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Preface

Why IA-32 Still Matters in 2026

IA-32 (x86-32) is no longer the mainstream desktop/server deployment target, yet it remains
a high-value practical skill in 2026 for one simple reason: it is the cleanest real-world
environment where the ABI is visibly stack-centric. If you can reason correctly about 32-
bit stack-based calling conventions, you can debug and verify interoperability at a level that

makes 64-bit ABIs (with more register passing) feel easier rather than harder.

* Legacy compatibility is still a business reality. Large codebases, vendor SDKs, and
industrial deployments keep 32-bit components alive because rewriting and recertifying

is expensive.

* Security and reverse engineering still rely on IA-32. Many malware samples, packed
binaries, and older commercial software remain 32-bit; analysts must read [A-32 call

stacks and conventions fluently.

* The stack tells the truth. IA-32 makes argument passing, cleanup rules, and hidden
ABI parameters obvious. This builds strong intuition for correctness, debugging, and

toolchain behavior.
* Interoperability is an engineering necessity. Mixing C, C++, and assembly (and

13
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sometimes older binary-only libraries) is common in systems programming, emulation,

tooling, and compatibility layers.

This booklet treats IA-32 as a laboratory for ABI discipline: correct stack layout, correct

cleanup responsibility, correct register preservation, and correct C/C++ interoperability.

Mini Example: The ABI as a Contract (Not a Style Choice)

Two functions with identical source intent can be binary-incompatible if they disagree on the
calling convention (who cleans the stack, which registers must be preserved, and how names

are exported).

extern "C" int _ cdecl f_ cdecl (int a, int Db);

extern "C" int _ stdcall f_stdcall (int a, int b);

If you link a caller compiled to call ___cdec1 with a callee implemented as ___stdcall, the
program may appear to work briefly, then crash later from a corrupted stack pointer. This is

not a “bug” in either function; it is a broken ABI contract.

When and Where 32-bit x86 Is Still Used

In 2026, IA-32 persists in several practical environments. The exact mix varies by
organization, but the underlying reasons are stable: compatibility, cost, hardware constraints,

and certification inertia.

* Long-lived industrial PCs and kiosks: systems that were deployed years ago and are

maintained rather than replaced.

* Embedded x86 and appliance-like deployments: special-purpose devices built around

x86 SoCs where the software stack is frozen.
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* Legacy commercial software and plugins: binary-only components that exist only in
32-bit form.

* Compatibility layers and tooling: emulators, dynamic instrumentation, debuggers,

unpackers, and reverse-engineering workflows.

* Cross-compilation and multilib userlands: 64-bit hosts that still build/run 32-bit

binaries (toolchains, tests, compatibility, older dependencies).

Mini Example: 32-bit on a 64-bit Host (Multilib Build)

On many development hosts, you can compile a 32-bit binary from a 64-bit toolchain (when

32-bit libraries are installed).

# Build 32-bit on a 64-bit host (multilib required)
gcc —-m32 -02 -c add.c -o add.o
gcc —-m32 add.o -o add32

This booklet focuses on the binary interface rules that make such builds correct and

interoperable.

Scope and Assumptions of This Booklet

This booklet is about IA-32 in practice: how real compilers and linkers shape function calls,
stack frames, and interoperability boundaries. The aim is ABI correctness, not instruction

memorization.

Primary Scope

* TA-32 calling convention(s) used by mainstream toolchains.
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Stack argument passing and real stack layouts.

Stack cleanup rules (caller vs callee cleanup).

* Register preservation rules (caller-saved vs callee-saved).

Return-value rules including structure returns and hidden parameters.

C / C++ interoperability boundaries:

— name mangling vs extern "C"
— matching calling conventions across translation units

— struct layout and alignment expectations

Assumptions

* You understand the conceptual CPU execution model (fetch/decode/execute/retire)

from earlier booklets.
* You know basic register and flag meaning and can read simple IA-32 assembly.

* You can read C/C++ function declarations and understand types, pointers, and basic

structs.

* You want correctness-first reasoning: stack integrity, ABI compliance, and predictable

interoperability.

Example Convention Used in This Booklet

To keep examples concrete, many sections demonstrate a cdecl-style stack discipline
(arguments on stack, caller cleanup), then contrast it with stdcall/fastcall where relevant.

Assembly is shown in Intel syntax, with GAS-style comments using #.
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# IA-32 example (Intel syntax shown), comments use '#'

# Conceptual: call add(a, b) where a and b are on the stack

What This Booklet Does Not Cover

This is a focused ABI and interoperability booklet. Many advanced topics are intentionally

excluded to keep the mental model clean and the page count within target.

* No OS internals or system call ABI. We do not cover kernel entry mechanisms,

interrupt/trap frames, or OS-specific syscall conventions.

* No deep coverage of segmentation and legacy protected-mode details. We only
touch what is required to reason about normal user-space code generation and stack

behavior.

* No floating-point deep dive. We mention return/parameter realities only as needed, but
do not fully teach x87/SSE calling details.

* No exception-unwinding ABI deep dive. C++ exceptions, unwinding metadata, and

personality routines are not the goal here.

* No inline-assembly dialect tutorial. We focus on ABI behavior and interoperability,

not on teaching a specific compiler’s inline-asm syntax.

* No comprehensive instruction reference. You should already have an instruction

reference strategy from prior booklets; we use only what is needed.

Why These Exclusions Are Healthy

ABIs are hard mainly because engineers mix concerns. This booklet isolates the ABI contract:

calling convention, stack layout, register preservation, and cross-language linking. Once that is
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mastered, adding OS details, exceptions, and SIMD rules becomes structured work instead of

guesswork.

How This Booklet Fits in the CPU Programming Series

This booklet is the first architecture-specific step where the series becomes binary-interface

practical. It bridges:

* the earlier ISA-independent foundations (execution model, data representation, flags,

stack concepts), and

* the real-world constraints of toolchains (compilers, assemblers, linkers) and cross-

language integration.

Series Position and Dependency Map

* You should already be comfortable with:

— binary data representation (signed/unsigned, carry vs overflow)
— stack growth, call/return concept, stack frames conceptually

— reading small assembly snippets and relating them to source intent
* This booklet prepares you for:

— x86-64 ABI work (more register passing, stronger alignment rules, different red-
zone / shadow-space realities depending on platform)

— calling-convention debugging in real crash dumps and traces

— writing ABI-correct assembly that interoperates with C/C++ reliably
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Practical Outcome Checklist

After finishing this booklet, you should be able to do all of the following without guessing:

1.

Predict the stack layout at a call site and at function entry.

. Determine who must clean the stack for a given calling convention.

. Identify which registers must be preserved by the callee.

Explain how struct returns work, including hidden pointers when required.

. Make C and C++ interoperate safely using extern "C" and explicit calling-

convention annotations.

. Recognize the common signatures of ABI mismatch: stack imbalance, corrupted return

address, and silent data corruption.

Extensive Interoperability Preview (One Small, Real Pattern)

A common pattern is to expose a stable C ABI entry point from C++ so that assembly (or

other languages) can call it reliably.

#ifdef _ cplusplus

extern "C" {

#endif

int

__cdecl sum?2 (int a, int b);

#ifdef _ cplusplus

}

#endif
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Then implement it in IA-32 assembly with ABI-correct behavior: read arguments from the
stack and return in EAX. (Exact prologue style may vary with optimization, but the ABI rules
do not.)

# sum2 (a, b) using a stack-based ABI (cdecl-style)
# On entry (conceptually):

# [espt+4] = a

# [esp+8]
#
#

Return:

eax = a + b

sum2 :
push ebp
mov ebp, esp
mov eax, dword ptr [ebp+8] # a
add eax, dword ptr [ebp+12] # b
pop ebp
ret

This booklet explains every hidden rule behind that small example: why those offsets exist,
what changes under different conventions, what must be preserved, how the symbol must be

exported, and how to debug failures when the contract is violated.



Chapter 1

TA-32 Execution Model Recap

1.1 32-bit Mode vs Compatibility Mode

The term IA-32 refers to the 32-bit x86 programming model: 32-bit general-purpose registers,
32-bit linear addresses (with architectural mechanisms that can alter the effective address
size), and a 32-bit stack discipline. In practice, you will encounter IA-32 code running in two

common environments:

* Legacy 32-bit mode (native IA-32): the processor executes with a 32-bit execution
environment where the default operand and address sizes are 32-bit (subject to

instruction prefixes), and the OS is 32-bit.

* Compatibility mode under x86-64: a 64-bit CPU runs a 32-bit user program while
the OS kernel is 64-bit. The program still sees the IA-32 register set and the 32-bit
ABI rules, but it is hosted by a 64-bit OS environment that may impose additional
system-level constraints (loader, syscall interface, library availability). For ABI and

interoperability inside user-space, the function call contract remains IA-32.
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1.1.1 What does call / ret mean in both cases?

In both native IA-32 and compatibility execution of 32-bit code, call pushes a return address
and transfers control, and ret pops that return address to resume execution. This stack-based

control flow is the backbone of every 32-bit calling convention.

# Conceptual view (IA-32):
# call target

# 1) push return_address
# 2) EIP <- target

#

# ret

# 1) EIP <- pop()

The exact encodings differ (call rel32,call r/m32, ret,ret imml6), but the
architectural contract is stable and is what debuggers, unwinders, and ABIs rely on.
1.2 General-Purpose Registers in 1A-32

IA-32 exposes eight general-purpose registers (GPRs), each 32-bit wide:

EAX, EBX, ECX, EDX

ESI, EDI

EBP (frame/base pointer by convention)

ESP (stack pointer)
These registers have historical partial-register aliases:

* EAX — AX — AH/AL
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* EBX — BX — BH/BL  (and similarly for ECX, EDX)

e EST — SI, EDI — DI, EBP — BP, ESP — SP
ABI relevance: calling conventions define who must preserve what. A typical IA-32 contract
is:

e Caller-saved (volatile): EAX, ECX, EDX

¢ Callee-saved (non-volatile): EBX, EST, EDI, EBP

This division is not a stylistic preference. It is what allows separately compiled modules to call

each other safely.

1.2.1 Example: Correct Register Preservation

Suppose a function uses EBX. If the ABI says EBX is callee-saved, the function must restore it

before returning.

# int uses_ebx(int x)
# Returns: x + 1, but uses EBX internally.
uses_ebx:

push ebp

mov ebp, esp

push ebx # preserve callee-saved EBX
mov ebx, dword ptr [ebp+8] # x
add ebx, 1

mov eax, ebx # return in EAX
pop ebx # restore EBX
pop ebp

ret
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If you omit the save/restore and the caller expected EBX to remain unchanged, the failure can

show up later in unrelated code (the most dangerous kind of bug: silent corruption).

1.3 Stack Pointer (ESP) and Base Pointer (EBP)

IA-32 function calling is fundamentally stack-based. Two registers dominate this model:

* ESP: points to the top of the current stack (the next location affected by push/pop).

* EBP: commonly used as a stable frame pointer to reference arguments and locals at

fixed offsets.

1.3.1 Canonical Frame Setup

A classic prologue establishes EBP as a stable anchor:

# Prologue (canonical)
push ebp
mov ebp, esp

sub esp, 32 # reserve 32 bytes for locals (example)

With this frame, the layout is conceptually:

[ebp+4] : return address

[ebp+8] : first argument

[ebp+12] : second argument

* [ebp-4], [ebp-81, ... : local variables
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1.3.2 Example: Stack Frame With Locals and Two Arguments

Consider a C-style function:
extern "C" int _ cdecl f (int a, int b);
A typical ABI-correct assembly implementation:

# int f(int a, int b)
# a at [ebp+8], b at [ebp+12]

f:
push ebp
mov ebp, esp
sub esp, 8 # reserve 8 bytes for locals
mov eax, dword ptr [ebp+8] # eax = a
mov dword ptr [ebp-4], eax # locall = a
mov eax, dword ptr [ebp+12] # eax = Db
add eax, dword ptr [ebp-4] # eax = b + local0

mov esp, ebp

pop ebp

ret

Key point: EBP-relative addressing provides stability even as ESP moves due to pushes, pops,

and local allocation.

1.3.3 Frame Pointer Omission (FPO)

Optimizing compilers may omit EBP as a frame pointer to free a register and shorten

prologues/epilogues. When this happens, arguments and locals are addressed relative to ESP,



26

and offsets can vary across the function as ESP changes. For ABI reasoning, the external

contract is unchanged; only the internal addressing strategy changes.

1.4 Instruction Pointer (EIP) and Control Flow

EIP holds the address of the next instruction to execute. Control-flow instructions modify

EIP directly or indirectly:

Direct control flow: jmp label, call label

Indirect control flow: jmp r/m32,call r/m32

Return: ret (pops target from the stack)

Conditional flow: jcc label based on flags

1.4.1 Example: Why the Return Address Matters

A single stack imbalance can break ret, because ret trusts the top of stack to be the correct

return address.

# Wrong: mismatched stack cleanup (conceptual)
# If a callee uses 'ret 8' (callee cleanup) but the caller also adds
- esp, 8,

# ESP will skip over the real return address at some later point.

This is why calling convention mismatches often crash at ret or shortly after: EIP is loaded

from an invalid location, transferring control to nonsense.



