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Preface

Why This Booklet Exists

This booklet exists to address one of the most common and costly sources of low-level
software failure: misunderstanding the Windows x64 ABI. Many programmers assume that
calling conventions are a minor detail handled entirely by the compiler. In practice, ABI rules
directly affect correctness, stability, interoperability, debugging, and security.

On Windows x64, small violations—such as incorrect shadow space handling, improper stack
alignment, or incorrect register preservation—can silently corrupt execution state, cause
intermittent crashes, or break code only under optimization or exception handling. These
failures are frequently misdiagnosed as compiler bugs, optimizer issues, or undefined behavior
unrelated to calling conventions.

This booklet focuses on the precise rules that actually break real programs when
misunderstood, using concrete and minimal examples that reflect real compiler output and

real-world failure modes.

Who This Booklet Is For

This booklet is intended for readers who already write or analyze low-level code and need ABI

correctness rather than surface-level explanations.
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It is written for:

* Systems programmers working close to the operating system or runtime

C and C++ developers interfacing with assembly, foreign languages, or binary libraries

Assembly programmers targeting Windows x64

Developers debugging crashes using disassembly and stack traces
* Engineers maintaining cross-platform or cross-compiler codebases

The reader is expected to understand basic concepts such as registers, the stack, function calls,
and compiler-generated code. This booklet does not assume prior knowledge of Windows-

specific ABI rules.

What This Booklet Deliberately Does Not Cover

To maintain focus and correctness, this booklet deliberately excludes several topics that are
commonly mixed with ABI discussions but require separate treatment.

This booklet does not cover:

* Instruction set details unrelated to calling conventions

Microarchitectural optimization or performance tuning

* QOperating system kernel internals

Windows system calls and kernel transition mechanisms

High-level language runtime design

Debugger usage tutorials



Only ABI-relevant behavior that affects function calls, stack discipline, register preservation,
and interoperability is included. Performance discussions appear only when they directly

influence correctness.

How This Booklet Fits into the CPU Programming Series

This booklet is part of the architecture-specific phase of the CPU Programming Series.
Earlier booklets establish:

How the CPU executes instructions

* How registers and flags behave

How the stack works conceptually

What an ABI represents at a theoretical level

This booklet applies those foundations specifically to the Windows x64 ABI. It assumes the
reader already understands stack mechanics and function calls in principle, and now needs to
understand why identical-looking code behaves differently across platforms and compilers.
Later booklets build on this material to cover advanced interoperability, exception handling

internals, and cross-platform ABI abstraction strategies.

How to Read This Booklet Effectively

This booklet is designed to be read sequentially.

Each chapter introduces ABI rules first, then demonstrates how violations occur, and finally
explains how compilers enforce or rely on those rules. Code examples are intentionally small
and focused, reflecting real compiler output rather than artificial demonstrations.

When reading assembly examples:



» Pay attention to stack pointer adjustments
* Track register preservation across calls
* Observe shadow space allocation and usage

Readers are encouraged to mentally simulate stack and register state rather than memorizing

rules. The goal is to build ABI intuition that prevents bugs before they occur.



Chapter 1

Why ABI Differences Matter

1.1 What an ABI Really Defines (Beyond Function Calls)

An Application Binary Interface (ABI) defines the complete binary-level contract between
independently compiled code units. While function calls are the most visible part, the ABI
governs far more than argument passing.

An ABI defines, at minimum:

* How arguments and return values are passed

Which registers must be preserved across calls

Stack layout, alignment, and ownership rules

How stack frames are constructed and destroyed

* How exceptions and stack unwinding operate

How data types are laid out in memory

10
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* How code interacts across object files, libraries, and languages

For example, even a simple call involves implicit ABI rules:

# Windows x64 ABI: caller-side responsibilities
# RCX, RDX, R8, R9 used for first four arguments

# 32 bytes of shadow space must be allocated

sub rsp, 40h # 32 bytes shadow + 16-byte alignment
mov rcx, 1

mov rdx, 2

call target_func

add rsp, 40h

The function call itself is only one instruction, but correctness depends on stack alignment,
shadow space allocation, and register state—none of which are visible in the function

prototype.

1.2 Why Code That “Looks Correct” Still Breaks

Many ABI violations produce code that appears correct in isolation but fails under real
execution conditions.

Common reasons include:
* The compiler assumes ABI rules were followed by the caller
* Violations may not fail immediately
* Bugs often surface only under optimization or exception handling

Example of code that looks correct but violates the ABI:
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# Incorrect: missing shadow space allocation
mov rcx, 1

mov rdx, 2

call target_func # ABI violation

ret

This may appear to work if:
* The callee does not use shadow space
* No exceptions occur

* Optimization level is low

However, once the callee spills registers or an exception is thrown, stack corruption occurs.

The failure appears far from the original mistake, often misleading developers into suspecting

unrelated code.

1.3 ABI vs ISA vs Compiler Behavior

These three concepts are frequently confused but serve different roles.
» ISA defines available instructions and registers
* ABI defines how compiled code must use those instructions together
* Compiler behavior is constrained by both

The ISA allows this instruction:

sub rsp, 8

But the ABI may require:
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sub rsp, 40h # shadow space + alignment

The compiler is not free to choose arbitrarily. It must generate code that obeys the ABI
contract so that independently compiled modules can interoperate safely.

When programmers manually write assembly or mix languages, they step outside the
compiler’s safety net. At that point, ABI rules become mandatory knowledge rather than

optional details.

1.4 Why Windows x64 Deserves Its Own Focused Study

Windows x64 is not a minor variation of other 64-bit ABIs. It introduces design choices that
directly affect correctness and interoperability.

Key characteristics that justify a dedicated study include:

Mandatory shadow space allocation by the caller
* No red zone below the stack pointer

 Strong coupling with structured exception handling

Different register preservation rules from System V

ABI rules enforced by the operating system and runtime

A direct comparison illustrates the danger of assumptions:

# System V style (invalid on Windows x64)
sub rsp, 8 # assumes red zone
call target_func

add rsp, 8
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This code is valid on System V platforms but is incorrect on Windows x64. Reusing such code
silently introduces instability, especially in cross-platform projects.

Windows x64 ABI rules are tightly integrated with the OS exception model, stack unwinding,
and debugging infrastructure. Violating them affects not only function calls but also crash
handling and diagnostics.

For these reasons, Windows x64 ABI correctness cannot be treated as a footnote. It requires

explicit, focused study grounded in real execution behavior.



Chapter 2

Windows x64 ABI: Design Overview

2.1 Historical Background and Design Goals

The Windows x64 ABI was designed to provide a single, stable, and efficient binary contract
for 64-bit Windows across compilers and languages, while avoiding the fragmentation of
multiple 32-bit calling conventions.

Its practical design goals can be summarized as follows:

* One primary calling convention for user-mode code: reduce ambiguity and make

interoperability the default.

* High performance with predictable code generation: pass the most common

arguments in registers, minimize call overhead.

* Reliable exception handling and stack unwinding: enable correct unwinding through

compiler-generated metadata rather than ad-hoc conventions.

* Debuggability and tooling compatibility: ensure stack walking, profiling, and crash

dumps can reconstruct call stacks consistently.

15



16

* Stable cross-module behavior: allow independently compiled modules (EXEs, DLLs,

third-party libraries) to interoperate without source-level coordination.

A key design choice is the mandatory shadow space (home space): the caller always reserves

stack space so the callee can spill register arguments predictably.

.intel_syntax noprefix
# Windows x64: caller reserves 32 bytes shadow space (home space)

# plus additional space as needed to keep 16-byte alignment before
— CALL.

caller:
sub rsp, 40h # 32 bytes shadow + 16 alignment padding
< (common pattern)
mov ecx, 1 # argl in RCX
mov edx, 2 # arg2 in RDX

call target
add rsp, 40h

ret

This predictable layout is not merely an optimization; it supports correctness across

optimization levels and across language boundaries.

2.2 Relationship to MSVC and Windows OS Internals

On Windows x64, the ABI is tightly integrated with operating system mechanisms that depend

on reliable stack frames and unwind information.

Unwinding, SEH, and ‘“Unwindable’’ Prologues

Windows x64 relies on compiler-emitted unwind metadata to perform:
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* stack unwinding during exceptions,
* stack walking for debuggers and profilers,

* reliable crash diagnostics.

This means that certain function prologues/epilogues are expected to follow patterns that the
unwinder can interpret, and the compiler records how registers were saved and how the stack
pointer changed.

A typical prologue that saves non-volatile registers and allocates locals:

.intel_syntax noprefix

# Typical Windows x64 prologue structure (conceptual)

# — allocate stack frame
# — save non-volatile registers if used
# — optionally establish frame pointer
target:
sub rsp, 60h # locals + alignment, shadow space already

— provided by caller

mov [rsp+20h], rbx # spill/save non-volatile register
N (example placement)

mov [rspt+28h], rsi

# ... function body

mov rsi, [rsp+28h]

mov rbx, [rsp+20h]

add zrsp, 60h

ret

Important idea: even when a function does not “use exceptions”, the OS and tooling may
still need to unwind through it correctly. ABI correctness therefore affects far more than just

argument passing.
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Stack Probing and Large Stack Allocations

Windows uses stack commitment rules that require safely touching stack pages when
allocating large frames. Compilers may inject stack-probe sequences (or calls) to ensure a
large allocation does not jump over guard pages.

You do not need to memorize the probing algorithm; the ABI-level lesson is:
* large stack allocations can introduce implicit code sequences,
* incorrect manual stack manipulation can break those assumptions,

* mixing handwritten assembly with compiler code requires extra discipline.

2.3 Why Windows x64 Diverges from System V

Although both are 64-bit ABIs on x86-64, Windows x64 and System V AMD64 make different
trade-offs. Assuming one while targeting the other is a direct route to crashes and silent

corruption.

Shadow Space vs Red Zone
Windows x64:
 Caller must reserve 32 bytes of shadow space for the callee.
* No red zone: memory below RSP is not safe to use.
System V AMD64:
* No shadow space requirement.

* Red zone exists (a region below RSP that leaf functions may use without adjusting

RSP).
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A leaf function style that is valid on System V can be invalid on Windows x64:

.intel_syntax noprefix
# System V style idea: use red zone without moving RSP (NOT valid on
— Windows x64)
leaf like:
mov gword ptr [rsp-08h], rbx # writes below RSP
# ... do work

ret

On Windows x64, code that touches below RSP can be overwritten by asynchronous events or
system mechanisms, and it violates the platform expectation that RSP defines the valid stack

extent.

Argument Registers and Preservation Rules

Both ABIs pass early arguments in registers, but the details differ, including which registers
are considered non-volatile and which vector registers must be preserved.

Windows x64 emphasizes:
* predictable shadow space for register-argument homing,
* a defined set of non-volatile general-purpose registers,
* preservation requirements that include a subset of SIMD registers.

A common interoperability pitfall: mixing code that assumes System V argument registers
with Windows x64 code.

