
1

CPU Programming Series
x86-64 System V ABI

Calling Convention & Stack Discipline

Prepared by Ayman Alheraki

simplifycpp.org

January 2026

Contents

Contents 2

Preface 8
Purpose of This Booklet . 8

Scope and Assumptions . 9

How to Read and Use This Booklet Effectively . 9

1 Introduction to the System V AMD64 ABI 11
1.1 What an ABI Defines and Guarantees . 11

1.2 Role of the ABI in Compiled Programs . 13

1.3 Relationship Between ABI, Compiler, and Operating System 15

1.3.1 ABI and the compiler . 15

1.3.2 ABI and the operating system . 15

Practical Goal of This Booklet . 16

2 General-Purpose Register Roles 18
2.1 Overview of x86-64 GPRs . 18

2.2 Registers Used for Argument Passing (System V AMD64) 19

2.3 Registers Used for Return Values . 21

2.4 Volatile and Non-Volatile Register Classification 22

2

3

2.4.1 Non-volatile (callee-saved) . 22

2.4.2 Volatile (caller-saved) . 22

Discipline Summary . 24

3 Floating-Point and Vector Registers 26
3.1 XMM/YMM Register Purpose . 26

3.2 Floating-Point Argument Passing Rules . 27

3.2.1 Scalar floating-point arguments . 27

3.2.2 Floating-point return values . 29

3.3 SIMD Considerations in Function Calls . 29

3.3.1 Vector register volatility (System V AMD64) 29

3.3.2 Stack alignment and SIMD . 30

3.3.3 AVX and call-boundary hygiene . 31

Discipline Summary . 32

4 Register-Based Argument Passing 33
4.1 Integer and Pointer Argument Rules . 33

4.2 Floating-Point Argument Rules . 35

4.3 Mixed Argument Lists . 36

4.4 Argument Classification and Ordering . 38

Discipline Summary . 41

5 Stack Frame Layout 42
5.1 Stack Growth and Organization . 42

5.2 Stack Frame Components . 43

5.3 Function Prologue and Epilogue . 44

5.3.1 Common prologue pattern (with frame pointer) 44

5.3.2 Leaf function pattern (no frame pointer) 45

5.3.3 Non-leaf functions must respect call-site alignment 45

4

5.4 Red Zone Concept and Constraints . 46

5.4.1 Correct usage constraints . 46

Discipline Summary . 48

6 Stack Alignment Rules 49
6.1 16-Byte Alignment Requirement . 49

6.2 Alignment at Function Call Boundaries . 50

6.3 Effects of Misalignment on Execution . 53

6.3.1 Correctness failures . 53

6.3.2 Performance degradation . 54

6.3.3 Debugging symptoms . 55

Discipline Summary . 55

7 Caller-Saved vs Callee-Saved Registers 56
7.1 Preservation Responsibilities . 56

7.2 Register Save and Restore Mechanics . 57

7.2.1 Callee saving callee-saved registers 57

7.2.2 Caller saving caller-saved registers . 58

7.2.3 Maintaining stack alignment while saving registers 59

7.2.4 Saving vector registers in System V AMD64 60

7.3 Practical Calling Scenarios . 60

7.3.1 Scenario 1: Non-leaf function needs stable locals across calls 60

7.3.2 Scenario 2: Caller wants to keep an argument register value after calling 61

7.3.3 Scenario 3: Bug pattern — callee clobbers callee-saved register 62

7.3.4 Scenario 4: Leaf functions and the red zone 63

Discipline Summary . 63

8 Function Call and Return Mechanics 64
8.1 call and ret Instruction Behavior . 64

5

8.1.1 Behavior of call . 64

8.1.2 Behavior of ret . 65

8.2 Return Address Handling . 66

8.2.1 Saving and restoring around the return address 66

8.3 Stack State Before and After Calls . 67

8.3.1 Stack state before call . 67

8.3.2 Stack state immediately after call 68

8.3.3 Stack state before ret . 68

8.3.4 Stack state after ret . 69

8.4 Nested Calls and Stack Integrity . 69

Discipline Summary . 70

9 Returning Values and Aggregates 72
9.1 Scalar Return Values . 72

9.2 Structure and Union Return Rules . 74

9.3 Hidden Pointer Mechanism . 75

9.4 Large Object Return Handling . 77

Discipline Summary . 77

10 Variadic Functions (System V Basics) 79
10.1 Default Argument Promotions . 79

10.2 Register Save Area . 80

10.3 Accessing Variadic Arguments . 81

10.4 ABI Limitations and Pitfalls . 83

10.4.1 Pitfall 1: Reading the wrong promoted type 84

10.4.2 Pitfall 2: Assuming a single linear stream 84

10.4.3 Pitfall 3: Implementing variadic functions in assembly without saving

XMM regs . 84

6

10.4.4 Pitfall 4: Cross-ABI porting assumptions 85

10.4.5 Pitfall 5: Passing aggregates through 85

Discipline Summary . 86

11 Common ABI Violations and Debugging Symptoms 87
11.1 Stack Corruption Indicators . 87

11.2 Register Clobbering Errors . 89

11.3 Alignment-Related Crashes . 92

Debugging Checklist . 95

12 Interoperability and Language Boundaries 96
12.1 C and C++ ABI Interaction . 96

12.2 Inline Assembly Constraints . 98

12.3 Cross-Language Calling Safety . 100

12.3.1 Safe design patterns . 100

12.3.2 Pitfalls and failure modes . 102

Boundary Checklist . 103

13 ABI Discipline Checklist 104
13.1 Mandatory Rules Recap . 104

13.2 Safe Calling Convention Practices . 106

13.2.1 Practice 1: Establish a consistent prologue/epilogue 106

13.2.2 Practice 2: Audit alignment at every call site 106

13.2.3 Practice 3: Preserve caller-saved registers only when needed 107

13.2.4 Practice 4: Treat XMM/YMM as volatile across calls 108

13.2.5 Practice 5: Keep cross-language boundaries “flat” 108

13.3 Common Mistakes to Avoid . 109

13.3.1 Mistake 1: Unbalanced stack adjustments 109

13.3.2 Mistake 2: Clobbering callee-saved registers 109

7

13.3.3 Mistake 3: Assuming argument registers survive calls 110

13.3.4 Mistake 4: Misaligned call sites . 110

13.3.5 Mistake 5: Using red zone across calls 111

13.3.6 Mistake 6: Wrong aggregate return assumption 111

Final Checklist (Print and Audit) . 111

References 113
Architecture Manuals . 113

ABI Specifications . 113

Compiler Calling Convention Documentation . 114

Cross-References to Other Booklets in This Series 115

Preface

Purpose of This Booklet

This booklet is dedicated to a precise and practical understanding of the x86-64 System V
ABI, which is the dominant user-space binary interface on Linux, BSD, macOS-derived

systems, and many Unix-like environments. Its primary purpose is to explain how calling

conventions and stack discipline are formally defined at the ABI level, and why strict

adherence to these rules is mandatory for correct execution.

The System V ABI is often learned implicitly through compiler output or online examples,

yet many subtle rules are either misunderstood or incorrectly assumed to be identical across

platforms. This booklet exists to eliminate those assumptions by presenting the ABI as a

binary contract, not as a collection of compiler habits.

The focus is on:

• Correct argument passing

• Stack layout and alignment

• Register preservation rules

• Call and return mechanics

Every rule explained here directly impacts correctness, interoperability, and long-term

maintainability of low-level code.

8

9

Scope and Assumptions

This booklet focuses exclusively on the System V AMD64 ABI as used in modern 64-bit

user-space programs. It covers the ABI guarantees that apply across compliant compilers and

operating systems, independent of optimization level or language frontend.

The scope includes:

• General-purpose and vector register roles

• Integer and floating-point argument passing

• Stack frame structure and red zone usage

• Stack alignment requirements at call boundaries

• Caller-saved and callee-saved register responsibilities

The following assumptions are made:

• The reader understands basic x86-64 architecture concepts

• The reader is familiar with registers, memory addressing, and function calls

• The reader may be working in C, C++, or handwritten assembly

This booklet does not attempt to teach assembly language syntax from zero, nor does it cover

operating system internals beyond what is required to understand ABI behavior.

How to Read and Use This Booklet Effectively

This booklet is designed to be read sequentially. Each chapter builds upon invariants

established earlier, especially regarding stack alignment and register volatility. Skipping

foundational chapters often leads to incorrect mental models of later examples.

All assembly examples:

10

• Use Intel syntax

• Follow the System V AMD64 ABI strictly

• Are intentionally minimal to expose ABI rules clearly

Incorrect examples are shown only to demonstrate why code breaks when ABI rules are

violated. They should never be treated as acceptable shortcuts.

Minimal System V AMD64 function prologue (illustrative)

RSP must be 16-byte aligned at the call boundary.

push rbp

mov rbp, rsp

When using this booklet:

• Track register ownership mentally at every call boundary

• Verify stack alignment before every call instruction

• Treat all ABI rules as mandatory, not advisory

• Revisit this booklet when writing assembly, inline assembly, or FFI code

This booklet is intended to function both as a structured learning path and as a long-term

reference. Mastery of the System V ABI comes from disciplined practice and repeated

validation against real code.

Chapter 1

Introduction to the System V AMD64 ABI

1.1 What an ABI Defines and Guarantees

An Application Binary Interface (ABI) is the machine-level contract that allows

independently compiled binaries to work together correctly at run time. If two components

follow the same ABI, they can interoperate even if they were built by different compilers, in

different languages, or at different times.

For the System V AMD64 ABI, the ABI defines and guarantees (at minimum):

• Calling convention: where arguments are placed (registers vs stack), how return values

are delivered, and who is responsible for preserving which CPU state.

• Register roles: volatile (caller-saved) vs non-volatile (callee-saved) registers.

• Stack discipline: stack growth direction, stack frame conventions, and 16-byte
alignment rules at call boundaries.

• Binary interface data rules: size/alignment of fundamental types, struct/union layout

rules, and how aggregates are passed/returned at the binary level.

11

12

• Object format and relocation model: how code/data are represented in object files and

how the linker/loader resolves addresses.

• Language linkage conventions: for example, C vs C++ name mangling, enabling

stable linking via extern "C" boundaries.

In this booklet, the ABI areas that most commonly cause correctness failures are: argument
passing, register preservation, and stack alignment.

Example: “Works in debug, breaks in release” is often an ABI failure

A typical failure mode is incorrect stack alignment. Many functions appear to work until

a call chain introduces vector instructions or stack-based spills that assume ABI-mandated

alignment.

.intel_syntax noprefix

.global bad_alignment_sysv

bad_alignment_sysv:

BUG: breaks SysV call-site alignment if we call another

function.↪→

(After 'call', the callee begins with RSP misaligned by 8

relative to 16.)↪→

push rbx

call external_func # # may crash or misbehave if it assumes

ABI alignment↪→

pop rbx

ret

.intel_syntax noprefix

.global fixed_alignment_sysv

fixed_alignment_sysv:

13

push rbx

sub rsp, 8 # # restore 16-byte alignment before call

call external_func

add rsp, 8

pop rbx

ret

The key point: the ABI is not “style.” It is a correctness requirement that can be tested by real

code paths.