27

1.4.2 Direct vs Indirect call

Indirect calls are central to C++ virtual dispatch and function pointers.

# Direct call

call do_work

# Indirect call via pointer in EAX

call eax

# Indirect call via memory operand

call dword ptr [ebp—-4] # call through local function pointer

From an ABI standpoint, these calls still push a return address and transfer control; argument

passing and register preservation rules still apply.

1.5 Stack Growth and Alignment Rules

The TA-32 stack grows downward toward lower addresses. A push decrements ESP and

stores a value; a pop loads a value and increments ESP.

1.5.1 Push/Pop Mechanics

# push r32:

# esp = esp — 4
# [esp] = r32

# pop r32:

# r32 = [esp]

# esp = esp + 4
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1.5.2 Alignment: The Practical Rule

Alignment requirements can vary by ABI and toolchain, but the engineering rule is:

* Maintain stack alignment as required at call boundaries.

* Do not assume you may freely misalign ESP inside a function if you will call other

functions.

Some code works until a callee uses instructions or conventions that assume stronger
alignment, at which point you see crashes or data faults that look unrelated. Therefore, this

booklet enforces a discipline: treat stack alignment as part of the ABI contract.

1.5.3 Example: Enforcing Alignment Before a Call

The following example shows a conservative alignment strategy: adjust stack space so that
after pushing arguments, the stack remains aligned as required for the environment, then undo

the adjustment after the call.

Conceptual pattern:

1) reserve alignment padding if needed

#

#

# 2) push arguments
# 3) call target

#

4) clean arguments + padding (cdecl-style)
caller_ example:
push ebp

mov ebp, esp

sub esp, 12 # padding/reserved space (example

— strateqgy)
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push 2 # arg2
push 1 # argl

call callee

add esp, 8 # caller cleans 2 args (cdecl)
add esp, 12 # remove padding/reserved space
pop ebp

ret

Important: the exact padding amount and the required alignment depend on the target ABI
and the caller’s stack state. The stable lesson is the method: alignment is maintained at call

boundaries, because that is where interoperability is tested.

1.5.4 A Minimal Stack-Integrity Checklist

When you debug IA-32 interoperability issues, check these in order:

1. Are caller and callee using the same calling convention (cleanup responsibility

matches)?
2. Does the callee preserve all callee-saved registers required by the ABI?
3. Are argument offsets correct relative to the established frame (EBP or ESP)?

4. TIs stack alignment maintained correctly at every call boundary?

If these rules are satisfied, IA-32 calls across C, C++, and assembly become mechanically

reliable rather than fragile.



Chapter 2

The TIA-32 Stack in Practice

2.1 Stack Layout at Function Entry

In IA-32, the stack is the primary transport for control flow (return addresses) and, in common
conventions, for arguments. At the moment a function begins executing, the stack already
contains at least the return address. If the caller passed arguments on the stack, they are

located above that return address.

2.1.1 Immediate Effects of call

Architecturally, a near call performs two essential actions:
1. Push the return address on the stack.

2. Load ETIP with the call target.

# IA-32 conceptual: call target
# esp = esp — 4

# [esp] = return_address

30
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# eip = target

2.1.2 Typical Entry Stack Layout (Stack Arguments)

Assume a common stack-argument convention (e.g., cdecl/stdcall style) with two 32-bit
integer arguments. Right after the callee begins (before it changes ESP), the layout is

conceptually:

# On entry to callee (before prologue), conceptual:

# [esp+0] = return_address
# [esp+4] = argl
i [espt8] = arg2

If the function establishes a frame pointer using EBP, these become fixed offsets from EBP:

# After

# push ebp

# mov ebp, esp

#

# Layout

# [ebp+4] = return_address
# [ebp+8] = argl

# [ebp+12] = arg2

2.1.3 Example: Reading Arguments Correctly

Goal: implement int add2 (int a, int b) with ABI-correct stack usage.

# int add2 (int a, int b)
# a = [ebp+8], b = [ebp+12], return in eax
add2:
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push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # a
add eax, dword ptr [ebp+12] # + Db
pop ebp

ret

This example is intentionally minimal: it demonstrates the most important invariant for
correctness across separately compiled code: arguments are read from the ABI-defined

locations, not from assumptions.

2.2 Stack Frames and Prologue/Epilogue Patterns

A stack frame is the region of stack memory a function uses for:

* saving the caller’s state (e.g., EBP, preserved registers),

local variables,
* temporary storage and spill slots,

* outgoing call arguments (in some compiler strategies).

2.2.1 Canonical Frame (Debug-Friendly, Stable Offsets)

The classic IA-32 prologue/epilogue pattern:

# Prologue
push ebp
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mov ebp, esp

sub esp, N # allocate N bytes for locals

# Epilogue (one of the common forms)
mov esp, ebp

pop ebp

ret

Why it matters: EBP provides stable addressing even if ESP changes due to pushes/pops or

dynamic allocation.

2.2.2 Compact Epilogue Using leave

Many assemblers and compilers use 1eave, which is equivalent to: mov esp, ebp then

pop ebp.

# Equivalent epilogue
leave

ret

2.2.3 Frame Pointer Omission (FPO) Pattern

Optimizing builds may omit the frame pointer and address locals/args relative to ESP. This is

correct but harder to reason about manually because ESP can move.

# Example shape only (offsets are compiler-dependent) :
# sub esp, N
# mov eax, dword ptr [esp + K] # arg/local via esp-relative

— addressing

For ABI work, remember: FPO changes internal bookkeeping, not the external calling

contract.
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2.3 Saved Registers and Caller vs Callee Responsibilities

Every calling convention is a contract that defines:
» where arguments live (stack, registers, or both),
* who cleans the arguments (caller or callee),

* which registers must be preserved across the call.

2.3.1 Register Volatility: The Interoperability Core

A widely used IA-32 division is:
¢ Caller-saved (volatile): EAX, ECX, EDX
¢ Callee-saved (non-volatile): EBX, EST, EDI, EBP
Meaning:
* If the caller needs a volatile register after a call, the caller must save it before the call.

* If the callee wants to use a non-volatile register, it must save and restore it.

2.3.2 Example: Caller Saves Volatile Registers

Caller wants to preserve a value held in ECX across a function call:

# Caller side
caller:
push ebp

mov ebp, esp
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mov
push
push
push
call
add

pop

pop

ret

ecx,

ecx
2
1

add2

esp,

eCcx

ebp

1234 # important value in a volatile

register

# caller saves ECX

8 # caller cleans args (cdecl-style)

# restore ECX

This is correct regardless of what the callee does, because the ABI says ECX is not preserved

by the callee.

2.3.3 Example: Callee Preserves Non-Volatile Registers

Callee uses EBX (non-volatile) and must restore it:

# int use_ebx(int x)

use_ebx:
push

mowv

push
mowv
add

mowv

pop

ebp
ebp,

ebx

ebx,
ebx,
eax,

ebx

esp

# callee preserves EBX
dword ptr [ebp+8]
10
ebx # return in EAX

# restore EBX
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pop ebp

ret

If EBX is not restored, the caller may malfunction later in ways that are difficult to attribute to

the call site.

2.3.4 Stack Cleanup Responsibility (Caller vs Callee)

There are two major cleanup models for stack arguments:

* Caller cleanup: caller adjusts ESP after the call (common for cdecl, required for

variadic).
* Callee cleanup: callee adjusts ESP before returning (common for stdcall).

# Caller cleanup pattern (cdecl-style)
push arg2
push argl
call func

add esp, 8 # caller removes 2 args (2 * 4 bytes)

# Callee cleanup pattern (stdcall-style, conceptual)

push arg2

push argl

call func

# callee returns with ret 8 (pops return address and discards 8 bytes

— of args)

Rule: if caller and callee disagree on cleanup, the stack becomes unbalanced and ret will

eventually jump to the wrong address.
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2.4 Local Variables and Temporary Storage

Locals and temporaries live in the callee’s stack frame. Compilers use stack storage for:

local variables (int local;),

spilled registers (when registers are insufficient),
* temporary values created during expression evaluation,

* outgoing arguments for nested calls (in some strategies).

2.4.1 Example: Locals at Negative Offsets

A function with two locals (8 bytes total) uses [ebp—-4] and [ebp—-8].

# int g(int a)
# locals: localO at [ebp—-4], locall at [ebp-8]
g:

push ebp

mov ebp, esp

sub esp, 8

mov eax, dword ptr [ebp+8] # a

mov dword ptr [ebp-4], eax # locall = a
lea eax, dword ptr [eax+teax] # eax = 2x*a
mov dword ptr [ebp-8], eax # locall = 2+*a

mov eax, dword ptr [ebp-4]
add eax, dword ptr [ebp-8] # return localO + locall
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mov esp, ebp

pop ebp

ret

This yields a stable, debuggable layout: arguments at positive offsets, locals at negative

offsets.

2.4.2 Spill Slots: When the Compiler Runs Out of Registers

Even hand-written assembly often needs temporary stack storage when preserving values

across calls.

# Example: preserve an intermediate across a call by storing it on
— the stack
h:

push ebp

mov ebp, esp

sub esp, 4

mov eax, /177

mov dword ptr [ebp-4], eax # spill: save intermediate
push 2

push 1

call add2

add esp, 8

add eax, dword ptr [ebp—-4] # use spilled value after call

mov esp, ebp
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pop ebp

ret

This is the simplest reliable pattern when you must protect a value from being overwritten by a

call (especially if that value would otherwise reside in a volatile register).

2.5 Stack Alignment Constraints

Alignment is part of interoperability. While IA-32 is tolerant of many unaligned memory
accesses, ABIs and generated code may assume specific stack alignment at call

boundaries. Misalignment can cause:

* slower accesses (penalties on some microarchitectures),
* faults in code that uses stronger-alignment instructions or conventions,

* subtle corruption when a callee assumes an alignment that the caller did not maintain.

2.5.1 Practical Rule for ABI-Safe Calls

Treat stack alignment as a call-site invariant:
* before calling another function, ensure ESP meets the platform’s ABI alignment

requirement,

* after returning, restore ESP exactly to the value the caller expects (balanced pushes/pops

and correct cleanup).

2.5.2 Example: Balanced Stack Discipline

The strongest universal discipline for correctness is balance: every push must be matched by
a corresponding stack adjustment before returning, and cleanup responsibility must match the

chosen convention.
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# Caller: balanced stack, caller cleanup (cdecl-style)
balanced_call:
push ebp

mov ebp, esp

push 20
push 10
call add2

add esp, 8 # remove two arguments (2 * 4)

pop ebp

ret

If you follow balanced stack discipline and preserve registers per the ABI, your [A-32

assembly becomes reliably interoperable with C and C++ across toolchains and build modes.

2.5.3 A Minimal Stack Correctness Checklist

For every function and every call site, verify:

1. Entry invariants: return address is at the expected location; arguments are at ABI-

defined locations.
2. Frame correctness: if using EBP, establish and tear down the frame correctly.
3. Register contract: callee preserves all required non-volatile registers it modifies.

4. Cleanup contract: caller vs callee cleanup matches the convention (never both, never

neither).

5. Alignment at calls: maintain the ABI-required stack alignment at every call boundary.
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IA-32 Calling Conventions

3.1 Overview of Common IA-32 ABIs

An TA-32 calling convention is an ABI contract that answers five questions:

1. Where are arguments placed? (stack, registers, or both)

2. In what order are stack arguments placed? (typically right-to-left)
3. Who cleans the stack arguments? (caller or callee)

4. Which registers must be preserved? (callee-saved vs caller-saved)

5. How are return values produced? (registers, hidden pointers for aggregates)
In practice, most real-world IA-32 code you will analyze falls into a small set of conventions:

* cdecl: stack arguments, caller cleanup, flexible (required for variadic).
* stdcall: stack arguments, callee cleanup, common in many OS/API boundaries.

41



42

* fastcall: some arguments in registers, remaining on stack, cleanup rules vary by

toolchain.

The most important engineering principle is not memorizing names, but proving correctness

by inspecting:
* call site stack adjustments (e.g., add esp, Naftercall),
e return instruction form (e.g., ret vs ret imml6),

* register save/restore behavior.

3.1.1 A Unifying Mental Model

Think of the call boundary as a handshake:

Caller prepares inputs —-> Callee consumes inputs

Caller expects outputs <- Callee produces outputs

#

#

# Both sides obey:

# — stack cleanup responsibility
#

— register preservation rules

3.2 cdecl Calling Convention

cdecl is the classic C calling convention on IA-32 in many toolchains.

3.2.1 Core Rules

* Arguments: passed on the stack (typically right-to-left).

 Stack cleanup: caller cleans the stack arguments after the call.
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* Return value: integer/pointer returns in EAX.

* Variadic support: required for variadic functions because only the caller knows how

many arguments were pushed.

3.2.2 Example: cdecl Caller and Callee

C signature:
extern "C" int _ cdecl sum3(int a, int b, int c¢);
Caller side (push right-to-left, caller cleanup):

# int r = sum3 (10, 20, 30);

push 30 # c
push 20 ¥ Db
push 10 # a

call sum3
add esp, 12 # caller removes 3 args (3 x 4)

# result now in eax

Callee side (reads args at fixed EBP offsets, returns in EAX):

# int _ cdecl sum3(int a, int b, int c)
sum3:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # a
add eax, dword ptr [ebp+12] # + b
add eax, dword ptr [ebp+l16] # + c
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pop ebp

ret # callee does NOT discard args

3.2.3 Variadic Function Reality

For variadic functions, the callee cannot discard arguments because it does not know how

many were pushed. Therefore, caller cleanup is mandatory.