.intel_syntax noprefix
# WRONG on Windows x64:

# System V passes argl in RDI, arg2 in RSI.
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# Windows x64 expects argl in RCX, arg2 in RDX.

call_with_sysv_assumptions:

mov rdi, 111 # programmer thinks: argl

mov rsi, 222 # programmer thinks: arg2

call target # target reads RCX/RDX, not RDI/RSI
ret

Correct Windows x64 register setup:

.intel_syntax noprefix

call with win64 rules:
sub rsp, 40h
mov rcx, 111 # argl
mov rdx, 222 # arg2
call target
add zrsp, 40h

ret

Why These Divergences Exist

Windows x64 chooses:

* shadow space to standardize argument homing/spilling and simplify certain code-

generation and debugging patterns,

* no red zone to keep stack semantics robust under asynchronous system activity and

tooling,

* strong unwind integration to support reliable exception handling and stack walking in

the Windows ecosystem.
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System V chooses:
* ared zone to optimize leaf functions,

« different register allocation priorities aligned with Unix-like ecosystem conventions and

toolchains.

Neither is “better” in isolation; each is optimized for its platform’s conventions and runtime

assumptions. The danger is assuming they are interchangeable.

2.4 ABI Guarantees vs Compiler Freedoms

An ABI defines what must hold true across separately compiled boundaries. Compilers may
choose different strategies internally, but only as long as the externally visible contract is

preserved.

ABI Guarantees (Non-Negotiable Rules)

Examples of hard ABI requirements on Windows x64:

* Caller provides shadow space before making a call.

Stack alignment must meet the platform rule at call boundaries.

Non-volatile registers must be preserved by the callee if it uses them.

Return values use defined registers and layouts.

* Unwinding must be possible through compiler-generated metadata for non-leaf

functions and functions that alter RSP in non-trivial ways.

Violation example: clobbering a non-volatile register in the callee.
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.intel_syntax noprefix
# WRONG: clobbers RBX (non-volatile) without saving/restoring.
bad_callee:

mov rbx, 12345678h

XOor eax, eax

ret
Correct pattern:

.intel_syntax noprefix
good_callee:
push rbx
mov rbx, 12345678h
XOor eax, eax
pop rbx

ret

Compiler Freedoms (Allowed Variations)

Within the ABI rules, compilers have significant freedom:

* omit or use a frame pointer depending on optimization and debugging settings,

choose how to allocate locals and where to spill registers,

* reorder instructions, inline calls, and perform tail-call optimizations when legal,

keep values in registers instead of memory, or spill aggressively under register pressure,

choose different prologue/epilogue sequences as long as they remain unwind-correct.
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Two different compilers (or the same compiler under different options) can produce different
assembly for the same source code. That is normal. What must remain invariant is the
external ABI contract at module boundaries.

A practical rule for the reader:

* If your code crosses a boundary (DLL, library, language runtime, callback, hand-written

assembly), obey the ABI strictly.

* If your code stays within one compilation unit, the compiler may transform it heavily

while still preserving the ABI at every external call site.



Chapter 3

Register Usage and Calling Rules

3.1 Argument Passing Registers

Integer and Pointer Arguments (General-Purpose Registers)

The Windows x64 ABI passes the first four integer or pointer arguments in general-purpose

registers:

Argument 1 — RCX

Argument 2 — RDX

Argument 3 — R8

Argument 4 — R9

Additional arguments are passed on the stack (right-to-left in memory as laid out by the caller),

while the caller also reserves the mandatory 32-byte shadow space.

24
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.intel_syntax noprefix

# call: f(a,b,c,d, e, f)

# a,b,c,d in RCX,RDX,R8,R9
# e, f on stack

# caller must allocate 32-byte shadow space

caller:
sub rsp, 40h # 32 shadow + alignment (typical)
mov rcx, 11 # a
mov rdx, 22 # b
mov r8, 33 # c
mov r9, 44 # d
mov gword ptr [rsp+20h], 55 # e (stack arg 5) placed above

— shadow space

mov gword ptr [rsp+28h], 66 # f (stack arg 6)
call £

add rsp, 40h

ret

Floating-Point Arguments (XMM Registers)

For floating-point (f loat/double) arguments, the ABI uses XMM registers for the first four

FP arguments:

FP Arg 1 — XMMO

FP Arg 2 — XMM1

FP Arg 3 — XMM2

FP Arg 4 — XMM3
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A key rule: the ABI distinguishes integer-class and floating-class arguments; the registers used

depend on the parameter types as seen by the compiler and the callee’s signature.

.intel_syntax noprefix

# call: g(int a, double x, int b, double vy)

# a —> RCX, x —> XMM1? (see note below), b -> R8, y —-> XMM3? depends
—~ on signature classification

# Practical rule: argument registers are assigned by position and

— class rules as the ABI defines.

caller g:
sub rsp, 40h
mov ecx, 7/ # a
mov r8d, 9 # b (3rd integer arg position)
# load doubles into xmm registers (example uses memory constants)
movsd xmml, gword ptr [rip+val_x]
movsd xmm3, gword ptr [rip+val_y]
call g
add rsp, 40h

ret
val_x: .quad 0x400921FB54442D18 # pi as double bits (example)
val_y: .quad 0x4005BFO0A8B145769 # e as double bits (example)

Practical guidance: for mixed signatures, do not hand-assign XMM registers unless you
are matching the exact compiled signature and have verified with disassembly. The safest

approach is to let the compiler generate the call sequence, then mirror it in assembly if needed.

3.2 Return Value Registers
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Integer and Pointer Returns

Integer/pointer return values are delivered in:
* RAX (primary return)

For small integer types, the value is in AL/AX/EAX as appropriate, but logically it is RAX.

.intel_syntax noprefix

# int64_t h(void) returns in RAX

mov rax, 123456789

ret

Floating-Point Returns

Floating-point returns:

e XMMO (float/double return)

.intel_syntax noprefix

# double k(void) returns in XMMO

movsd xmm0O, gword ptr [rip+val_pil]

ret

val_pi: .quad 0x400921FB54442D18
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Aggregates and “Hidden” Return Mechanisms

Some aggregates/structs are returned indirectly using a hidden pointer provided by the caller
(a hidden sret mechanism). Whether a struct is returned in registers or indirectly depends on
ABI classification rules and size/layout.

Practical rule: when interoperability matters, avoid returning large aggregates across
module/language boundaries unless you have validated the exact ABI lowering, or use an

explicit out-parameter.

.intel_syntax noprefix

# Conceptual pattern: caller provides pointer to return storage

< (hidden)

# callee writes result into that storage

# (Exact register used for hidden pointer is defined by ABI lowering

— rules.)

# Safer cross-boundary alternative:

# void make_result (Resultx out, ...);

3.3 Volatile vs Non-Volatile Registers

Windows x64 classifies registers into:
* Volatile (caller-saved): may be clobbered by the callee.

* Non-volatile (callee-saved): must be preserved by the callee if it uses them.

General-Purpose Registers

Common volatile GPRs:
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e RAX, RCX, RDX, R8, R9, R10, R11
Common non-volatile GPRs:

* RBX, RBP, RSI, RDI, R12, R13, R14, R15

XMM Registers

Volatile XMM:
¢ XMMQO—--XMM5
Non-volatile XMM:
¢ XMM6——XMM15

Example: correct preservation of a non-volatile register (RBX) and a non-volatile XMM
register (XMM6):

.intel_syntax noprefix

callee:
push rbx
sub rsp, 20h # align / local space (example)

movdgu xmmword ptr [rspl, xmmé6 # save XMM6 (example save)
# ... use RBX and XMM6

movdqu xmm6, xmmword ptr [rsp] # restore XMM6

add rsp, 20h

pop rbx

ret

Note: the exact stack allocation must still maintain required alignment rules at call boundaries.

Use compiler output as a reference pattern when writing hand assembly.
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3.4 Hidden ABI Assumptions Programmers Often Miss

Shadow Space Must Exist Even If You “Do Not Use It”

The caller must reserve 32 bytes of shadow space for every call, regardless of the number of

arguments. Some callees will use it for homing/spilling register arguments.

.intel_syntax noprefix
# WRONG: call without shadow space
bad _call:

mov rcx, 1

call target

ret

.intel_syntax noprefix
# CORRECT: always reserve shadow space
good_call:

sub rsp, 40h

mov rcx, 1

call target

add zrsp, 40h

ret

Stack Alignment at Call Sites Is Not Optional

If the stack is misaligned at a call site, a callee that uses aligned SIMD instructions or assumes

ABI alignment may fault or behave unpredictably.

.intel_syntax noprefix

# Example of a common alignment bug: subtracting wrong amount
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misaligned_call:
sub rsp, 20h # may break required alignment depending on
—~ entry alignment
call target
add zrsp, 20h

ret

Practical rule: replicate the compiler’s standard allocation pattern for call sites (often sub
rsp, 40h for simple calls) unless you have proven your alignment math is correct for every

path.

Callee May Assume Correct Prologue for Unwinding

Even if you never “throw”, the platform’s unwinder and tools may walk through frames.
Unwind correctness relies on standardized stack manipulation patterns recorded in unwind
metadata.

Practical rule: avoid writing hand-crafted prologues in mixed C/C++ code unless you fully

understand unwind requirements for Windows x64.

3.5 Common Mistakes When Mixing Inline Assembly

Mistake 1: Clobbering Non-Volatile Registers Without Saving

Inline assembly that overwrites RBX, RBP, RSI, RDI, R12--R15 (or
XMM6--XMM15) without saving/restoring breaks the ABI contract.

.intel_syntax noprefix
# WRONG: clobbers RBX (non-volatile)

mov rbx, O
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Correct approach: save/restore or avoid non-volatile registers.

.intel_syntax noprefix

# CORRECT: preserve RBX if used

push rbx
mov rbx, 0
#

pop rbx

Mistake 2: Assuming Inline Assembly Is a “Barrier”

Optimizing compilers may reorder surrounding code unless the inline-asm form explicitly
tells the compiler about clobbers, memory effects, and dependencies. If the compiler does not
know what your assembly touches, it may keep values in registers you silently overwrite.

Practical rule: inline assembly must declare:
* all clobbered registers,
* whether memory is read/written,

* outputs and inputs accurately.

Mistake 3: Forgetting Shadow Space Before Calling from Assembly

Calling a C/C++ function from inline/hand assembly without allocating shadow space is a

classic source of sporadic crashes.

.intel_syntax noprefix
# WRONG: missing shadow space
mov rcx, 123

call some_c_function
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.intel_syntax noprefix
# CORRECT
sub rsp, 40h
mov rcx, 123
call some_c_function

add rsp, 40h

Mistake 4: Mixing System V Assumptions on Windows

Some developers reuse snippets that place argl in RDT and arg2 in RSI. That is System V, not
Windows x64.

.intel_syntax noprefix
# WRONG on Windows x64:
mov rdi, 1
mov rsi, 2

call £

.intel_syntax noprefix
# CORRECT on Windows x64:
sub rsp, 40h
mov rcx, 1
mov rdx, 2
call £
add rsp, 40h

Mistake S: Confusing “volatile” in C++ With “volatile” Registers

C++ volatile is not a calling convention rule. It does not substitute for proper clobber
declarations, stack discipline, or ABI preservation. The ABI definition of volatile/non-volatile

registers is purely about call preservation.
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Bottom line: inline assembly is safest when it is minimized, fully declares clobbers, preserves

non-volatile registers, and follows shadow space and alignment rules exactly.