1.2 Role of the ABI in Compiled Programs

A compiled program is a composition of separately built components:

• Your translation units compiled to object files

• Static libraries and shared libraries

• Runtime libraries (C runtime, C++ runtime, unwinding/runtime support)

• The dynamic loader and OS-provided modules

The ABI is the glue that makes these components function as a single coherent executable

system. It enables:

• Reliable function calls across module boundaries

• Stable linkage against system libraries and third-party libraries

• Correct stack walking and unwinding for debugging and exceptions

• Foreign-function interfaces (FFI) across languages that agree on the ABI

14

At the CPU level, this means every call boundary must preserve the invariants expected by any

other ABI-compliant code:

• argument locations are deterministic,

• register volatility rules are respected,

• stack pointer state and alignment are correct.

Example: The ABI is what makes separate compilation safe

A caller compiled in one file and a callee compiled in another file will still interoperate

because both sides implement the same ABI contract.

.intel_syntax noprefix

Concept: caller and callee compiled separately still agree on:

- first integer arg in RDI (SysV)

- return value in RAX

#

long inc(long x);

.global inc_sysv

inc_sysv:

lea rax, [rdi + 1]

ret

Any SysV-compliant caller can call inc sysv without knowing how it was compiled, as long

as both sides obey the ABI.

15

1.3 Relationship Between ABI, Compiler, and Operating

System

The ABI lives at the boundary between:

• Compiler responsibilities (code generation)

• Operating system responsibilities (loading/execution environment)

• Toolchain responsibilities (assembler, linker, loader, runtime)

1.3.1 ABI and the compiler

The compiler must emit code that respects the ABI:

• place integer/pointer arguments in RDI, RSI, RDX, RCX, R8, R9,

• place floating-point arguments in XMM0--XMM7,

• preserve callee-saved registers (RBX, RBP, R12--R15),

• maintain stack alignment at call boundaries,

• return values through RAX (integers/pointers) or XMM0 (floating-point).

When you introduce handwritten assembly, inline assembly, JIT code, or unconventional FFI

boundaries, you assume part of the compiler’s job and must enforce ABI invariants yourself.

1.3.2 ABI and the operating system

The operating system and loader establish the execution environment in which ABI-compliant

code runs:

16

• initial stack state at program entry,

• dynamic linking model and symbol resolution,

• thread startup conventions,

• signal/trap delivery mechanisms (separate from the function-call ABI).

The user-space ABI is what most code relies on for safe inter-module function calls; it is

distinct from the system-call interface.

Example: user-space calling convention vs system call convention

Even on the same OS, the system-call mechanism may use different registers than the user-

space ABI for normal function calls.

.intel_syntax noprefix

Example only: user-space SysV function calls use RDI/RSI/RDX/...

but an OS syscall interface can use a different register mapping.

This distinction matters when writing low-level code near the

boundary.↪→

Practical Goal of This Booklet

This booklet turns the System V AMD64 ABI from “something you vaguely rely on” into a

disciplined mental model you can apply when:

• reading compiler output,

• debugging stack corruption,

• writing correct assembly,

17

• building safe FFI boundaries,

• auditing code for ABI correctness.

The next chapters will formalize the register roles, stack layout, and alignment rules that must

hold at every call boundary in System V AMD64 user-space code.

Chapter 2

General-Purpose Register Roles

2.1 Overview of x86-64 GPRs

In x86-64 long mode, the architectural general-purpose registers (GPRs) form a 16-register,

64-bit integer register file used for pointers, addresses, integer arithmetic, bit operations,

loop/state variables, and general program state:

• RAX, RBX, RCX, RDX

• RSI, RDI, RBP, RSP

• R8–R15

Each register has subregister views:

• 64-bit: RAX

• 32-bit: EAX

• 16-bit: AX

18

19

• 8-bit: AL (low 8), and some legacy high-8 forms such as AH

A critical long-mode semantic used heavily by compilers:

• Writing any 32-bit subregister (e.g., EAX) zero-extends the value into the full 64-bit

register (e.g., RAX).

Example: 32-bit write zero-extends to 64-bit

.intel_syntax noprefix

.global zero_extend_gpr_demo

zero_extend_gpr_demo:

mov rax, -1 # # RAX = 0xFFFF_FFFF_FFFF_FFFF

mov eax, 7 # # EAX write => RAX = 0x0000_0000_0000_0007

ret

Two registers have special calling-sequence meaning in every ABI:

• RSP is the stack pointer and must remain valid; it must be restored before ret.

• RBP is a general register, but is often used as a frame pointer depending on compiler

and debug settings.

2.2 Registers Used for Argument Passing (System V AMD64)

The System V AMD64 ABI defines register-based argument passing for integer/pointer types

as follows:

• First six integer/pointer arguments: RDI, RSI, RDX, RCX, R8, R9

• Additional integer/pointer arguments: passed on the stack

20

Important properties for correctness:

• The integer/pointer register sequence is independent from the floating-point sequence

(covered in the next chapter).

• Stack arguments are placed by the caller at higher addresses than the return address and

are read by the callee relative to its stack/frame pointer strategy.

• The caller must keep stack alignment correct at every call boundary (details in the

stack discipline chapters).

Example: Passing 1 to 8 integer arguments

.intel_syntax noprefix

.extern func8

long func8(long a,long b,long c,long d,long e,long f,long g,long

h);↪→

.global call_func8_sysv

call_func8_sysv:

First 6 args in registers

mov rdi, 1 # # a

mov rsi, 2 # # b

mov rdx, 3 # # c

mov rcx, 4 # # d

mov r8, 5 # # e

mov r9, 6 # # f

Args 7 and 8 go on stack (right-to-left so that g is closest

to return address)↪→

21

Reserve 16 bytes for g and h, and keep call-site alignment

correct.↪→

sub rsp, 16

mov qword ptr [rsp + 8], 8 # # h (8th)

mov qword ptr [rsp + 0], 7 # # g (7th)

call func8

add rsp, 16

ret

2.3 Registers Used for Return Values

System V AMD64 specifies that return values are delivered primarily through registers:

• Integer/pointer return: RAX

• 64-bit integer return: RAX

• Smaller integer returns: placed in AL/AX/EAX and observed via ABI-defined

extension rules according to the declared return type

A common additional rule used by many ABIs (and relied on by compilers):

• Some multi-word integer returns may use RDX:RAX as a pair, but scalar integer/pointer

returns are always in RAX.

Example: returning a 64-bit integer

.intel_syntax noprefix

.global ret_const_i64

22

ret_const_i64:

mov rax, 0x1122334455667788

ret

Example: returning a boolean-like value

.intel_syntax noprefix

.global is_positive_sysv

long is_positive(long x) # x in RDI, return in RAX (0 or 1)

is_positive_sysv:

xor eax, eax # # default return 0

test rdi, rdi

setg al # # AL=1 if x > 0 (signed)

ret

2.4 Volatile and Non-Volatile Register Classification

The System V AMD64 ABI divides GPRs into two categories:

2.4.1 Non-volatile (callee-saved)

A callee must preserve these registers (restore original values before returning):

RBX, RBP, R12, R13, R14, R15

2.4.2 Volatile (caller-saved)

A caller must assume these registers may be clobbered by a call:

RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11

23

Special rule:

• RSP must be restored to its incoming value before ret. It is not a general “volatile”

scratch register.

Example: Correct callee preservation of RBX

If a callee wants to use RBX, it must save and restore it.

.intel_syntax noprefix

.global use_rbx_sysv_correct

use_rbx_sysv_correct:

push rbx # # preserve non-volatile RBX

mov rbx, 123

... do work using RBX ...

mov eax, 0

pop rbx # # restore RBX

ret

Example: Caller saving a volatile register across a call

If the caller needs a value in R10 after a function call, it must save it itself because R10 is

volatile.

.intel_syntax noprefix

.extern callee

.global caller_saves_r10_sysv

caller_saves_r10_sysv:

mov r10, 0xABCDEF

push r10 # # caller saves volatile register

24

call callee

pop r10 # # restore after call

mov rax, r10

ret

Example: ABI mismatch that breaks ported code

A common portability failure is assuming Windows x64 preservation rules on SysV. On

SysV, RDI is volatile. If a caller wrongly assumes RDI survives a call, it may read garbage

afterward.

.intel_syntax noprefix

.extern callee

.global wrong_assumption_rdi_sysv

wrong_assumption_rdi_sysv:

mov rdi, 77

call callee # # callee may clobber RDI on SysV

BUG: assuming RDI still holds 77

mov rax, rdi

ret

Discipline Summary

Correct System V AMD64 low-level code requires:

• Placing integer/pointer arguments in RDI, RSI, RDX, RCX, R8, R9 in order.

• Reading return values from RAX.

• Treating RBX, RBP, R12--R15 as callee-saved and preserving them when used.

25

• Treating RAX, RCX, RDX, RSI, RDI, R8--R11 as caller-saved and saving

them in the caller if needed across calls.

Chapter 3

Floating-Point and Vector Registers

3.1 XMM/YMM Register Purpose

In the System V AMD64 ABI, all floating-point and SIMD computation is performed using

the SSE and AVX register files. The legacy x87 floating-point stack is not used for normal

argument passing or return values in modern 64-bit user-space code.

The architectural vector registers are:

• XMM0–XMM15: 128-bit registers used for scalar floating-point values (float,

double) and SSE vector operations.

• YMM0–YMM15: 256-bit registers introduced with AVX; each YMMn extends XMMn

with an upper 128-bit lane.

Key architectural and ABI-relevant properties:

• Writing to XMMn updates only the lower 128 bits of YMMn.

• Writing to YMMn updates the full 256 bits.

26

27

• The ABI treats XMM/YMM registers as the carriers of both scalar FP and SIMD values.

Example: Partial vs full vector register writes

.intel_syntax noprefix

.global xmm_only_write

xmm_only_write:

Clears only the low 128 bits of YMM0

xorps xmm0, xmm0

ret

.intel_syntax noprefix

.global ymm_full_write

ymm_full_write:

Clears all 256 bits of YMM0

vxorps ymm0, ymm0, ymm0

ret

Relying on upper YMM state after an XMM-only write is a common low-level bug.

3.2 Floating-Point Argument Passing Rules

The System V AMD64 ABI defines a separate argument register sequence for floating-

point values, independent of integer/pointer arguments.

3.2.1 Scalar floating-point arguments

• Up to 8 floating-point arguments are passed in XMM0--XMM7.

• Supported scalar types include float, double, and vector-compatible scalar values.

28

• Floating-point arguments do not consume integer argument registers.

If more than eight floating-point arguments are present, the remaining ones are passed on the

stack according to ABI stack layout rules.

Example: Mixed integer and floating-point arguments

Conceptual signature:

.intel_syntax noprefix

double f(long a, double b, long c, double d, double e);

System V register assignment:

• a in RDI

• b in XMM0

• c in RSI

• d in XMM1

• e in XMM2

.intel_syntax noprefix

.extern f

.global call_f_sysv

call_f_sysv:

mov rdi, 10 # # a

mov rsi, 20 # # c

b, d, e loaded into XMM0, XMM1, XMM2 by caller

call f

ret

29

3.2.2 Floating-point return values

System V AMD64 specifies:

• Scalar floating-point return: XMM0

• Vector return (SSE width): XMM0

Example: Returning a double

.intel_syntax noprefix

.global ret_double_sysv

ret_double_sysv:

Return value must be in XMM0

ret

3.3 SIMD Considerations in Function Calls

SIMD usage introduces strict ABI responsibilities related to register volatility, stack alignment,

and call boundaries.