# Caller knows argument count, so caller cleanup is the only safe
— rule.

# push fmt, push argl, push arg2,

# call printf_like

# add esp, N

3.3 stdcall Calling Convention

stdcall is widely used for fixed-parameter APIs where a stable binary boundary is desired.

3.3.1 Core Rules

* Arguments: passed on the stack (typically right-to-left).
* Stack cleanup: callee cleans the stack arguments.
* Return value: integer/pointer returns in EAX.

* Fixed parameter count: expected (not suitable for true variadic interfaces).
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3.3.2 Key Signature in Assembly: ret immlé
The common mechanical difference is in the return instruction:

* ret pops only the return address.

* ret 12 pops the return address and discards 12 bytes of arguments.

3.3.3 Example: stdcall Callee Cleanup

C signature:
extern "C" int _ stdcall sum3_std(int a, int b, int c);
Caller side (no add esp, 12):

push 30
push 20
push 10
call sum3_std

# no stack adjustment here (callee discards args)
Callee side (returns with ret 12):

# int _ stdcall sum3_std(int a, int b, int c)
sum3_std:
push ebp

mov ebp, esp

mov eax, dword ptr [ebpt8]
add eax, dword ptr [ebp+l2]
add eax, dword ptr [ebp+16]
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pop ebp
ret 12 # callee discards 3 args (3 x 4)

3.3.4 The Classic Failure Mode

If a caller also does add esp, 12 after callinga stdcall callee, the stack becomes

imbalanced. The failure often appears later when a ret loads an incorrect return address.

3.4 fastcall Calling Convention

fastcall is a performance-oriented convention that reduces memory traffic by passing some

arguments in registers.

3.4.1 Core Rules (General Form)

* First arguments: passed in registers (toolchain-defined; commonly ECX, EDX for the

first two integer/pointer args).
* Remaining arguments: passed on the stack.

* Cleanup: toolchain-defined; in many cases callee cleanup is used for fixed signatures,

but you must verify at the binary boundary.

* Return value: integer/pointer returns in EAX.

3.4.2 Example: Two Args in Registers

Signature:

extern "C" int _ fastcall add2_fast (int a, int Db);
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Typical call shape (conceptual):

mov ecx, 10
mov edx, 20 # b
call add2_fast

# result in eax

Callee reads from registers instead of stack:

# int _ fastcall add2_fast (int a, int b)

# a 1in ecx, b in edx (common fastcall form)

add2_ fast:
push ebp

mov ebp, esp

mov eax, ecx

add eax, edx

pop ebp

ret

3.4.3 Mixing Register and Stack Arguments

With more than two integer/pointer args, remaining args go on the stack. The exact

offsets depend on whether the callee sets up EBP and whether there is additional ABI-

required bookkeeping. The safe method is: verify by reading the call site and the callee

simultaneously.
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3.5 Compiler-Specific Variations

On IA-32, calling convention names can hide toolchain-specific rules. Variations commonly

appear in:

Register assignment: which registers receive the first arguments under fastcall-like

rules.

* Name decoration: how symbols are exported and how the convention is encoded in

symbol names.

» Struct return conventions: small aggregates in registers vs hidden pointers for larger

aggregates.

* Frame pointer usage: EBP-framed vs frame-pointer omission, changing how offsets

appear.

Alignment policy: required alignment at call boundaries and how compilers maintain it.

3.5.1 Example: Detect Convention by Mechanics (Not by Guessing)

You can often infer the convention from the callee’s return instruction and the caller’s stack

adjustment:

# If you see:
# call foo
# add esp, 8
#

then caller cleanup is happening —-> cdecl-like for two stack args.

# If you see:
# call foo
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# and NO add esp, 8 at the call site, but callee ends with:
# ret 8
# then callee cleanup is happening -> stdcall-like for two stack

— args.

For register-passing conventions, you will see argument setup in registers at the call site:

# Register argument setup often indicates fastcall-like behavior:
mov ecx, 1
mov edx, 2

call foo

3.6 When and Why Conventions Differ

Calling conventions differ to optimize for different constraints:

3.6.1 Variadic vs Fixed Signatures

Variadic interfaces require caller cleanup because only the caller knows how many arguments

were passed. Fixed signatures can choose caller or callee cleanup.

3.6.2 Performance and Code Size

Register passing reduces memory traffic and can improve performance. Callee cleanup can
reduce caller code size for fixed signatures by removing add esp, N sequences at each call

site.

3.6.3 Binary Compatibility Boundaries

System APIs and stable binary interfaces often standardize a convention to ensure that

independently compiled modules can interoperate safely across versions.
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3.6.4 Language Semantics

C++ introduces additional ABI realities:

* member functions may have an implicit object pointer (commonly passed in a register or

as a hidden argument depending on ABI),

* exceptions and RTTI involve additional runtime mechanisms (not covered here), but

they influence how toolchains standardize ABI choices.

3.6.5 The Practical Rule for Engineers

You never “choose” a calling convention in isolation. You choose it because you must match
an existing ABI boundary: an OS API, a library, a compiler default, or a previously shipped
binary interface. In interoperability work, correctness comes from matching the boundary,

then verifying by the mechanical evidence in the call sites and returns.
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Passing Arguments on the Stack

4.1 Argument Order (Right-to-Left Rule)

For the dominant TA-32 stack-based conventions, stack arguments are placed right-to-left: the
last source-level argument is pushed first, so the first argument ends up closest to the return
address. This rule makes fixed offsets from a frame pointer (EBP) stable across call sites and

enables C-style variadic functions to locate the first named argument reliably.

4.1.1 Example: Two Arguments, Right-to-Left

Source intent:

extern "C" int _ cdecl f(int a, int b);

int r = £(10, 20);
Typical stack setup:

# Push right-to-left:
push 20 # b
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push 10 # a
call £
add esp, 8 # caller cleanup for cdecl-style

Callee view after establishing EBP:

On entry after:
push ebp

mov ebp, esp

[ebp+8]
[ebp+12] = b

HH o FH = FH

4.1.2 Why This Order Matters (Variadic Reality)

With variadic functions, the callee must locate the first named argument and then walk to
additional arguments using fixed-width rules and type promotions. A consistent placement

rule is essential.

4.2 Primitive Types on the Stack

In TA-32 ABIs, the stack is addressed in 32-bit units (4 bytes). Most primitive integer-like
arguments are passed as 4-byte values on the stack, even when the source type is smaller, due

to standard argument passing rules and promotions in many calling contexts.

4.2.1 32-bit Units and Stack Slots

A practical rule for ABI reasoning in IA-32:

» Each stack argument occupies one or more 4-byte slots.
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» Smaller integer types (char, short) are typically extended to a 4-byte value when

placed on the stack for calls.

* 64-bit integers occupy two slots (8 bytes) and are laid out as two adjacent 32-bit words.
4.2.2 Example: char, short, int
Source intent:
extern "C" int _ cdecl g(char ¢, short s, int i);

Conceptual stack layout (after EBP is set):

# [ebp+8] = c extended to 32-bit
# [ebp+12] = s extended to 32-bit
# [ebpt+tl6] = 1 (32-bit)

Callee reading them as 32-bit values:

push ebp

mov ebp, esp

mov eax, dword ptr [ebpt8] # c (extended)
mov edx, dword ptr [ebpt+l2] # s (extended)
add eax, edx

add eax, dword ptr [ebp+16] # + i

pop ebp

ret
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4.2.3 Example: 64-bit Integer Argument

Source intent:
extern "C" int _ cdecl h(long long x);

A 64-bit integer occupies two 32-bit stack slots. The callee sees adjacent words at fixed

offsets:

# Conceptual:

# [ebp+8] = low 32 bits of x
# [ebp+12] = high 32 bits of x
Reading both parts:
h:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # low
mov edx, dword ptr [ebp+l12] # high
# Now EDX:EAX holds x in a common IA-32 pairing model

# (how you use it depends on your goal)

pop ebp

ret

4.3 Pointers and References

On IA-32, pointers are 32-bit values. They occupy one 4-byte stack slot and are passed like

integers.
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4.3.1 Pointers

Source intent:
extern "C" int _ _cdecl sumZ2_ptr(const intx p);
Callee receives p as a 32-bit address at [ebp+8]:

sum2_ptr:
push ebp

mov ebp, esp

mov edx, dword ptr [ebp+8] # edx = p
mov eax, dword ptr [edx] # eax = p[0]
add eax, dword ptr [edx+4] # eax += p[1l]
pop ebp

ret

4.3.2 References (C++ ABI Reality)

In practice, a C++ reference parameter is passed as an address (like a pointer) at the

ABI boundary. This is why references are ABI-friendly: they have a concrete machine

representation.
extern "C" int _ cdecl inc_ref (inté& x);
# int inc_ref (inté& x) # x is received as a pointer-like address
inc_ref:
push ebp

mov ebp, esp
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mov edx, dword ptr [ebp+8] # edx = &x

mov eax, dword ptr [edx] # eax

Il
b

add eax, 1

mov dword ptr [edx], eax # x =x + 1
pop ebp
ret

The C++ type system enforces non-null semantics at the source level, but at the ABI level it is

still an address.

4.4 Floating-Point Arguments

Floating-point argument passing in IA-32 has two important realities:

* In many classic IA-32 ABIs, floating-point arguments are passed on the stack as their

memory representation (f1oat 4 bytes, double 8 bytes).

* The computation may use x87 stack registers or SSE registers internally depending
on compiler and settings, but the call boundary still frequently uses stack slots for

floats/doubles in stack-based conventions.

4.4.1 Example: double Occupies Two Stack Slots

Source intent:
extern "C" int _ cdecl take_double (double x);

A double is 8 bytes, so it occupies two 4-byte stack slots:
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# Conceptual layout:
# [ebp+8] = low 32 bits of x
# [ebp+12] = high 32 bits of x

Loading the raw bits (for demonstration) without performing floating arithmetic:

take_ double:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # low part
mov edx, dword ptr [ebp+l2] # high part
# EDX:EAX now holds the raw 64-bit payload of x

pop ebp

ret

4.4.2 Example: Passing a double from Caller

Caller reserves 8 bytes and stores the value, then passes it by pushing the two words (or by

reserving and copying, depending on compiler strategy). A conceptual push-based view:

# Conceptual only: pushing the 64-bit value as two 32-bit words.

# The exact order is ABI-defined; treat as two adjacent stack slots.
push dword ptr [x_high] # high 32

push dword ptr [x_low] # low 32

call take double

add esp, 8

In real compiler output, you often see stack space reserved then a store into [esp] and

[esp+4] before the call. The ABI-relevant point remains: the callee sees two adjacent
32-bit words.
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4.5 Structs Passed by Value

Passing structs by value is where IA-32 ABIs become visibly strict. Two rules dominate:

» Small aggregates may be passed in one or more stack slots directly (by copying their

bytes onto the stack).

» Larger aggregates are still passed by value semantically, but the mechanism is a copy
onto the caller’s stack (or sometimes a hidden pointer depending on ABI/toolchain

rules).

4.5.1 Example: 8-Byte Struct by Value
Assume:

struct Pair { int x; int y; };

extern "C" int _ cdecl sum _pair(Pair p);

The struct is 8 bytes, so it occupies two stack slots. Callee reads fields at fixed offsets:

# Conceptual layout after EBP set:
# [ebpt+8] = p.x
# [ebp+12]

p.y

sum_pair:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # p.x
add eax, dword ptr [ebp+12] # + p.y
pop ebp

ret
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4.5.2 Example: Larger Struct by Value (Copy Semantics)

For a larger struct, the caller typically copies the struct bytes into the outgoing argument area
on the stack (or into a temporary then onto the stack). The callee still reads its fields from the

stack argument region.

struct Big { int a; int b; int c; int d; }; // 16 bytes

extern "C" int _ _cdecl sum _big(Big v);

Callee view:

# After EBP set:
# [ebp+8] = v.a
# [ebp+12] = v.b
# [ebp+l6] = v.c
# [ebp+20] = v.d
sum_big:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+t+8]
add eax, dword ptr [ebp+l12]
add eax, dword ptr [ebp+16]
add eax, dword ptr [ebp+20]

pop ebp

ret

The ABI discipline is the same: the callee expects a contiguous, correctly aligned memory

image of the struct in the argument region.



60

4.6 Hidden Arguments and ABI Details

Not all parameters appear explicitly in the source signature. ABIs commonly introduce
hidden arguments to implement language semantics and efficiency. In IA-32 interoperability

work, the two most important hidden-argument cases are:

* Structure return (sret): when returning a struct by value that cannot be returned in

registers, the caller passes a hidden pointer to return storage.

* C++ implicit object pointer (this): member functions receive an implicit pointer
to the object; its placement depends on the ABI and convention used for member

functions.