Chapter 4

Shadow Space (Home Space)

4.1 What Shadow Space Is and Why It Exists

Shadow space (also called home space) is a mandatory stack area reserved by the caller on

every call under the Windows x64 ABI.

* Size: 32 bytes (4 slots of 8 bytes each)

* Purpose: provides a fixed, always-available place where the callee can home (spill) the

first four register arguments (RCX, RDX, R8, R9) if needed.

Even if the callee never uses it, the ABI requires it to exist so that:
* code generation is simpler and predictable across optimization levels,
* the callee can spill arguments without first adjusting RSP,
* debugging and instrumentation can rely on a stable call-frame convention,
* interoperability across modules and languages is consistent.
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A minimal call that obeys the ABI looks like:

.intel_syntax noprefix

# Windows x64 ABI: caller allocates 32-byte shadow space for every

— call.

caller:
sub rsp, 40h # 20h shadow + 20h alignment padding
— (common pattern)

mov rcx, 1
mov rdx, 2
call callee
add zrsp, 40h

ret

Important: the 40h allocation above is a common pattern because it both provides 20h
shadow space and keeps the stack aligned at the call site. The ABI requirement is the 20h

shadow space; alignment requirements determine the total adjustment.

4.2 Mandatory Allocation Rules

The ABI rule is strict:

* The caller must reserve exactly at least 32 bytes of shadow space before executing
call.

* This applies even if the callee takes zero parameters.

* This applies even if all parameters are passed on the stack (more than four arguments).
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Shadow space sits at the top of the caller’s call frame, directly above the return address as seen

by the callee after the call transfers control.

Conceptual layout from the callee’s perspective on entry:

.intel_syntax noprefix

#
#
#
#
#
#

On entry to callee

[rsp+00h]
[rsp+08h]
[rsp+10h]
[rsp+18h]
[rsp+20h]

return
shadow
shadow
shadow

shadow

(conceptual stack view) :

address

slot
slot
slot
slot

for
for
for

for

RCX
RDX
R8
R9

Practical caution: offsets above are conceptual and used for understanding. Real compiler

output may establish a frame and move RSP; always validate offsets against the final RSP

value in the actual prologue.

4.3 Caller vs Callee Responsibilities

Caller Responsibilities

The caller must:

* allocate 32 bytes shadow space for every call,

* ensure required stack alignment at the call boundary,

* place additional arguments (5th and beyond) on the stack above the shadow space,

 assume volatile registers may be clobbered by the callee.

Example: calling a function with 6 integer arguments:
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.intel_syntax noprefix
+ f(a,b,c,d,e, f)
# a..d in RCX,RDX,R8,R9

# e, f on stack above shadow space.

call_ f:
sub
mov
mov
mov
mov
mov
mov
call
add

ret

rsp,
rcx,
rdx,
r8,

78,

gword ptr
gword ptr

f

TSP,

40h
11
22
33
44

40h

Callee Responsibilities

The callee may:

[rspt+20h],
[rsp+28h],

55
66

o W

Q. 0

(5th)
(6th)

* use shadow space to store (home) argument registers,

 overwrite those shadow slots freely,

* treat those slots as temporary storage for spilling those arguments.

The callee must:

* preserve non-volatile registers if it uses them,

* maintain unwind-correct stack manipulations (important for Windows tooling and

exceptions),
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* not assume shadow space contains valid values unless it explicitly stores them.

A common pattern is homing register arguments early:

.intel_syntax noprefix
callee:
# home the register arguments (example pattern)
mov gword ptr [rsp+08h], rcx
mov gword ptr [rsp+10h], rdx
mov gword ptr [rsp+18h], r8
mov gword ptr [rsp+20h], r9
# ... now arguments are in memory if needed

ret

Key idea: the callee can do this immediately because the ABI guarantees the space exists.

4.4 Interaction with Leaf and Non-Leaf Functions

Leaf Functions

A leaf function makes no calls. It may not need to allocate stack space at all, and it may not
need shadow space for itself because it does not call others.

However:

* leaf functions can still be called by others, so their callers still must provide shadow

space,

* a leaf function may still use the caller-provided shadow space to home arguments if

desired.

Example leaf that homes one argument and returns:
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.intel_syntax noprefix
# leaf: returns (argl + 1)

# caller already provided shadow space

leaf addl:
mov gword ptr [rsp+08h], rcx # optional home
lea rax, [rcx+1]

ret

Non-Leaf Functions

A non-leaf function calls other functions. It must allocate its own shadow space before each
call it performs.

This is a critical point:
» Shadow space is not inherited across calls.
* Each call site must allocate its own shadow space.

Example: non-leaf function calling another function:

.intel_syntax noprefix
non_leaf:

# ... do work

sub rsp, 40h

mov rcx, 100

call helper

add rsp, 40h

ret
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4.5 Bugs Caused by Incorrect Shadow Space Handling

Shadow space violations create some of the hardest bugs to diagnose because the crash often

happens far away from the mistake.

Bug 1: Calling Without Allocating Shadow Space

.intel_syntax noprefix
# WRONG: missing shadow space
bad _call:

mov rcx, 1

call target

ret

Possible outcomes:

* immediate crash if the callee homes arguments to [rsp+08h] etc. and overwrites

unrelated stack data,
* silent corruption that triggers later,

* works in debug but fails in release due to different spill patterns.

Bug 2: Allocating Shadow Space but Forgetting Alignment

Allocating 32 bytes is necessary but not sufficient if your stack alignment at the call boundary

is wrong.

.intel_syntax noprefix
# WRONG pattern: reserves 20h shadow but may violate alignment in

[ some contexts
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sub rsp, 20h
call target
add rsp, 20h

Practical safe approach: use the compiler-like pattern at call sites (commonly sub rsp,

40h) unless you have proven the alignment math for every path.

Bug 3: Treating Shadow Space as Persistent Storage

Shadow space belongs to the caller’s frame and is intended as temporary homing/spill area for

the callee. It is not a stable place to store values across calls.

.intel_syntax noprefix

# WRONG idea: store something in shadow space, then call another

— function,

# assuming it will still be there.

sub rsp, 40h

mov gword ptr [rsp+08h], 1234

call other # other may overwrite its own shadow space, and
— your assumptions may break

mov rax, gword ptr [rsp+08h]

add rsp, 40h

ret

Correct approach: if you need persistent locals, allocate a real local stack frame (beyond

shadow) or use callee-saved registers with proper preservation.

Bug 4: Mixing System V Snippets that Use the Red Zone

Some System V assembly uses memory below RSP without adjusting RSP. On Windows x64,
there is no red zone. Combined with shadow space misunderstandings, this produces severe

instability.
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.intel_syntax noprefix
# WRONG on Windows x64: writing below RSP (red-zone assumption)

mov gword ptr [rsp—-08h], rbx

Bug 5: Forgetting Shadow Space on Indirect Calls and Callbacks

Indirect calls (through function pointers) still require shadow space, and callback boundaries

are a common place where violations appear.

.intel_syntax noprefix

# WRONG: indirect call without shadow space
mov rax, gword ptr [ript+fp]

mov rcx, 7/

call rax

ret

fp: .quad 0

.intel_syntax noprefix

# CORRECT

mov rax, gword ptr [ript+fp]
sub rsp, 40h

mov rcx, 7/

call rax

add rsp, 40h

ret

fp: .quad 0

Operational Checklist: Shadow Space Correctness

* Every call site reserves at least 20h bytes shadow space.
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Shadow space is reserved even for zero-argument calls.
Stack alignment is correct at the call boundary.
Do not treat shadow space as persistent local storage.

Indirect calls and callbacks also obey the shadow-space rule.



Chapter 5

Stack Layout and Alignment

5.1 Required Stack Alignment Rules

Windows x64 imposes a strict stack alignment rule that must hold at every call boundary.
The goal is to guarantee that callees can safely use aligned SIMD instructions and predictable

stack layouts.

Core Rule (Call-Site Contract)

* The stack pointer RSP must be 16-byte aligned at the point of a call boundary as
defined by the ABI contract.

* The call instruction pushes an 8-byte return address, so the alignment relationship

differs between:

— the caller before call,

— the callee on entry (after return address is pushed).

45
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Practical safe rule for hand-written call sites: use the same pattern compilers use for simple

calls:

.intel_syntax noprefix
# Safe call-site pattern used widely by compilers:
# — allocate 32-byte shadow space

# - include padding so the call-site alignment is correct

sub rsp, 40h
call target
add rsp, 40h

Why This Matters

If alignment is wrong, a callee that uses aligned loads/stores to the stack (or assumes aligned

local variables) can fault or behave unpredictably under optimization.

5.2 Stack Frame Structure in Windows x64

Windows x64 stack frames are designed to be compatible with:
* register argument passing,
* mandatory shadow space,
* unwind metadata for exceptions and tooling.

A typical stack frame has these conceptual regions (from high addresses down toward RSP):

* Caller-passed stack arguments (5th and beyond)

» Shadow space (32 bytes) reserved by the caller for the callee



47

* Return address pushed by call

* Callee local frame (locals, spills, saved non-volatiles, alignment padding)

A conceptual view from the callee on entry (before it changes RSP):

.intel_syntax noprefix

[rsp+00h]
[rsp+08h]
[rsp+10h]
[rsp+18h]
[rsp+20h]
[rsp+28h]
[rsp+30h]

H= %= S %= o %= o =

Callee entry stack view

(conceptual) :

return address

shadow slot
shadow slot
shadow slot
shadow slot
stack arg 5
stack arg 6

0

1
2
3

(home for RCX)

(home for RDX)

(home for RS8)

(home for R9)

(if present)

(1f present)

Typical Non-Leaf Frame Pattern

A non-leaf function that uses locals and saves non-volatile registers commonly:

allocates local space,

* saves non-volatiles it will modify,

* may home args to shadow space or to its own locals,

.intel_syntax noprefix

# Example:

typical shape

(conceptual)

makes calls (each call requires its own shadow space allocation).

of a non-leaf function frame

# Note: exact offsets depend on the compiler and options.
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func:
push rbx # save non-volatile
sub rsp, 50h # locals + alignment (example)
# ... function body
sub rsp, 40h # shadow space for a nested call (plus

— padding if needed)
call helper

add zrsp, 40h

add rsp, 50h

pop rbx

ret

Key point: shadow space is tied to each call site, not to the function as a whole. A function
may allocate multiple shadow spaces across its execution (or reuse a reserved region if it

manages alignment correctly).

5.3 Why the Red Zone Does Not Exist

Some ABIs (notably System V AMD64) define a red zone: a fixed region below RSP that leaf
functions may use without adjusting RSP.
Windows x64 defines no red zone.

Practical implications:
* Memory below RSP must be treated as unsafe.
* Leaf functions must not assume they can store temporaries at [ rsp—XX].

* Reusing System V assembly snippets that rely on the red zone is a frequent source of

crashes.