3.3.1 Vector register volatility (System V AMD64)

All vector registers are caller-saved:

• XMM0--XMM15 are volatile

• YMM0--YMM15 are volatile

A callee may freely overwrite any vector register without saving it.

30

Example: Caller responsibility for preserving XMM registers

.intel_syntax noprefix

.extern callee

.global caller_preserves_xmm0

caller_preserves_xmm0:

sub rsp, 16

movdqu [rsp], xmm0 # # save volatile XMM0

call callee

movdqu xmm0, [rsp] # # restore after call

add rsp, 16

ret

3.3.2 Stack alignment and SIMD

The System V AMD64 ABI requires:

• RSP must be 16-byte aligned at every call boundary.

This requirement exists primarily to support aligned SIMD loads, spills, and ABI-compliant

stack frames generated by compilers.

Example: Correct alignment before a call

.intel_syntax noprefix

.global aligned_call_sysv

aligned_call_sysv:

push rbx # # breaks alignment by 8

sub rsp, 8 # # restore 16-byte alignment

31

call callee

add rsp, 8

pop rbx

ret

Failing to maintain alignment may cause crashes, data corruption, or severe performance

penalties once vector spills or aligned loads are introduced.

3.3.3 AVX and call-boundary hygiene

When AVX instructions are used, upper YMM state becomes live. Although the System V

ABI allows unrestricted use of YMM registers, transitioning between AVX-heavy code and

legacy SSE-only code can introduce penalties.

A disciplined practice at call boundaries is to clear upper YMM lanes when needed.

Example: Clearing upper YMM state before a call

.intel_syntax noprefix

.extern legacy_sse_func

.global avx_call_boundary_sysv

avx_call_boundary_sysv:

... AVX work using YMM registers ...

vzeroupper # # clear upper 128 bits of all YMM regs

call legacy_sse_func

ret

32

Discipline Summary

• XMM/YMM registers are the sole carriers of scalar FP and SIMD values in System V

AMD64.

• Up to eight floating-point arguments are passed in XMM0--XMM7, independent of

integer arguments.

• All vector registers are caller-saved; callees may freely clobber them.

• Stack alignment at 16 bytes is mandatory for correct SIMD behavior.

• AVX/SSE transitions require explicit hygiene to avoid penalties and state hazards.

Chapter 4

Register-Based Argument Passing

4.1 Integer and Pointer Argument Rules

Under the System V AMD64 ABI, integer-class arguments (including pointers) are passed in

a fixed register sequence. The first six integer/pointer arguments are placed in:

RDI, RSI, RDX, RCX, R8, R9

Additional integer/pointer arguments beyond the sixth are passed on the stack.

Important discipline rules:

• The register assignment is by argument position among integer-class arguments, not

by type size.

• Narrow integer types (char, short, int) are carried in the corresponding 64-bit

register, but the caller must apply the correct extension (sign or zero) to match the

declared type rules at the call boundary.

• Pointers are passed as 64-bit values in the same integer-class registers.

33

34

• Stack-passed arguments are placed by the caller in memory above the return address

(and any alignment padding), and are accessed by the callee relative to RSP/RBP

according to its chosen frame strategy.

Example: Passing 1 to 6 integer/pointer arguments in registers

.intel_syntax noprefix

.extern f6

long f6(long a, long b, long c, long d, long e, long f);

.global call_f6_sysv

call_f6_sysv:

mov rdi, 1 # # a

mov rsi, 2 # # b

mov rdx, 3 # # c

mov rcx, 4 # # d

mov r8, 5 # # e

mov r9, 6 # # f

call f6

ret

Example: Passing more than 6 integer arguments (stack extension)

.intel_syntax noprefix

.extern f8

long f8(long a,long b,long c,long d,long e,long f,long g,long h);

.global call_f8_sysv

35

call_f8_sysv:

mov rdi, 1 # # a

mov rsi, 2 # # b

mov rdx, 3 # # c

mov rcx, 4 # # d

mov r8, 5 # # e

mov r9, 6 # # f

Remaining args go on stack.

Place right-to-left so that the 7th arg is closest to the

return address.↪→

Reserve 16 bytes for g and h.

sub rsp, 16

mov qword ptr [rsp + 8], 8 # # h (8th)

mov qword ptr [rsp + 0], 7 # # g (7th)

call f8

add rsp, 16

ret

4.2 Floating-Point Argument Rules

Floating-point arguments use a separate register sequence:

XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7

Discipline rules:

• Up to 8 floating-point arguments are passed in XMM0--XMM7.

36

• Floating-point arguments do not consume integer argument registers.

• Additional floating-point arguments beyond the eighth are passed on the stack.

• Scalar float and double values are carried in XMM registers (low lanes), and callers

must ensure correct value representation.

Example: Passing 1 to 8 double arguments in XMM registers

.intel_syntax noprefix

.extern fd8

double fd8(double a,double b,double c,double d,double e,double

f,double g,double h);↪→

.global call_fd8_sysv

call_fd8_sysv:

a..h must be placed in XMM0..XMM7 by the caller.

call fd8

ret

4.3 Mixed Argument Lists

In System V AMD64, mixed argument lists are handled by maintaining two independent
counters:

• one counter for integer/pointer arguments (assigning RDI, RSI, RDX, RCX, R8,

R9)

• one counter for floating-point arguments (assigning XMM0--XMM7)

37

This means:

• You can exhaust integer registers while still having available XMM registers.

• You can exhaust XMM registers while still having available integer registers.

• Stack placement happens independently once a class runs out of its register slots.

Example: Mixed signature with interleaving types

Conceptual signature:

.intel_syntax noprefix

double mix(long a, double b, long c, double d, long e, double f);

Register assignment:

• a (int) in RDI

• b (fp) in XMM0

• c (int) in RSI

• d (fp) in XMM1

• e (int) in RDX

• f (fp) in XMM2

.intel_syntax noprefix

.extern mix

.global call_mix_sysv

call_mix_sysv:

38

mov rdi, 11 # # a

mov rsi, 22 # # c

mov rdx, 33 # # e

b in XMM0, d in XMM1, f in XMM2 (loaded elsewhere)

call mix

ret

4.4 Argument Classification and Ordering

The ABI performs argument classification to determine whether each argument is passed in

an integer register, a vector register, or on the stack.

For practical assembly-level correctness in this booklet, treat the following as the core

classification model:

• INTEGER class: integers, pointers, and values that are naturally represented as 64-bit

integer quantities.

• SSE class: scalar floating-point values and vector values that are passed via XMM

registers.

• MEMORY class: values that do not fit ABI register passing rules (commonly larger

aggregates) and therefore are passed on the stack or via hidden pointers.

Ordering rules you must enforce at the call site:

• Arguments are logically ordered left-to-right by the function signature.

• Each argument is assigned to the next available register in its class sequence (INTEGER

or SSE).

• Once a class exhausts its register slots, remaining arguments of that class are passed on

the stack.

39

• Stack-passed arguments are laid out by the caller in increasing memory addresses such

that the earliest stack argument is closest to the return address.

Example: Exhaust integer registers, continue using XMM registers

Conceptual signature:

.intel_syntax noprefix

double g(long a,long b,long c,long d,long e,long f,long g,long h,

double x, double y);↪→

Register assignment:

• a..f in RDI,RSI,RDX,RCX,R8,R9

• g,h on stack (integer registers exhausted)

• x,y still in XMM0,XMM1 (XMM registers remain available)

.intel_syntax noprefix

.extern g

.global call_g_sysv

call_g_sysv:

mov rdi, 1

mov rsi, 2

mov rdx, 3

mov rcx, 4

mov r8, 5

mov r9, 6

sub rsp, 16

40

mov qword ptr [rsp + 8], 8 # # h

mov qword ptr [rsp + 0], 7 # # g

x in XMM0, y in XMM1 (loaded elsewhere)

call g

add rsp, 16

ret

Example: Exhaust XMM registers, continue using integer registers

Conceptual signature:

.intel_syntax noprefix

long h(double a,double b,double c,double d,double e,double f,double

g,double h,double i, long p);↪→

Register assignment:

• a..h in XMM0..XMM7

• i on stack (XMM registers exhausted)

• p still in RDI (integer registers still available)

.intel_syntax noprefix

.extern h

.global call_h_sysv

call_h_sysv:

mov rdi, 123 # # p is integer arg => uses RDI

regardless of FP count↪→

41

sub rsp, 8 # # reserve stack slot for i (9th FP arg)

store i as IEEE-754 double bits (illustrative; actual

load/store may vary)↪→

[rsp] = i

call h

add rsp, 8

ret

Discipline Summary

• Integer/pointer args: RDI, RSI, RDX, RCX, R8, R9 (then stack).

• Floating-point args: XMM0--XMM7 (then stack).

• Mixed lists use two independent sequences; do not “shift” XMM registers because of

integer arguments or vice versa.

• Correct argument passing is a binary contract: the callee reads exactly what the caller

places, and any mismatch is not recoverable.

Chapter 5

Stack Frame Layout

5.1 Stack Growth and Organization

In the System V AMD64 ABI, the stack is a contiguous region of memory used for call/return

control flow, spilled registers, local storage, and passing arguments that do not fit in registers.

Core properties:

• The stack grows downward: pushing data decrements RSP.

• RSP always points to the current top of the stack.

• A call instruction pushes the return address (8 bytes) onto the stack, decrementing

RSP by 8.

• A ret instruction pops the return address into RIP, incrementing RSP by 8.

Example: How call and ret use the stack

.intel_syntax noprefix

42

43

.global demo_call_ret

demo_call_ret:

Before call: RSP -> top

call target # # pushes return address: RSP -= 8; [RSP] =

return RIP↪→

ret # # pops return address: RIP = [RSP]; RSP +=

8↪→

target:

ret

5.2 Stack Frame Components

A stack frame is the portion of the stack owned by a function invocation. Not every function

must create a visible frame, but any function that needs local storage, spills, or preservation

will allocate one.

Typical frame components (from higher addresses to lower addresses):

• Incoming stack arguments (for arguments beyond those passed in registers)

• Return address (pushed by call)

• Saved frame pointer (optional: push rbp)

• Saved callee-saved registers (e.g., RBX, R12--R15 if used)

• Local variables / temporaries (including compiler-created spill slots)

• Alignment padding (to satisfy ABI alignment rules)

Two practical facts:

44

• The exact layout varies by compiler, optimization, and whether a frame pointer is used.

• ABI invariants do not depend on a specific compiler layout: alignment and preservation

rules must still hold.