4.6.1 Example: Hidden Pointer for Struct Return (sret)

Source intent:

struct Pair { int x; int y; };

extern "C" Pair _ cdecl make_pair (int a, int b);

A common ABI strategy: the caller allocates space for the return object and passes a hidden

first argument: Pairx out. The logical signature becomes conceptually:
extern "C" void _ cdecl make_pair_sret (Pairx out, int a, int Db);

Callee view after ERP is established:

# [ebp+8] = out (hidden pointer)
# [ebpt+tl2] = a
# [ebpt+l6] = Db

Assembly implementation:
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# void make_pair_sret (Pair+ out, int a, int Db)
make_pair:
push ebp

mov ebp, esp

mov edx, dword ptr [ebp+8] # out

mov eax, dword ptr [ebp+12] # a

mov dword ptr [edx], eax # out—->x = a
mov eax, dword ptr [ebp+l6] # b

mov dword ptr [edx+4], eax # out->y = Db

# Return convention for sret commonly returns 'out' in eax, or
— returns void
# depending on toolchain/ABI. The critical ABI point is the

— hidden pointer.

mov eax, edx # often: return out pointer in
— eax

pop ebp

ret

When you debug C/C++ interoperability, recognizing the hidden sret pointer is essential;
otherwise argument offsets appear “shifted”” and developers misdiagnose the crash as stack

corruption.

4.6.2 Example: C++ this as a Hidden Argument

For a non-static member function, the machine-level call includes an implicit object pointer.

Conceptually:

struct Obj { int v; int get () const; };
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The member call 0. get () is conceptually like:
int Obj_get (const Obj* this_ptr);

How this is passed (stack vs register) depends on the ABI and convention for member
functions in that toolchain. The core lesson for this chapter is: hidden arguments exist, and
they change stack offsets and register usage. Therefore, always confirm ABI lowering by

inspecting both the call site and the callee.
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Stack Cleanup Rules

5.1 Caller Cleanup vs Callee Cleanup

In TA-32 stack-based calling conventions, stack cleanup defines who restores ESP after
arguments are placed on the stack for a call. This rule is a core ABI contract, because ret

trusts that the stack top contains the correct return address.

5.1.1 Caller Cleanup (cdecl-style)

Caller cleanup means:
* The caller pushes arguments.
* The callee returns with ret (pops only the return address).

* The caller restores ESP by discarding the argument bytes.

# Caller cleanup pattern (cdecl-style)
push argN
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push arg2
push argl
call callee

add esp, N # caller discards N bytes of args

5.1.2 Callee Cleanup (stdcall-style)

Callee cleanup means:
* The caller pushes arguments.

* The callee returns with ret imml 6, which pops the return address and discards the

argument bytes.

* The caller performs no argument discard.

# Callee cleanup pattern (stdcall-style)
push argN

push arg2
push argl
call callee

# no add esp, N here

# Callee return discards args:

ret N # pop return address + discard N bytes

Key invariant: cleanup must happen exactly once. If both sides clean, the stack moves too far.

If neither cleans, the stack grows and eventually breaks.
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5.2 Stack Adjustment Instructions

The IA-32 instruction set provides small, reliable primitives to adjust the stack. These are the

basic tools used by compilers and by ABI-correct hand-written assembly.

5.2.1add esp, imm

The most common caller-cleanup form: discard a known number of bytes.

# Discard 3 arguments (3 x* 4 = 12 bytes)
add esp, 12

5.2.2ret vs ret immlé

ret pops the return address only. ret imml6 pops the return address and discards an

immediate byte count.

ret # pop return address only

ret 8 # pop return address + discard 8 bytes of
— args

5.23 leave

leave is a canonical epilogue helper for framed functions: it restores ESP from EBP then

pops the old EBP.

leave # mov esp, ebp ; pop ebp

ret
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5.2.4 Extensive Example: Two Equivalent Epilogues

# Form A: explicit
mov esp, ebp
pop ebp

ret

# Form B: using leave
leave

ret

Both are ABI-correct if the function established EBP as a frame pointer.

5.3 Common Bugs from Mismatched Cleanup

Stack-cleanup mismatches produce some of the most deceptive failures in IA-32. Often the

crash happens later, far from the call site that caused the imbalance.

5.3.1 Bug Type 1: Double Cleanup (Caller + Callee)

Caller performs add esp, N, but callee also returns with ret N. The stack advances too

far.

# Caller (wrong for stdcall callee)

push 2

push 1

call callee_stdcall

add esp, 8 # WRONG: callee already discarded args

# Callee (stdcall style)
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callee_stdcall:
push ebp
mov ebp, esp
mov eax, dword ptr [ebp+8]
add eax, dword ptr [ebp+12]
pop ebp

ret 8 # callee cleanup

Typical symptom: later ret jumps to an invalid address because the return address is no

longer at the expected stack top.

5.3.2 Bug Type 2: No Cleanup (Neither Side)

Caller fails to discard args, and callee returns with plain ret. The stack pointer drifts

downward with every call.

# Caller (wrong for cdecl callee)
push 2

push 1

call callee cdecl

# missing: add esp, 8

# Callee (cdecl style)

callee cdecl:
push ebp
mov ebp, esp
mov eax, dword ptr [ebp+t+8]
add eax, dword ptr [ebp+l1l2]
pop ebp

ret
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Typical symptom: program runs for a while, then fails due to stack exhaustion, corrupted

locals, or a crash in unrelated code.

5.3.3 Bug Type 3: Wrong Byte Count

Even when the right side cleans, using the wrong byte count is enough to corrupt the call

stack.

# Caller expects to discard 12 bytes but discards only 8

add esp, 8 # WRONG: leaves one argument on stack

Symptom pattern: the stack becomes gradually misaligned, and a later ret loads the wrong

return address or a later function reads the wrong argument values.

5.3.4 Extensive Diagnostic Trick: Watch ESP Across Call Boundaries
A reliable debugging method is to observe ESP immediately:

* before pushing arguments,

* right before call,

* immediately after returning.

If cleanup is correct, ESP after the full call sequence equals the value before pushing

arguments (plus/minus only intentional temporary allocations in the caller).

5.4 Variadic Functions and Cleanup Constraints

Variadic functions impose a strict constraint: caller cleanup is required. The callee cannot
know how many arguments were passed, because the argument list length is determined at the

call site.
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5.4.1 Why the Callee Cannot Clean

In a variadic call, only the caller knows the total number and sizes of the passed arguments

after the named parameters. Therefore:
* acallee-cleanup ret N is not generally possible,

* a fixed cleanup count would be wrong for most calls.

5.4.2 Extensive Example: Variadic-Style Call Shape

Conceptual example:
extern "C" int _ cdecl vprint (const charx fmt, ...);

# vprint ("%d %d4d", 10, 20)
push 20

push 10

push fmt_ptr

call vprint

add esp, 12 # caller discards all pushed arguments

Even if a platform uses stdcall for many fixed-parameter APIs, variadic functions still

require caller cleanup.

5.5 ABI Guarantees vs Compiler Behavior

The ABI defines the externally visible contract between separately compiled modules.

Compilers may transform code internally, but they must preserve the ABI at the boundary.
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5.5.1 What the ABI Guarantees

* A caller and callee that agree on the calling convention will interoperate correctly.
* Cleanup responsibility is fixed by the convention at that call boundary.

* Register preservation rules are stable across modules that follow the same ABI.

5.5.2 What Compilers May Change

* Frame pointer usage: EBP frame vs omission (FPO).

Argument setup strategy: pushing arguments vs reserving stack space and storing into
it.

* Epilogue selection: 1eave vs explicit restore.

Tail calls: converting call + ret into a direct jmp when ABI rules allow.

5.5.3 Extensive Example: Push-Based vs Store-Based Argument Setup

Both of the following are ABI-equivalent from the callee’s perspective:

# Style 1: push arguments
push 2

push 1

call add2

add esp, 8

# Style 2: reserve space then store
sub esp, 8

mov dword ptr [esp], 1

mov dword ptr [espt+4d], 2
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call add2
add esp, 8

The callee still sees a contiguous argument block in the correct order.

5.5.4 Extensive Example: Tail Call and Cleanup Interaction

A tail call replaces the current function’s return with a jump to another function. Cleanup rules
must still hold.

# Conceptual tail call shape (cdecl-style):
# current function discards its frame and Jjumps to target,

# letting target return directly to the original caller.

tail caller:
push ebp
mov ebp, esp
# ... set up args for target
mov esp, ebp
pop ebp
Jmp target # no return here; target returns to

— original caller

A correct tail call requires that the outgoing stack state match what the target expects,
including argument placement and alignment. This is why aggressive optimizations do not

change the ABI contract; they only change how it is implemented.

5.5.5 Practical Rule

When you analyze binaries, trust the ABI contract first, and verify using mechanics:

* Does the caller adjust ESP after the call?
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* Does the callee return with ret imml16?
* Are argument bytes balanced exactly once?

If these are consistent, the cleanup rules are correct even if the compiler used non-obvious

instruction sequences.



Chapter 6

Returning Values in IA-32

6.1 ABI-Mandated Return Registers

In IA-32 ABIs, the return mechanism is part of the calling convention contract. The caller
assumes the return value will be placed in specific architectural locations immediately after the

callee returns.

6.1.1 Core Return Locations (Practical Summary)

32-bit integers and pointers: returned in EAX.

64-bit integers: returned in EDX : EAX (high:low pairing).

Floating-point: commonly returned via the x87 ST (0) register, or via SSE registers in

toolchains/environments that use SSE-based floating ABI rules.

Aggregates (struct/class) by value: returned either in registers (small cases) or via a

hidden return-storage pointer (large/common cases).
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Engineering rule: always treat return locations as ABI-defined observable behavior. If
you return a value in the wrong place, the caller will read garbage even though the callee

“computed” correctly.

6.2 Integer and Pointer Returns

The simplest and most stable IA-32 rule: a 32-bit integer or pointer return value is in EAX.

6.2.1 Extensive Example: Returning an int in EAX

# int addl (int x) —-> return x+1 in eax
# x at [ebp+8] in a classic framed function
addl:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+t+8]

add eax, 1

pop ebp

ret

6.2.2 Extensive Example: Returning a Pointer in EAX

Returning a pointer is identical to returning a 32-bit integer at the ABI level.

# intx id_ptr(intx p) -> return p
id_ptr:
push ebp

mov ebp, esp
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mov eax, dword ptr [ebp+t+8] # eax = p
pop ebp
ret

6.2.3 Extensive Example: Returning a 64-bit Integer in EDX : EAX

A 64-bit integer return uses a two-register pair. A common convention is: EAX = low 32 bits,

EDX = high 32 bits.

# long long make64 (int lo, int hi) -> returns (hi:lo) in edx:eax
# lo at [ebp+8], hi at [ebp+12]
make64:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # low
mov edx, dword ptr [ebp+12] # high
pop ebp

ret

The caller reads EDX : EAX as a 64-bit value immediately after return.

6.3 Floating-Point Return Mechanisms

Floating-point return on IA-32 is historically tied to x87, where the primary return location
1s ST (0) . Many modern toolchains can also use SSE registers for floating return in some

configurations, but the key ABI reality remains:
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* The caller expects the floating return value to appear in the ABI-defined floating return

location.

* The callee must ensure the floating pipeline state is consistent at the return boundary.

6.3.1 Extensive Example: Returning a double via x87 ST (0)
(Conceptual)

A minimal shape of a function that returns a floating value through x87 is:

# double ret_pi ()
# Conceptual: load a floating constant into x87 ST (0), then ret.
# Exact constant loading depends on assembler/sections; the ABI point
— 1s ST (0).
ret_pi:
push ebp

mov ebp, esp

# Conceptual placeholder:

# fld gword ptr [pi_const] # ST(0) = pi
pop ebp
ret

This booklet focuses on ABI placement (where the caller reads the result), not on teaching x87

instruction programming in depth.
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6.3.2 Extensive Example: Returning a Floating Value as Raw Bits
(ABI-Useful Technique)

When verifying interoperability, it is often helpful to return floating payload bits as integers to
avoid dependence on x87/SSE details. For example, return a double’s 64-bit payload using

EDX:EAX:

# Return the raw 64-bit payload of a double argument in edx:eax
# double x passed on stack as two dwords at [ebp+8] and [ebp+12]
ret double bits:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # low 32 of x
mov edx, dword ptr [ebpt+l2] # high 32 of x
pop ebp

ret

This is a robust ABI debugging method: it proves argument placement and return placement

without depending on floating execution units.

6.4 Small Structure Returns

Returning small structs by value is ABI-sensitive and can vary by toolchain, but there are

stable patterns:

* Some small aggregates are returned in registers (typically using EAX and optionally

EDX).
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* If the aggregate does not fit in the ABI’s register-return scheme, the ABI switches to a

hidden return-storage pointer.

6.4.1 Common Practical Pattern: 8-Byte Aggregate in EDX : EAX

A very common small-struct return case is an 8-byte struct (two 32-bit fields). Conceptually,
the ABI can return: EAX = first 32 bits, EDX = second 32 bits.

struct Pair { int x; int y; };

extern "C" Pair _ cdecl make_pair_small (int a, int b);
Assembly returning two fields in registers:

# Pair make_pair_small (int a, int Db)
# Return:
# eax = x
# edx =y
make_pair_ small:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # a —> x
mov edx, dword ptr [ebp+12] # b >y
pop ebp

ret

The caller must interpret EDX : EAX as the returned struct. If the caller expects an sret-pointer
return but the callee returns in registers (or vice versa), results are invalid even if both sides are

“correct” internally.
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6.5 Large Structure Returns via Hidden Pointers

For larger aggregates, IA-32 ABIs commonly use a hidden first argument that points to
caller-allocated storage for the return object. This mechanism is often called sret (structure

return).

