https://simplifycpp.org

CPU Programming Series
x86-64 System V ABI

Calling Convention & Stack Discipline

— CPU
| Programming
‘eries\

—

Prepared by Ayman Alheraki

CPU Programming Series
x86-64 System V ABI

Calling Convention & Stack Discipline

Prepared by Ayman Alheraki

simplifycpp.org

January 2026

Contents

Contents

Preface

Purpose of This Booklet

Scope and AsSumptionso e e

How to Read and Use This Booklet Effectively

1 Introduction to the System V AMD64 ABI

1.1
1.2
1.3

What an ABI Defines and Guarantees
Role of the ABI in Compiled Programs
Relationship Between ABI, Compiler, and Operating System
1.3.1 ABlandthecompiler.
1.3.2 ABIand the operating system

Practical Goal of This Booklet

2 General-Purpose Register Roles

2.1
22
2.3
24

Overview of x86-64 GPRs
Registers Used for Argument Passing (System VAMD64)
Registers Used for Return Values
Volatile and Non-Volatile Register Classification.

2

o O o0 R

11
11
13
15
15
15
16

2.4.1 Non-volatile (callee-saved)
2.4.2 Volatile (caller-saved)

Discipline Summary

Floating-Point and Vector Registers

3.1 XMM/YMM Register Purpose,

3.2 Floating-Point Argument PassingRules
3.2.1 Scalar floating-point argumentso
3.2.2 Floating-point return values

3.3 SIMD Considerations in Function Calls
3.3.1 Vector register volatility (System VAMD64)
3.3.2 Stack alignmentand SIMDo
3.3.3 AVXand call-boundary hygiene

Discipline Summary L

Register-Based Argument Passing

4.1 Integer and Pointer ArgumentRules
4.2 Floating-Point ArgumentRules
43 Mixed Argument Lists L
4.4 Argument Classification and Ordering

Discipline Summary oL

Stack Frame Layout

5.1 Stack Growth and Organization

5.2 Stack Frame Components

5.3 Function Prologue and Epilogue
5.3.1 Common prologue pattern (with frame pointer)
5.3.2 Leaf function pattern (no frame pointer)

5.3.3 Non-leaf functions must respect call-site alignment

26
26
27
27
29
29
29
30
31
32

33
33
35
36
38
41

8

5.4 Red Zone Concept and Constraints 46
5.4.1 Correctusage constraintso 46
Discipline Summary 48
Stack Alignment Rules 49
6.1 16-Byte Alignment Requirement 49
6.2 Alignment at Function Call Boundaries 50
6.3 Effects of Misalignment on Execution 53
6.3.1 Correctness failures L L L oo 53
6.3.2 Performance degradation 54
6.3.3 Debugging symptoms 55
Discipline Summary Lo 55
Caller-Saved vs Callee-Saved Registers 56
7.1 Preservation Responsibilities L L o000 56
7.2 Register Save and Restore Mechanics 57
7.2.1 Callee saving callee-saved registers 57
7.2.2 Caller saving caller-saved registers 58
7.2.3 Maintaining stack alignment while saving registers 59
7.2.4 Saving vector registers in System VAMD64 60
7.3 Practical Calling Scenarios 60
7.3.1 Scenario 1: Non-leaf function needs stable locals across calls. 60

7.3.2 Scenario 2: Caller wants to keep an argument register value after calling 61

7.3.3 Scenario 3: Bug pattern — callee clobbers callee-saved register 62
7.3.4 Scenario 4: Leaf functions and theredzone 63
Discipline Summary 63
Function Call and Return Mechanics 64

8.1 call and ret Instruction Behavior, 64

8.1.1 Behaviorofcall
8.1.2 Behaviorofret
8.2 Return Address Handling,
8.2.1 Saving and restoring around the return address
8.3 Stack State Before and After Calls
8.3.1 Stack state before call
8.3.2 Stack state immediately after call
8.3.3 Stackstate before ret o Lo
8.3.4 Stackstate afterret o
8.4 Nested Calls and Stack Integrity

Discipline Summary

9 Returning Values and Aggregates
9.1 ScalarReturn Values
9.2 Structure and Union ReturnRules
9.3 Hidden Pointer Mechanism 0 0 oo
9.4 Large Object Return Handling

Discipline Summary L

10 Variadic Functions (System V Basics)
10.1 Default Argument Promotions
10.2 Register Save Area
10.3 Accessing Variadic Argumentso
10.4 ABI Limitations and Pitfalls
10.4.1 Pitfall 1: Reading the wrong promoted type
10.4.2 Pitfall 2: Assuming a single linear stream

10.4.3 Pitfall 3: Implementing variadic functions in assembly without saving
XMMirregso

10.4.4 Pitfall 4: Cross-ABI porting assumptions 85

10.4.5 Pitfall 5: Passing aggregates through 85
Discipline Summary 86

11 Common ABI Violations and Debugging Symptoms 87
11.1 Stack Corruption Indicators 87
11.2 Register Clobbering Errors 89
11.3 Alignment-Related Crashes 92
Debugging Checklist L 95

12 Interoperability and Language Boundaries 96
12.1 Cand C++ ABlInteraction 96
12.2 Inline Assembly Constraints 98
12.3 Cross-Language Calling Safety 100
12.3.1 Safedesign patterns 100

12.3.2 Pitfalls and failuremodes 102
Boundary Checklist 103

13 ABI Discipline Checklist 104
13.1 MandatoryRulesRecap. 104
13.2 Safe Calling Convention Practices 106
13.2.1 Practice 1: Establish a consistent prologue/epilogue 106

13.2.2 Practice 2: Audit alignment atevery call site 106

13.2.3 Practice 3: Preserve caller-saved registers only when needed 107

13.2.4 Practice 4: Treat XMM/YMM as volatile acrosscalls 108

13.2.5 Practice 5: Keep cross-language boundaries “flat” 108

13.3 Common Mistakes to Avoid 109
13.3.1 Mistake 1: Unbalanced stack adjustments 109

13.3.2 Mistake 2: Clobbering callee-saved registers 109

13.3.3 Mistake 3: Assuming argument registers survivecalls. 110

13.3.4 Mistake 4: Misaligned call sites 110

13.3.5 Mistake 5: Using red zone acrosscalls 111

13.3.6 Mistake 6: Wrong aggregate return assumption 111

Final Checklist (Print and Audit) 111
References 113
Architecture Manuals 113
ABI Specifications 113
Compiler Calling Convention Documentation 114

Cross-References to Other Booklets in This Series 115

Preface

Purpose of This Booklet

This booklet is dedicated to a precise and practical understanding of the x86-64 System V
ABI, which is the dominant user-space binary interface on Linux, BSD, macOS-derived
systems, and many Unix-like environments. Its primary purpose is to explain how calling
conventions and stack discipline are formally defined at the ABI level, and why strict
adherence to these rules is mandatory for correct execution.