Example: Frame with saved registers and locals (illustrative layout)

.intel_syntax noprefix

High addresses

[arg7] [arg8] ... # incoming stack args (if any)

[ret addr] # pushed by call

[saved RBP] # optional

[saved RBX] # if used

[local/spill area] # locals, spills, padding

Low addresses

5.3 Function Prologue and Epilogue

A function prologue/epilogue establishes and tears down its frame and enforces ABI rules:

5.3.1 Common prologue pattern (with frame pointer)

• Save old RBP and set it to the current stack pointer

• Save any callee-saved registers the function will use

• Allocate stack space for locals/spills

• Maintain alignment rules for any further calls

.intel_syntax noprefix

45

.global func_with_frame

func_with_frame:

push rbp

mov rbp, rsp

push rbx # # preserve callee-saved RBX if used

sub rsp, 32 # # locals/spills/padding (example size)

... function body ...

add rsp, 32

pop rbx

pop rbp

ret

5.3.2 Leaf function pattern (no frame pointer)

A leaf function makes no calls. It can often avoid stack allocation completely if it uses only

volatile registers and no local storage.

.intel_syntax noprefix

.global leaf_add

long leaf_add(long a,long b) # a=RDI, b=RSI, ret=RAX

leaf_add:

lea rax, [rdi + rsi]

ret

5.3.3 Non-leaf functions must respect call-site alignment

If a function makes calls, it must ensure RSP is in the correct state before each call. Even if

the function uses no locals, a single push can break alignment and must be compensated.

46

.intel_syntax noprefix

.extern callee

.global nonleaf_alignment_example

nonleaf_alignment_example:

push rbx # # breaks alignment by 8

sub rsp, 8 # # fix alignment before call

call callee

add rsp, 8

pop rbx

ret

5.4 Red Zone Concept and Constraints

The System V AMD64 ABI defines a red zone: a 128-byte region below the current stack

pointer (RSP) that is guaranteed not to be clobbered by signal/trap handlers in user-space on

compliant systems.

• The red zone is located at addresses [RSP - 128, RSP - 1].

• Leaf functions may use it for temporary storage without adjusting RSP.

This is a major difference from Windows x64, which has no red zone. Portable assembly

must not rely on the red zone if it targets Windows.

5.4.1 Correct usage constraints

You may use the red zone only when all of the following are true:

• You are in System V AMD64 user-space (not Windows x64).

47

• You are in code where asynchronous events (signals/interrupt-like events) obey the red-

zone guarantee.

• You do not modify RSP in a way that invalidates your offsets.

• You understand that any function call may overwrite your red-zone temporaries

because callees may use their own stack frames and can adjust RSP.

Therefore, red-zone use is most natural in leaf functions.

Example: Leaf function using the red zone (no stack allocation)

.intel_syntax noprefix

.global redzone_leaf_demo

long redzone_leaf_demo(long x) # x=RDI

redzone_leaf_demo:

Use 8 bytes in the red zone for a temporary.

mov qword ptr [rsp - 8], rdi # # store x

add qword ptr [rsp - 8], 5 # # temp += 5

mov rax, qword ptr [rsp - 8] # # return temp

ret

Incorrect usage: calling another function after storing in red zone

Once you call another function, the red-zone storage is no longer safe as “your” temporary

area, because the callee may move RSP and overwrite memory below its own RSP.

.intel_syntax noprefix

.extern callee

.global redzone_call_bug

48

redzone_call_bug:

mov qword ptr [rsp - 8], 123 # # store temp in red zone

call callee # # callee may overwrite below

its RSP↪→

mov rax, qword ptr [rsp - 8] # # BUG: value may be destroyed

ret

Discipline Summary

• The stack grows downward; call pushes the return address; ret pops it.

• A stack frame may include saved registers, locals/spills, and padding; exact layout

varies, but ABI invariants must hold.

• Prologue/epilogue sequences implement preservation and stack management; non-leaf

functions must maintain call-site alignment.

• The System V red zone provides 128 bytes below RSP usable mainly by leaf functions;

it must not be relied upon for Windows targets and must not be treated as safe across

calls.

Chapter 6

Stack Alignment Rules

6.1 16-Byte Alignment Requirement

The System V AMD64 ABI requires 16-byte stack alignment at call boundaries. In

practical terms:

• Immediately before executing a call instruction, RSP must be aligned to 16 bytes.

• The call instruction pushes an 8-byte return address, so upon entry to the callee,

RSP is typically misaligned by 8 relative to 16 (i.e., RSP % 16 == 8).

This rule exists so that the callee can realign as needed and so that compilers can safely

generate aligned stack spills, local allocations, and vector operations under stable assumptions.

A concise mental model:

• Call site: RSP % 16 == 0 (required)

• Callee entry: RSP % 16 == 8 (because return address is pushed)

49

50

Example: Checking alignment by masking

.intel_syntax noprefix

.global rsp_mod16

rsp_mod16:

mov rax, rsp

and rax, 15 # # RAX = RSP % 16

ret

6.2 Alignment at Function Call Boundaries

The alignment rule is a caller responsibility: the caller must ensure correct alignment before

every call it makes.

This interacts with pushes, local allocations, and stack argument setup:

• Each push subtracts 8 bytes from RSP and toggles alignment between 0 and 8 mod 16.

• Any manual sub rsp, N must choose N such that alignment is correct at call sites.

• When placing stack arguments, the total stack adjustment must still preserve call-site

alignment.

Example: A single push breaks call-site alignment

.intel_syntax noprefix

.extern callee

.global misaligned_call_due_to_push

misaligned_call_due_to_push:

push rbx # # RSP -= 8 => alignment toggles

51

call callee # # BUG: call-site alignment may be wrong

pop rbx

ret

Fix: compensate with an extra 8-byte adjustment

.intel_syntax noprefix

.extern callee

.global aligned_call_with_compensation

aligned_call_with_compensation:

push rbx

sub rsp, 8 # # restore 16-byte alignment before call

call callee

add rsp, 8

pop rbx

ret

Example: Non-leaf function allocating locals must still align before calls

.intel_syntax noprefix

.extern callee

.global locals_and_call

locals_and_call:

push rbp

mov rbp, rsp

Allocate 24 bytes of locals, but preserve call-site

alignment.↪→

52

After 'push rbp', alignment flips; choose allocation with

padding.↪→

sub rsp, 32 # # 24 locals + 8 padding (example)

call callee # # aligned call site

add rsp, 32

pop rbp

ret

Example: Passing stack arguments while preserving alignment

.intel_syntax noprefix

.extern f8

long f8(long a,long b,long c,long d,long e,long f,long g,long h);

.global call_f8_aligned

call_f8_aligned:

mov rdi, 1

mov rsi, 2

mov rdx, 3

mov rcx, 4

mov r8, 5

mov r9, 6

Need 16 bytes for g and h. This preserves 16-byte alignment

if RSP was aligned here.↪→

sub rsp, 16

mov qword ptr [rsp + 8], 8

53

mov qword ptr [rsp + 0], 7

call f8

add rsp, 16

ret

6.3 Effects of Misalignment on Execution

Misalignment is not merely “slower code”; it can produce severe failures depending on code

generation, instruction selection, and library behavior.

6.3.1 Correctness failures

Misalignment may cause faults or undefined results when code uses instructions that require

aligned memory operands or when library routines assume ABI-aligned stack frames.

Common failure patterns:

• Crashes inside optimized library code (often appears unrelated to the caller).

• Intermittent failures that differ between debug/release builds.

• Failures that depend on CPU features (SSE/AVX usage) or compiler version.

Example: A callee using aligned stack spills (conceptual risk)

Even if your code never uses SIMD explicitly, the compiler may spill vector registers or local

vectors to the stack with alignment assumptions. If the caller violates alignment, the callee

may generate aligned moves that fault or misbehave.

54

.intel_syntax noprefix

Conceptual illustration:

If a compiler assumes alignment, it may emit aligned loads/stores

(e.g., for 16-byte objects).↪→

If the stack is misaligned, those aligned accesses can become

invalid at runtime.↪→

6.3.2 Performance degradation

Even when misalignment does not crash, it can still degrade performance:

• Some unaligned loads/stores are slower or require more micro-operations.

• Misalignment can force the compiler to generate more conservative code.

• Misaligned stack frames can increase register spill traffic and reduce vector efficiency.

Example: A hidden performance bug

A function that accidentally misaligns the stack may cause all callees in a hot loop to pay extra

penalties due to conservative spills or unaligned memory operations.

.intel_syntax noprefix

.extern hot_callee

.global hidden_alignment_perf_bug

hidden_alignment_perf_bug:

push rbx # # breaks alignment

missing alignment fix here

call hot_callee # # may still run, but with avoidable

penalties↪→

55

pop rbx

ret

6.3.3 Debugging symptoms

Alignment bugs often manifest as:

• Crashes in unrelated functions (because the failure happens after an ABI violation).

• Stack traces that look corrupted (because an ABI violation can cascade into wrong

unwinding).

• “Only fails with optimization” or “only fails on some machines” due to different

instruction choices.

Discipline Summary

• System V AMD64 requires RSP to be 16-byte aligned before every call.

• The caller is responsible for alignment; pushes and local allocations must be balanced

with padding.

• Misalignment can cause crashes, corrupt execution, destroy stack traces, or silently

degrade performance.

• Always audit your assembly and FFI boundaries: treat alignment as a hard correctness

rule, not an optimization.

Chapter 7

Caller-Saved vs Callee-Saved Registers

7.1 Preservation Responsibilities

In the System V AMD64 ABI, registers are divided by preservation responsibility:

• Caller-saved (volatile): the caller must assume the callee may overwrite these registers.

If the caller needs their values after a call, it must save them before the call and restore

them after.

• Callee-saved (non-volatile): the callee must preserve these registers. If the callee uses

them, it must save their incoming values and restore them before returning.

System V AMD64 GPR classification

Callee-saved (must be preserved by callee):

RBX, RBP, R12, R13, R14, R15

Caller-saved (may be clobbered by callee):

RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11

56

57

Special discipline rules:

• RSP must always be restored to its incoming value before ret.

• Vector registers (XMM/YMM) are caller-saved under System V AMD64 (caller must

save if needed across calls).

Why this rule exists

This split balances performance and composability:

• Most calls can be fast because callees are not forced to save everything.

• Callers only save what they actually need to keep.

• Callee-saved registers provide stable long-lived storage across calls (useful for local

state in non-leaf functions).

7.2 Register Save and Restore Mechanics

Save/restore mechanics must preserve values exactly, keep stack discipline correct, and

maintain call-site alignment when making further calls.

7.2.1 Callee saving callee-saved registers

If a callee uses a callee-saved register, it must save it early (typically in the prologue) and

restore it late (typically in the epilogue).

Example: Callee uses RBX and must preserve it

.intel_syntax noprefix

58

.global callee_uses_rbx

callee_uses_rbx:

push rbx # # save callee-saved RBX

... RBX is now safe to use ...

mov rbx, 123

... work ...

pop rbx # # restore RBX before return

ret

If the callee uses multiple callee-saved registers, it must preserve all it touches:

.intel_syntax noprefix

.global callee_uses_r12_r13

callee_uses_r12_r13:

push r12

push r13

... use r12/r13 ...

pop r13

pop r12

ret

7.2.2 Caller saving caller-saved registers

If the caller needs a volatile register after a call, it must save it itself. The simplest mechanism

is to spill to the stack (or move into a callee-saved register that the caller owns across its own

calls).