6.5.1 Conceptual Lowering

Source signature:

struct Big { int a; int b; int c; int d; }; // 16 bytes

extern "C" Big _ cdecl make_big(int x);
Common ABI lowering:
extern "C" wvoid _ cdecl make_big_sret (Bigx out, int x);

The caller allocates Big storage and passes its address as a hidden argument.

6.5.2 Extensive Example: sret Implementation

Callee view after EBRP set:

# [ebp+t8] = out (hidden return storage pointer)

# [ebp+12]

X

# void make_big_sret (Bigx out, int x)
make_big:
push ebp

mov ebp, esp
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mov edx, dword ptr [ebp+8] #
mov eax, dword ptr [ebp+12] #
mov dword ptr [edx], eax #

add eax, 1
mov dword ptr [edx+4], eax #
add eax, 1
mov dword ptr [edx+8], eax #
add eax, 1

mov dword ptr [edx+12], eax #

# Many ABIs/toolchains also place

-~ return value.

edx =

eax =

out—->a

out->b

out—>c

out—>d

'out'

in

x+1

x+2

x+3

eax as a convenience

# The correctness-critical ABI element is the hidden pointer

— itself.

mov eax, edx

pop ebp

ret

6.5.3 Caller-Side Shape (Conceptual)

The caller reserves storage and passes its address:

# Conceptual caller-side:
# Big tmp;
# make_big(&tmp, x);

sub esp, 16 # reserve return storage (example strategy)

lea eax, dword ptr [esp] # eax = &tmp

push x

(return storage)
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push eax # hidden sret pointer

call make_big

add esp, 8 # discard explicit x + hidden pointer

— (cdecl-style)

# tmp object bytes are now in [esp .. esp+15] (until stack changes)

add esp, 16 # release storage when done with it

Compilers may allocate the return object in caller locals rather than directly on ESP, but the

ABI principle is identical: caller provides storage, callee writes into it.

6.6 Putting It Together: Return Rules You Can Validate
Mechanically

When analyzing or writing IA-32 interoperability code, validate returns by inspection:

1. Integer/pointer return: confirm final value is in EAX.
2. 64-bit integer return: confirm EDX : EAX.

3. Floating return: confirm the ABI’s floating return location (often x87 ST (0) in classic
T1A-32).

4. Small aggregate return: confirm whether the ABI uses registers (commonly EAX and

EDX).

5. Large aggregate return: confirm the hidden sret pointer shifts argument offsets and

that the callee writes into caller-provided storage.

If the call boundary agreement is correct, the program behaves correctly even under

optimization, frame-pointer omission, and different internal code-generation strategies.
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TA-32 Function Prologues and Epilogues

7.1 Canonical Prologue Forms

A prologue establishes the callee’s stack frame and preserves any callee-saved state the
function will modify. A canonical (debug-friendly) IA-32 prologue uses EBP as a frame

pointer, giving stable offsets for arguments and locals.

7.1.1 Minimal Canonical Frame (No Locals)

# Canonical prologue/epilogue with EBP frame, no local allocation
func:

push ebp

mov ebp, esp

# body...

pop ebp

ret
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7.1.2 Canonical Frame With Locals

Local storage is reserved by subtracting a constant from ESP.

# Canonical: reserve N bytes for locals (N chosen by compiler/author)

func_locals:

push ebp

mov ebp, esp

sub esp, 32 # 32 bytes locals/spills/temps (example)
# body...

mov esp, ebp

pop ebp

ret

7.1.3 Canonical Frame With Callee-Saved Register Preservation

If the function modifies non-volatile registers, it must save/restore them.

# Uses EBX and ESI (callee-saved), so preserve them
func_saves:

push ebp

mov ebp, esp

push ebx

push esi

sub esp, 16 # locals
# body may freely use ebx/esi...
add esp, 16 # release locals

pop esi

pop ebx
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pop ebp

ret

Key invariant: the epilogue must restore the stack pointer to the exact value expected by the

ABI for the chosen cleanup convention and must restore any callee-saved registers it modified.

7.2 Frame Pointer Omission

Frame pointer omission (FPQO) means the function does not use EBP as a dedicated frame
pointer. This frees EBP as a general register and can reduce instruction count, but it makes

manual analysis harder because ESP-relative offsets can change throughout the function.

7.2.1 Typical FPO Shape

# FPO-style skeleton: no push ebp / mov ebp, esp
func_fpo:

sub esp, 32 # allocate locals

# body uses [esp + K] addressing

add esp, 32

ret

7.2.2 Extensive Example: Addressing Locals With FPO

With FPO, locals and spills are addressed relative to ESP. The offsets are compiler-defined,
but the key idea is stable:

# Example: keep a local at [espt+t0] after allocation
func_fpo_local:

sub esp, 8

mov dword ptr [esp], 123 # local0 = 123
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mov eax, dword ptr [esp]
add esp, 8

ret

Important: if the function performs push instructions or makes calls that require temporary
stack arguments, ESP changes, and the compiler will adjust addressing or use additional

bookkeeping to keep references correct.

7.2.3 Practical Consequence for ABI Reasoning

FPO does not change:
* the calling convention,
¢ the return mechanism,
* the register preservation contract.

It only changes how the callee internally addresses stack data.

7.3 Optimized Prologue/Epilogue Variants

Optimizers change prologues/epilogues to reduce instruction count and memory traffic while

preserving the ABI contract.

7.3.1 Using leave

leave is a compact epilogue for framed functions.

func_leave:

push ebp



86

mov ebp, esp

sub esp, 16

# body...

leave # mov esp, ebp ; pop ebp

ret

7.3.2 Epilogue With Direct Stack Restoration

If locals are a fixed size, compilers may restore ESP using an add:

func_add_epilogue:
push ebp
mov ebp, esp
sub esp, 32
# body. ..
add esp, 32
pop ebp

ret

7.3.3 Saving Multiple Registers Efficiently

A function that uses multiple callee-saved registers may push them early and pop them late.

The exact order is not ABI-visible; the requirement is full restoration before return.

func_multi_save:
push ebp
mov ebp, esp
push ebx
push esi

push edi
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sub esp, 24

# body...

add esp, 24

pop edi
pop esi
pop ebx
pop ebp
ret

7.3.4 Tail Calls and Prologue Elision

A tail call can eliminate the current function’s epilogue/return by jumping directly to the target

after restoring the caller-visible state.

# Tail-call shape: restore state, then jmp to target
func_tail:

push ebp

mov ebp, esp

# ... prepare args for target

mov esp, ebp

pop ebp

Jmp target

This is ABI-correct only if the outgoing stack state matches what the target expects.

7.4 Debug vs Release Code Differences

Debug and release builds differ mainly in goals:
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* Debug: stable frames, easy symbolic debugging, predictable variable locations.
* Release: speed and size, aggressive register allocation, fewer memory accesses, fewer
instructions.
7.4.1 Typical Debug Characteristics
* EBP is commonly used as a frame pointer.
* Locals are stored on the stack more often (even if they could stay in registers).

* Prologue/epilogue is more canonical and consistent.

7.4.2 Typical Release Characteristics

* Frame pointer omission is common.
* Locals may live in registers (no stack slot exists).
* Prologues/epilogues may be merged, shortened, or removed for leaf functions.

* Tail-call optimizations may replace call + ret with jmp.

7.4.3 Extensive Example: Leaf Function (Release-Style Minimalism)
A leaf function makes no calls and uses no stack locals. It can omit a frame entirely.

# int id(int x) —-> return x
# Release-style: no frame, no locals
id:
mov eax, dword ptr [espt4d] # x 1s above return address

ret

This is ABI-correct: the function reads its argument directly from the entry stack layout.
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7.4.4 Extensive Example: Same Function With Debug-Friendly Frame

# Debug-style: explicit frame

id_dbg:
push
mov
mov
pop

ret

ebp

ebp, esp

eax, dword ptr [ebp+t+8]
ebp

Both are correct; they reflect different priorities.

7.5 Stack Unwinding Implications

Stack unwinding is the process of walking back through call frames to recover return

addresses and (sometimes) saved registers and local layout information. Unwinding is critical

for:

* crash reporting and backtraces,

* debugging,

* exception handling mechanisms that must restore control and state.

7.5.1 EBP-Framed Code Is Easy to Unwind

When a function uses EBP as a frame pointer, the frame chain is explicit:

* [ebp] typically holds the previous frame pointer,

e [ebp+4] holds the return address.
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# Typical framed layout:
# [ebpl] old ebp

# [ebp+4] = return address

A debugger can follow the chain reliably, even without deep analysis of instruction streams.

7.5.2 FPO Requires Metadata or Heuristics

With frame pointer omission, there is no guaranteed linked list of frames. Unwinding then

depends on:
* toolchain-provided unwind metadata (when present),
* conservative scanning and heuristics (less reliable),

 conventions used by the specific build configuration.

7.5.3 Extensive Example: Why Stack Imbalance Breaks Unwinding

Immediately

Unwinding assumes the return address is at the correct position relative to the current stack

state. A cleanup mismatch shifts ESP, so:
* the unwinder reads the wrong return address,
* the backtrace becomes incorrect or stops,

* debugging becomes misleading.

# If arguments were not cleaned correctly, ESP is wrong.
# Then [esp] at a 'ret' boundary is not the true return address.

# Unwinding and backtraces fail or become garbage.
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7.5.4 Practical Engineering Rule

If your goal is interoperability and diagnosability, prefer:
* ABI-correct stack cleanup,
* correct callee-saved register restoration,

* predictable frame setup in low-level boundary functions (especially when mixing C/C++

with assembly).

Optimizations are valuable, but at ABI boundaries (public entry points, cross-language hooks,
plugin interfaces), stable frames and strict ABI discipline reduce time-to-debug and prevent

silent corruption.



Chapter 8

Interfacing with C and C++

8.1 Name Mangling in C vs C++

Name mangling is how a compiler encodes additional information into symbol names so the

linker can distinguish entities that would otherwise collide. The key interoperability fact:

* C: external function names are typically exported as the plain identifier (subject to

platform decoration rules).

* C++: function names are mangled to encode overloads, namespaces, classes, and

sometimes calling convention and parameter types.

Therefore, a C++ function cannot be called from assembly (or C) by writing its source-level
name unless you know the exact mangled symbol spelling produced by that toolchain and
build mode.

8.1.1 Extensive Example: Why Overloads Force Mangling

These are legal in C++:

92
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int f (int);
int f (double);

Both must exist as distinct linker symbols. C++ achieves that by mangling. C cannot do this at

the ABI level, so C has no function overloading.

8.1.2 Practical Rule

If you need a stable symbol name across compilers and languages, do not export raw C++

functions directly. Export a C ABI boundary.

8.2 extern "C" and ABI Stability

extern "C" tells the C++ compiler to use C linkage for the declared function(s):
* no C++ name mangling,
» C-style linkage identity at the linker boundary,

* astable entry point that assembly and C can call by a predictable symbol name.

8.2.1 Extensive Example: C ABI Wrapper Around C++ Implementation

Expose a stable C entry point, implement internally in C++:

#ifdef _ cplusplus
extern "C" {

#endif

int _ cdecl sum2_c(int a, int b);
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#ifdef _ cplusplus

}
#endif

static int sum2_impl (int a, int b) noexcept ({

return a + b;

extern "C" int _ cdecl sum2_c(int a, int b) {

return sum2_impl (a, b);

Why this is stable: the exported symbol is C-linked and has an explicit calling convention.
The internal C++ function can evolve (namespaces, overloads, templates) without changing
the ABI boundary.

8.2.2 Do Not Assume C++ ABI Stability

Across different C++ compilers (and sometimes different versions or flags), the mangling
scheme and certain ABI details can differ. extern "C" is the practical mechanism to define

a stable, toolchain-agnostic boundary.

8.3 Matching Calling Conventions Explicitly
A correct link is not enough. The caller and callee must also agree on:
* argument placement (stack vs registers),
* stack cleanup responsibility (caller vs callee),

* register preservation rules at the boundary.



95

Therefore, every exported cross-language boundary should specify the calling convention

explicitly.

8.3.1 Extensive Example: Declaring the Convention in C/C++

#ifdef _ cplusplus
extern "C" {

#endif

int _ cdecl add_cdecl (int a, int Db);
int _ stdcall add_stdcall (int a, int b);
int _ fastcall add_fastcall (int a, int Db);

#ifdef __ _cplusplus

}
#endif

8.3.2 Extensive Example: Assembly Implementations Must Match
cdecl implementation (caller cleanup, ret):

# int _ cdecl add_cdecl (int a, int b)
add_cdecl:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+t+8]

add eax, dword ptr [ebp+l12]

pop ebp

ret

stdcall implementation (callee cleanup, ret 8):
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# int _ stdcall add_stdcall (int a, int b)
add_stdcall:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+t+8]

add eax, dword ptr [ebp+l12]

pop ebp

ret 8

fastcall implementation (common form: first two args in ECX, EDX):

# int _ fastcall add_fastcall (int a, int b)
# a in ecx, b in edx (common fastcall lowering)
add_fastcall:

push ebp

mov ebp, esp

mov eax, ecx

add eax, edx

pop ebp

ret

8.3.3 Failure Mode: Mismatched Cleanup

If a caller treats a callee as cdecl and performs add esp, 8 while the callee returns with
ret 8, the stack becomes corrupted. If neither side cleans, the stack drifts. This is the most

common interoperability bug in mixed C/C++/assembly 1A-32 systems.
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8.4 Data Layout Compatibility

Even if symbol naming and calling convention match, interoperability fails if both sides

disagree on the memory layout of data types.