The System V ABI is often learned implicitly through compiler output or online examples,
yet many subtle rules are either misunderstood or incorrectly assumed to be identical across
platforms. This booklet exists to eliminate those assumptions by presenting the ABI as a
binary contract, not as a collection of compiler habits.

The focus is on:

* Correct argument passing
* Stack layout and alignment
* Register preservation rules

¢ Call and return mechanics

Every rule explained here directly impacts correctness, interoperability, and long-term

maintainability of low-level code.

Scope and Assumptions

This booklet focuses exclusively on the System V AMD64 ABI as used in modern 64-bit
user-space programs. It covers the ABI guarantees that apply across compliant compilers and
operating systems, independent of optimization level or language frontend.

The scope includes:

* General-purpose and vector register roles

* Integer and floating-point argument passing

Stack frame structure and red zone usage

Stack alignment requirements at call boundaries

Caller-saved and callee-saved register responsibilities
The following assumptions are made:

* The reader understands basic x86-64 architecture concepts
* The reader is familiar with registers, memory addressing, and function calls

* The reader may be working in C, C++, or handwritten assembly

This booklet does not attempt to teach assembly language syntax from zero, nor does it cover

operating system internals beyond what is required to understand ABI behavior.

How to Read and Use This Booklet Effectively

This booklet is designed to be read sequentially. Each chapter builds upon invariants
established earlier, especially regarding stack alignment and register volatility. Skipping
foundational chapters often leads to incorrect mental models of later examples.

All assembly examples:

10

* Use Intel syntax
* Follow the System V AMD64 ABI strictly
* Are intentionally minimal to expose ABI rules clearly

Incorrect examples are shown only to demonstrate why code breaks when ABI rules are

violated. They should never be treated as acceptable shortcuts.

Minimal System V AMD64 function prologue (illustrative)
RSP must be 1l6-byte aligned at the call boundary.
push rbp

mov rbp, rsp

When using this booklet:

Track register ownership mentally at every call boundary

Verify stack alignment before every call instruction

Treat all ABI rules as mandatory, not advisory

Revisit this booklet when writing assembly, inline assembly, or FFI code

This booklet is intended to function both as a structured learning path and as a long-term
reference. Mastery of the System V ABI comes from disciplined practice and repeated

validation against real code.

Chapter 1

Introduction to the System V AMD64 ABI

1.1 What an ABI Defines and Guarantees

An Application Binary Interface (ABI) is the machine-level contract that allows
independently compiled binaries to work together correctly at run time. If two components
follow the same ABI, they can interoperate even if they were built by different compilers, in

different languages, or at different times.
For the System V AMD64 ABI, the ABI defines and guarantees (at minimum):

 Calling convention: where arguments are placed (registers vs stack), how return values

are delivered, and who is responsible for preserving which CPU state.
» Register roles: volatile (caller-saved) vs non-volatile (callee-saved) registers.

 Stack discipline: stack growth direction, stack frame conventions, and 16-byte

alignment rules at call boundaries.

* Binary interface data rules: size/alignment of fundamental types, struct/union layout

rules, and how aggregates are passed/returned at the binary level.

11

12

* Object format and relocation model: how code/data are represented in object files and

how the linker/loader resolves addresses.

* Language linkage conventions: for example, C vs C++ name mangling, enabling

stable linking via extern "C" boundaries.

In this booklet, the ABI areas that most commonly cause correctness failures are: argument

passing, register preservation, and stack alignment.

Example: “Works in debug, breaks in release” is often an ABI failure

A typical failure mode is incorrect stack alignment. Many functions appear to work until
a call chain introduces vector instructions or stack-based spills that assume ABI-mandated

alignment.

.intel_syntax noprefix

.global bad_alignment_sysv

bad_alignment_sysv:
BUG: breaks SysV call-site alignment if we call another
— function.
(After 'call', the callee begins with RSP misaligned by 8
— relative to 16.)
push rbx
call external_func # # may crash or misbehave if it assumes
— ABI alignment
pop rbx

ret

.intel_syntax noprefix
.global fixed_alignment_sysv

fixed_alignment_sysv:

13

push rbx

sub rsp, 8 # # restore 1l6-byte alignment before call
call external_ func

add rsp, 8

pop rbx

ret

The key point: the ABI is not “style.” It is a correctness requirement that can be tested by real

code paths.

1.2 Role of the ABI in Compiled Programs

A compiled program is a composition of separately built components:

Your translation units compiled to object files

Static libraries and shared libraries

Runtime libraries (C runtime, C++ runtime, unwinding/runtime support)

The dynamic loader and OS-provided modules

The ABI is the glue that makes these components function as a single coherent executable

system. It enables:

Reliable function calls across module boundaries

Stable linkage against system libraries and third-party libraries

Correct stack walking and unwinding for debugging and exceptions

* Foreign-function interfaces (FFI) across languages that agree on the ABI

14

At the CPU level, this means every call boundary must preserve the invariants expected by any

other ABI-compliant code:
* argument locations are deterministic,
* register volatility rules are respected,

* stack pointer state and alignment are correct.

Example: The ABI is what makes separate compilation safe

A caller compiled in one file and a callee compiled in another file will still interoperate

because both sides implement the same ABI contract.