Example: Caller preserves R10 across a call

.intel_syntax noprefix

59

.extern callee

.global caller_needs_r10

caller_needs_r10:

mov r10, 0xABCDEF

push r10 # # save volatile register (caller

responsibility)↪→

call callee

pop r10 # # restore after call

mov rax, r10

ret

7.2.3 Maintaining stack alignment while saving registers

Because each push changes RSP by 8 bytes, saving an odd number of registers can break

call-site alignment. If the function makes calls, it must compensate.

Example: Callee saves RBX then calls another function (alignment
disciplined)

.intel_syntax noprefix

.extern other

.global callee_save_then_call

callee_save_then_call:

push rbx # # save callee-saved

sub rsp, 8 # # maintain 16-byte alignment before call

60

call other

add rsp, 8

pop rbx

ret

7.2.4 Saving vector registers in System V AMD64

All XMM/YMM registers are caller-saved. If a caller needs an XMM register value preserved,

it must save/restore it.

.intel_syntax noprefix

.extern callee

.global caller_preserves_xmm1

caller_preserves_xmm1:

sub rsp, 16

movdqu [rsp], xmm1 # # save volatile XMM1

call callee

movdqu xmm1, [rsp] # # restore

add rsp, 16

ret

7.3 Practical Calling Scenarios

7.3.1 Scenario 1: Non-leaf function needs stable locals across calls

Use callee-saved registers for long-lived local state within the function; save them once in the

prologue and restore once in the epilogue.

.intel_syntax noprefix

61

.extern step1

.extern step2

.global pipeline_example

long pipeline_example(long x)

pipeline_example:

push rbx

sub rsp, 8 # # align before calls

mov rbx, rdi # # keep x in RBX across multiple calls

mov rdi, rbx

call step1

mov rdi, rbx

call step2

add rsp, 8

pop rbx

ret

Here, RBX is used as a stable local variable because it is callee-saved and thus remains valid

across calls inside the same function (after we preserved it in the prologue).

7.3.2 Scenario 2: Caller wants to keep an argument register value after
calling

Argument registers are caller-saved under SysV. If the caller wants to reuse RDI or RSI after

calling another function, it must save them.

62

.intel_syntax noprefix

.extern callee

.global reuse_rdi_after_call

reuse_rdi_after_call:

RDI holds an important pointer we need after the call

push rdi

call callee

pop rdi # # restore our pointer

safe to use RDI again

mov rax, rdi

ret

7.3.3 Scenario 3: Bug pattern — callee clobbers callee-saved register

If a callee clobbers RBX without preserving it, it violates the ABI and breaks any caller that

relies on RBX surviving across the call.

.intel_syntax noprefix

.global buggy_callee_clobber_rbx

buggy_callee_clobber_rbx:

mov rbx, 999 # # BUG: RBX is callee-saved; must be

preserved↪→

ret

Correct version:

.intel_syntax noprefix

.global fixed_callee_preserve_rbx

fixed_callee_preserve_rbx:

push rbx

63

mov rbx, 999

pop rbx

ret

7.3.4 Scenario 4: Leaf functions and the red zone

Leaf functions that make no calls can often avoid stack frame allocation, and may optionally

use the red zone for temporary storage. This does not change preservation rules: caller-saved

registers are still volatile across any call (but leaf functions do not call).

.intel_syntax noprefix

.global leaf_uses_volatiles

long leaf_uses_volatiles(long a, long b)

leaf_uses_volatiles:

Safe: leaf uses volatile registers and makes no calls

lea rax, [rdi + rsi]

ret

Discipline Summary

• Callee must preserve: RBX, RBP, R12--R15.

• Caller must preserve if needed: RAX, RCX, RDX, RSI, RDI, R8--R11 and all

XMM/YMM registers.

• Save/restore must maintain stack correctness and call-site 16-byte alignment.

• Use callee-saved registers for long-lived locals in non-leaf functions; save caller-saved

registers only when the caller truly needs them after a call.

Chapter 8

Function Call and Return Mechanics

8.1 call and ret Instruction Behavior

In x86-64, function calls and returns are implemented using the call and ret instructions.

These instructions manipulate the stack and instruction pointer directly and form the

foundation of all ABI-level control flow.

8.1.1 Behavior of call

The call instruction performs two atomic actions:

• Pushes the return address (the address of the instruction following call) onto the

stack.

• Transfers control to the call target by loading its address into RIP.

Formally:

• RSP := RSP - 8

64

65

• [RSP] := RIP next

• RIP := target

8.1.2 Behavior of ret

The ret instruction reverses this process:

• Pops the return address from the stack into RIP.

• Increments RSP by 8.

Formally:

• RIP := [RSP]

• RSP := RSP + 8

Example: Minimal call/return pair

.intel_syntax noprefix

.global caller

caller:

call callee # # pushes return address, jumps to callee

ret

callee:

ret # # pops return address, returns to caller

66

8.2 Return Address Handling

The return address is an implicit stack argument managed entirely by the CPU. It is not

passed in a register and must be treated as read-only control-flow data.

Key rules:

• The return address always resides at the top of the stack on function entry.

• It must remain intact until ret executes.

• Any stack manipulation must preserve its position relative to RSP.

Example: Stack layout at function entry

.intel_syntax noprefix

On entry to callee:

RSP -> [return address]

8.2.1 Saving and restoring around the return address

If a function needs stack space or must save registers, it must do so below the return address

by adjusting RSP.

Correct: allocating locals below the return address

.intel_syntax noprefix

.global func_with_locals

func_with_locals:

sub rsp, 16 # # allocate local space below return

address↪→

... use locals ...

67

add rsp, 16

ret

Incorrect: overwriting the return address

.intel_syntax noprefix

.global overwrite_retaddr_bug

overwrite_retaddr_bug:

mov qword ptr [rsp], 0 # # BUG: overwrites return address

ret # # undefined control flow

8.3 Stack State Before and After Calls

Understanding stack state transitions is critical for ABI correctness.

8.3.1 Stack state before call

Before executing call, the caller must ensure:

• All arguments are placed in the correct registers and/or stack slots.

• RSP is 16-byte aligned.

• Any required caller-saved registers are preserved.

Example: Correct pre-call setup

.intel_syntax noprefix

.extern callee

.global caller_setup

68

caller_setup:

RSP is 16-byte aligned here

mov rdi, 10 # # argument 1

call callee

ret

8.3.2 Stack state immediately after call

Once call executes:

• RSP is decremented by 8.

• The return address is at [RSP].

• RSP % 16 == 8 on callee entry (assuming correct call-site alignment).

Example: Entry state inside callee

.intel_syntax noprefix

callee_entry:

RSP points to return address

RSP % 16 == 8

ret

8.3.3 Stack state before ret

Before executing ret, the callee must ensure:

• All callee-saved registers have been restored.

• RSP has been restored to its incoming value.

• The return address remains at the top of the stack.

69

Example: Correct epilogue

.intel_syntax noprefix

.global func_epilogue

func_epilogue:

... body ...

add rsp, 16 # # deallocate locals

ret

8.3.4 Stack state after ret

After ret:

• RIP resumes at the caller’s next instruction.

• RSP has the same value it had immediately before the original call.

Example: Caller resumes execution

.intel_syntax noprefix

caller_resume:

call callee

execution resumes here after ret

ret

8.4 Nested Calls and Stack Integrity

Nested calls form a stack of return addresses. Each call pushes a new return address; each

ret pops exactly one.

70

Example: Nested calls

.intel_syntax noprefix

.global f1

.global f2

.global f3

f1:

call f2

ret

f2:

call f3

ret

f3:

ret

The return sequence is strictly LIFO:

f3 → f2 → f1

Any imbalance in stack adjustments breaks this chain.

Discipline Summary

• call pushes the return address and transfers control.

• ret pops the return address and restores control.

• The return address must never be overwritten or skipped.

71

• Callers must align the stack before calls; callees must restore it before returns.

• Stack imbalance or return-address corruption results in immediate undefined control

flow.

Chapter 9

Returning Values and Aggregates

9.1 Scalar Return Values

Under the System V AMD64 ABI, scalar return values are returned in registers. The rules

are simple, strict, and heavily relied upon by compilers and debuggers.

• Integer and pointer returns: RAX

• Boolean returns: AL (observed via RAX as 0 or 1)

• Floating-point returns: XMM0

For integers smaller than 64 bits, the ABI relies on type-directed extension:

• Signed types are sign-extended to 64 bits.

• Unsigned types are zero-extended to 64 bits.

72

73

Example: Returning a 64-bit integer

.intel_syntax noprefix

.global ret_i64

ret_i64:

mov rax, 0x1122334455667788

ret

Example: Returning a boolean

.intel_syntax noprefix

.global is_nonzero

long is_nonzero(long x) # x in RDI

is_nonzero:

xor eax, eax

test rdi, rdi

setne al # # AL = 1 if x != 0

ret

Example: Returning a double

.intel_syntax noprefix

.global ret_double

ret_double:

return value must be in XMM0

ret

74

9.2 Structure and Union Return Rules

Returning aggregates (structures or unions) is governed by size and classification. The ABI

classifies aggregates into register-returnable or memory-returned categories.

Core rules:

• Aggregates of size up to 16 bytes may be returned in registers.

• Aggregates larger than 16 bytes are returned via memory using a hidden pointer.

• Register-returnable aggregates are decomposed into up to two eight-byte chunks.

Each eight-byte chunk is classified independently:

• INTEGER class → RAX / RDX

• SSE class → XMM0 / XMM1

Example: Returning a small integer-only struct (8 bytes)

.intel_syntax noprefix

struct S { long x; };

.global ret_struct_8

ret_struct_8:

mov rax, 123 # # entire struct in RAX

ret

Example: Returning a 16-byte integer struct

.intel_syntax noprefix

struct S { long a; long b; };

75

.global ret_struct_16

ret_struct_16:

mov rax, 1 # # first field

mov rdx, 2 # # second field

ret

Example: Returning a mixed FP/integer struct

Conceptual type:

.intel_syntax noprefix

struct M { double x; long y; };

Register assignment:

• x in XMM0

• y in RAX

.intel_syntax noprefix

.global ret_mixed_struct

ret_mixed_struct:

XMM0 holds double field

mov rax, 42 # # integer field

ret

9.3 Hidden Pointer Mechanism

When an aggregate cannot be returned in registers, the ABI uses a hidden return pointer
supplied by the caller.

Rules:

76

• The caller allocates space for the return object.

• A pointer to this space is passed as an implicit first argument.

• The callee writes the result into the pointed memory.

• The function formally returns void.

In System V AMD64:

• The hidden pointer is passed in RDI.

• User-visible arguments are shifted to the next registers.

Example: Large struct returned via hidden pointer

Conceptual type:

.intel_syntax noprefix

struct Big { long a; long b; long c; };

Big make_big(void);

Calling convention:

• RDI points to caller-allocated return storage.

.intel_syntax noprefix

.global make_big

make_big:

mov qword ptr [rdi + 0], 1

mov qword ptr [rdi + 8], 2

mov qword ptr [rdi + 16], 3

ret

77

9.4 Large Object Return Handling

Large aggregates (greater than 16 bytes, or those failing register classification) are always

returned via memory. This mechanism is fundamental to ABI stability and cross-language

interoperability.