8.4.1 Stable Assumptions in [A-32
* Pointer size: 4 bytes.

* int: typically 4 bytes in mainstream [A-32 ABIs.

* Alignment: each type has an alignment requirement; structs gain padding to satisfy

field alignment and overall alignment.

The critical engineering rule: both sides must use the same definitions and the same

packing/alignment policy.

8.4.2 Extensive Example: Matching a Shared Struct Definition

Use one shared header for C and C++:

#ifdef _ cplusplus
extern "C" {

#endif

typedef struct Point ({
int x;
int vy;

} Point;

int _ _cdecl sum_point (Point p);
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#ifdef _ cplusplus

}
#endif

Assembly callee assumes Point is 8 bytes (two 32-bit fields) passed by value on the stack:

# int _ cdecl sum_point (Point p)
# p.x at [ebp+8], p.y at [ebp+12]
sum_point:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+t+8]

add eax, dword ptr [ebp+l12]
pop ebp

ret

If one side changes the struct (adds a field, changes packing), the offsets change and the

function silently computes wrong results.

8.5 Struct Packing and Alignment Issues

Packing controls whether a compiler is allowed to insert padding bytes between fields
for alignment. Changing packing changes field offsets, struct size, and alignment. ABI

interoperability requires that both sides agree exactly.

8.5.1 The Default Reality: Padding Exists
Compilers insert padding so that:

* each field meets its alignment requirement,
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* the overall struct size is a multiple of the struct’s alignment (so arrays of the struct

remain aligned).

8.5.2 Extensive Example: Padding Changes Offsets

Consider:

typedef struct S {
char a; // 1 byte
int b; // 4 bytes, typically aligned
char c; // 1 byte

bS;

In default layout, the compiler typically inserts padding:
* padding after a so b begins at a 4-byte boundary,
* padding at the end so sizeof (S) is a multiple of the struct alignment.

Assembly that assumes b is immediately after a (offset 1) is wrong under default alignment

rules and will read garbage.

8.5.3 Extensive Example: ABI-Safe Approach for Packed Data

If a binary format or network protocol requires packed layout, the ABI-safe approach is:
* use an explicitly packed definition in the shared header,
* treat packed fields carefully (potential unaligned accesses),

* prefer copying to aligned temporaries before heavy arithmetic if required by platform

rules.
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#fpragma pack (push, 1)
typedef struct PackedS {

char a;

int 198

char c¢;
} PackedsS;

#pragma pack (pop)

Then assembly offsets match the packed layout, but you must accept that b may be unaligned

in memory.

8.5.4 Alignment Mismatch Is a Silent Interoperability Bug

Two modules can compile and link successfully but interpret the same bytes differently if:
* packing pragmas differ,

» compiler options change default alignment,

types differ (1ong size differences across environments),

* one side uses C++ features that change layout (inheritance, virtual functions, non-

standard-layout classes).

8.5.5 Practical ABI Boundary Rule

For cross-language and assembly boundaries in [A-32:
1. Prefer C-compatible structs with simple fields and no inheritance.
2. Keep the boundary types standard-layout and trivially copyable in C++ terms.

3. Use a single shared header to define struct layouts.
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4. Avoid exporting C++ classes across the boundary; export C functions that operate on

opaque pointers instead.
5. If packing is required, enforce it explicitly and document it as part of the ABI contract.

If you treat symbol naming, calling convention, and data layout as one unified contract, IA-32

interoperability becomes predictable and mechanically verifiable.



Chapter 9

Writing IA-32 Assembly for C/C++

Programs

9.1 Writing ABI-Correct Assembly Functions

ABI-correctness means your assembly function behaves exactly as the calling convention
promises, regardless of compiler, optimization level, or who the caller is. For IA-32 stack-

based interoperability, verify five invariants:

1. Correct argument access: read arguments from ABI-defined locations.

2. Correct return placement: return value in ABI-mandated register(s).

3. Correct stack cleanup: caller vs callee cleanup matches the declared convention.
4. Correct register preservation: restore all callee-saved registers you modify.

5. Correct stack alignment at call boundaries: preserve required alignment when you

call other functions.
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9.1.1 Extensive Example: Minimal ABI-Correct cdecl Function

C declaration (stable boundary):

#ifdef _ cplusplus
extern "C" {

#endif
int _ cdecl add2(int a, int Db);

#ifdef _ cplusplus
}
ftendif

Assembly implementation: reads args at [ebp+8] and [ebp+12], returns in EAX, uses ret

(caller cleanup).

# int _ cdecl add2 (int a, int b)
add2:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # a
add eax, dword ptr [ebp+12] # + b
pop ebp

ret

9.1.2 Extensive Example: ABI-Correct Callee-Saved Register Use

If you use EBX, preserve it.
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# int _ cdecl add_with_bias(int a, int b, int bias)
# Uses EBX (callee-saved) so must preserve it

add_with _bias:

push ebp

mov ebp, esp

push ebx

mov eax, dword ptr [ebp+8] # a
add eax, dword ptr [ebp+12] # + b
mov ebx, dword ptr [ebp+16] # bias

add eax, ebx

pop ebx
pop ebp
ret

9.1.3 Extensive Example: Correct stdcall Cleanup
C declaration:

#ifdef __ _cplusplus
extern "C" {

#endif
int _ stdcall add2_std(int a, int Db);

#ifdef _ cplusplus
}
#endif

Assembly ends with ret 8 (callee cleanup for two 4-byte args):



105

# int _ stdcall add2_std(int a, int b)
add2_std:
push ebp

mov ebp, esp

mov eax, dword ptr [ebpt8]
add eax, dword ptr [ebp+12]

pop ebp
ret 8

9.2 Exporting Symbols for the Linker

To link assembly with C/C++ object files, your assembly must export symbols using the
assembler directives and naming required by the platform/toolchain. The main interoperability

rule is:

* The symbol name in assembly must match the linker-visible name produced/expected

by the C/C++ compiler for that declaration.

9.2.1 Using a Global Symbol

A common directive shape is to mark the function as global:

# Export the symbol so the linker can resolve it from C/C++ code
.global add2
add2:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+t+8]
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add eax, dword ptr [ebp+12]
pop ebp
ret
If the linker reports an unresolved external, you must verify the exact spelling (including any

platform decoration conventions) and ensure the symbol is exported exactly as expected.

9.2.2 Extensive Example: Export One Symbol, Hide Helpers

Expose a single ABI boundary, keep helpers local to the assembly file:

.global sumé
sumé :
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8]
add eax, dword ptr [ebp+12]
add eax, dword ptr [ebp+16]
add eax, dword ptr [ebp+20]
pop ebp
ret
# Local helper (not exported) - label without .global

local_helper:

ret

9.3 Using Assembly in Mixed Translation Units

A robust mixed-language workflow uses three files:
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* a shared header that declares the ABI boundary,
e a C/C++ source file that calls it,

* an assembly source file that implements it.

9.3.1 Extensive Example: Minimal Mixed Unit Layout

Header (C and C++ compatible):

#ifdef __ _cplusplus
extern "C" {

#endif
int _ cdecl mul_add(int a, int b, int c);
#ifdef _ cplusplus
}
#endif
C++ caller:
#include <cstdio>
extern "C" int _ cdecl mul_add(int a, int b, int c¢);
int main () {
int r = mul_add (2, 3, 4); // 2x3 + 4 = 10

std: :printf ("%d\n", r);

return O;
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Assembly implementation:

.global mul_add

# int _ cdecl mul_add(int a, int b, int c) => (axb)+c
mul_add:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # a

imul eax, dword ptr [ebp+12] # eax = ax*b
add eax, dword ptr [ebp+16] # + ¢

pop ebp

ret

This pattern ensures:
* stable symbol naming (C linkage),
* explicit calling convention,

» ABI-correct argument offsets and return register.

9.4 Common Interoperability Errors

Interoperability failures in IA-32 mixed code are usually mechanical and repeatable. The

highest-impact errors:

9.4.1 Error 1: Wrong Calling Convention

Symptoms: stack imbalance, crash at ret, crash later in unrelated code, corrupted locals.
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# Example mismatch:
# C++ declares _ cdecl, but assembly returns with ret 8 (stdcall
— cleanup)

# => caller also adds esp, 8 => double cleanup => stack corruption

9.4.2 Error 2: Wrong Argument Offsets

Reading [ebp+4] as the first argument is wrong; [ebp+4] is the return address.

# Correct offsets in framed function:
# [ebp+8] = argl

# [ebpt+tl2] = arg2

# [ebp+4] = return address

9.4.3 Error 3: Failing to Preserve Callee-Saved Registers

Symptoms: silent corruption after returning, incorrect data in unrelated code paths.

# If you modify EBX/ESI/EDI/EBP (callee-saved), you must restore

— them.

9.4.4 Error 4: Data Layout Mismatch

Symptoms: wrong field values, wrong sizes, memory corruption when structs are passed by

value or accessed by pointer.

# If C/C++ struct packing differs between modules, assembly field

— offsets are wrong.



110

9.4.5 Error 5: Hidden Arguments Not Accounted For

Symptoms: all argument offsets appear shifted; returned structs are garbage; crashes in

constructors/destructors when crossing boundaries.

# Common hidden argument: sret pointer for large struct return.
# If present, it becomes the first argument at [ebp+8],

# shifting user-declared args to [ebp+12], [ebp+l6],

9.5 Debugging ABI Mismatches

When mixed C/C++ and assembly fails, do not guess. Prove the call boundary mechanically.

9.5.1 Step 1: Verify the Convention by Evidence

 Caller cleanup evidence: caller performs add esp, N after the call.
 Callee cleanup evidence: callee ends with ret N.

* Register-arg evidence: caller loads ECX/EDX before the call (fastcall-like).

9.5.2 Step 2: Validate Stack Balance

A correct call sequence restores ESP to the exact expected value after cleanup. A simple

invariant:

# If caller pushed N bytes of args in total:
# — cdecl-style: caller must add esp, N after return

# — stdcall-style: callee must ret N and caller must not add esp, N
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9.5.3 Step 3: Confirm Register Preservation

If you suspect corruption, temporarily add explicit save/restore around calls in the caller, and
save/restore in the callee for non-volatile registers. If the bug disappears, you likely violated

the register contract.

# Caller-side defensive test: preserve volatile register across call
push ecx
call some_func

pop ecx

9.5.4 Step 4: Confirm Argument Offsets With a Known Pattern

Use a test function that returns one of its arguments directly. If returning the “first” argument

yields the wrong value, your offsets or hidden arguments are wrong.

# int _ cdecl echol (int a, int b) —> returns a
echol:
push ebp

mov ebp, esp

mov eax, dword ptr [ebpt8]

pop ebp
ret

9.5.5 Step 5: Isolate ABI Boundaries

For stable engineering:

* keep public entry points small and canonical (EBP frame, explicit saves),
* avoid exporting C++ classes directly; export C functions,

* add tiny adapter wrappers if you must bridge conventions.
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9.5.6 Extensive Example: Convention Bridge Wrapper

If you must call a stdcall callee from a cdecl boundary, wrap it once, and keep the rest

consistent.

# extern "C" int __ _cdecl call_std_from_cdecl (int a, int b);

# Internally calls: int _ stdcall add2_std(int a,

.global call_std_from cdecl

call std from cdecl:
push ebp

mov ebp, esp

push dword ptr [ebp+l2]
push dword ptr [ebp+8]

call add2_std
o 8)
# no add esp, 8 here

pop ebp
ret

<~ Wrapper args

# b
# a

# stdcall callee cleans its args

# cdecl boundary:

int b);

caller cleans

(ret

This wrapper ensures one clear ABI boundary for callers while safely invoking a differently-

conventioned callee.
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Real-World ABI Pitfalls

10.1 Stack Corruption Patterns

In IA-32 interoperability, stack corruption is the highest-impact failure class because it
destroys the control-flow contract (call/ret) and invalidates argument/local addressing.

The most common patterns are mechanical and repeatable.

10.1.1 Pattern 1: Cleanup Mismatch (Double or Missing Cleanup)

Double cleanup happens when both caller and callee discard arguments. Missing cleanup
happens when neither does. Both violate the invariant that the caller’s ESP must be restored to

the expected value after the call boundary is completed.

# Double cleanup example:

# Caller assumes cdecl and discards args, but callee is stdcall and
— also discards.

push 2

push 1

113
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call add_stdcall # callee ends with: ret 8
add esp, 8 # WRONG: caller discards again —-> stack

— Jjumps too far

# Missing cleanup example:

# Caller assumes stdcall (no add esp, N), but callee is cdecl (ret).
push 2

push 1

call add_cdecl # callee ends with: ret

# WRONG: no cleanup performed -> stack grows with each call

10.1.2 Pattern 2: Wrong Byte Count

Even if the correct side cleans, using the wrong byte count is enough to destabilize the stack

gradually.