.intel_syntax noprefix

Concept: caller and callee compiled separately still agree on:
- first integer arg in RDI (SysV)

- return value in RAX
#
#

long inc(long x);

.global inc_sysv
inc_sysv:
lea rax, [rdi + 1]

ret

Any SysV-compliant caller can call inc_sysv without knowing how it was compiled, as long
as both sides obey the ABI.

15

1.3 Relationship Between ABI, Compiler, and Operating
System
The ABI lives at the boundary between:
* Compiler responsibilities (code generation)
* Operating system responsibilities (loading/execution environment)

* Toolchain responsibilities (assembler, linker, loader, runtime)

1.3.1 ABI and the compiler

The compiler must emit code that respects the ABI:

* place integer/pointer arguments in RDI, RSI, RDX, RCX, R8, R9,

place floating-point arguments in XMMO—-—-XMM7,
* preserve callee-saved registers (RBX, RBP, R12--R15),
* maintain stack alignment at call boundaries,
* return values through RAX (integers/pointers) or XMMO (floating-point).
When you introduce handwritten assembly, inline assembly, JIT code, or unconventional FFI

boundaries, you assume part of the compiler’s job and must enforce ABI invariants yourself.

1.3.2 ABI and the operating system

The operating system and loader establish the execution environment in which ABI-compliant

code runs:

16

initial stack state at program entry,

* dynamic linking model and symbol resolution,

thread startup conventions,

signal/trap delivery mechanisms (separate from the function-call ABI).
The user-space ABI is what most code relies on for safe inter-module function calls; it is

distinct from the system-call interface.

Example: user-space calling convention vs system call convention

Even on the same OS, the system-call mechanism may use different registers than the user-

space ABI for normal function calls.

.intel_syntax noprefix

Example only: user-space SysV function calls use RDI/RSI/RDX/...
but an OS syscall interface can use a different register mapping.
This distinction matters when writing low-level code near the

— boundary.

Practical Goal of This Booklet

This booklet turns the System V AMD64 ABI from “something you vaguely rely on” into a

disciplined mental model you can apply when:
* reading compiler output,
* debugging stack corruption,

* writing correct assembly,

17

* building safe FFI boundaries,
¢ auditing code for ABI correctness.

The next chapters will formalize the register roles, stack layout, and alignment rules that must

hold at every call boundary in System V AMD64 user-space code.

Chapter 2

General-Purpose Register Roles

2.1 Overview of x86-64 GPRs

In x86-64 long mode, the architectural general-purpose registers (GPRs) form a 16-register,
64-bit integer register file used for pointers, addresses, integer arithmetic, bit operations,

loop/state variables, and general program state:

* RAX, RBX, RCX, RDX
* RSI, RDI, RBP, RSP

* R8-R15

Each register has subregister views:
* 64-bit: RAX
e 32-bit: EAX
* 16-bit: AX

18

19

* 8-bit: AL (low 8), and some legacy high-8 forms such as AH
A critical long-mode semantic used heavily by compilers:
* Writing any 32-bit subregister (e.g., EAX) zero-extends the value into the full 64-bit

register (e.g., RAX).

Example: 32-bit write zero-extends to 64-bit

.intel_syntax noprefix
.global zero_extend_gpr_demo

zero_extend_gpr_demo:

mov rax, -1 # # RAX = OxFFFF_FFFF_FFFF_FFFF
mov eax, 7 # # EAX write => RAX = 0x0000_0000_0000_0007
ret

Two registers have special calling-sequence meaning in every ABI:
* RSP is the stack pointer and must remain valid; it must be restored before ret.

* RBP is a general register, but is often used as a frame pointer depending on compiler

and debug settings.

2.2 Registers Used for Argument Passing (System V AMD64)

The System V AMDG64 ABI defines register-based argument passing for integer/pointer types

as follows:

* First six integer/pointer arguments: RDI, RSI, RDX, RCX, R8, R9

* Additional integer/pointer arguments: passed on the stack

20

Important properties for correctness:

* The integer/pointer register sequence is independent from the floating-point sequence

(covered in the next chapter).

 Stack arguments are placed by the caller at higher addresses than the return address and

are read by the callee relative to its stack/frame pointer strategy.

* The caller must keep stack alignment correct at every call boundary (details in the

stack discipline chapters).

Example: Passing 1 to 8 integer arguments

.intel_syntax noprefix

.extern

func8

long func8(long a,long b,long c¢,long d,long e,long f,long g,long

— h),

.global

call_func8_sysv

call_func8_sysv:

#
mov
mov
mov
mov
mov

mov

#

First 6 args in registers

rdi, 1 # # a
rsi, 2 # # Db
rdx, 3 # # c
rcx, 4 # # d
r8, 5 # # e
r9, 6 # # £
Args 7 and 8 go on stack (right-to-left so that g is closest

to return address)

21

Reserve 16 bytes for g and h, and keep call-site alignment
— correct.

sub rsp, 16

mov gword ptr [rsp + 8], 8 # # h (8th)

mov gword ptr [rsp + 0], 7 # # g (7th)

call funcs8

add rsp, 16

ret

2.3 Registers Used for Return Values
System V AMD64 specifies that return values are delivered primarily through registers:

* Integer/pointer return: RAX
* 64-bit integer return: RAX

* Smaller integer returns: placed in AL/AX/EAX and observed via ABI-defined

extension rules according to the declared return type

A common additional rule used by many ABIs (and relied on by compilers):
* Some multi-word integer returns may use RDX : RAX as a pair, but scalar integer/pointer

returns are always in RAX.

Example: returning a 64-bit integer

.intel_syntax noprefix

.global ret_const_1i64

22

ret_const_164:
mov rax, 0x1122334455667788

ret

Example: returning a boolean-like value

.intel_syntax noprefix
.global is_positive_sysv
long is_positive (long x) # x in RDI, return in RAX (0 or 1)
is_positive_sysv:
XOr eax, eax # # default return O
test rdi, rdi
setg al # # AL=1 if x > 0 (signed)

ret

2.4 Volatile and Non-Volatile Register Classification

The System V AMD64 ABI divides GPRs into two categories:

2.4.1 Non-volatile (callee-saved)

A callee must preserve these registers (restore original values before returning):

RBX, RBP, R12, R13, R14, R15

2.4.2 Volatile (caller-saved)

A caller must assume these registers may be clobbered by a call:

RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11

23

Special rule:

* RSP must be restored to its incoming value before ret. It is not a general “volatile”

scratch register.

