. Architectural reality:
signedness is selected solely by the jcc mnemonic.

Using a signed jump for an unsigned quantity (sizes, indices, lengths) inverts logic when the
high bit is set.

Bug pattern:
cmp edi, esi
Jjl .Lin_range # bug if edi/esi are unsigned sizes

Correct unsigned form:
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cmp edi, esi

Jjb .Lin_range # unsigned: edi < esi

Inverse bug (using unsigned jumps for signed values):

cmp eax, O

Jja .Lpositive # bug for signed test (negative values look large)

Correct signed forms:

cmp eax, O

Jjg .Lpositive # signed: eax > 0
test eax, eax

Js .Lnegative

Reading rule: decide signed vs unsigned from the jcc used, never from variable names or

source-level intent.

Assuming Flags Persist

Faulty assumption: flags produced by a compare remain valid until the branch.
Architectural reality: any flag-writing instruction overwrites them.

Bug pattern (flag clobber):

cmp eax, ebx
add ecx, 1 # overwrites ZF/SF/CF/OF
Jje .Lequal # now tests flags from add (bug)

Safe patterns:

cmp eax, ebx

Jje .Lequal # adjacent use

cmp eax, ebx

lea ecx, [ecx + 1] # arithmetic without flags

Jje .Lequal
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Recognition checklist:
* identify the jcc,
* locate the immediately preceding flag producer,

* verify no intervening instruction sets the needed flags.

Trusting Stack State Blindly

Faulty assumption: the stack is correct by construction. Architectural reality: ret is an
indirect jump whose target is read from memory.

Classic mismatches:

func:
push rbx
#

ret # bug: return address is not on top

Correct discipline:

func:

push rbx
#

pop rbx
ret

Wrong stack adjustment:

sub rsp, 32

#

add rsp, 24 # bug: should restore 32
ret

Key rule: before ret, ensure the stack pointer matches the value expected by the caller
(modulo the return address). Treat every push/pop and sub/add rsp as control-flow

critical.
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Misreading Compiler Intent

Faulty assumption: assembly should mirror source structure linearly. Architectural reality:
compilers reshape control flow for layout, fall-through, and canonical patterns.
Common misreads:

Inverted conditions (hot path as fall-through):

test rdi, rdi
Jje .Lerror # uncommon path

# hot path continues

call Work

ret

.Lerror:

call HandleError
ret

Early exits instead of nesting:

test rdi, rdi
Jje .Lret
test esi, esi
Jje .Lret
call Work
.Lret:

ret

Boolean materialization instead of branching:

cmp eax, ebx
setl al # signed less
movzx eax, al

Jump-table dispatch instead of chains:
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cmp edi, 7

Jja .Ldefault

Jmp gword ptr [rip + .Ljt + rdix8]
Reading discipline:

* reconstruct the control-flow graph (blocks and edges),

translate each jcc into a flag predicate,
* ignore source order expectations; follow taken vs fall-through paths,

* verify signedness, width, and flag provenance for each decision.

These assumptions recur because they feel intuitive at the source level but are false at the ISA
level. Correct control-flow reasoning requires strict adherence to architectural semantics, not

narrative reading of the instruction stream.

Appendix C — Preparation for Next Booklets

This appendix bridges pure control-flow mechanics to the structured, rule-driven
world of stacks, calling conventions, and ABIs. It defines what the reader must already

understand—and be able to recognize in disassembly—before moving forward.

Readiness for Stack and Calling Conventions

Before studying any calling convention, the reader must be fluent in the architectural stack
model and its interaction with control flow.
You should be able to:

* trace how call pushes a return address and how ret consumes it,

* verify stack-pointer correctness across push/pop and sub/add rsp,
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* identify stack-resident data vs control data (return addresses),

* reason about nested calls and return chains without relying on source code.

Minimal stack discipline example (correct):

func:

sub rsp, 32 # reserve local space
# use [rspl..[rsp+31]

add rsp, 32

ret

Classic stack-corruption bug to recognize:

func:

push rbx

sub rsp, 16

#

add rsp, 16

ret # bug: rbx still on stack above return address

Required reasoning skill:

* at the point of ret, you must be able to state exactly what value is at [rsp],

* you must be able to reconstruct how that value got there.

This readiness ensures that when calling conventions define which registers are preserved or

how arguments are passed, those rules can be mapped onto a correct underlying stack model.