Key implications:

• The callee does not allocate return storage.

• Lifetime and alignment of the return object are the caller’s responsibility.

• Debuggers and exception-unwinding logic rely on this convention.

Caller-side perspective (conceptual)

.intel_syntax noprefix

Caller allocates space, passes pointer in RDI, then calls.

Returned object is already written on return.

Common bug: forgetting the hidden pointer

If handwritten assembly omits the hidden pointer or misplaces arguments, the callee writes

into an invalid address, often corrupting memory silently.

.intel_syntax noprefix

BUG: calling make_big without setting RDI to valid storage

leads to memory corruption.

Discipline Summary

• Scalars return in RAX (integers/pointers) or XMM0 (floating-point).

78

• Aggregates up to 16 bytes may return in registers, split into 8-byte units.

• Larger or non-classifiable aggregates use a hidden return pointer in RDI.

• Correct handling of aggregate returns is mandatory for ABI correctness and

interoperability.

Chapter 10

Variadic Functions (System V Basics)

10.1 Default Argument Promotions

In C/C++ variadic functions (functions declared with ...), the compiler cannot infer the

types of the unnamed arguments from the callee side alone. Therefore, the language applies

default argument promotions at the call site, and the callee must retrieve arguments using an

explicit type protocol (typically va list and va arg).

Core promotions (C language rules, inherited by C++ varargs):

• Integer promotions: char, signed char, unsigned char, short, unsigned

short are promoted to int or unsigned int.

• Floating promotions: float is promoted to double.

Practical implications for ABI-level reasoning:

• A variadic callee must never attempt to read a float from the variadic pack; it will be

present as a double.

79

80

• A variadic callee must never attempt to read a char/short from the variadic pack; it

will be present as an int.

Example: Promotion consequences (conceptual)

.intel_syntax noprefix

In a call like:

v("x", (char)1, (short)2, (float)3.0f);

The variadic payload is actually:

int 1, int 2, double 3.0

10.2 Register Save Area

In the System V AMD64 ABI, variadic functions require a special mechanism so that a callee

can reliably access arguments regardless of whether the caller placed them in registers or on

the stack.

Key ABI idea:

• Named arguments follow normal register/stack passing.

• Variadic access (va arg) needs a uniform memory view of register-passed arguments.

• Therefore, a variadic callee typically uses a register save area (also called the register
argument home area) where incoming register arguments are spilled so they can be

walked like memory.

Practical model used by compilers:

• The callee saves (copies) the incoming argument registers into a local memory block.

• The va list structure maintains offsets/pointers indicating:

81

– where the next integer-class variadic argument is (GPR path),

– where the next SSE-class variadic argument is (XMM path),

– where stack overflow arguments begin.

You do not need the concrete internal layout of va list to write correct assembly at a

boundary; you must, however, respect that:

• the callee may read register-passed arguments from its own save area,

• the callee may read overflow arguments from the caller-provided stack area.

Example: Why a save area is necessary

.intel_syntax noprefix

Without saving register arguments to memory, va_arg would have to:

- read "the next argument" sometimes from registers and sometimes

from stack,↪→

- but registers are not an addressable stream,

- and the callee may already have overwritten them.

The save area turns register arguments into a stable memory stream.

10.3 Accessing Variadic Arguments

At the source level, variadic arguments are accessed using:

• va start

• va arg

• va end

82

At the ABI level, two independent streams exist:

• GPR stream for integer/pointer class arguments

• SSE stream for floating-point arguments

A variadic callee selects the stream based on the type requested in va arg.

Example: C-like access pattern (conceptual)

.intel_syntax noprefix

Conceptual:

int i = va_arg(ap, int); # from GPR save area or stack

overflow↪→

double d = va_arg(ap, double); # from XMM save area or stack

overflow↪→

Assembly boundary discipline: preserve argument registers early

If you implement a variadic function in assembly (or mix inline assembly), you must assume:

• Argument registers used for the named parameters are live on entry.

• Additional register arguments for the variadic payload may also be live.

• If you overwrite these registers before saving them, you destroy the variadic payload.

.intel_syntax noprefix

.global vfunc_save_early_demo

vfunc_save_early_demo:

Discipline: if you plan to parse variadic args, preserve the

incoming regs early.↪→

83

Example saves of a few registers; real implementations save

all needed ABI argument regs.↪→

push rbp

mov rbp, rsp

sub rsp, 128 # # local save area (illustrative size)

mov [rbp - 8], rdi # # save first integer arg register

mov [rbp - 16], rsi

mov [rbp - 24], rdx

mov [rbp - 32], rcx

mov [rbp - 40], r8

mov [rbp - 48], r9

similarly, XMM0..XMM7 may need to be saved for FP variadic

access↪→

movdqu [rbp - 64], xmm0 # # etc.

... parse arguments using a protocol ...

leave

ret

10.4 ABI Limitations and Pitfalls

Variadic functions are powerful but fragile. Many pitfalls are not “logic bugs”; they are ABI

and type-protocol violations.

84

10.4.1 Pitfall 1: Reading the wrong promoted type

If a caller passed float in a variadic position, the callee must read a double. Reading

a float is invalid and will consume the wrong number of bytes/slots, desynchronizing

subsequent reads.

.intel_syntax noprefix

Bug pattern (conceptual):

float f = va_arg(ap, float); # wrong: float was promoted to

double↪→

Correct:

double d = va_arg(ap, double);

10.4.2 Pitfall 2: Assuming a single linear stream

Because SysV maintains separate GPR and SSE tracks, reading types in a different order than

the caller used is catastrophic. The callee must follow the exact protocol of types.

.intel_syntax noprefix

If the caller did:

v("%d %f", 7, 3.5);

The callee must read:

int then double

Not:

double then int

10.4.3 Pitfall 3: Implementing variadic functions in assembly without
saving XMM regs

Even if named parameters are integer-only, a variadic payload may include floating-point

arguments. If the callee overwrites XMM registers before capturing them into a save area,

85

those variadic FP values are lost.

.intel_syntax noprefix

.global clobber_xmm_bug_variadic

clobber_xmm_bug_variadic:

BUG: overwrites XMM0 before saving it

xorps xmm0, xmm0

ret

10.4.4 Pitfall 4: Cross-ABI porting assumptions

System V variadic mechanics differ from Windows x64 (register count, home space, and

va list layout rules differ). Variadic functions are one of the quickest ways to break code

when porting.

.intel_syntax noprefix

Discipline: treat SysV varargs and Win64 varargs as different ABIs.

Never assume a va_list layout or register-save strategy transfers

across platforms.↪→

10.4.5 Pitfall 5: Passing aggregates through ...

Passing structs/unions through ... is especially risky because the callee cannot infer the

layout or classification unless the protocol is explicitly defined. Robust interfaces avoid

aggregates in variadic positions and instead pass pointers or use typed wrappers.

.intel_syntax noprefix

Safer design pattern:

- pass pointer to struct, or

- use a typed API rather than varargs for non-trivial data.

86

Discipline Summary

• Default promotions: small integers → int, float→ double.

• SysV variadic access depends on a register save area to provide a stable memory view of

register-passed args.

• Variadic access is type-driven and uses separate tracks for GPR and SSE arguments; the

callee must follow the exact type protocol.

• Major pitfalls: wrong promoted types, wrong read order, clobbering XMM regs early,

and cross-ABI assumptions.

Chapter 11

Common ABI Violations and Debugging
Symptoms

11.1 Stack Corruption Indicators

Stack corruption means the call/return chain or stack-owned data has been modified

incorrectly. Under System V AMD64, the most common root causes are:

• Unbalanced stack adjustments: sub rsp, N not matched by add rsp, N, or

mismatched push/pop.

• Overwriting the return address: writing to [rsp] (or [rbp+8] when using a frame

pointer).

• Writing beyond allocated locals: out-of-bounds stack writes (e.g., using [rsp-8]

without red-zone guarantees, or indexing into locals incorrectly).

• Wrong stack-argument offsets: reading stack arguments using incorrect offsets due to

missing frame pointer assumptions or wrong allocation size.

87

88

Typical symptoms:

• Crash on ret (jumping to a garbage return address).

• Backtrace stops early, shows nonsense addresses, or unwinds incorrectly.

• “Works in debug, crashes in release” because the compiler’s stack frame differs.

• Failure appears inside unrelated library code because the ABI violation occurred earlier.

Example: Unbalanced stack adjustment breaks return

.intel_syntax noprefix

.global unbalanced_stack_bug

unbalanced_stack_bug:

sub rsp, 16 # # allocate locals

... work ...

BUG: missing add rsp,16

ret # # ret pops wrong address (stack shifted)

Correct version:

.intel_syntax noprefix

.global balanced_stack_ok

balanced_stack_ok:

sub rsp, 16

... work ...

add rsp, 16

ret

89

Example: Overwriting the return address

.intel_syntax noprefix

.global overwrite_retaddr_bug

overwrite_retaddr_bug:

mov qword ptr [rsp], 0x0 # # BUG: overwrites return address

ret # # undefined control flow

Example: Wrong local offset corrupts saved state

.intel_syntax noprefix

.global wrong_offset_bug

wrong_offset_bug:

push rbp

mov rbp, rsp

sub rsp, 16

Suppose intended local is at [rbp-8], but a bug writes [rbp+8]

instead.↪→

[rbp+8] is the return address in the canonical frame layout.

mov qword ptr [rbp + 8], 0x4141414141414141 # # BUG

leave

ret

11.2 Register Clobbering Errors

Register clobbering errors occur when caller/callee preservation responsibilities are violated.

System V AMD64 rules (GPRs):

90

• Callee-saved: RBX, RBP, R12--R15 (callee must preserve)

• Caller-saved: RAX, RCX, RDX, RSI, RDI, R8--R11 (caller must preserve if

needed)

Vector registers:

• XMM/YMM are caller-saved under System V AMD64.

Typical symptoms:

• Values “randomly” change after calls.

• Bugs appear only with inlining disabled or with different optimization levels.

• Errors reproduce only when a particular call path executes (because clobber happens in

one callee).

Example: Callee clobbers RBX (ABI violation)

.intel_syntax noprefix

.global clobber_rbx_bug

clobber_rbx_bug:

mov rbx, 999 # # BUG: RBX is callee-saved on SysV

ret

Correct version:

.intel_syntax noprefix

.global preserve_rbx_ok

preserve_rbx_ok:

push rbx

mov rbx, 999

pop rbx

ret

91

Example: Caller assumes RDI survives a call (wrong on SysV)

.intel_syntax noprefix

.extern callee

.global caller_wrong_rdi_assumption

caller_wrong_rdi_assumption:

mov rdi, 77

call callee # # callee may clobber RDI

mov rax, rdi # # BUG: assumes RDI still 77

ret

Correct caller strategy (save volatile register if needed):

.intel_syntax noprefix

.extern callee

.global caller_saves_rdi_ok

caller_saves_rdi_ok:

mov rdi, 77

push rdi

call callee

pop rdi

mov rax, rdi

ret

Example: Caller forgets XMM registers are volatile

.intel_syntax noprefix

.extern callee

92

.global caller_forgets_xmm0_bug

caller_forgets_xmm0_bug:

XMM0 holds an important value here

call callee # # callee may clobber XMM0 (SysV:

caller-saved)↪→

ret

Correct preservation:

.intel_syntax noprefix

.extern callee

.global caller_saves_xmm0_ok

caller_saves_xmm0_ok:

sub rsp, 16

movdqu [rsp], xmm0

call callee

movdqu xmm0, [rsp]

add rsp, 16

ret

11.3 Alignment-Related Crashes

System V AMD64 requires 16-byte alignment at call sites. Violations often produce failures

that look unrelated to the violating code.