Example of a red-zone assumption that is invalid on Windows x64:
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.intel_syntax noprefix
# WRONG on Windows x64: writing below RSP (red-zone assumption)
leaf bad:

mov gword ptr [rsp-08h], rbx

XOor eax, eax

ret

Correct Windows x64 approach: allocate explicit space if needed:

.intel_syntax noprefix
leaf ok:
sub rsp, 20h
mov gword ptr [rsp+00h], rbx
XOor eax, eax
add zrsp, 20h

ret

5.4 Stack Probing and Large Allocations

Windows uses a committed-stack model with guard pages. Large stack allocations must
ensure the program touches pages in a controlled way so that guard pages can be triggered
safely and the stack can be committed incrementally.

Modern compilers therefore insert stack probing logic for large allocations. This can appear

as:
* an inlined probing loop, or
* acall to a helper routine that performs probing.

The ABI-level lesson is not the exact probing algorithm, but the constraint it creates:
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* If you move RSP by a large amount without probing, you can jump over a guard page

and fault in a way that looks unrelated.

* If you write hand assembly that allocates large frames, you must follow the platform’s

probing expectations.
A conceptual (simplified) probing pattern looks like:

.intel_syntax noprefix
# Conceptual probing: touch one address per page while moving RSP
— down.

# This is illustrative only (exact step/page size matters).

sub rsp, 20000h # large allocation (example)
mov rax, rsp

# touch memory in steps to ensure pages are committed
# (real probing would touch at page granularity)

mov byte ptr [rax], O

Practical guidance:
* Avoid large stack allocations in hand-written assembly.
* Prefer heap or caller-provided buffers for large objects at ABI boundaries.

* If unavoidable, mirror the compiler-generated probing pattern used by your toolchain.

5.5 Crash Patterns Caused by Misalignment

Misalignment bugs are notorious because they often:

* occur only in release builds,
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* disappear when debugging (due to different prologues),

* crash inside unrelated library code.

Pattern 1: Crash Inside Aligned SIMD Instruction

A callee may use an aligned instruction that faults if the address is not properly aligned.

Example concept (aligned store to stack-local):

.intel_syntax noprefix
# If RSP is misaligned, an aligned store/load to [rspt+offset] can
— fault.

# (Instruction choice depends on compiler and CPU features.)

# Example conceptual aligned store (do not rely on instruction
< selection here)

# movaps xmmword ptr [rsp+20h], xmmO

Symptom: crash appears in a function that uses SIMD, not in the caller that caused

misalignment.

Pattern 2: Crash Only When Optimization Is Enabled
At low optimization, the compiler may:

* spill less,

¢ use different instructions,

* insert a frame pointer.

At high optimization, it may introduce aligned SIMD spills or vectorized code that assumes

correct alignment, exposing the bug.
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Pattern 3: ‘“‘Random” Corruption After Returning

If the caller miscalculates stack adjustment (e.g., allocates shadow space but restores

incorrectly), the function may return to the wrong address or restore wrong saved registers.

.intel_syntax noprefix

# WRONG: allocate 40h but restore only 20h
sub rsp, 40h

call target

add rsp, 20h # stack imbalance

ret # returns using a corrupted stack

Pattern 4: Failures in Callbacks and Indirect Calls

Callbacks often cross module boundaries. If alignment and shadow space rules are violated in

the trampoline or callback wrapper, crashes occur inside the callback or only after it returns.

.intel_syntax noprefix

# WRONG: indirect call without preserving alignment/shadow rules
mov rax, gword ptr [ript+fp]

call rax

ret

fp: .quad 0

Operational Checklist: Stack Correctness at Call Boundaries

* Every call site reserves at least 20h bytes shadow space.
* Ensure call-site stack alignment is correct for every path.

¢ Never write below RSP on Windows x64 (no red zone).
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* Restore RSP exactly (no imbalance).

* Treat large stack allocations as a special case (probing requirements).



Chapter 6
Prologues, Epilogues, and Unwinding

6.1 Standard Function Prologue Structure

On Windows x64, function prologues are not merely “style”. They are closely tied to
correctness because the platform relies on unwind metadata to walk the stack during
exceptions and diagnostics. Compilers therefore generate prologues that follow well-defined
patterns.

A typical prologue performs some subset of:

* allocate the local stack frame (sub rsp, imm)
* save non-volatile GPRs that will be modified (push ormov [rsp+off], req)

* save non-volatile XMM registers if used (movdqu / movaps depending on alignment

guarantees)
* optionally establish a frame pointer (rbp) in some builds/configurations

* optionally home incoming argument registers to memory (often using the caller-

provided shadow space)

54
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Minimal Leaf Prologue (No Locals, No Saves)

A leaf function that uses only volatile registers may require no explicit prologue:

.intel_syntax noprefix
leaf add:

lea eax, [ecx+l] # argl in ECX, return in EAX

ret

Typical Prologue With Locals and Saved Non-Volatiles

.intel_syntax noprefix
# Example shape: saves RBX (non-volatile), allocates locals.

# Offsets are illustrative; real compilers choose specific layouts.

func:
push rbx
sub rsp, 30h # locals + alignment padding (example)
# ... body

Using Shadow Space to Home Arguments

Even if a callee does not allocate locals, it may home register arguments into shadow space:

.intel_syntax noprefix
# On entry, caller-provided shadow space exists.

# Callee may store RCX/RDX/R8/R9 there immediately.

callee_home_args:
mov gword ptr [rsp+08h], rcx

mov gword ptr [rsp+l1l0h], rdx
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mov gword ptr [rsp+18h], r8
mov gword ptr [rsp+20h], r9
# ... body

ret

This is one of the reasons shadow space is mandatory: it lets the callee spill arguments without

first moving RSP.

6.2 Epilogue Rules and Stack Cleanup

The epilogue must exactly reverse what the prologue did, restoring non-volatile state and
returning with a correct stack pointer.

Typical epilogue responsibilities:
* restore any saved non-volatile registers
e deallocate locals (undo sub rsp, immviaadd rsp, imm)

e return using ret

Correct Symmetric Epilogue

.intel_syntax noprefix
func:

push rbx

sub rsp, 30h

# ... body

add rsp, 30h

pop rbx

ret
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Classic Stack Imbalance Bug

.intel_syntax noprefix

# WRONG: allocates 30h but frees only 20h

bad_func:
push rbx
sub rsp, 30h
# ... body
add rsp, 20h # imbalance
pop rbx # now pops wrong value
ret # returns to wrong address or corrupts

— state

This class of bug often produces:
* crashes far away from the real mistake,
e corrupted return addresses,

* “random” failures under optimization.

6.3 Structured Exception Handling (SEH) Implications

Windows x64 uses a structured exception mechanism where correct stack unwinding depends
on compiler-provided unwind metadata rather than ad-hoc conventions.

Key implications for ABI correctness:

* The OS unwinder must be able to determine how RSP changes and which non-volatiles

were saved.

* The OS expects prologues/epilogues to be representable by unwind codes recorded in

metadata.
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* Hand-written assembly that does not provide correct unwind information can break:

— exceptions (C++ exceptions, OS exceptions),
— stack walking in crash dumps,

— debugging and profiling tools.

Why “It Works Until an Exception” Happens

A function can appear to run correctly in normal execution but fail during an exception
because the unwinder cannot correctly restore the caller context.

Example scenario:

¢ Your function modifies RSP and saves RBX.

Normal return path restores correctly.

* An exception occurs inside a nested call.

Unwinder tries to walk through your frame.

Without accurate unwind data, the unwinder restores the wrong RSP/registers.

Result: the exception handling path corrupts execution state, often crashing in runtime code or

in an unrelated handler.

6.4 Why Unwind Metadata Affects Correctness

Unwind metadata is not optional decoration; it is part of the platform correctness story.

Unwind metadata encodes facts such as:

* how much stack space was allocated,
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* where non-volatile registers were saved,

* whether a frame pointer is used,

¢ how to restore the caller context.

This affects correctness in at least four ways:

Exception safety: stack unwinding must restore the correct register state.

Crash reliability: crash dumps need accurate stack traces.

Debugger correctness: stepping and backtraces depend on unwindable frames.

Profiler accuracy: sampling profilers rely on stack walking.

Practical Consequence for Hand-Written Assembly

If you write assembly that:
* changes RSP,
e saves non-volatiles,
* makes calls,

you are effectively responsible for ensuring that the platform can unwind through it correctly.

Practical rule: keep hand-written assembly leaf-only when possible, or use compiler-

supported mechanisms for emitting correct unwind info.
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6.5 ABI Impact on Debugging and Crash Analysis

Many “mysterious” crash reports are actually ABI violations that manifest as:

¢ incorrect or truncated stack traces,

return addresses pointing into the middle of instructions,

crashes during unwinding rather than at the original fault,

* exceptions that cannot be caught as expected,

debugger showing impossible local variables or call frames.

Pattern 1: Broken Stack Trace
If the stack pointer is misaligned or imbalanced, stack walking yields nonsense frames:

.intel_syntax noprefix
# Typical cause: mismatched sub/add on RSP, or missing shadow space
— on calls

# Consequence: backtrace shows wrong function names or stops early.

Pattern 2: Crash in a Library Routine After Returning
A function returns with corrupted non-volatile registers (e.g., RBX):

.intel_syntax noprefix
# WRONG: modifies RBX without preserving it
bad_preserve:

mov rbx, 0

ret

The crash may occur later in a different function that relies on RBX being preserved.
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Pattern 3: Crash Only When Exceptions Are Enabled

Without unwindable frames, exceptions can fail during stack unwinding, producing crashes

that disappear when exceptions are disabled or when code is compiled differently.

Operational Checklist: Prologue/Epilogue and Unwind Safety

* Preserve all non-volatile registers you modify.

Restore RSP exactly (no imbalance).

Allocate shadow space at every call site.
* Avoid using memory below RSP (no red zone).

* Treat unwindability as a correctness requirement, not a debugging convenience.
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Interoperability Pitfalls

7.1 Mixing MSVC with Clang or GCC on Windows

On Windows x64, the calling convention is mostly unified, but interoperability problems still

arise because compilers differ in:

* name mangling (C++),

* object layout rules influenced by compilation modes and pragmas,

exception model and runtime libraries,
* structure/aggregate passing and return lowering details,

* vector types and alignment assumptions,

linker/runtime expectations (CRT selection, initialization order, TLS).

Rule 1: Cross-compiler boundaries must be C-compatible

The safest interop contract is:
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e extern "C" functions,

fixed-width integer types,

explicit pointer-based APIs (no C++ templates/overloads across boundaries),

* avoid passing/returning non-trivial C++ objects across DLL boundaries.

.intel_syntax noprefix

# ABI-safe boundary design (conceptual) :

# Prefer: extern "C" void api_do_work (Context* ctx, int32_t x);

# Avoid: passing std::string / exceptions / C++ class types across

< compilers/DLLs.

Rule 2: Do not mix exception runtimes across boundaries

Even when the calling convention matches, crossing module boundaries with C++ exceptions
can fail if modules use different runtimes or exception handling models. The result is

typically:
* uncaught exceptions,
* termination in unexpected locations,

* unwinding failures that look like stack corruption.

Rule 3: Structure layout must be identical

A struct that “looks the same” in source may differ due to:
* packing pragmas,

* alignment directives,
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» compiler flags that affect ABI layout,

» different definitions in different translation units.

Practical enforcement: define shared structs in a single header used by all compilers, and

keep them plain-old-data with explicit padding when needed.