Readiness for ABI-Level Control Flow

ABIs formalize control flow across compilation units, libraries, and language boundaries.
Prior to studying ABI rules, the reader must already understand the architectural primitives
ABIs are built upon.

You should be able to:
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distinguish direct vs indirect calls in disassembly,

* recognize when a call target comes from a register or memory,

understand that ret is an indirect jump whose target is memory-driven,

identify tail-call shapes where jmp replaces call+ret.

Indirect call recognition:

mov rax, qgword ptr [rdi]

call rax # ABI-visible indirect call

Tail-call transfer shape:

# last action of function

Jmp target_func # no new return address pushed
Return-chain integrity:

call A
# resumes here

ret

call B

ret

B:

ret
ABI-level reasoning builds on these facts:
* which registers must survive calls,

» which registers are free to clobber,



113

* how arguments and return values flow across calls,
* how stack alignment and layout are enforced.

Without a precise understanding of architectural control transfers, ABI rules appear arbitrary;

with it, they become systematic constraints.

Transition from Flow Mechanics to Function Semantics

This booklet intentionally treated functions as control-flow nodes, not semantic units. The next
stage transitions from mechanics to meaning.

What changes:

call/ret stop being viewed as isolated instructions and become part of a contract,
* registers stop being anonymous and gain ABI-defined roles,

* stack space stops being ad-hoc and becomes a structured frame,

control flow becomes constrained by inter-procedural rules.

Control-flow-only view (this booklet):

call func
#

ret

ABI-aware view (next booklets):

# arguments prepared per ABI
call func

# return value observed in defined register

Required mental shift:
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* from “where does execution go” to “who owns which state at each boundary”,
¢ from local correctness to cross-function correctness,
* from single-function reasoning to system-wide call discipline.
If you can:
* trace execution using RIP alone,
* validate every jump, call, and return path,
* prove stack correctness at each return,

then you are prepared to move from control-flow mechanics to full calling conventions and
ABI-level execution models.

This appendix marks the boundary between how control flows and what a function means.



References

R.1 Official x86 and x86-64 Architecture Manuals

The authoritative foundation for all control-flow behavior in this booklet is the official x86 and

x86-64 architecture specifications. These manuals precisely define:

architectural state (RIP/EIP, RFLAGS, general-purpose registers),

* exact semantics of cmp, test, jcc, jmp, call, and ret,

flag-setting rules and their consumption by conditional branches,
* near vs far control transfers at the ISA level.

Every control-flow rule presented in this booklet is derived from these architectural definitions,
not from compiler behavior or operating-system conventions.

Required reader capability after this booklet:
* read an instruction description and extract its precise control-flow effect,
* distinguish architectural guarantees from implementation details,

* reason about control flow solely from the ISA contract.
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R.2 Compiler Documentation and Generated Code Behavior

Modern compilers implement control flow by mapping high-level constructs onto canonical

x86 instruction patterns. Compiler documentation explains:

why certain branch forms (test/ jcc, cmp/ jcc) dominate output,

why indirect jumps and jump tables are preferred for dense multi-way dispatch,

how branch inversion and fall-through shaping influence layout,

why certain instructions (1oop) are avoided in favor of simpler patterns.

In this booklet, compiler behavior is treated as observable output, not as authority. The correct

interpretation strategy is:
¢ start from ISA semantics,
* observe how compilers exploit those semantics,
* never infer architecture rules from compiler habits.

Representative compiler-emitted patterns used throughout this booklet:

test rdi, rdi
Jje .Lexit
cmp eax, esi
Jjb .Lloop

Jmp gword ptr [rip + table + rdix8]
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R.3 Instruction Set Reference Sources

Instruction-set reference sources provide instruction-by-instruction details, including:
* exact flag effects,
* operand-size behavior,
e valid addressing modes,
¢ control-transfer classification (direct vs indirect).
These references are essential when:
* validating whether an instruction modifies flags,
* confirming whether a form is allowed in 64-bit mode,
* checking corner cases such as partial-register writes or implicit operands.

This booklet consistently relies on instruction-reference semantics for:

distinguishing cmp vs test,

* separating signed vs unsigned branch logic,

understanding ret imml 6 stack effects,

identifying which instructions are safe between compare and branch.