Common causes:

• A push or odd number of pushes before a call without compensation.

• Manual local allocation sizes that do not preserve alignment.

93

• Incorrect stack argument reservation sizes.

Typical symptoms:

• Crash inside optimized code that uses vector spills or assumes aligned stack.

• Crash appears only on some CPUs or only with certain compiler flags.

• Unwinding/backtrace breaks when combined with other ABI violations.

Example: Misaligned call site due to one push

.intel_syntax noprefix

.extern callee

.global misaligned_call_bug

misaligned_call_bug:

push rbx # # toggles alignment

call callee # # BUG: call-site may violate 16-byte

alignment↪→

pop rbx

ret

Correct version (compensate with 8 bytes):

.intel_syntax noprefix

.extern callee

.global aligned_call_ok

aligned_call_ok:

push rbx

94

sub rsp, 8 # # restore alignment before call

call callee

add rsp, 8

pop rbx

ret

Example: Misalignment caused by wrong local allocation size

.intel_syntax noprefix

.extern callee

.global alloc_24_then_call_bug

alloc_24_then_call_bug:

push rbp

mov rbp, rsp

sub rsp, 24 # # BUG: may break call-site alignment

depending on entry state↪→

call callee

leave

ret

Corrected pattern: choose allocation with padding to satisfy alignment.

.intel_syntax noprefix

.extern callee

.global alloc_32_then_call_ok

alloc_32_then_call_ok:

push rbp

mov rbp, rsp

95

sub rsp, 32 # # locals + padding (keeps call-site

alignment)↪→

call callee

leave

ret

Debugging Checklist

When debugging an ABI symptom, validate these invariants first:

• Stack balance: every sub rsp,N has a matching add rsp,N; every push has a

matching pop.

• Return address integrity: never write to [rsp] (or [rbp+8] with frame pointer).

• Register preservation: callee preserves RBX, RBP, R12--R15; caller saves

volatile registers it needs.

• Call-site alignment: RSP is 16-byte aligned before each call.

• XMM/YMM volatility: caller saves vector registers if needed across calls.

Chapter 12

Interoperability and Language Boundaries

12.1 C and C++ ABI Interaction

In System V AMD64 user space, the calling convention for ordinary C functions is stable and

well-defined at the ABI level: argument registers, return registers, stack discipline, and register

preservation rules follow the System V AMD64 ABI.

C++ introduces additional binary-level mechanisms beyond the base calling convention,

including:

• Name mangling: C++ encodes function names with type information.

• Overloading: multiple functions with the same source name require mangled symbols.

• Member functions: an implicit this pointer argument is passed like a normal pointer

argument.

• Constructors/destructors: may have multiple entry points and special calling patterns.

• Exceptions and unwinding: require runtime support and strict stack frame/unwind

metadata correctness.

96

97

Therefore, the safest interoperability boundary is C linkage.

Rule: Use C linkage for external boundaries

• Export boundary functions using C linkage so symbol names remain stable.

• Keep the boundary signature “plain”: integers, pointers, POD-like data, explicit sizes.

• Avoid C++ features at the boundary (overloads, templates, references, exceptions).

Example: Stable boundary symbol (conceptual)

.intel_syntax noprefix

In C++ source, the boundary is declared with C linkage:

extern "C" long api_add(long a, long b);

#

The SysV ABI then ensures:

a in RDI, b in RSI, return in RAX

Assembly implementation of a C-linkage boundary

.intel_syntax noprefix

.global api_add

long api_add(long a, long b) # SysV: a=RDI, b=RSI

api_add:

lea rax, [rdi + rsi]

ret

98

C++ member functions: implicit this

A non-static member function receives a hidden first argument: the this pointer. Under SysV,

it is passed like the first pointer argument (RDI).

.intel_syntax noprefix

Conceptual:

struct Obj { long x; long get() const; };

get(this) is called with:

this in RDI

.intel_syntax noprefix

.global obj_get_x

long obj_get_x(Obj* this) # explicit form used at ABI boundary

obj_get_x:

mov rax, qword ptr [rdi + 0] # # load this->x

ret

12.2 Inline Assembly Constraints

Inline assembly is not “just assembly”; it is a contract with the compiler. The compiler is still

responsible for register allocation, scheduling, stack layout, and ABI compliance across the

whole function.

Key constraints:

• You must declare all clobbered registers correctly (or the compiler may assume they

are unchanged).

• You must respect stack alignment and callee-saved preservation rules if your inline

assembly performs calls or changes preserved state.

99

• You must treat inline assembly as a black box to the optimizer unless constraints are

precise; incorrect constraints lead to miscompilation.

Example: The core danger — undeclared clobber

If inline assembly modifies a register that the compiler thinks is still live, the program can

break without any visible assembly error.

.intel_syntax noprefix

Conceptual bug:

- compiler keeps a live value in RBX across the asm block

- asm clobbers RBX

- compiler later uses the corrupted value

ABI discipline for inline asm that calls another function

If your inline assembly emits a call, it must behave like any other caller:

• Provide correct argument registers.

• Preserve any caller-saved registers needed after the call.

• Maintain 16-byte stack alignment at the call site.

.intel_syntax noprefix

.extern callee

.global inline_style_call_example

inline_style_call_example:

Treat this as if it were inline asm inside a compiler-managed

function:↪→

1) align stack before call

100

2) assume volatile regs may be clobbered

sub rsp, 8 # # alignment compensation (illustrative)

call callee

add rsp, 8

ret

12.3 Cross-Language Calling Safety

Cross-language calls are safe only if both sides agree on:

• calling convention (SysV AMD64),

• type sizes and alignment,

• structure layout rules,

• name binding (symbol names),

• ownership and lifetime rules for pointers and buffers,

• exception/error propagation rules.

12.3.1 Safe design patterns

Pattern 1: C ABI boundary wrapper

• Use a C ABI boundary even if the implementation is C++.

• Export only flat functions with explicit pointers and lengths.

• Return errors via integer codes, not exceptions.

101

Example: “buffer + length” boundary

.intel_syntax noprefix

Conceptual C ABI:

long api_process(const unsigned char* buf, long len);

SysV: buf in RDI, len in RSI

.intel_syntax noprefix

.global api_process

api_process:

validate inputs without exceptions

test rdi, rdi

je .bad

test rsi, rsi

jle .bad

... process ...

xor eax, eax # # success => 0

ret

.bad:

mov eax, -1 # # error => -1

ret

Pattern 2: Opaque handles

• Do not expose C++ object layout across the boundary.

• Pass an opaque pointer/handle and provide constructor/destructor functions.

Example: Handle-based ABI (conceptual)

.intel_syntax noprefix

102

Conceptual C ABI:

void* obj_create();

void obj_destroy(void* h);

long obj_do(void* h, long x);

#

The foreign side never depends on the C++ class layout.

12.3.2 Pitfalls and failure modes

Pitfall 1: C++ exceptions across non-C++ boundaries

• Throwing across an FFI boundary is unsafe unless both sides share the same unwinding

model and runtime.

• A safe boundary converts exceptions to error codes.

Pitfall 2: Returning aggregates without matching ABI classification

• If two languages disagree on struct layout or return classification, the caller and callee

will use different registers/memory.

• Prefer returning simple scalars and writing complex results into caller-provided buffers.

Pitfall 3: Variadic interfaces across languages

• Variadic conventions depend on language-level promotions and va list layout.

• Do not use varargs as a cross-language boundary; use explicit typed APIs instead.

Example: Safe alternative to returning a large object

.intel_syntax noprefix

Instead of:

103

Big make_big();

Prefer:

long make_big(Big* out);

where 'out' is a caller-allocated buffer and the return value is a

status code.↪→

Boundary Checklist

• Use C linkage for exported symbols and keep boundary signatures simple.

• Avoid C++-only features (overloads, templates, exceptions, references) across the

boundary.

• Treat inline assembly as a compiler contract: declare clobbers and preserve ABI

invariants.

• Prefer buffer+length and handle-based designs over exposing layouts or using varargs.

• Never assume portability of ABI details across operating systems or toolchains.

Chapter 13

ABI Discipline Checklist

13.1 Mandatory Rules Recap

This chapter is a compact, enforcement-oriented checklist for System V AMD64 correctness.

Treat every item as mandatory when writing assembly, inline assembly, JIT code, or cross-

language boundaries.

Argument passing (register-based)

• Integer/pointer args (first 6): RDI, RSI, RDX, RCX, R8, R9

• Floating-point args (first 8): XMM0--XMM7

• Mixed lists: two independent streams (INTEGER and SSE); do not shift one stream

because of the other.

• Remaining args after registers: passed on the stack with correct layout and alignment.

104

105

Return values

• Integer/pointer returns: RAX

• Floating-point returns: XMM0

• Small aggregates (up to 16 bytes): returned in registers (RAX/RDX or XMM0/XMM1

depending on classification)

• Larger aggregates: returned via hidden pointer (caller-allocated storage, pointer passed

as implicit first argument)

Register preservation

• Callee-saved GPRs: RBX, RBP, R12, R13, R14, R15

• Caller-saved GPRs: RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11

• Vector registers: XMM0--XMM15 and YMM0--YMM15 are caller-saved on System V

AMD64.

• RSP must be restored to its incoming value before ret.

Stack discipline and alignment

• Stack grows downward; call pushes an 8-byte return address.

• Before every call, the caller must ensure RSP is 16-byte aligned.

• On callee entry (after the return address is pushed): typically RSP % 16 == 8.

• Red zone: 128 bytes below RSP is usable mainly by leaf functions; never treat it as safe

across calls.

106

13.2 Safe Calling Convention Practices

The practices below reduce risk of hidden ABI bugs and make debugging predictable.

13.2.1 Practice 1: Establish a consistent prologue/epilogue

Use a clear frame strategy and preserve only what you touch.

.intel_syntax noprefix

.global disciplined_nonleaf

disciplined_nonleaf:

push rbp

mov rbp, rsp

push rbx # # preserve callee-saved used reg

sub rsp, 32 # # locals/spills/padding (example)

... body ...

If calling other functions, ensure call-site alignment holds.

add rsp, 32

pop rbx

pop rbp

ret

13.2.2 Practice 2: Audit alignment at every call site

A single push before a call is enough to violate alignment if not compensated.

.intel_syntax noprefix

107

.extern callee

.global aligned_call_pattern

aligned_call_pattern:

push rbx

sub rsp, 8 # # compensate to keep 16-byte alignment

before call↪→

call callee

add rsp, 8

pop rbx

ret

13.2.3 Practice 3: Preserve caller-saved registers only when needed

If you need a volatile value after a call, save it explicitly.