# Wrong byte count: 3 args were pushed (12 bytes), but only 8 bytes
— removed

add esp, 8 # WRONG: leaves 4 bytes (one arg) on stack

10.1.3 Pattern 3: Using ESP-Relative Offsets After Pushes

If you address arguments using [esp+K] and then push additional values, ESP changes and

your offsets become wrong unless you compensate.

# Buggy pattern:

# On entry: [esp+4] is argl, [esp+8] is arg2

buggy:
push ebx # ESP changed, offsets moved
mov eax, dword ptr [espt4] # WRONG now: this is not argl

< anymore
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pop ebx

ret

Safe pattern: establish EBP or compute stable addresses before modifying ESP.

# Safe pattern:

safe:
push ebp
mov ebp, esp
push ebx
mov eax, dword ptr [ebp+8] # stable argl
pop ebx
pop ebp
ret

10.1.4 Pattern 4: Overwriting the Return Address

A classic catastrophic bug occurs when storing to [ebp+4] (return address) or [esp] near

return.

# DO NOT do this:
# [ebpt+4] is the return address in a framed function

mov dword ptr [ebpt4], eax # corruption: next ret jumps to garbage

10.2 Incorrect Register Preservation

Register preservation is part of the ABI contract. Violating it often produces silent and

delayed failures.
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10.2.1 Callee-Saved Registers Must Be Restored

A common [A-32 rule set treats EBX, EST, EDI, EBP as callee-saved. If your function

modifies any of them, it must restore them before returning.

10.2.2 Extensive Example: Corruption by Failing to Restore EBX

Buggy callee:

# BUG: modifies EBX but does not restore it

bad_use_ebx:

push

mov

mov
mov

add

pop

ret

ebp
ebp,

ebx,
eax,

eax,

ebp

Correct callee:

good_use__

push
mov

push

mov
mov

add

ebx:
ebp
ebp,

ebx

ebx,
eax,

eax,

esp

999
dword ptr

ebx

esp

999
dword ptr

ebx

# EBX is callee-saved in many IA-32 ABIs
[ebp+8]

[ebp+8]
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pop ebx
pop ebp
ret

10.2.3 Caller-Saved Registers Are Not Guaranteed

If the caller needs values in volatile registers (EAX, ECX, EDX) after a call, the caller must

save them before calling.

# Caller must preserve ECX i1f needed after call
push ecx
call some_func

pop ecx

10.3 Misaligned Stack Access

IA-32 can often tolerate unaligned memory accesses, but ABI and toolchain assumptions
about stack alignment can still matter, especially at call boundaries and when code uses

instructions that expect stronger alignment.

10.3.1 Alignment Failures Are Often Non-Local

A stack misalignment introduced in one function can crash or corrupt data in a deeper callee

that assumes alignment. This is why alignment issues often appear “random”.

10.3.2 Extensive Example: Misalignment by Odd Number of Pushes

If the environment expects a particular alignment at calls, pushing an odd number of 4-byte

values can flip alignment. Then calling another function without compensating violates the
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call-boundary invariant.

# Conceptual pitfall: push one

— compensation

misalign_

push

mov

push
# if
call

pop
pop

ret

then call:
ebp
ebp, esp

ebx #
alignment mattered at

callee #

ebx

ebp

extra value, then call without

extra push changes ESP
calls, it may now be wrong

may fail if callee assumes alignment

Safe discipline: keep stack adjustments balanced and maintain required alignment before

each call, especially in ABI boundary functions and assembly stubs.

10.4 Incorrect Struct Handling

Struct passing and returning is where many interoperability systems fail because:

* layout depends on padding and alignment,

* calling convention may introduce hidden arguments (sret),

* the ABI may treat “small” and “large” aggregates differently.
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10.4.1 Pitfall 1: Wrong Field Offsets Due to Padding

If the C/C++ struct has padding, assuming a tightly packed layout in assembly reads wrong
fields.

typedef struct S {
char a;
int b;

boS;

In typical default layout, b is not at offset 1. Assembly that does mov eax, [p+1] forbis

wrong. The correct offset is determined by the ABI’s alignment rules for int within structs.

10.4.2 Pitfall 2: Passing by Value vs Passing by Pointer

If one side declares a function taking a struct by value and the other side implements it

expecting a pointer, the call boundary is incompatible.

typedef struct Point { int x; int y; } Point;

extern "C" int __ _cdecl sum_point (Point p); // by value

# Correct by-value callee reads fields from stack argument block

sum_point:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # p.x
add eax, dword ptr [ebp+12] # + p.y
pop ebp

ret

If the callee mistakenly treats [ebp+8] as a pointer to Point, it will load from an arbitrary

address and likely fault or corrupt data.
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10.4.3 Pitfall 3: Missing Hidden sret Pointer for Large Struct Return

Large struct returns commonly use a hidden first argument: a pointer to return storage. If

the assembly implementation ignores it, every argument offset is shifted and the caller reads

garbage.

# If sret is used:

# [ebp+t8] = hidden out pointer

# [ebp+12] = first user argument
# [ebpt+tl6] = second user argument

This pitfall is especially common when developers read a C++ signature and assume the first

argument begins at [ebp+8] without considering ABI lowering.

10.5 Silent Data Corruption Cases

The most dangerous ABI failures are those that do not crash immediately. They produce

plausible but wrong results, pollute state, and explode later.

10.5.1 Case 1: Wrong Cleanup Produces “Delayed Return Address”

Failure

A small stack imbalance may still allow the current function to return, but it mispositions the

stack for future returns, causing a crash later in unrelated code.

# Example: wrong add esp, N leaves extra bytes on stack

# The current return may still work, but future frames are shifted.
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10.5.2 Case 2: Callee-Saved Register Corruption

Failing to restore ESI/EDI/EBX can silently break:
* pointer iteration in loops,
* string/memory operations that use index registers,

* code that caches important pointers in non-volatile registers across calls.

10.5.3 Case 3: Struct Layout Mismatch With “Plausible Values”

If offsets are wrong but still point into valid memory, you get plausible yet incorrect field

values. The program continues with corrupted state.

10.5.4 Case 4: Pointer/Reference Confusion

Treating a by-value struct as a pointer (or vice versa) can sometimes read valid memory by

accident, producing wrong computations rather than immediate faults.

10.5.5 Extensive Example: A Classic “Looks Fine”” Corruption

Caller expects cdecl cleanup, but callee uses stdcall cleanup. The call returns, but the caller
then reads a local variable using an EBP-based offset that is now wrong due to stack drift in

surrounding code. The value is still “valid”, but not the intended one.

# The danger: wrong ABI often corrupts the stack in ways that

# still yield in-range memory, causing silent logical failures.

10.5.6 Practical Prevention Checklist

For 1A-32 C/C++ interoperability, prevent pitfalls by enforcing:
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1. One stable boundary: export extern "C" functions with explicit calling convention.
2. Mechanical verification: verify cleanup using ret imml6 vs add esp, N.

3. Preserve non-volatile registers: save/restore every callee-saved register you modify.

4. Use shared headers for structs: do not duplicate struct definitions across modules.

5. Assume hidden ABI lowering exists: especially for struct returns and C++ member

functions.

Treat ABI rules as non-negotiable engineering constraints. If you do, these pitfalls become

rare, diagnosable, and preventable.



Chapter 11

Practical Case Studies

11.1 Calling C from Assembly

Calling a C function from [A-32 assembly is the most fundamental interoperability case.
The assembly code must respect the C ABI: argument order, cleanup responsibility, register

preservation, and return placement.

11.1.1 Case Study: Calling a cdecl C Function

C declaration (stable ABI boundary):

#ifdef _ cplusplus

extern "C" {

#endif

int _ cdecl add(int a, int b);

#ifdef _ _cplusplus
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}
#endif

Assembly caller (right-to-left arguments, caller cleanup):

# int r = add (10, 20);

call add from_ asm:

push 20 # b

push 10 ¥ a

call add

add esp, 8 # cdecl: caller cleans args

# result now 1n eax

ret

Key verification points:
* arguments pushed right-to-left,
* ESP restored by the caller,

e return value read from EAX.

11.2 Calling Assembly from C++

Calling assembly from C++ is symmetrical, but the C++ compiler must be told the exact ABI

contract. This is done using extern "C" and an explicit calling convention.

11.2.1 Case Study: C++ Calls Assembly (cdecl)

Header shared by C++ and assembly:
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#ifdef _ cplusplus
extern "C" {

#endif

int _ cdecl mul_add(int a, int b, int c);

#ifdef _ cplusplus

}
#endif

Assembly implementation:

.global mul_add

# int _ cdecl mul_add(int a, int b, int c¢) => (a * b) + c
mul add:
push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # a
imul eax, dword ptr [ebp+12] # eax = a * b
add eax, dword ptr [ebp+16] # + c
pop ebp
ret
C++ caller:
int main () {

int r = mul_add (2, 3, 4); // expected: 10

return r;
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Result: ABI correctness guarantees that the compiler-generated call sequence matches the

assembly implementation exactly.

11.3 Mixed Calling Conventions Example

Real systems often require bridging different conventions. The safest approach is to introduce

a small adapter function that isolates the mismatch.

11.3.1 Case Study: cdecl Wrapper Calling a stdcall Function

Target callee (stdcall):

#ifdef _ cplusplus
extern "C" {

#endif
int _ stdcall add_std(int a, int Db);

#ifdef _ cplusplus

}
#endif

Assembly wrapper exported as cdec1:

.global add_std_from_cdecl
# int _ cdecl add_std_from_cdecl (int a, int b)
# Internally calls: int _ stdcall add_std(int a, int b)
add_std_from cdecl:
push ebp

mov ebp, esp
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push dword ptr [ebp+12] # Db
push dword ptr [ebp+8] # a
call add_std # stdcall callee cleans args (ret 8)

# no add esp, 8 here

pop ebp
ret # cdecl boundary

Engineering benefit: callers only see a single convention, and the ABI complexity is confined

to one place.

11.4 Struct Return Case Study

Struct returns are one of the most common sources of ABI confusion. This case study

demonstrates a large-struct return using a hidden return-storage pointer.

11.4.1 Case Study: Returning a Struct by Value

C declaration:

typedef struct Pair {
int x;
int y;

} Pair;

#ifdef _ cplusplus
extern "C" {

#endif
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Pair _ cdecl make_pair (int a,

#ifdef _ cplusplus
}
#endif

ABI lowering (conceptual):

* caller allocates storage for Pair,

int b);

* caller passes a hidden pointer as the first argument,

* callee writes fields into caller-provided storage.

Assembly implementation:

.global make_pair

# Pair _ cdecl make_pair (int a, int Db)

# ABI view:

# [ebp+8] = out (hidden sret pointer)
# [ebptl2] =
# [ebp+l6] =

make_pair:
push ebp

mov ebp, esp

mov edx, dword ptr
mov eax, dword ptr
mov dword ptr [edx],
mov eax, dword ptr [ebptl6]

mov dword ptr [edx+4],

[ebp+8]
[ebp+12]

eax

# out

#

# out—>x
#

#

out—>y
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mov eax, edx

pop ebp

ret

# commonly return out pointer

Critical insight: if the hidden pointer is ignored, every argument offset is wrong and the

return value is invalid.

11.5 Debugging a Broken ABI Example

This case study demonstrates a real debugging workflow when ABI assumptions are wrong.

11.5.1 The Symptom

A program crashes during a later return, far from the original call site. Stack traces are

corrupted.

11.5.2 The Bug

Caller assumes cdecl; callee is implemented as stdcall. Both clean the stack.

# Caller (wrong)
push 2

push 1

call add_std
add esp, 8

# Callee (stdcall)
add_std:
push ebp

mov ebp, esp

# WRONG: callee already cleaned
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mov eax, dword ptr [ebp+t+8]
add eax, dword ptr [ebp+12]

pop ebp
ret 8
11.5.3 The Diagnosis

1. Inspect the callee epilogue: presence of ret 8 indicates callee cleanup.
2. Inspect the caller: add esp, 8 indicates caller cleanup.

3. Conclude: double cleanup is occurring.

11.5.4 The Fix

Choose one cleanup strategy and enforce it consistently. Either:
* remove add esp, 8 from the caller, or

* change the callee to use ret.

11.5.5 Verification Pattern

After the fix, verify mechanically:
* ESP before pushing arguments,
* ESP after the full call sequence,

* values must match exactly.
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11.5.6 Final Engineering Lesson

Practical ABI work succeeds when every boundary is treated as a contract that can be proven

by inspection:
e argument order,
* cleanup responsibility,
* register preservation,
* return placement.

When these rules are followed mechanically, mixed [A-32 assembly and C/C++ systems

become predictable, debuggable, and robust—even under optimization and across toolchains.