R.4 Academic and Professional CPU Architecture Materials

Academic and professional architecture materials provide the conceptual framing used

throughout this series:
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control-flow graphs (CFGs),

basic blocks and edges,

* dominance, back-edges, and loop structure,

* separation of architectural state from microarchitectural execution.
These materials explain:

* why control flow must be reasoned about structurally, not linearly,

* why mispredicted or misdirected control flow dominates performance and correctness

issues,
* how call/return form a structured control discipline.

The methodology used in this booklet—reconstructing execution by following IP/RIP

transitions—comes directly from this body of work.

R.5 Cross-References to Other Booklets in This Series

This booklet is intentionally positioned between architectural fundamentals and ABI-level
execution.

Upstream dependencies:
* instruction execution model,
* registers and flags semantics,
* basic data representation rules.

Downstream continuations:
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stack layout and frame structure,

calling conventions and register preservation rules,

ABI-defined argument passing and return values,
* inter-procedural control flow across modules.
Conceptual handoff:
* this booklet answers where execution goes,
* subsequent booklets answer what state is owned and preserved.
If the reader can:
* trace execution by following RIP through jcc, jmp, call, and ret,
* validate every branch predicate from flags,
* prove stack correctness at each return,

then this booklet has fulfilled its role as the control-flow foundation for the rest of the CPU

Programming Series.



	Contents
	Preface
	P.1 Purpose of This Booklet
	P.2 Why Control Flow Deserves a Dedicated Volume
	P.3 Scope and Boundaries of Coverage
	P.4 How to Read This Booklet (Concept  Instruction  Pattern)
	P.5 Relationship to Other Booklets in the CPU Programming Series

	Control Flow as a CPU Concept
	Chapter 1 — Control Flow as a CPU Concept
	What ``Control Flow'' Really Means at the CPU Level
	1.1 What ``Control Flow'' Really Means at the CPU Level
	Sequential Execution vs Flow Redirection
	1.2 Sequential Execution vs Flow Redirection
	Instruction Pointer (IP / RIP) and Its Role
	1.3 Instruction Pointer (IP / RIP) and Its Role
	Control Flow vs Data Flow
	1.4 Control Flow vs Data Flow
	Why Control Flow Is Central to Performance and Correctness
	1.5 Why Control Flow Is Central to Performance and Correctness

	Flags as the Foundation of Decisions
	Status Flags Involved in Control Flow
	ZF, SF, CF, OF (Conceptual Review)

	How Arithmetic Instructions Set Flags
	Flag Lifetime and Overwriting Rules
	Flag Dependencies Between Instructions
	Common Misconceptions About Flags

	cmp and test in Depth
	Purpose of cmp (Subtraction Without Storing)
	Purpose of test (Bitwise AND for Flags Only)
	Flag Effects of cmp vs test
	Typical Compiler Emission Patterns
	When Compilers Prefer test Over cmp
	Manual Use Cases and Pitfalls
	Manual use cases
	Pitfalls
	High-signal mini catalog: common jcc pairs


	Conditional Jumps: The Real Logic
	Anatomy of a Conditional Jump Instruction
	Signed vs Unsigned Comparisons Explained
	Mapping Conditions to Flags
	je / jne (Equality)
	jl / jg (Signed ordering)
	jb / ja (Unsigned ordering)
	Compact catalog (high-signal)

	Why Signedness Is Not in the Instruction
	Common Bugs from Wrong Jump Selection
	Bug 1: Using signed jumps for unsigned quantities
	Bug 2: Using unsigned jumps for signed quantities
	Bug 3: Clobbering flags between cmp/test and jcc
	Bug 4: Wrong width (partial-register decisions)
	Bug 5: Wrong condition form (strict vs inclusive)

	Reading Conditions Like the CPU Does

	Control Flow Patterns Built from Jumps
	If / Else at the Assembly Level
	Nested Conditions
	Short-Circuit Logic (AND / OR)
	AND short-circuit: if (a && b) A else B
	OR short-circuit: if (a || b) A else B
	Mixed short-circuit: if (a && (b || c))

	Boolean Expressions Without Boolean Types
	Compiler Reordering of Conditions
	Branch inversion and fall-through shaping
	Early-exit normalization
	Combining condition checks
	Reordering under short-circuit constraints