7.2 Calling Windows x64 ABI from Hand-Written Assembly

When calling into C/C++ from hand-written assembly, you must obey all call-site rules:

e arguments in RCX, RDX, R8, R9 (and XMM registers for FP),

* allocate 32-byte shadow space for every call,

* maintain stack alignment at the call boundary,

» assume volatile registers are clobbered by the callee.

Correct Minimal Call Site

.intel_syntax noprefix

# void f(inte64d_t a,

call f:
sub rsp,
mov rcx,
mov rdx,
call £
add rsp,

ret

40h
111
222

40h

int6d4d_t Db);

# shadow + alignment padding
# a
# b
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Classic Bug: Missing Shadow Space

.intel_syntax noprefix
# WRONG: missing shadow space (may corrupt stack when callee homes
— args)
bad_call f:
mov rcx, 111
mov rdx, 222
call £

ret

This often appears to work in simple tests, then fails in release builds when the callee spills or

when instrumentation/unwinding paths execute.

Classic Bug: Treating RDI/RSI as arg registers
Some developers reuse System V snippets:

.intel_syntax noprefix
# WRONG on Windows x64
mov rdi, 111
mov rsi, 222

call £
Correct Windows x64 register usage:

.intel_syntax noprefix
sub rsp, 40h

mov rcx, 111

mov rdx, 222

call £

add rsp, 40h
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7.3 Interfacing with Foreign Languages and Runtimes

Interfacing with other languages typically introduces additional ABI layers:
* language runtime calling convention wrappers,
« different object representations and lifetimes,
* different exception and stack-unwinding expectations,

* different alignment/packing defaults.

Rule 1: Use a C ABI surface

Export C-callable functions and keep them narrow:
* pointers and integers,
* explicit buffer lengths,
 explicit ownership rules (create/ free pairs).

.intel_syntax noprefix

# Example boundary pattern (conceptual):

# extern "C" voidx lib_create () ;

# extern "C" void 1lib_destroy (voidx);

# extern "C" int32_t 1lib_process (void* ctx, const uint8_tx data,

— uint32_t len);

Rule 2: Never pass C++ exceptions across language boundaries

Foreign runtimes generally cannot unwind C++ frames correctly unless explicitly integrated.

Treat the boundary as no-throw:
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* catch all exceptions inside the C++ side,

e return error codes/status objects.

Rule 3: Avoid passing non-trivial objects and STL types

Even within C++, passing std: : string, std: :vector, or class types across module
boundaries is risky due to allocator and runtime coupling. Across foreign languages it is

almost always incorrect.

7.4 Callback Mismatches and Silent Memory Corruption

Callbacks are the most common place where ABI errors become silent corruption rather than
immediate crashes.

A callback mismatch occurs when:
* the caller expects one signature/calling convention,

* the callee implements another.

Mismatch Type 1: Wrong Prototype (Argument Count/Types)

If a callback is declared with fewer arguments than the caller supplies, the callee may ignore
registers but may still clobber state unpredictably if it uses a different interpretation of

registers or stack.

.intel_syntax noprefix

# Conceptual mismatch:

# expected: void cb(voidx ctx, int32_t code)

# actual: void cb (void* ctx) # wrong prototype

i
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# Symptom: appears to work until optimization or until the callback

— uses registers differently.

Mismatch Type 2: Mixed Integer/FP Classification

If a callback signature differs in whether an argument is integer or floating-point, the runtime
will pass it in different registers (GPR vs XMM). This produces values that look like random
bits.

.intel_syntax noprefix

Conceptual mismatch:
expected: void cb (double x) # expects XMMO
actual: void cb(int64_t x) # reads RCX

S .

Result: callee reads garbage.

Mismatch Type 3: Stack Alignment Violation in Callback Trampolines

Callbacks often go through trampolines/wrappers. If the wrapper fails to allocate shadow

space or maintain alignment, the crash occurs inside the callback, not in the wrapper.

.intel_syntax noprefix
# WRONG callback trampoline: no shadow space
trampoline_bad:
mov rcx, rdi # random wrong assumption (also wrong
— register choice)
call rax # indirect call without shadow/alignment
— discipline

ret

.intel_syntax noprefix
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# Correct trampoline pattern: shadow + correct arg registers
trampoline_ok:

sub rsp, 40h

# set RCX/RDX/R8/R9 as needed

call rax

add rsp, 40h

ret

Why it becomes silent corruption: the callback may return successfully, but non-volatile

registers or stack state may be corrupted, and the crash happens later.

7.5 DLL Boundary ABI Hazards

Crossing a DLL boundary introduces additional correctness hazards beyond the calling

convention.

Hazard 1: Different CRTs and Allocators

If one module allocates memory and another frees it using a different runtime allocator, the
result ranges from leaks to heap corruption.

Safe pattern:
¢ allocate and free within the same module, or

* export paired functions: 1ib_alloc/lib_free.

Hazard 2: Passing C++ Objects Across DLL Boundaries

Passing objects with:

¢ non-trivial destructors,
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* inline methods compiled differently,
 vtables and RTTI,
¢ STL members,

is extremely fragile across DLL boundaries, especially when compilers/runtimes differ.

Safe pattern: opaque handles.

.intel_syntax noprefix

# Opaque-handle boundary model (conceptual):
# typedef struct Handle Handle;

# extern "C" Handlex create();
#

extern "C" void destroy (Handlex) ;

Hazard 3: Different Alignment/Packing or Header Drift

If two modules compile with different packing/alignment, structs shared across the boundary

will not match. The bug often appears as:
» wrong field values,
* crashes when dereferencing pointers that were read from the wrong offset,

* subtle corruption in large structs.

Hazard 4: Inlining and ODR-Style Mismatches

Even if the binary interface is “the same”, differences in inline code or macro-controlled

layouts can produce inconsistent assumptions across modules.
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Operational Checklist: Interop That Does Not Break

* Use extern "C" for exported/imported APIs.

Use only plain data types across boundaries; prefer pointers + sizes.

Never let C++ exceptions cross module or language boundaries.

Allocate and free in the same module (or export free).

Ensure shadow space and stack alignment at every call site, including callbacks.

Avoid non-trivial C++ objects and STL types across DLL boundaries.

* Validate mixed compiler output with disassembly for boundary functions.
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Windows x64 vs System V ABI

8.1 Side-by-Side Calling Convention Comparison

Although both ABISs target the same ISA (x86-64), they define different binary contracts.
Treating them as “almost the same” is a direct path to stack corruption, wrong arguments,

and broken callbacks.

High-Impact Differences (Summary Table)

Category Windows x64 ABI System V AMDG64 ABI
Integer / pointer RCX, RDX, RS, R9 RDI, RSI, RDX, RCX, R&, R9
argument registers

Floating-point XMMO-XMM3 XMMO-XMM?7

argument registers

Shadow space Mandatory 32 bytes reserved | None

by the caller for every call

72
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Category

Windows x64 ABI

System V AMD64 ABI

Red zone

None (memory below RSP is

not usable)

128-byte red zone available
below RSP

Stack arguments

Placed on stack above shadow

space

Placed directly on stack

without shadow space

Caller-saved general-

purpose registers

(typical)

RAX, RCX, RDX, R8-RI11

RAX, RCX, RDX, RSI, RDI,
R8-R11

Callee-saved general-
purpose registers

(typical)

RBX, RBP, RSI, RDI, R12—
R15

RBX, RBP, R12-R15

Non-volatile XMM

registers

XMM6-XMM15

None (all XMM registers are

caller-saved)

Unwinding integration

OS-centric unwind metadata
tightly coupled with the

Windows exception model

DWARF-based CFA rules used
by platform tooling

Note: “caller-saved” and “callee-saved” here mean ABI-level volatility rules that must hold

across module boundaries.

8.2 Register Allocation Differences

Integer / Pointer Argument Registers

Windows x64 passes up to four integer/pointer arguments in:

(RCX,RDX,R8,R9)
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System V passes up to six integer/pointer arguments in:
(RDI,RSTI,RDX,RCX,R8,R9)

Example: call £ (a,b, c,d, e, £) with 6 integers.

Windows x64 call setup

.intel_syntax noprefix
# Windows x64: first four in RCX,RDX,R8,R9 ; remaining on stack
# Caller must allocate 32-byte shadow space.

call f wino64:
sub rsp, 40h

mov rcx, 1 # a

mov rdx, 2 # Db

mov r8, 3 # c

mov r9, 4 # d

mov gword ptr [rsp+20h], 5 e
mov gword ptr [rsp+28h], 6 #

call £
add rsp, 40h

ret

System V call setup

.intel_syntax noprefix
# System V: first six in RDI,RSI,RDX,RCX,R8,R9

# No shadow space requirement.
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call_f sysv:

mov rdi, 1 # a
mov rsi, 2 # Db
mov rdx, 3 # c
mov rcx, 4 # d
mov r8, 5 # e
mov r9, 6 # f
call £

ret

A direct reuse of one sequence on the other platform produces wrong arguments immediately.

Floating-Point Argument Registers

Windows x64 uses XMMO-XMM3 for up to four FP args. System V uses XMMO0-XMM?7 for
up to eight FP args.

This difference matters for:

* FP-heavy APIs,
e callbacks,
* varargs,

» mixed integer/FP signatures where register assignment is type-class dependent.

8.3 Stack Discipline Differences

Shadow Space Presence vs Absence

Windows x64 requires the caller to reserve 32 bytes (shadow space) at every call site. System

V has no such requirement.



76

Consequence: the stack layout observed by callees differs. Even when both pass the same

number of parameters, stack offsets for additional arguments are not interchangeable.

Alignment and Call Boundaries

Both ABIs require careful alignment for correctness, but the compiler-generated call-site

patterns differ due to:

* shadow space reservation on Windows,

* red zone availability on System V,

« different prologue/epilogue conventions aligned with platform unwinding models.
A common Windows call-site pattern:

.intel_syntax noprefix
sub rsp, 40h

call target

add rsp, 40h

System V often uses smaller adjustments or none for leaf calls (because of red zone), which is

not valid to transplant to Windows.

8.4 Shadow Space vs Red Zone

Windows x64: Shadow Space

* mandatory 32 bytes reserved by caller,
* callee may home RCX/RDX/R8/R9 there,

* exists on every call, even for zero-argument calls.
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System V: Red Zone

* 128 bytes below RSP are usable by leaf functions without changing RSP,
* improves leaf function performance by avoiding stack pointer updates,

* not available on Windows x64.
A red-zone leaf pattern (valid System V, invalid Windows x64):

.intel_syntax noprefix
# System V red zone usage: writing below RSP without sub rsp,
leaf_sysv_ok:

mov gword ptr [rsp-08h], rbx

XOr eax, eax

ret

Correct Windows x64 approach:

.intel_syntax noprefix
leaf _win64_ok:
sub rsp, 20h
mov gword ptr [rsp+00h], rbx
Xor eax, eax
add zrsp, 20h

ret

8.5 Why Direct Code Reuse Fails Across Platforms

Directly copying assembly or “low-level” C/C++ assumptions across Windows x64 and

System V fails for five recurring reasons:
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1) Wrong argument registers

System V uses RDI /RST first; Windows x64 uses RCX/RDX. Reusing call setup code passes
garbage to the callee.