Example: Correct callee preservation of RBX

If a callee wants to use RBX, it must save and restore it.

.intel_syntax noprefix
.global use_rbx_sysv_correct
use_rbx_sysv_correct:
push rbx # # preserve non-volatile RBX
mov rbx, 123
... do work using RBX
mov eax, O
pop rbx # # restore RBX

ret

Example: Caller saving a volatile register across a call

If the caller needs a value in R10 after a function call, it must save it itself because R10 is

volatile.

.intel_syntax noprefix

.extern callee

.global caller_saves_rl1l0_sysv
caller_saves_r10_sysv:
mov rl1l0, OxABCDEF

push rl0 # # caller saves volatile register

24

call callee
pop rl0 # # restore after call
mov rax, rl0

ret

Example: ABI mismatch that breaks ported code

A common portability failure is assuming Windows x64 preservation rules on SysV. On
SysV, RD1 is volatile. If a caller wrongly assumes RDT survives a call, it may read garbage

afterward.

.intel_syntax noprefix

.extern callee

.global wrong_assumption_rdi_sysv
wrong_assumption_rdi_sysv:
mov rdi, 77
call callee # # callee may clobber RDI on SysV
BUG: assuming RDI still holds 77
mov rax, rdi

ret

Discipline Summary

Correct System V AMD64 low-level code requires:
* Placing integer/pointer arguments in RDI, RSI, RDX, RCX, R8, R9in order.
* Reading return values from RAX.

* Treating RBX, RBP, R12--R15 as callee-saved and preserving them when used.

25

* Treating RAX, RCX, RDX, RSI, RDI, R8--R11 as caller-saved and saving

them in the caller if needed across calls.

Chapter 3

Floating-Point and Vector Registers

3.1 XMM/YMM Register Purpose

In the System V AMD64 ABI, all floating-point and SIMD computation is performed using
the SSE and AVX register files. The legacy x87 floating-point stack is not used for normal
argument passing or return values in modern 64-bit user-space code.

The architectural vector registers are:

* XMMO0-XMM1S: 128-bit registers used for scalar floating-point values (float,

double) and SSE vector operations.

* YMMO-YMMI1S: 256-bit registers introduced with AVX; each YMMn extends XMMn
with an upper 128-bit lane.

Key architectural and ABI-relevant properties:

* Writing to XMMn updates only the lower 128 bits of YMMn.
* Writing to YMMn updates the full 256 bits.

26

27

» The ABI treats XMM/YMM registers as the carriers of both scalar FP and SIMD values.

Example: Partial vs full vector register writes

.intel_syntax noprefix

.global xmm_only_write

xmm_only_write:
Clears only the low 128 bits of YMMO
xorps xmmO, xmmO

ret

.intel_syntax noprefix

.global ymm_full_write

ymm_full write:
Clears all 256 bits of YMMO
vxorps ymmO, ymmO, ymmO

ret

Relying on upper YMM state after an XMM-only write is a common low-level bug.

3.2 Floating-Point Argument Passing Rules
The System V AMD64 ABI defines a separate argument register sequence for floating-

point values, independent of integer/pointer arguments.

3.2.1 Scalar floating-point arguments

» Up to 8 floating-point arguments are passed in XMM0——-XMM7.

* Supported scalar types include f1oat, double, and vector-compatible scalar values.

28

* Floating-point arguments do not consume integer argument registers.

If more than eight floating-point arguments are present, the remaining ones are passed on the

stack according to ABI stack layout rules.

Example: Mixed integer and floating-point arguments
Conceptual signature:

.intel_syntax noprefix

double f(long a, double b, long c, double d, double e);

System V register assignment:

* ainRDI

b in XMMO

e cin RSIT

d in XMM1

e in XMM2

.intel_syntax noprefix

.extern f

.global call_f_ sysv
call_f sysv:
mov rdi, 10 # # a
mov rsi, 20 # # c
b, d, e loaded into XMMO, XMM1l, XMM2 by caller
call £

ret

29

3.2.2 Floating-point return values
System V AMDG64 specifies:
* Scalar floating-point return: XMMO0

* Vector return (SSE width): XMM0

Example: Returning a double

.intel_syntax noprefix
.global ret_double_sysv
ret_double_sysv:

Return value must be in XMMO

ret

3.3 SIMD Considerations in Function Calls

SIMD usage introduces strict ABI responsibilities related to register volatility, stack alignment,

and call boundaries.
3.3.1 Vector register volatility (System V AMD64)
All vector registers are caller-saved:

e XMMQO—-—-XMM15 are volatile

e YMMO—--YMM15 are volatile

A callee may freely overwrite any vector register without saving it.

30

Example: Caller responsibility for preserving XMM registers

.intel_syntax noprefix

.extern callee

.global caller_ preserves_xmm0

caller preserves_xmm0:
sub rsp, 16
movdqu [rsp], xmmO # # save volatile XMMO
call callee
movdqu xmmO, [rsp] # # restore after call
add rsp, 16

ret

3.3.2 Stack alignment and SIMD

The System V AMD64 ABI requires:
* RSP must be 16-byte aligned at every call boundary.

This requirement exists primarily to support aligned SIMD loads, spills, and ABI-compliant

stack frames generated by compilers.

Example: Correct alignment before a call

.intel_syntax noprefix
.global aligned_call_sysv
aligned_call_sysv:
push rbx # # breaks alignment by 8
sub rsp, 8 # # restore 1l6-byte alignment

31

call callee
add rsp, 8
pop rbx

ret

Failing to maintain alignment may cause crashes, data corruption, or severe performance

penalties once vector spills or aligned loads are introduced.

3.3.3 AVX and call-boundary hygiene

When AVX instructions are used, upper YMM state becomes live. Although the System V
ABI allows unrestricted use of YMM registers, transitioning between AV X-heavy code and
legacy SSE-only code can introduce penalties.

A disciplined practice at call boundaries is to clear upper YMM lanes when needed.