	Loop Patterns in x86
	Loop Concepts Without High-Level Languages
	dec + jnz Pattern
	Count-Controlled Loops
	Down-counter to zero
	Up-counter with compare
	Pointer-walking count loop
	Do-while shape (check at bottom)

	Condition-Controlled Loops
	While loop (check at top)
	Do-while loop (check at bottom)
	Search loop (break on match)
	Sentinel-driven loop (terminate on zero byte)

	Why the loop Instruction Is Rarely Used
	Recognizing Compiler-Generated Loops
	Counted loop with compare at bottom
	Counted loop with pre-check for zero iterations
	Loop with internal break
	Unsigned bounds loop (typical for sizes and pointers)


	Indirect Jumps and Jump Tables
	What an Indirect Jump Really Is
	Jump Tables as a Control Flow Optimization
	Switch Statements at the Assembly Level
	Linear chain (small number of cases)
	Decision tree (sparse cases)
	Jump table (dense range)

	Address Computation for Jump Tables
	Bounds Checking Patterns
	Unsigned upper-bound check (most common)
	Range normalization (shift to start at 0)
	Two-sided bounds check (when needed)

	Security and Correctness Considerations
	Correctness hazards
	Security hazards


	call Instruction Internals
	What call Really Does
	Pushing the Return Address
	Near vs Far Calls (Conceptual)
	Direct vs Indirect Calls
	Direct (relative) call
	Indirect call through register
	Indirect call through memory
	Virtual-dispatch style shape (conceptual)

	How Compilers Choose Call Forms
	Known symbol target
	Unknown target at runtime
	Position-independent and relocation-friendly shapes
	Inlining eliminates calls
	Reading discipline for calls


	ret Instruction and Returning Control
	Stack-Based Return Mechanism
	How ret Uses the Stack
	ret imm16 and Stack Cleanup
	What Happens If the Stack Is Corrupted
	Why ret Is Simple but Dangerous

	Call / Return Flow as a System
	Control Flow vs Data Flow During Calls
	Nested Calls and Return Chains
	Visualizing Call Depth
	Tail Calls (Conceptual Introduction)
	Control Flow Integrity Basics


	Compiler Control Flow Strategies
	Branch Minimization
	Materialize a boolean instead of branching
	Merge conditions that share an exit
	Use a jump table for dense cases

	Branch Inversion
	Fall-Through Optimization
	Common Patterns Emitted by Modern Compilers
	Zero and null checks via test
	Bounds checks using unsigned jumps
	Loop back-edges using dec/jnz or compare/jcc
	Short-circuit logic lowered to multiple conditional branches
	Switch lowering: bounds check + indirect jump
	Tail-call style end-of-function transfer
	Materialized boolean via setcc

	Why Assembly Often Looks ``Unnatural''
	Reason 1: high-level structure is flattened into basic blocks
	Reason 2: conditions are inverted and reordered
	Reason 3: booleans are not booleans
	Reason 4: common subexpressions and dead paths are eliminated
	Reason 5: layout is chosen for execution flow, not for narrative


	Reading and Debugging Control Flow
	Tracing Execution with the Instruction Pointer
	Understanding Disassembly Output
	Recognizing High-Level Constructs in Assembly
	If statement
	If/else diamond
	While loop (top-tested)
	Do-while loop (bottom-tested)
	Switch with jump table
	Short-circuit AND

	Debugging Wrong Jumps
	Signed vs unsigned bug
	Boundary bug (strict vs inclusive)
	Flags clobbered bug
	Wrong width bug

	Control Flow Bugs That Look Like Data Bugs

	Appendices
	Appendix A — Control Flow Instruction Summary
	cmp and test
	Conditional Jumps (Grouped by Logic)
	jmp (Direct and Indirect)
	call and ret
	Appendix B — Common Errors and Dangerous Assumptions
	Mixing signed and unsigned jumps
	Assuming flags persist
	Trusting stack state blindly
	Misreading compiler intent
	Appendix C — Preparation for Next Booklets
	Readiness for Stack and Calling Conventions
	Readiness for ABI-Level Control Flow
	Transition from Flow Mechanics to Function Semantics

	References
	R.1 Official x86 and x86-64 Architecture Manuals
	R.2 Compiler Documentation and Generated Code Behavior
	R.3 Instruction Set Reference Sources
	R.4 Academic and Professional CPU Architecture Materials
	R.5 Cross-References to Other Booklets in This Series