2) Missing shadow space on Windows

System V code does not allocate shadow space. If reused on Windows, the callee may

overwrite stack memory when homing arguments:

.intel_syntax noprefix
# WRONG on Windows x64: call without shadow space
mov rcx, 1

call target

3) Red zone assumptions

System V leaf code may use memory below RSP. On Windows, this is unsafe and violates the
ABLI.

4) Different non-volatile register sets

On Windows x64, RST and RDI are non-volatile and must be preserved by the callee. On
System V, RST and RDT are volatile (caller-saved). Copying a callee that clobbers RST/RDT

from System V into Windows breaks callers.

.intel_syntax noprefix
# Valid as a SysV callee behavior (RSI/RDI volatile),
# but WRONG on Windows x64 if not preserved.

bad_on_win64:
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mov rsi, O
mov rdi, O

ret

5) Different unwinding ecosystems

Windows x64 stack walking and exception handling depend heavily on unwind metadata
and representable prologue/epilogue patterns. System V uses a different tooling model
(DWARF/CFA rules). Hand-written assembly that ignores unwind requirements tends to fail

in:

crash dumps,

debugging,

* exception unwinding paths,

profilers.

Practical Cross-Platform Rule
* Do not copy raw assembly across Windows x64 and System V.
* Treat the ABI as part of the platform, just like the OS and toolchain.

* When portability is required, implement separate ABI-specific assembly files and keep

the boundary C-compatible.
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Real-World Failure Patterns

9.1 Stack Corruption That Appears Unrelated

ABI bugs often corrupt the stack in a way that does not crash immediately. The program

continues until:

a later function returns using a corrupted return address,
* asaved non-volatile register is restored from the wrong location,
* an exception triggers unwinding through a broken frame,

* alibrary routine uses an aligned stack local and faults.

Pattern 1: Stack Imbalance (Mismatched sub/add rsp)

.intel_syntax noprefix
# WRONG: allocates 40h but restores 20h

bad_stack_cleanup:

80
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sub rsp, 40h
call target
add zrsp, 20h # imbalance

ret # return address is now wrong

Observed symptoms:
¢ crash in an unrelated function after several returns,
* corrupted call stack in debugger,

* access violation at a seemingly random address.

Pattern 2: Missing Shadow Space Corrupts Caller’s Frame

.intel_syntax noprefix
# WRONG: missing 32-byte shadow space
bad_shadow_call:

mov rcx, 1

mov rdx, 2

call callee

ret

If callee homes arguments into [rsp+08h..20h], it overwrites the caller’s stack data
(saved registers, locals, or even the return chain). The crash often occurs later, far from the

call.

Pattern 3: Clobbering Non-Volatile Registers

.intel_syntax noprefix

# WRONG on Windows x64: RBX must be preserved
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bad_preserve_rbx:
mov rbx, 0

ret

Observed symptoms:
* caller data structure pointer “mysteriously” changes,
e crash in code that uses RBX long after the bad function returned,

* failures that disappear if you add logging (changes register pressure / spills).

9.2 Random Crashes After Seemingly Correct Calls

Some calls look correct (arguments in registers, correct symbol, correct return type), yet crash

randomly. This is typical when only some ABI rules are followed.

Pattern 4: Call Looks Correct but Alignment Is Wrong

.intel_syntax noprefix

# WRONG: may break alignment depending on entry state
sub rsp, 20h

mov rcx, 123

call target

add rsp, 20h

ret

Why it looks correct: shadow space exists (20h). Why it still breaks: call-site alignment
may be wrong for the callee’s assumptions, leading to crashes when aligned SIMD spills or

locals are used.
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Pattern 5: Indirect Call / Callback Without ABI Discipline

.intel_syntax noprefix

# WRONG: indirect call without shadow space
mov rax, gword ptr [ript+fp]

mov rcx, /

call rax

ret

fp: .quad O
The crash may occur:
« inside the callback,
¢ when the callback returns,

e later when unwinding or returning through the corrupted frame.

9.3 Bugs Triggered Only Under Optimization

Optimization changes register allocation, spilling behavior, prologue/epilogue form, and

inlining. ABI violations that are latent in debug builds become fatal in release builds.

Pattern 6: Release Build Starts Homing Arguments

Debug build callee might not spill arguments; release build might home arguments

immediately:

.intel_syntax noprefix
# callee in release may do:
mov gword ptr [rsp+08h], rcx

mov gword ptr [rsp+10h], rdx
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If the caller forgot shadow space, release build overwrites the caller’s stack.

Pattern 7: Vectorization Introduces Alignment-Sensitive Spills
Under optimization, compilers may:
* use wider vector registers,
* spill XMM registers to stack locals,
* assume ABI-mandated alignment.
A misaligned stack can now crash when the compiler emits aligned stack stores/loads. The

fault appears in the callee even though the caller caused it.

Pattern 8: Inlining Hides the True Boundary

Inlining can remove a function boundary that previously “accidentally” repaired damage. In

release builds, the ABI violation becomes exposed because:
* the call disappears,
* stack layout changes,

* register lifetimes extend.

9.4 ABI Bugs Mistaken for Compiler Bugs

ABI violations frequently look like “the compiler is broken” because:
* symptoms change with optimization flags,

* adding a print statement makes the bug disappear,
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* crash address points into valid code but with a wrong stack,

* the same source behaves differently across compilers.

Red Flags That Indicate ABI Violation, Not a Compiler Bug

* crash disappears when compiling with no optimization

* stack trace is corrupted or ends abruptly

fault occurs on return (ret) or shortly after a return

fault occurs inside a callee that uses SIMD or exception handling

only specific call sites trigger the problem

Example: ‘“Compiler Bug” That Is Actually Wrong Register Preservation

.intel_syntax noprefix
# Caller assumes RSI is preserved (Windows rule), but callee clobbers
- it:
bad_callee:
mov rsi, O

ret

The caller later uses RSI and fails. This is not a compiler bug; it is an ABI contract violation.

9.5 Diagnosing ABI Issues Using Disassembly

Disassembly is the most reliable way to confirm ABI correctness. The goal is not to reverse-

engineer everything, but to verify a small set of invariants at each boundary.
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Step 1: Verify the Call Site

At the call instruction, check:

shadow space allocation exists (sub rsp, ... withatleast20h)
* alignment at the call boundary is consistent with compiler patterns

* correct argument registers are loaded (RCX, RDX, R8, R9)

for FP args, check XMMO0-XMM3 usage

.intel_syntax noprefix

# Healthy call-site pattern to recognize:
sub rsp, 40h

mov rcx,

mov rdx,

call target

add rsp, 40h

Step 2: Inspect the Callee Entry

At callee entry, look for:
* immediate homing of args into shadow space
* saving of non-volatile registers if they will be modified

 stack allocation for locals

.intel_syntax noprefix
# Common callee entry patterns:

push rbx
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sub rsp, 30h
# or

mov [rsp+t08h], rcx

If the callee writes to [rsp+08h..20h], the caller must have allocated shadow space.

Step 3: Validate Register Preservation

If a callee uses a non-volatile register (RBX, RBP, RSI, RDI, R12-R15, XMM6-XMM15),

confirm you see save/restore pairs.

.intel_syntax noprefix

# Example preservation shape:

push rbx

# ... uses rbx
pop rbx

ret

Absence of preservation is a correctness defect, not an optimization choice.

Step 4: Validate Stack Cleanup Symmetry

Confirm that the function’s net RSP delta is restored exactly on all exits.

.intel_syntax noprefix
# Good symmetry:

sub rsp, 50h

#

add rsp, 50h

ret

Multiple exits are a common source of imbalance bugs. Check every return path.
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Step 5: Confirm “No Red Zone” Assumptions

Search for memory references below RSP without allocating stack space:

.intel_syntax noprefix
# Suspicious on Windows x64:

mov gword ptr [rsp-08h], rbx

This pattern is a strong indicator of transplanted System V assumptions.

Practical Diagnostic Checklist

Every call reserves shadow space.

The call-site alignment matches compiler patterns.

* Argument registers match Windows x64 rules.

Callee preserves non-volatile registers it modifies.
* RSP is restored exactly on every exit path.

* No memory below RSP is used (no red zone).

Indirect calls and callbacks follow the same rules as direct calls.
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Writing ABI-Correct Code

10.1 Safe Rules for Cross-ABI Development

Cross-ABI work is any situation where code crosses a boundary that may have a different

binary contract:

* Windows x64 vs System V

MSVC vs Clang/GCC on Windows

DLL boundary vs static linkage

C/C++ vs foreign languages/runtimes

» compiler-generated code vs hand-written assembly

Rule 1: Treat the boundary as a C ABI surface

Make the boundary explicit and simple:

89
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* extern "C" exported/imported functions

fixed-width integers (int32_t, uint64_t)

pointers + lengths for buffers

opaque handles for objects
* error codes / status structs (no exceptions crossing boundary)

.intel_syntax noprefix

# Boundary contract model (conceptual, ABI-safe):

# extern "C" Handle* api_create();

# extern "C" void api_destroy (Handlex) ;

# extern "C" int32_t api_process (Handlex*, const uint8_t=* data,

— uilnt32_t len);
Rule 2: Never pass non-trivial C++ objects across boundaries

Avoid across ABI boundaries:

* STL containers and strings
* exceptions
* RTTTI and virtual classes

* objects with non-trivial destructors or custom allocators
Use:

* POD structs with explicit layout,
* handles and explicit lifetime functions,

¢ caller-allocated buffers.
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Rule 3: Do not reuse assembly across Windows and System V

Implement separate ABI-specific files. Shared logic may exist, but the call/stack/register glue

must be per-ABI.

10.2 Assembly Guidelines for Windows x64

When you write assembly that calls C/C++ or is called by C/C++, the ABI rules are the

correctness rules.

1) Always allocate shadow space at every call site

.intel_syntax noprefix

# Correct call site: reserve shadow + keep alignment
sub rsp, 40h

mov rcx, 1

mov rdx, 2

call target

add rsp, 40h

2) Use the correct argument registers
* integer/pointer args: RCX, RDX, R8, R9
* floating-point args: XMM0—--XMM3 (for the first four FP args)

* return values: RAX (integer/pointer), XMMO (FP)

.intel_syntax noprefix
# f£(int64_t a, double x) —-> returns into64d_t

sub rsp, 40h
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mov rcx, 123

movsd xmml, gword ptr [rip+val_x] # FP arg (illustrative pattern;
—~ verify signature)

call £

add rsp, 40h

# RAX now holds return

ret

val_x: .quad 0x400921FB54442D18

Practical warning: mixed integer/FP signatures require exact ABI classification. When in

doubt, generate a reference call in C/C++ and match the compiler output.

3) Preserve non-volatile registers if you modify them

Non-volatile GPRs include:
RBX, RBP, RSI, RDI, R12, R13, R14, R15
Non-volatile XMM registers include:

XMM6——XMM15

.intel_syntax noprefix
# Correct preservation pattern for RBX
use_rbx:

push rbx

mov rbx, 0

#

pop rbx

ret
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4) Never rely on a red zone

Windows x64 has no red zone. Do not write below RSP unless you explicitly allocated space.