Example: Clearing upper YMM state before a call

.intel_syntax noprefix

.extern legacy_sse_func

.global avx_call_boundary_sysv

avx_call_boundary_sysv:
... AVX work using YMM registers
vzeroupper # # clear upper 128 bits of all YMM regs
call legacy_sse_func

ret

32

Discipline Summary

XMM/YMM registers are the sole carriers of scalar FP and SIMD values in System V
AMDG64.

Up to eight floating-point arguments are passed in XMM0—--XMM7, independent of

integer arguments.

All vector registers are caller-saved; callees may freely clobber them.

Stack alignment at 16 bytes is mandatory for correct SIMD behavior.

AV X/SSE transitions require explicit hygiene to avoid penalties and state hazards.

Chapter 4

Register-Based Argument Passing

4.1 Integer and Pointer Argument Rules

Under the System V AMD64 ABI, integer-class arguments (including pointers) are passed in

a fixed register sequence. The first six integer/pointer arguments are placed in:

RDI, RSI, RDX, RCX, R8, R9

Additional integer/pointer arguments beyond the sixth are passed on the stack.

Important discipline rules:

* The register assignment is by argument position among integer-class arguments, not

by type size.

» Narrow integer types (char, short, int) are carried in the corresponding 64-bit
register, but the caller must apply the correct extension (sign or zero) to match the

declared type rules at the call boundary.
* Pointers are passed as 64-bit values in the same integer-class registers.

33

34

» Stack-passed arguments are placed by the caller in memory above the return address
(and any alignment padding), and are accessed by the callee relative to RSP /RBP

according to its chosen frame strategy.

Example: Passing 1 to 6 integer/pointer arguments in registers

.intel_syntax noprefix

.extern f6
long f6(long a, long b, long ¢, long d, long e, long f);

.global call_f6_sysv
call_f6_sysv:

mov rdi, 1 # # a
mov rsi, 2 # # Db
mov rdx, 3 # # c
mov rcx, 4 # # d
mov r8, 5 # # e
mov r9, 6 ¥ # £
call f£6

ret

Example: Passing more than 6 integer arguments (stack extension)

.intel_syntax noprefix

.extern f8
long f8(long a,long b,long c,long d,long e,long f,long g,long h);

.global call_f8_sysv

35

call_f8_sysv:

mov rdi, 1 # # a
mov rsi, 2 # # Db
mov rdx, 3 # # c
mov rcx, 4 # # d
mov r8, 5 # # e
mov r9, 6 # # £

Remaining args go on stack.
Place right-to-left so that the 7th arg is closest to the
— return address.
Reserve 16 bytes for g and h.
sub rsp, 16
mov gword ptr [rsp + 8], 8 # # h (8th)
mov gword ptr [rsp + 0], 7 # # g (7th)

call f£8

add rsp, 16

ret

4.2 Floating-Point Argument Rules

Floating-point arguments use a separate register sequence:

XMMO, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7

Discipline rules:

* Up to 8 floating-point arguments are passed in XMM0——XMM7.

36

* Floating-point arguments do not consume integer argument registers.
» Additional floating-point arguments beyond the eighth are passed on the stack.
* Scalar float and double values are carried in XMM registers (low lanes), and callers

must ensure correct value representation.

Example: Passing 1 to 8 double arguments in XMM registers

.intel_syntax noprefix

.extern fd8

double fd8 (double a,double b,double c¢,double d,double e,double
- f,double g,double h);

.global call_fd8_sysv

call_fd8_sysv:
a..h must be placed in XMMO..XMM7 by the caller.
call £d8

ret

4.3 Mixed Argument Lists

In System V AMD64, mixed argument lists are handled by maintaining two independent

counters:

* one counter for integer/pointer arguments (assigning RDI, RSI, RDX, RCX, RS,
R9)

* one counter for floating-point arguments (assigning XMM0—-XMM7)

37

This means:

* You can exhaust integer registers while still having available XMM registers.
* You can exhaust XMM registers while still having available integer registers.

 Stack placement happens independently once a class runs out of its register slots.

Example: Mixed signature with interleaving types
Conceptual signature:

.intel_syntax noprefix

double mix(long a, double b, long c, double d, long e, double f);

Register assignment:

a (int) in RDT

b (fp) in XMMO

c (int) in RST

d (fp) in XMM1

e (int) in RDX

f (fp) in XMM2

.intel_syntax noprefix

.extern mix

.global call_mix_sysv

call _mix_sysv:

38

mov rdi, 11 # # a
mov rsi, 22 # # c
mov rdx, 33 # # e

b in XMMO, d in XMM1, f in XMM2 (loaded elsewhere)
call mix

ret

4.4 Argument Classification and Ordering

The ABI performs argument classification to determine whether each argument is passed in
an integer register, a vector register, or on the stack.

For practical assembly-level correctness in this booklet, treat the following as the core

classification model:

* INTEGER class: integers, pointers, and values that are naturally represented as 64-bit

integer quantities.

* SSE class: scalar floating-point values and vector values that are passed via XMM

registers.

* MEMORY class: values that do not fit ABI register passing rules (commonly larger

aggregates) and therefore are passed on the stack or via hidden pointers.
Ordering rules you must enforce at the call site:
* Arguments are logically ordered left-to-right by the function signature.

* Each argument is assigned to the next available register in its class sequence (INTEGER
or SSE).

* Once a class exhausts its register slots, remaining arguments of that class are passed on
the stack.

39

» Stack-passed arguments are laid out by the caller in increasing memory addresses such

that the earliest stack argument is closest to the return address.