Appendices

Appendix A — ABI Rules at a Glance

Register Usage Summary

The following summary reflects the most common IA-32 C/C++ ABI expectations used
by mainstream toolchains when using stack-based conventions (cdecl/stdcall) and

conventional register volatility rules.
* Return registers

— 32-bit integer / pointer return: EAX

— 64-bit integer return: EDX : EAX (high:low)

— floating-point return (classic IA-32): x87 ST (0) (toolchain may use SSE in some
environments)

* Common register volatility split

— Caller-saved (volatile): EAX, ECX, EDX
— Callee-saved (non-volatile): EBX, ESI, EDI, EBP
— Stack pointer: ESP must be restored to the ABI-expected value at the call

boundary
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Rule: if your function modifies a callee-saved register, it must save and restore it.

# Callee-saved register discipline example (uses EBX, must preserve
- it)
use_ebx_correctly:

push ebp

mov ebp, esp

push ebx

mov ebx, 123
mov eax, dword ptr [ebpt+8]

add eax, ebx

pop ebx
pop ebp
ret

Stack Layout Summary

In TA-32, the stack grows downward (toward lower addresses). A near call pushes the return

address. For a classic framed function:

push ebp

mov ebp, esp

[ebp+0] = old ebp

[ebpt4] return address

#
#
#
# Layout:
#
#
#

[ebp+8] = argl
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i [ebp+12] = arg2
# [ebp+16] = arg3

#

# [ebp-4] = locall (example)
# [ebp-8] = local2 (example)

Rule: never treat [ebp+4] as an argument; it is the return address.

Argument Passing Rules

Right-to-left pushing (stack arguments) is the dominant rule for stack-based conventions:
* last source argument is pushed first

* first source argument ends up closest to the return address

cdecl (caller cleanup)

# cdecl call with two 32-bit args:
push argz
push argl
call func

add esp, 8 # caller discards args (2 * 4)

stdcall (callee cleanup)

# stdcall call with two 32-bit args:
push arg2
push argl
call func

# no add esp, 8 here
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# stdcall callee returns with:

ret 8 # callee discards args

fastcall (common 2-reg form)

A common fastcall lowering passes the first two integer/pointer arguments in ECX and EDX,
with remaining arguments on the stack. Cleanup rule is toolchain-defined; confirm by ret

imml6 vscaller add esp, N.

# fastcall-like shape (common) :
mov ecx, argl
mov edx, arg2

call func_fast

Variadic constraint

Variadic functions require caller cleanup because only the caller knows the total number of

arguments passed.

# variadic-style call shape:

push argN

push arg2
push argl
call variadic_func

add esp, N # caller discards exactly what it pushed

Hidden arguments (sret)

Large struct returns commonly use a hidden first argument: a pointer to caller-allocated return

storage. This shifts all visible arguments by one slot.
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# If sret is used:

# [ebp+8] = hidden out pointer (return storage)
# [ebp+12] = user argl

# [ebpt+l6] = user arg2

Return Value Rules

Return locations are ABI-mandated observable behavior at the call boundary.

Integer and pointer returns

# int/pointer return in EAX
ret_int:

push ebp

mov ebp, esp

mov eax, 42

pop ebp

ret

64-bit integer returns

# 64-bit return in EDX:EAX (high:low)

ret _i64:
push ebp
mov ebp, esp
mov eax, 0x89ABCDEF # low
mov edx, 0x01234567 # high
pop ebp

ret
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Floating-point returns (classic 1A-32)

Classic IA-32 ABIs commonly return floating-point values via x87 ST (0) . Toolchains
may use SSE-based conventions in some environments, but the ABI boundary still defines

a specific floating return location.

# Conceptual: floating return via x87 ST (0)

# ret_fp:
# fld gword ptr [const]
# ret

Small struct returns

Small aggregates may be returned in registers (commonly EAX and optionally EDX),

depending on ABI/toolchain rules.

# Example: 8-byte aggregate returned as two 32-bit parts
# eax = first 32 bits, edx = second 32 bits

ret_pair_small:

push ebp

mov ebp, esp

mov eax, dword ptr [ebp+8] # x
mov edx, dword ptr [ebp+12] ¥y
pop ebp

ret

Large struct returns via hidden pointers (sret)

Large aggregates are commonly returned by writing into caller-provided storage (hidden

pointer argument). The callee fills xout and returns.
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# void make_big_sret (Bigx out, int x)

# [ebp+8] = out (hidden)
# [ebp+12] = x
make_big_sret:
push ebp
mov ebp, esp
mov edx, dword ptr [ebp+8] # out
mov eax, dword ptr [ebp+12] # x
mov dword ptr [edx], eax # out—->a = x
pop ebp
ret

Golden invariant: after a call boundary completes, the caller’s expectations about ESP,

preserved registers, and return locations must be satisfied exactly.

Appendix B — Common Mistakes and How to Detect Them

Symptoms of Stack Imbalance

Stack imbalance is the most frequent and destructive ABI error in IA-32 interoperability. It
occurs when arguments are discarded incorrectly (double cleanup, missing cleanup, or wrong
byte count).

Typical Observable Symptoms

* Crashes at a ret instruction far from the original call site.

* Returning to an invalid address (instruction pointer jumps into unmapped or data

memory).

* Corrupted local variables in the caller after a function call.
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* Backtraces that abruptly stop or contain nonsensical frames.

* Bugs that disappear when logging or debugging code is added.

Canonical Imbalance Patterns

# Double cleanup: caller and callee both discard arguments
call func_stdcall # callee ends with: ret 8
add esp, 8 # WRONG: stack advanced too far

# Missing cleanup: neither side discards arguments
call func_ cdecl # callee ends with: ret

# WRONG: esp not restored, stack grows

# Wrong byte count: pushed 12 bytes, removed only 8
add esp, 8 # WRONG: leaves 4 bytes on stack

Key invariant: after a full call sequence completes, ESP must have the same value it had

before arguments were pushed (except for intentional caller-local allocations).

Debugger-Level Detection

Stack-related ABI bugs are best diagnosed at the instruction level, not by source inspection

alone.

Step 1: Watch ESP Across the Call

Record ESP at three points:
* before pushing arguments,

* immediately before the call,
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* immediately after returning from the call and cleanup.

If the ABI is correct, the final ESP must match the initial value.

# Diagnostic pattern (conceptual):
# esp_before = esp

# push args...

# call func

# cleanup

# assert esp == esp_before

Step 2: Inspect the Callee Epilogue
The epilogue reveals cleanup responsibility:

ret # caller cleanup (cdecl-style)
ret 8 # callee cleanup for 2 args (stdcall-style)

If the callee uses ret imml 6, the caller must not adjust ESP.

Step 3: Validate Argument Offsets
In framed functions:
e [ebp+4] is the return address,
* [ebp+8] is the first argument,
* additional arguments follow at +4 byte increments.

# Correct framed access
mov eax, dword ptr [ebp+8] # argl
mov ecx, dword ptr [ebp+l2] # arg2

Reading arguments relative to ESP after pushes is a common source of subtle bugs.
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Step 4: Check Callee-Saved Registers

If a function modifies EBX, EST, EDI, or EBP without restoring them, corruption may appear

later in unrelated code.

# Bug: EBX modified but not restored
mov ebx, 123

ret

Compiler Warning Patterns

Many ABI bugs first surface as compiler or linker warnings. Ignoring them is a frequent cause

of late-stage failures.

Warning Pattern: Calling Convention Mismatch
Typical meaning:

* caller expects one cleanup rule,

* callee is declared with a different convention.

This almost always leads to stack imbalance at runtime.

Warning Pattern: Incompatible Function Declarations

Occurs when:
* the same symbol is declared differently in different translation units,
¢ one declaration uses extern "C" and another does not,

» parameter lists differ (by-value vs pointer, missing hidden arguments).
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Warning Pattern: Size or Alignment Mismatch
Often indicates:
* inconsistent struct packing,
* different type sizes assumed across modules,
* ABIl-incompatible data layout.

These warnings frequently correlate with silent data corruption rather than immediate crashes.

Runtime Crash Signatures
ABI bugs tend to produce characteristic crash patterns that can be recognized quickly with
experience.
Signature 1: Crash at ret
The instruction pointer loads an invalid address from the stack. Common causes:
¢ stack imbalance,
e overwritten return address,

* incorrect epilogue.

Signature 2: Crash in a Later Function

The call that caused the corruption has already returned successfully. The crash occurs when:
* alater ret reads a shifted return address,
* a later function reads corrupted locals or arguments.

This is typical of small but repeated cleanup errors.
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Signature 3: Invalid Pointer Dereference

Often caused by:
* misinterpreting a by-value struct as a pointer,
* missing a hidden sret pointer,

* reading arguments at the wrong offsets.

Signature 4: Corrupted Backtrace

Stack unwinding fails or produces nonsensical frames. This strongly suggests:
¢ stack imbalance,
* incorrect prologue/epilogue,

* overwritten frame pointers or return addresses.

Practical Detection Checklist
When diagnosing an [A-32 ABI issue, apply this checklist in order:
1. Confirm the calling convention on both sides.
2. Inspect the callee epilogue (ret vs ret imml6).
3. Verify stack balance by tracking ESP.
4. Check callee-saved register preservation.
5. Verify argument offsets and hidden arguments.

6. Confirm struct layout and alignment consistency.
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Engineering principle: ABI bugs are deterministic. Once you reduce the problem to
instruction-level facts—stack pointer movement, register state, and return locations—the

root cause becomes mechanically provable rather than speculative.



References

TA-32 Architecture Manuals

The authoritative foundation for IA-32 behavior is the processor architecture documentation

that defines:

¢ instruction semantics and side effects,

register roles and special-purpose behavior,

* stack operation rules (push, pop, call, ret),

calling and return mechanics at the ISA level (near calls, stack-based control transfer).
For ABI work, the most relevant architectural facts include:

* stack grows toward lower addresses,

call pushes the return address,
* ret pops the return address (and optionally an immediate byte count),

* general-purpose register width and pairing (EDX : EAX for 64-bit returns),

x87 floating-point stack behavior (ST (0) return semantics).

145



146

These manuals are the ground truth when reasoning about what instructions do. ABI rules

are layered on top of these guarantees, not independent of them.

Architectural invariants used by all IA-32 ABIs
— call: pushes return address
- ret: pops return address (optionally discards args)

- stack grows downward

HH= = FH =

— eax 1s the canonical integer return register

Compiler ABI Documentation

Compiler ABI documentation defines how high-level language constructs are lowered onto the

TIA-32 architecture. This includes:

* calling conventions (cdecl, stdcall, fastcall),

register volatility rules (caller-saved vs callee-saved),

stack layout conventions at function entry,

* struct passing and returning rules,

hidden arguments (such as structure return pointers).

For ABI correctness, compiler documentation clarifies:

which registers must be preserved by callees,

* how arguments are ordered and aligned,

how return values are communicated to callers,

which optimizations are allowed without violating the ABI.
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A crucial engineering principle derived from compiler ABI documents:

Internal code generation may change freely, but externally visible ABI behavior

must remain stable.
This explains why:
 frame pointer omission does not change argument offsets at the call boundary,
* tail-call optimizations are only legal when ABI contracts are preserved,

* different optimization levels still interoperate at the binary boundary.

# ABI vs optimization reminder:
# — prologue/epilogue shape may change
# — register allocation may change

# - argument and return locations at the boundary must not change

Toolchain Calling Convention References

Toolchain-specific calling convention references describe:

* exact register usage for fastcall-style conventions,

symbol naming and decoration rules,

default calling conventions for C and C++,

ABI differences across language modes and compilation flags.
These references are essential when:

* mixing compilers or assemblers,
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* interfacing with system libraries,
* writing assembly intended to be portable across toolchains.
From these references, the following practical rules emerge:

* never guess a calling convention—declare it explicitly,

verify cleanup behavior by inspecting ret vs add esp, N,
* confirm register-passed arguments by observing call-site setup,

* isolate convention differences using small adapter functions.

# Mechanical convention detection checklist:

# — Does callee use ret N? -> callee cleanup
# — Does caller add esp, N? -> caller cleanup
# — Are ecx/edx loaded before call? -> register-passing convention

Cross-References to Other Booklets in This Series

This booklet builds directly on concepts established earlier in the CPU Programming Series

and prepares the ground for later volumes.

Foundational Dependencies

Readers are expected to be familiar with:
* instruction execution flow (fetch, decode, execute, retire),
* register and flag semantics,

* binary data representation and signed/unsigned behavior,
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* basic stack mechanics.

These topics are covered in earlier booklets focused on:
¢ CPU execution models,
* registers, flags, and data representation,

* stack fundamentals and calling conventions at a conceptual level.

Direct Continuations

The material in this booklet directly feeds into later, architecture-specific and system-level

topics, including:

x86-64 calling conventions and ABI differences,

SIMD and vector calling rules,

exception handling and stack unwinding mechanisms,

* operating system ABIs and system call interfaces.

Series Integration Perspective

Within the CPU Programming Series, this booklet serves as:

* the practical ABI bridge between pure instruction semantics and real-world compiled

programs,
* the point where assembly, C, and C++ interoperability becomes concrete and testable,

* the last architecture-neutral step before transitioning to 64-bit ABIs and OS-level

interfaces.
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By mastering the rules summarized and applied here, the reader gains the ability to:
* read compiler-generated IA-32 code with confidence,
» write ABI-correct assembly callable from high-level languages,
* diagnose and fix real-world binary interoperability failures.

This makes the booklet a structural hinge in the series: everything before it explains how the
CPU works, and everything after it builds on how real programs are composed from those

rules.
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