.intel_syntax noprefix
# WRONG on Windows x64:

mov gword ptr [rsp-08h], rbx

5) Keep stack changes representable and symmetric

A function must restore RSP exactly on all exit paths.

.intel_syntax noprefix
# Good symmetry
sub rsp, 50h

#
add rsp, 50h

ret

10.3 C and C++ Interoperability Best Practices

1) Prefer extern "C" for inter-module APIs
* avoids C++ name mangling,
* stabilizes linkage,

* reduces cross-compiler fragility.

.intel_syntax noprefix
# Conceptual pattern:
# extern "C" int32_t api_sum(int32_t a, int32_t Db);

# Use plain types and explicit calling surface.
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2) Make ownership explicit

Across boundaries:
e allocate/free in the same module, or

* provide paired functions from the same module.

.intel_syntax noprefix
# Safe: library owns allocations
# extern "C" voidx lib_alloc (uint32_t n);

# extern "C" void 1lib_free(voidx p);

3) Do not pass exceptions across boundaries

Catch inside the boundary and translate to:
¢ error codes,
* status structs,

* out-parameters.

4) Avoid varargs across boundaries

Varargs create additional ABI complexity. Prefer explicit parameter lists or structured

payloads.

5) Freeze struct layout intentionally

If you must pass a struct:

* keep it trivially copyable,
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* use explicit fixed-width fields,
* control padding explicitly if needed,

* avoid compiler-dependent types.

10.4 How to Reason About ABI Correctness

Reasoning about ABI correctness is a discipline of invariants at boundaries. For any function

boundary, ask:

Boundary Invariants (Must Hold)

» Are arguments placed in the correct registers / stack locations for this ABI?

Is shadow space present for every call site? (Windows x64)

Is stack alignment correct at the call boundary?

* Are non-volatile registers preserved if modified?

Is RSP restored exactly on every exit path?

Are stack writes limited to allocated stack space? (no red zone on Windows)

If exceptions/unwinding can occur, can the platform unwind through this frame

correctly?

Use the compiler as a reference oracle

For critical boundaries:

* write a tiny C/C++ wrapper that makes the call,
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» compile with the target toolchain,

e compare your hand-written assembly to compiler output.

.intel_syntax noprefix
Practical workflow (conceptual):
Implement: extern "C" int64_t f(int64_t, int64d_t);

Compile a wrapper call in C/C++.

HH= = FH H

1)
2)
3) Inspect generated call sequence.
4)

Mirror it exactly in hand assembly.

10.5 Checklist Before Blaming the Compiler

When a crash looks random or optimization-dependent, first assume an ABI violation until

proven otherwise.

Call-Site Checklist

Every call has at least 32-byte shadow space reserved.

Stack alignment is correct at every call boundary (all paths).

» Correct argument registers are used (RCX, RDX, R8, R9).

Stack arguments (5th+) are placed at correct offsets above shadow space.

Indirect calls and callbacks follow the same rules as direct calls.

Callee ChecKklist

* Non-volatile registers are preserved if modified (GPR and XMM6-XMM15).
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* RSP is restored exactly on every exit.
* No memory below RSP is used (no red zone).
* Prologue/epilogue patterns are consistent with unwind expectations (especially if non-

leaf).

Boundary Design Checklist

* Cross-module APIs are extern "C" with plain types.

No STL, no exceptions, no RTTI/vtables across boundaries.

Allocation/free are paired within the same module.

Struct layouts are shared, frozen, and trivially copyable.

Disassembly Confirmation Checklist

* Verify call-site sub/add rsp symmetry.

Verify homing/spills in callee do not overwrite unexpected areas.

 Verify preservation save/restore pairs for every non-volatile used.

If the issue disappears with small source changes, suspect register pressure and ABI

misuse, not compiler instability.

Conclusion: In practice, the majority of “compiler bug” reports around calls, crashes
after returns, and optimization-only faults are ABI violations at boundaries. Establish ABI

correctness first; then evaluate toolchain behavior.



Appendices

Appendix A Windows x64 Calling Convention Summary

Argument Passing Quick Reference
General-purpose (integer / pointer) arguments:

* Argl — RCX

* Arg2 — RDX

* Arg3 — R8

* Argd — R9

* Arg5+ — passed on the stack (caller places them in memory above shadow space)
Floating-point arguments (£loat/double):

* FP Argl — XMMO

* FP Arg2 — XMM1

* FP Arg3 — XMM2

* FP Arg4 — XMM3

98



99

Return values:
* Integer / pointer return — RAX (or EAX/AX/AL for smaller types)
* Floating-point return — XMMO

* Some aggregates may return indirectly via a hidden pointer (use out-parameters for

stable interop)

Mandatory call-site rule (Windows x64 specific): The caller must allocate 32 bytes of

shadow space for every call.

.intel_syntax noprefix

# Minimal correct call site (shadow space + common alignment padding)
sub rsp, 40h

mov rcx, 1

mov rdx, 2

call target

add rsp, 40h

Register Preservation Rules

Volatile (caller-saved) GPRs:

« RAX, RCX, RDX, R8, R9, R10, R11
Non-volatile (callee-saved) GPRs:

e RBX, RBP, RSI, RDI, R12, R13, R14, R15
Volatile XMM registers:

¢ XMMO——-XMM5
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Non-volatile XMM registers:
¢ XMM6——-XMM15

Example: correct preservation of RBX and XMM6:

.intel_syntax noprefix

callee_preserve:

push rbx

sub rsp, 20h

movdqu xmmword ptr [rsp+00h], xmm6 # save XMM6 (unaligned-safe
— form)

# ... modify RBX and XMM6

movdqu xmmb6, xmmword ptr [rsp+00h] # restore XMM6

add zrsp, 20h
pop rbx

ret

Conceptual Stack Layout Overview

Windows x64 stack behavior is defined around two critical ideas:
* No red zone: do not use memory below RSP.
* Shadow space: 32 bytes reserved by the caller for every call.

Callee entry view (conceptual, before callee adjusts RSP):

.intel_syntax noprefix

# [rsp+t00h] return address

# [rsp+08h] shadow slot 0 (home for RCX)
# [rsp+tl10h] shadow slot 1 (home for RDX)
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[rspt+18h] shadow slot 2 (home for RS8)
[rsp+20h] shadow slot 3 (home for R9)
[rsp+28h] stack arg 5 (if present)

HH= = H

[rsp+30h] stack arg 6 (if present)

Caller responsibilities at call sites:
* allocate shadow space,
* ensure call-boundary alignment,

* place stack arguments above shadow space.

Practical Do’s and Don’ts

Do:

Allocate 32 bytes shadow space at every call site (even for zero-arg calls).

Use RCX, RDX, R8, R9 for the first four integer/pointer args.

Use XMMO~--XMM3 for the first four FP args; return FP in XMMO.

Preserve all non-volatile registers you modify (GPR and XMM6-XMM15).

Keep sub/add rsp perfectly symmetric on all exit paths.

Keep ABI boundaries C-compatible: extern "C", plain types, explicit ownership.
Don’t:
* Do not omit shadow space on direct calls, indirect calls, or callbacks.

* Do not write below RSP (no red zone on Windows x64).
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* Do not reuse System V assembly call setups (RDI/RST first args).
* Do not clobber RST or RDI without saving them (they are non-volatile on Windows).

* Do not pass STL types, exceptions, or non-trivial C++ objects across DLL/compiler

boundaries.

* Do not assume debug success implies ABI correctness; release builds expose latent ABI

violations.

Appendix B Common Mistakes and How to Detect Them

Missing or Incorrect Shadow Space

What goes wrong: Windows x64 requires the caller to reserve 32 bytes of shadow (home)
space for every call. If omitted, the callee may overwrite the caller’s stack when it homes
register arguments or uses the space for spills.

Classic incorrect pattern (no shadow space):

.intel_syntax noprefix

# WRONG: missing 32-byte shadow space
mov rcx, 1

mov rdx, 2

call target

ret

Correct minimal pattern (shadow space + common alignment padding):

.intel_syntax noprefix
sub rsp, 40h

mov rcx, 1
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mov rdx, 2
call target
add rsp, 40h

ret

How to detect:

* In disassembly, search for call sites that do call without a preceding sub rsp,
that reserves at least 20h.

* In the callee, if you see stores to [rsp+08h..20h] early, the caller must have

allocated shadow space.
Typical symptoms:
* crashes far away from the call site,
* corruption that appears only in release builds,

* broken stack traces (debugger cannot unwind).

Stack Misalignment Bugs

What goes wrong: even if shadow space exists, the stack may be misaligned at the call
boundary. This can crash in code that uses aligned SIMD stack locals or expects ABI

alignment.

Incorrect call-site pattern (shadow exists but alignment may be wrong):

.intel_syntax noprefix

# WRONG risk pattern: uses 20h only, may break alignment depending on
— entry state

sub rsp, 20h

call target
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add rsp, 20h

ret

Preferred safe call-site pattern:

.intel_syntax noprefix

# Common compiler-like safe pattern
sub rsp, 40h

call target

add rsp, 40h

ret
How to detect:
 Verify that all call sites follow a consistent compiler-like allocation pattern.
* Look for crashes inside functions that use SIMD/vector spills or large local frames.

* If the crash disappears when disabling optimization, suspect alignment at call

boundaries.
Typical symptoms:
¢ crash in a callee on an instruction that touches stack locals,
* crash appears “random” and depends on optimization level,

* changing small unrelated code changes the crash location.

Register Clobbering Errors

What goes wrong: clobbering non-volatile registers without preserving them violates the ABI.

The caller assumes these registers survive the call.
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Non-volatile GPRs on Windows x64:
RBX, RBP, RSI, RDI, R12, R13, R14, R15

Non-volatile XMM registers:
XMM6—-—-XMM1 5

Incorrect callee (clobbers RBX):

.intel_syntax noprefix
# WRONG: RBX is non-volatile and must be preserved
bad_callee:

mov rbx, 0

XO0r eax, eax

ret
Correct callee (preserves RBX):

.intel_syntax noprefix
good_callee:

push rbx

mov rbx, 0

XOor eax, eax

pop rbx
ret
How to detect:

* In disassembly, if a function writes RBX/RSI/RDI/R12--R15, verify save/restore

exists.
* For XMM6-XMM15 usage, verify spill/restore exists when the function modifies them.

* If a failure occurs long after a call, suspect non-volatile clobbering.
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Typical symptoms:
* data structure pointers become invalid “later”,
* failures disappear when adding logging or debug prints,

* crash appears in unrelated code that simply uses the corrupted register value.

Wrong Function Prototype Assumptions

What goes wrong: the ABI assigns registers based on the callee signature. If the declared
prototype does not match the actual implementation, the call passes the wrong registers and/or
wrong stack layout.

Common causes:

incorrect declaration of parameter types (integer vs floating-point),
¢ incorrect parameter count,

* mismatch in struct passing/return rules,

mismatch in pointer width or signedness assumptions,

calling a function pointer with the wrong signature.

Mismatch example: FP vs integer classification

.intel_syntax noprefix

Conceptual mismatch:
expected: void cb (double x) -> runtime passes x in XMMO
actual: void cb (int64_t x) -> implementation reads RCX

H= = H

Result: callee reads garbage bits.
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Mismatch example: wrong argument count in callback

.intel_syntax noprefix

# Conceptual mismatch:

# expected: void cb(voidx ctx, 1nt32_t code)
# actual: void cb (void* ctx)

#

# Result: may appear to work until the callee uses registers

— differently.