Example: Exhaust integer registers, continue using XMM registers
Conceptual signature:

.intel_syntax noprefix
double g(long a,long b,long c,long d,long e,long f,long g,long h,
— double x, double vy);

Register assignment:

e a..finRDI,RSI,RDX,RCX,R8,R9
* g, h on stack (integer registers exhausted)

* x, vy still in XMMO, XMM1 (XMM registers remain available)

.intel_syntax noprefix

.extern g

.global call_g_sysv
call_g sysv:
mov rdi,
mov rsi,
mov rdx,
mov rcx,

mov r8,

o O b W N

mov r9,

sub rsp, 16

40

mov gword ptr [rsp + 8], 8 # # h
mov gword ptr [rsp + 0], 7 # # g

x in XMMO, y in XMM1 (loaded elsewhere)

call g

add rsp, 16

ret

Example: Exhaust XMM registers, continue using integer registers
Conceptual signature:

.intel_ syntax noprefix
long h(double a,double b,double c,double d,double e,double f,double
— g,double h,double i, long p);

Register assignment:

* a..hin XMMO. .XMM7
* 1 on stack (XMM registers exhausted)
* pstill in RDT (integer registers still available)

.intel_syntax noprefix

.extern h

.global call_h_sysv
call_h_sysv:
mov rdi, 123 # # p is integer arg => uses RDI

— regardless of FP count

41

sub rsp, 8 # # reserve stack slot for i1 (9th FP arqg)
store 1 as IEEE-754 double bits (illustrative; actual

— load/store may vary)

[rsp] = 1
call h

add rsp, 8
ret

Discipline Summary
* Integer/pointer args: RDI, RSI, RDX, RCX, R8, RO (then stack).
* Floating-point args: XMM0O-—-XMM7 (then stack).

* Mixed lists use two independent sequences; do not “shift” XMM registers because of

integer arguments or vice versa.

» Correct argument passing is a binary contract: the callee reads exactly what the caller

places, and any mismatch is not recoverable.

Chapter 5

Stack Frame Layout

5.1 Stack Growth and Organization

In the System V AMD64 ABI, the stack is a contiguous region of memory used for call/return
control flow, spilled registers, local storage, and passing arguments that do not fit in registers.

Core properties:

The stack grows downward: pushing data decrements RSP.

RSP always points to the current top of the stack.

A call instruction pushes the return address (8 bytes) onto the stack, decrementing
RSP by 8.

A ret instruction pops the return address into RIP, incrementing RSP by 8.

Example: How call and ret use the stack

.intel_syntax noprefix

42

43

.global demo_call_ret

demo_call ret:
Before call: RSP —-> top
call target # # pushes return address: RSP -= 8; [RSP] =
— return RIP
ret # # pops return address: RIP = [RSP]; RSP +=
— 8

target:

ret

5.2 Stack Frame Components

A stack frame is the portion of the stack owned by a function invocation. Not every function
must create a visible frame, but any function that needs local storage, spills, or preservation
will allocate one.

Typical frame components (from higher addresses to lower addresses):

* Incoming stack arguments (for arguments beyond those passed in registers)

Return address (pushed by call)

Saved frame pointer (optional: push rbp)

Saved callee-saved registers (e.g., RBX, R12--R15 if used)

* Local variables / temporaries (including compiler-created spill slots)

Alignment padding (to satisfy ABI alignment rules)

Two practical facts:

44

* The exact layout varies by compiler, optimization, and whether a frame pointer is used.
* ABI invariants do not depend on a specific compiler layout: alignment and preservation

rules must still hold.

Example: Frame with saved registers and locals (illustrative layout)

.intel_syntax noprefix

High addresses

l[arg7] [arg8] # incoming stack args (if any)
[ret addr] # pushed by call

[saved RRBP] # optional

[saved RBX] # if used

[local/spill areal] # locals, spills, padding

Low addresses

5.3 Function Prologue and Epilogue

A function prologue/epilogue establishes and tears down its frame and enforces ABI rules:

5.3.1 Common prologue pattern (with frame pointer)

* Save old RBP and set it to the current stack pointer
» Save any callee-saved registers the function will use
* Allocate stack space for locals/spills

* Maintain alignment rules for any further calls

.intel_syntax noprefix

45

.global func_with_ frame
func_with_ frame:
push rbp

mov rbp, rsp

push rbx # # preserve callee-saved RBX if used
sub rsp, 32 # # locals/spills/padding (example size)
... function body

add zrsp, 32

pop rbx
pop rbp
ret

5.3.2 Leaf function pattern (no frame pointer)

A leaf function makes no calls. It can often avoid stack allocation completely if it uses only

volatile registers and no local storage.

.intel_syntax noprefix
.global leaf_add
long leaf_add(long a,long b) # a=RDI, b=RSI, ret=RAX
leaf add:
lea rax, [rdi + rsi]

ret

5.3.3 Non-leaf functions must respect call-site alignment

If a function makes calls, it must ensure RSP is in the correct state before each call. Even if

the function uses no locals, a single push can break alignment and must be compensated.

46

.intel_syntax noprefix

.extern callee

.global nonleaf_alignment_example
nonleaf_alignment_example:
push rbx # # breaks alignment by 8
sub rsp, 8 # # fix alignment before call
call callee
add rsp, 8
pop rbx

ret

5.4 Red Zone Concept and Constraints

The System V AMDG64 ABI defines a red zone: a 128-byte region below the current stack
pointer (RSP) that is guaranteed not to be clobbered by signal/trap handlers in user-space on

compliant systems.

e The red zone is located at addresses [RSP — 128, RSP - 1].

* Leaf functions may use it for temporary storage without adjusting RSP.

This is a major difference from Windows x64, which has no red zone. Portable assembly

must not rely on the red zone if it targets Windows.

5.4.1 Correct usage constraints

You may use the red zone only when all of the following are true:

* You are in System V AMD64 user-space (not Windows x64).

47

* You are in code where asynchronous events (signals/interrupt-like events) obey the red-

zone guarantee.
* You do not modify RSP in a way that invalidates your offsets.

* You understand that any function call may overwrite your red-zone temporaries

because callees may use their own stack frames and can adjust RSP.

Therefore, red-zone use is most natural in leaf functions.

Example: Leaf function using the red zone (no stack allocation)

.intel_syntax noprefix

.global redzone_leaf_demo

long redzone_leaf_demo (long x) # x=RDI
redzone_leaf demo:

Use 8 bytes in the red zone for a temporary.

mov gword ptr [rsp - 8], rdi # # store x

add gword ptr [rsp - 8], 5 # # temp += 5
mov rax, qgword ptr [rsp - 8] # # return temp
ret

Incorrect usage: calling another function after storing in red zone

Once you call another function, the red-zone storage is no longer safe as “your” temporary

area, because the callee may move RSP and overwrite memory below its own RSP.