.intel_syntax noprefix

.extern callee

.global caller_keeps_r10

caller_keeps_r10:

mov r10, 0xABCDEF

push r10 # # save volatile

call callee

pop r10 # # restore

mov rax, r10

ret

108

13.2.4 Practice 4: Treat XMM/YMM as volatile across calls

If your caller relies on xmmN surviving, save it.

.intel_syntax noprefix

.extern callee

.global caller_keeps_xmm0

caller_keeps_xmm0:

sub rsp, 16

movdqu [rsp], xmm0

call callee

movdqu xmm0, [rsp]

add rsp, 16

ret

13.2.5 Practice 5: Keep cross-language boundaries “flat”

Prefer C-linkage style boundaries and explicit pointer+length protocols.

.intel_syntax noprefix

.global api_sum_bytes

long api_sum_bytes(const unsigned char* p, long n)

SysV: p=RDI, n=RSI

api_sum_bytes:

test rdi, rdi

je .bad

test rsi, rsi

jle .bad

xor eax, eax # # sum in RAX

109

.loop:

cmp rsi, 0

je .done

movzx edx, byte ptr [rdi]

add rax, rdx

inc rdi

dec rsi

jmp .loop

.done:

ret

.bad:

mov eax, -1

ret

13.3 Common Mistakes to Avoid

13.3.1 Mistake 1: Unbalanced stack adjustments

.intel_syntax noprefix

.global bug_unbalanced

bug_unbalanced:

sub rsp, 16

... work ...

ret # # BUG: stack not restored

13.3.2 Mistake 2: Clobbering callee-saved registers

.intel_syntax noprefix

.global bug_clobber_rbx

110

bug_clobber_rbx:

mov rbx, 7 # # BUG: RBX must be preserved

ret

13.3.3 Mistake 3: Assuming argument registers survive calls

.intel_syntax noprefix

.extern callee

.global bug_assume_rdi_survives

bug_assume_rdi_survives:

mov rdi, 77

call callee # # callee may clobber RDI

mov rax, rdi # # BUG

ret

13.3.4 Mistake 4: Misaligned call sites

.intel_syntax noprefix

.extern callee

.global bug_misaligned_call

bug_misaligned_call:

push rbx

call callee # # BUG: may violate 16-byte alignment

pop rbx

ret

111

13.3.5 Mistake 5: Using red zone across calls

.intel_syntax noprefix

.extern callee

.global bug_redzone_across_call

bug_redzone_across_call:

mov qword ptr [rsp - 8], 123 # # stored in red zone

call callee # # callee may overwrite below its

RSP↪→

mov rax, qword ptr [rsp - 8] # # BUG: value not reliable

ret

13.3.6 Mistake 6: Wrong aggregate return assumption

.intel_syntax noprefix

BUG pattern (conceptual):

- caller expects a struct returned in RAX/RDX

- callee actually uses hidden pointer return (or vice versa)

This mismatch corrupts memory or returns garbage.

Final Checklist (Print and Audit)

• Before every call: RSP is 16-byte aligned.

• After function return: RSP equals its entry value.

• Callee preserves RBX, RBP, R12--R15 if used.

• Caller saves volatile registers it needs after calls (including XMM/YMM).

112

• Integer/pointer args in RDI, RSI, RDX, RCX, R8, R9; FP args in

XMM0--XMM7.

• Returns: scalars in RAX / XMM0; aggregates follow the 16-byte vs hidden-pointer rule.

• Do not overwrite [rsp] or [rbp+8] (return address).

• Use red zone only for leaf temporaries; never rely on it across calls.

• Keep cross-language boundaries flat: C linkage, explicit sizes, no exceptions, no

varargs.

References

Architecture Manuals

The contents of this booklet are grounded in the authoritative architectural documentation for

the x86-64 platform. These materials define the instruction set behavior, register semantics,

stack operation, and control-flow mechanics that the ABI relies on.

• x86-64 instruction execution model, including call, ret, stack behavior, and register

effects.

• General-purpose register and SIMD register architecture (GPRs, XMM/YMM).

• Memory addressing rules, alignment requirements, and calling-related side effects.

• Architectural guarantees required for correct ABI implementation in user-space code.

These manuals form the non-negotiable foundation for understanding how ABI rules map onto

real hardware behavior.

ABI Specifications

This booklet follows the official System V AMD64 ABI specification, which defines the

binary interface contract between independently compiled translation units.

113

114

Core specification areas used throughout this booklet include:

• Register-based argument passing for integer and floating-point arguments.

• Stack layout rules and 16-byte alignment requirements.

• Caller-saved and callee-saved register classification.

• Aggregate classification and return-value handling.

• Hidden pointer mechanism for large return objects.

• Variadic function handling and register save area concepts.

All calling convention rules, stack discipline constraints, and preservation responsibilities

described in this booklet are derived directly from this specification.

Compiler Calling Convention Documentation

Modern compilers implement the System V AMD64 ABI with strict conformance, but

also expose implementation-specific behavior that is essential for low-level debugging and

interoperability.

This booklet aligns with documented compiler behavior in the following areas:

• Register allocation and argument lowering for C and C++ frontends.

• Stack frame generation, prologue/epilogue patterns, and frame pointer usage.

• Inline assembly constraints and clobber rules.

• ABI interactions with optimization levels and inlining.

• Debugging and unwinding expectations tied to correct ABI compliance.

Compiler documentation is treated as a confirmation layer: it demonstrates how the ABI rules

are realized in practice, not as an alternative definition of the ABI itself.

115

Cross-References to Other Booklets in This Series

This booklet is part of the CPU Programming Series and is designed to be read alongside

earlier and later volumes. Key conceptual dependencies and continuations include:

• Booklet 01 — How a CPU Executes Instructions Foundation for understanding

control flow, instruction retirement, and call/return mechanics.

• Booklet 02 — Registers, Flags, and Data Representation Required for correct

reasoning about register usage, data width, sign extension, and flag side effects.

• Booklet 03 — The Stack & Calling Conventions (ABI Foundations) Introduces stack

concepts, frame structure, and cross-architecture ABI principles.

• Booklet 04 — Memory, Caches, and the Cost of Access Provides essential

background for stack memory behavior, alignment costs, and performance implications.

• Booklet 08 — Windows x64 ABI: Calling Convention Differences That Break Code
Direct comparison volume highlighting incompatibilities between System V AMD64

and Windows x64 ABIs.

Together, these booklets form a coherent progression from CPU fundamentals to ABI-level

correctness and cross-platform interoperability.

	Contents
	Preface
	Purpose of This Booklet
	Scope and Assumptions
	How to Read and Use This Booklet Effectively

	Introduction to the System V AMD64 ABI
	What an ABI Defines and Guarantees
	Role of the ABI in Compiled Programs
	Relationship Between ABI, Compiler, and Operating System
	ABI and the compiler
	ABI and the operating system

	Practical Goal of This Booklet

	General-Purpose Register Roles
	Overview of x86-64 GPRs
	Registers Used for Argument Passing (System V AMD64)
	Registers Used for Return Values
	Volatile and Non-Volatile Register Classification
	Non-volatile (callee-saved)
	Volatile (caller-saved)

	Discipline Summary

	Floating-Point and Vector Registers
	XMM/YMM Register Purpose
	Floating-Point Argument Passing Rules
	Scalar floating-point arguments
	Floating-point return values

	SIMD Considerations in Function Calls
	Vector register volatility (System V AMD64)
	Stack alignment and SIMD
	AVX and call-boundary hygiene

	Discipline Summary

	Register-Based Argument Passing
	Integer and Pointer Argument Rules
	Floating-Point Argument Rules
	Mixed Argument Lists
	Argument Classification and Ordering
	Discipline Summary

	Stack Frame Layout
	Stack Growth and Organization
	Stack Frame Components
	Function Prologue and Epilogue
	Common prologue pattern (with frame pointer)
	Leaf function pattern (no frame pointer)
	Non-leaf functions must respect call-site alignment

	Red Zone Concept and Constraints
	Correct usage constraints

	Discipline Summary

	Stack Alignment Rules
	16-Byte Alignment Requirement
	Alignment at Function Call Boundaries
	Effects of Misalignment on Execution
	Correctness failures
	Performance degradation
	Debugging symptoms

	Discipline Summary

	Caller-Saved vs Callee-Saved Registers
	Preservation Responsibilities
	Register Save and Restore Mechanics
	Callee saving callee-saved registers
	Caller saving caller-saved registers
	Maintaining stack alignment while saving registers
	Saving vector registers in System V AMD64

	Practical Calling Scenarios
	Scenario 1: Non-leaf function needs stable locals across calls
	Scenario 2: Caller wants to keep an argument register value after calling
	Scenario 3: Bug pattern — callee clobbers callee-saved register
	Scenario 4: Leaf functions and the red zone

	Discipline Summary

	Function Call and Return Mechanics
	call and ret Instruction Behavior
	Behavior of call
	Behavior of ret

	Return Address Handling
	Saving and restoring around the return address

	Stack State Before and After Calls
	Stack state before call
	Stack state immediately after call
	Stack state before ret
	Stack state after ret

	Nested Calls and Stack Integrity
	Discipline Summary

	Returning Values and Aggregates
	Scalar Return Values
	Structure and Union Return Rules
	Hidden Pointer Mechanism
	Large Object Return Handling
	Discipline Summary

	Variadic Functions (System V Basics)
	Default Argument Promotions
	Register Save Area
	Accessing Variadic Arguments
	ABI Limitations and Pitfalls
	Pitfall 1: Reading the wrong promoted type
	Pitfall 2: Assuming a single linear stream
	Pitfall 3: Implementing variadic functions in assembly without saving XMM regs
	Pitfall 4: Cross-ABI porting assumptions
	Pitfall 5: Passing aggregates through ...

	Discipline Summary

	Common ABI Violations and Debugging Symptoms
	Stack Corruption Indicators
	Register Clobbering Errors
	Alignment-Related Crashes
	Debugging Checklist

	Interoperability and Language Boundaries
	C and C++ ABI Interaction
	Inline Assembly Constraints
	Cross-Language Calling Safety
	Safe design patterns
	Pitfalls and failure modes

	Boundary Checklist

	ABI Discipline Checklist
	Mandatory Rules Recap
	Safe Calling Convention Practices
	Practice 1: Establish a consistent prologue/epilogue
	Practice 2: Audit alignment at every call site
	Practice 3: Preserve caller-saved registers only when needed
	Practice 4: Treat XMM/YMM as volatile across calls
	Practice 5: Keep cross-language boundaries ``flat''

	Common Mistakes to Avoid
	Mistake 1: Unbalanced stack adjustments
	Mistake 2: Clobbering callee-saved registers
	Mistake 3: Assuming argument registers survive calls
	Mistake 4: Misaligned call sites
	Mistake 5: Using red zone across calls
	Mistake 6: Wrong aggregate return assumption

	Final Checklist (Print and Audit)

	References
	Architecture Manuals
	ABI Specifications
	Compiler Calling Convention Documentation
	Cross-References to Other Booklets in This Series