How to detect:

¢ Validate headers: ensure the declaration used at the call site matches the definition

exactly.
* For function pointers/callbacks, ensure the typedef matches the actual function.
* Use disassembly to confirm which registers the callee reads early:

— reads RCX/RDX/R8/R9 for integer args,

— reads XMM0O—--XMM3 for FP args.

Debugging and Validation Techniques

ABI validation is about checking boundary invariants.

Technique 1: Confirm the call-site skeleton
For each suspicious call site, confirm the presence of:
* shadow space reservation,

* correct argument registers,
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* symmetric stack restore.

.intel_syntax noprefix

# Healthy call-site skeleton
sub rsp, 40h

mov rcx,

mov rdx,

call target

add rsp, 40h

Technique 2: Inspect callee entry for homing/spills

If a callee writes to [rsp+08h..20h] early, missing shadow space is the first suspect.

.intel_syntax noprefix
# Common homing pattern (callee expects shadow space)
mov gword ptr [rsp+08h], rcx

mov gword ptr [rsp+l10h], rdx

Technique 3: Verify non-volatile preservation

For any function that modifies non-volatile registers, confirm save/restore pairs exist on all

paths.

.intel_syntax noprefix

# Save/restore shape

push rbx
# ... uses rbx
pop rbx

ret
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Technique 4: Verify stack symmetry on all exits

Multiple return paths are a frequent source of imbalance. Ensure each exit restores RSP

exactly.

.intel_syntax noprefix

# Good: every return path must have the same net RSP restoration.
sub rsp, 50h

#

add rsp, 50h

ret

Technique 5: Treat optimization-only failures as ABI suspects

If:
* debug build works,
¢ release build crashes,
* adding a print changes the crash,

then assume an ABI boundary is violated until proven otherwise (shadow space, alignment,

preservation, wrong prototype).

Operational Checklist: Quick ABI Triage

» Every call site reserves at least 20h shadow space (commonly 4 0h total).
* Stack restore matches stack allocate exactly on all paths.

* Correct argument registers are loaded (Windows x64: RCX, RDX, R8, R9).
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* Callee preserves all non-volatiles it modifies (including XMM6-XMM15).
* No memory below RSP is used (no red zone).

* Function pointer and callback signatures match exactly, especially FP vs integer types.

Appendix C Preparation for Advanced ABI Topics

This appendix prepares you for advanced ABI work where “basic calling convention
knowledge” is not enough. These topics require strict correctness under exceptions,

asynchronous events, runtime code generation, and cross-platform portability constraints.

Exception Handling Internals

Advanced ABI work on Windows x64 requires understanding that exception handling is not
only a language feature; it is a platform mechanism tightly integrated with stack unwinding
and metadata.

What you must be ready to reason about:

how the OS unwinder walks frames using unwind metadata,

* how saved registers and stack pointer deltas are restored during unwinding,

* how non-standard prologues/epilogues break unwinding,

* how exceptions interact with callbacks, foreign frames, and mixed toolchains.
Minimal correctness model:

* Every non-leaf function must be unwindable by the platform.

* Any code that changes RSP in non-trivial ways must have unwind-correct structure.
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* Hand-written assembly that is not unwind-aware can “work” until an exception occurs,

then fail catastrophically during unwinding.
Failure pattern to recognize:

.intel_syntax noprefix
Symptom pattern (conceptual):

— code runs normally

#

#

# — exception thrown inside nested call

# — crash occurs during unwinding or in a handler
#

Root cause: frame cannot be unwound correctly due to ABI/unwind

— mismatch

Preparation tasks:
* Learn to identify compiler prologues/epilogues that are “unwindable”.
* Practice validating that saved non-volatiles can be restored correctly on all exit paths.

 Treat unwind correctness as part of ABI correctness, not as “debug info”.

Syscall Boundaries

A system call boundary is not a normal function-call boundary. It introduces additional

constraints:
* privilege transition,

¢ kernel-controlled clobber rules,

restricted calling sequences,

different expectations for register preservation.
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ABI-ready mindset:
* Do not assume user-mode calling convention rules apply to kernel transitions.
* Treat system-call entry as a boundary with its own register clobber set.

* Ensure stack alignment and shadow space discipline is correct before and after the

syscall wrapper, even if the syscall mechanism itself does not use shadow space.

Common interop hazard: mixing low-level syscall stubs with high-level code without a strict

wrapper contract.

.intel_syntax noprefix

# Correct design concept:

# user-mode code calls a normal ABI-correct wrapper

# wrapper performs syscall transition using the required mechanism
#

wrapper returns with ABI preserved for callers

Preparation tasks:
* Learn to separate: user-mode ABI vs syscall ABI.
* Design syscall wrappers that preserve the Windows x64 contract for their callers.

* Validate register preservation around wrappers (non-volatiles must survive).

JIT and Runtime-Generated Code

JIT engines and runtime code generation introduce ABI challenges because the compiler is no
longer the sole authority producing correct prologues/epilogues and call sites.
What changes in a JIT world:

* you generate call sequences manually,
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* you must allocate shadow space and maintain alignment yourself,
* you must preserve non-volatiles according to ABI,

* you must ensure unwindability if exceptions or stack-walking are expected,

you must obey memory protection and code-cache rules (W ~ X discipline and

instruction cache coherence policies).

Minimal ABI-correct JIT call stub shape:

.intel_syntax noprefix

# JIT-generated call stub (conceptual, must be emitted as machine
— code by the JIT):

# — reserve shadow space

# - set args

# — call target

# — restore stack

sub rsp, 40h
mov rcx, 111
mov rdx, 222
call rax # rax holds target address
add rsp, 40h

ret
Preparation tasks:
* Learn to validate JIT stubs using disassembly of generated code.
* Create a strict internal ABI spec for your runtime calling sequences.

* Use small, proven templates for stubs; avoid ad-hoc code emission.
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Cross-Platform ABI Abstraction Layers

Cross-platform libraries and runtimes often need to support:
¢ Windows x64 ABI,
* System V AMD64 ABI,
e other ABIs (ARMO64, etc.).

A correct abstraction layer does not hide ABI differences by pretending they do not exist.
Instead, it isolates them in a narrow, testable boundary.

Core design principles:

Keep ABI-specific code in separate translation units (or separate assembler files).

Use a single C-compatible internal interface for the boundary.

Avoid sharing raw assembly across ABIs; share algorithms, not calling glue.

Prefer opaque handles and pointer-based APIs for stable interop.
Boundary pattern (portable):

.intel_syntax noprefix
# Portable boundary model (conceptual) :

# — common header defines C ABI surface

# - per-platform implementation provides ABI-correct glue
#

# Example:

# extern "C" int32_t abi_call_bridge (void* fn, void* ctx);

Preparation tasks:
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* Build a two-ABI test harness: one implementation for Windows x64 and one for System
V.

* Validate the same logical call through both bridges with disassembly checks.
* Enforce a strict “no C++ objects across boundary” rule to avoid layout/runtime

coupling.

Final Readiness Checklist for Advanced ABI Work

Before proceeding to advanced topics, ensure you can do all of the following reliably:

Inspect a call site and verify shadow space, alignment, and argument registers.
* Inspect a callee and verify preservation of non-volatiles and stack symmetry.

* Detect wrong prototypes by observing which registers are read (GPR vs XMM).

Explain why unwind metadata affects correctness, not only debugging.

Write a minimal ABI-correct call stub in assembly for direct and indirect calls.

Design a C-compatible boundary that remains stable across compilers and DLLs.
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Official Windows x64 ABI Documentation

The Windows x64 ABI is defined by the platform contract enforced by the operating system,

toolchains, and runtime infrastructure. The authoritative sources establish:

the unified calling convention for user-mode code,

* mandatory shadow (home) space requirements,

register volatility and preservation rules,

stack alignment guarantees,

unwindability requirements integrated with the OS exception model.

These specifications are stable across modern Windows releases and are treated as non-
negotiable contracts for interoperability. Any code that crosses module, compiler, or language
boundaries is expected to obey these rules exactly. Deviations are considered correctness bugs,
not optimizations or implementation choices.

This booklet is aligned strictly with the current Windows x64 ABI behavior as enforced by

modern Windows runtimes and debuggers.
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Compiler Calling Convention Documentation

Modern Windows toolchains converge on the same ABI contract while differing internally in

code generation strategies. Compiler documentation consistently describes:
* argument classification into general-purpose and SIMD registers,

* mandatory caller-reserved shadow space,

callee-saved versus caller-saved registers,

stack alignment rules at call boundaries,

prologue/epilogue patterns that support unwinding.
Important practical conclusions drawn from compiler documentation:
* Differences between compilers do not change the ABI contract.

* Internal instruction selection and frame layout may vary, but the externally visible

behavior must remain ABI-correct.

* Hand-written assembly must match the ABI expectations of the compiler-generated

code it interacts with.

Throughout this booklet, compiler behavior is treated as a reference oracle for validating ABI

correctness rather than as an authority to redefine the ABI itself.

ABI Behavior Observed in Generated Machine Code

In practice, the most reliable confirmation of ABI rules comes from inspecting real compiler

output. Across optimization levels and compilers, consistent patterns appear:
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Call sites reserve shadow space even when arguments are passed entirely in registers.

Callees frequently home argument registers into shadow space early.

Non-volatile registers are saved and restored in predictable patterns.

Stack pointer adjustments are symmetric and unwind-friendly.

No code relies on memory below RSP (no red zone).
Representative call-site pattern consistently observed:

.intel_syntax noprefix
sub rsp, 40h

mov rcx,

mov rdx,

call target

add rsp, 40h

Representative callee behavior consistently observed:

.intel_syntax noprefix

push rbx

sub rsp, 30h

mov gword ptr [rsp+08h], rcx
#

add rsp, 30h

pop rbx

ret

These patterns are not stylistic preferences; they are manifestations of ABI guarantees
required for correctness, optimization, and unwind support. This booklet’s rules are derived

from these stable, observable behaviors.
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Cross-References to Earlier Booklets in This Series

This booklet builds directly on concepts introduced earlier in the CPU Programming Series.

Readers are expected to be familiar with:

Instruction execution and control flow — how calls, returns, and branches are
executed by the CPU.

Registers and flags — general-purpose versus SIMD registers and their roles.

Stack fundamentals — call frames, return addresses, and stack growth.

Conceptual ABI foundations — why ABIs exist and how they enable binary

interoperability.
Specifically:

* The explanation of stack discipline and calling mechanics relies on earlier stack-focused
booklets.

* The discussion of register volatility assumes familiarity with register roles and lifetimes.

* The analysis of failure patterns depends on understanding how control flow and stack

state interact.

This booklet serves as the first architecture-specific deep dive where all those foundations

are applied to a real, widely deployed ABI. Subsequent booklets extend this knowledge to
advanced topics such as exception internals, syscalls, and cross-platform ABI abstraction.
Position in the series: this booklet marks the transition from conceptual ABI theory to strict,

platform-enforced ABI correctness.
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