.intel_syntax noprefix

.extern callee

.global redzone_call_bug

48

redzone_call_bug:
mov gword ptr [rsp - 8], 123 # # store temp in red =zone
call callee # # callee may overwrite below
— 1ts RSP
mov rax, gword ptr [rsp - 8] # # BUG: value may be destroyed

ret

Discipline Summary

* The stack grows downward; call pushes the return address; ret pops it.

* A stack frame may include saved registers, locals/spills, and padding; exact layout

varies, but ABI invariants must hold.

* Prologue/epilogue sequences implement preservation and stack management; non-leaf

functions must maintain call-site alignment.

* The System V red zone provides 128 bytes below RSP usable mainly by leaf functions;
it must not be relied upon for Windows targets and must not be treated as safe across

calls.

Chapter 6

Stack Alignment Rules

6.1 16-Byte Alignment Requirement

The System V AMD64 ABI requires 16-byte stack alignment at call boundaries. In

practical terms:

* Immediately before executing a call instruction, RSP must be aligned to 16 bytes.

* The call instruction pushes an 8-byte return address, so upon entry to the callee,

o

RSP is typically misaligned by 8 relative to 16 (i.e., RSP % 16 == 8).

This rule exists so that the callee can realign as needed and so that compilers can safely
generate aligned stack spills, local allocations, and vector operations under stable assumptions.

A concise mental model:

* Callsite: RSP % 16 == 0 (required)
* Callee entry: RSP % 16 == 8 (because return address is pushed)

49

50

Example: Checking alignment by masking

.intel_syntax noprefix
.global rsp_modlé6
rsp_modl6:
mov rax, rsp
and rax, 15 # # RAX = RSP % 16

ret

6.2 Alignment at Function Call Boundaries

The alignment rule is a caller responsibility: the caller must ensure correct alignment before
every call it makes.

This interacts with pushes, local allocations, and stack argument setup:

» Each push subtracts 8 bytes from RSP and toggles alignment between 0 and 8 mod 16.
* Any manual sub rsp, N mustchoose N such that alignment is correct at call sites.
* When placing stack arguments, the total stack adjustment must still preserve call-site

alignment.

Example: A single push breaks call-site alignment

.intel_syntax noprefix

.extern callee

.global misaligned_call_due_to_push
misaligned_call_due_to_push:

push rbx # # RSP —= 8 => alignment toggles

51

call callee # # BUG: call-site alignment may be wrong
pop rbx
ret

Fix: compensate with an extra 8-byte adjustment

.intel_syntax noprefix

.extern callee

.global aligned_call_with_compensation
aligned_call_with_compensation:
push rbx
sub rsp, 8 # # restore 1l6-byte alignment before call
call callee
add rsp, 8
pop rbx

ret

Example: Non-leaf function allocating locals must still align before calls

.intel_syntax noprefix

.extern callee

.global locals_and call
locals _and call:
push rbp

mov rbp, rsp

Allocate 24 bytes of locals, but preserve call-site

— alignment.

52

After

—

sub

call callee

add
pop

ret

padding.

rsp,

rsp,

rbp

'push rbp',

alignment flips; choose allocation with

24 locals + 8 padding (example)

aligned call site

Example: Passing stack arguments while preserving alignment

.intel_syntax noprefix

.extern

£8

long f8(long a,long b,long c¢,long d,long e,long f,long g,long h);

.global call_f8_ aligned
call_f8_aligned:

mowv
mov
mov
mov
mov

mowv

sub

mowv

rdi,
rsi,
rdx,
rcx,
r8,

r9,

1

2
3
4
5
6

Need 16 bytes for g and h. This preserves 1l6-byte alignment

if RSP was aligned here.

LSp,

gword ptr

16

[rsp + 8], 8

53

mov gword ptr [rsp + 01, 7
call f£8

add rsp, 16

ret

6.3 Effects of Misalignment on Execution

Misalignment is not merely “slower code”; it can produce severe failures depending on code

generation, instruction selection, and library behavior.

6.3.1 Correctness failures

Misalignment may cause faults or undefined results when code uses instructions that require
aligned memory operands or when library routines assume ABI-aligned stack frames.

Common failure patterns:

* Crashes inside optimized library code (often appears unrelated to the caller).
* Intermittent failures that differ between debug/release builds.

* Failures that depend on CPU features (SSE/AVX usage) or compiler version.

Example: A callee using aligned stack spills (conceptual risk)

Even if your code never uses SIMD explicitly, the compiler may spill vector registers or local
vectors to the stack with alignment assumptions. If the caller violates alignment, the callee

may generate aligned moves that fault or misbehave.

54

.intel_syntax noprefix

Conceptual illustration:

If a compiler assumes alignment, it may emit aligned loads/stores
-~ (e.g., for l6-byte objects).

If the stack is misaligned, those aligned accesses can become

— 1d1nvalid at runtime.

6.3.2 Performance degradation

Even when misalignment does not crash, it can still degrade performance:

* Some unaligned loads/stores are slower or require more micro-operations.
* Misalignment can force the compiler to generate more conservative code.

* Misaligned stack frames can increase register spill traffic and reduce vector efficiency.

Example: A hidden performance bug

A function that accidentally misaligns the stack may cause all callees in a hot loop to pay extra

penalties due to conservative spills or unaligned memory operations.

.intel_syntax noprefix

.extern hot_callee

.global hidden_alignment_perf_bug
hidden_alignment_perf bug:
push rbx # # breaks alignment
missing alignment fix here
call hot_callee # # may still run, but with avoidable

— penalties

55

pop rbx

ret

6.3.3 Debugging symptoms
Alignment bugs often manifest as:
* Crashes in unrelated functions (because the failure happens after an ABI violation).

* Stack traces that look corrupted (because an ABI violation can cascade into wrong

unwinding).

* “Only fails with optimization” or “only fails on some machines” due to different

instruction choices.

Discipline Summary

System V AMD64 requires RSP to be 16-byte aligned before every call.

The caller is responsible for alignment; pushes and local allocations must be balanced

with padding.

Misalignment can cause crashes, corrupt execution, destroy stack traces, or silently

degrade performance.

Always audit your assembly and FFI boundaries: treat alignment as a hard correctness

rule, not an optimization.

Chapter 7

Caller-Saved vs Callee-Saved Registers

7.1 Preservation Responsibilities

In the System V AMDG64 ABI, registers are divided by preservation responsibility:

* Caller-saved (volatile): the caller must assume the callee may overwrite these registers.
If the caller needs their values after a call, it must save them before the call and restore

them after.

* Callee-saved (non-volatile): the callee must preserve these registers. If the callee uses

them, it must save their incoming values and restore them before returning.

System V AMD64 GPR classification

Callee-saved (must be preserved by callee):
RBX, RBP, R12, R13, R14, RI15
Caller-saved (may be clobbered by callee):

RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11

56

57

Special discipline rules:
* RSP must always be restored to its incoming value before ret.
* Vector registers (XMM/YMM) are caller-saved under System V AMDG64 (caller must

save if needed across calls).

Why this rule exists

This split balances performance and composability:
* Most calls can be fast because callees are not forced to save everything.
* Callers only save what they actually need to keep.

* Callee-saved registers provide stable long-lived storage across calls (useful for local

state in non-leaf functions).

7.2 Register Save and Restore Mechanics
Save/restore mechanics must preserve values exactly, keep stack discipline correct, and

maintain call-site alignment when making further calls.

7.2.1 Callee saving callee-saved registers

If a callee uses a callee-saved register, it must save it early (typically in the prologue) and

restore it late (typically in the epilogue).

Example: Callee uses RBX and must preserve it

.intel_syntax noprefix

58

.global callee_uses_rbx
callee uses_rbx:
push rbx # # save callee-saved RBX
... RBX is now safe to use
mov rbx, 123
... work
pop rbx # # restore RBX before return

ret

If the callee uses multiple callee-saved registers, it must preserve all it touches:

.intel_syntax noprefix
.global callee_uses_rl1l2_rl3

callee uses rl2 rl3:

push rl2

push rl3

... use rl12/ri13
pop rl3

pop rl2

ret

7.2.2 Caller saving caller-saved registers

If the caller needs a volatile register after a call, it must save it itself. The simplest mechanism

is to spill to the stack (or move into a callee-saved register that the caller owns across its own
calls).

Example: Caller preserves R10 across a call

.intel_syntax noprefix

59

.extern callee

.global caller_needs_rl10
caller needs_rl10:

mov rl0, OxABCDEF

push rl0 # # save volatile register (caller
— responsibility)
call callee

pop rlo0 # # restore after call

mov rax, rl0

ret

7.2.3 Maintaining stack alignment while saving registers

Because each push changes RSP by 8 bytes, saving an odd number of registers can break

call-site alignment. If the function makes calls, it must compensate.

Example: Callee saves RBX then calls another function (alignment

disciplined)

.intel_syntax noprefix

.extern other

.global callee_save_then_call
callee_save_then_call:
push rbx # # save callee-saved

sub rsp, 8 # # maintain 16-byte alignment before call

60

call other
add rsp, 8
pop rbx

ret

7.2.4 Saving vector registers in System V AMDG64

All XMM/YMM registers are caller-saved. If a caller needs an XMM register value preserved,

it must save/restore it.

.intel_syntax noprefix

.extern callee

.global caller_preserves_xmml
caller preserves_xmml:
sub rsp, 16
movdqu [rsp]l, xmml # # save volatile XMM1
call callee
movdqu xmml, [rsp] # # restore
add rsp, 16

ret

7.3 Practical Calling Scenarios

7.3.1 Scenario 1: Non-leaf function needs stable locals across calls

Use callee-saved registers for long-lived local state within the function; save them once in the

prologue and restore once in the epilogue.

.intel_syntax noprefix

61

.extern stepl

.extern step2

.global pipeline_example

long pipeline_example (long x)

pipeline_example:
push rbx
sub rsp, 8
mov rbx, rdi
mov rdi, rbx
call stepl
mov rdi, rbx
call step?2
add rsp, 8
pop rbx
ret

align before calls

keep x in RBX across multiple calls

Here, RBX is used as a stable local variable because it is callee-saved and thus remains valid

across calls inside the same function (after we preserved it in the prologue).

7.3.2 Scenario 2: Caller wants to keep an argument register value after

calling

Argument registers are caller-saved under SysV. If the caller wants to reuse RDI or RST after

calling another function, it must save them.

62

.intel_syntax noprefix

.extern callee

.global reuse_rdi_after_call

reuse_rdi _after call:

RDI holds an important pointer we need after the call

push rdi

call callee

pop rdi

safe to use RDI again
mov rax, rdi

ret

restore our pointer

7.3.3 Scenario 3: Bug pattern — callee clobbers callee-saved register

If a callee clobbers RBX without preserving it, it violates the ABI and breaks any caller that

relies on RBX surviving across the call.

.intel_syntax noprefix
.global buggy_callee_clobber_rbx
buggy_callee_clobber_ rbx:

mov rbx, 999
— preserved

ret

Correct version:

.intel_syntax noprefix
.global fixed_callee_preserve_rbx
fixed_callee_preserve_rbx:

push rbx

BUG:

RBX is callee-saved; must be

63

mov rbx, 999
pop rbx

ret

7.3.4 Scenario 4: Leaf functions and the red zone

Leaf functions that make no calls can often avoid stack frame allocation, and may optionally
use the red zone for temporary storage. This does not change preservation rules: caller-saved

registers are still volatile across any call (but leaf functions do not call).

.intel_syntax noprefix

.global leaf_uses_volatiles

long leaf_uses_volatiles(long a, long b)

leaf uses_volatiles:
Safe: leaf uses volatile registers and makes no calls
lea rax, [rdi + rsi]

ret

Discipline Summary

Callee must preserve: RBX, RBP, R12--R15.

Caller must preserve if needed: RAX, RCX, RDX, RSI, RDI, R8--R11 andall
XMM/ YMM registers.

Save/restore must maintain stack correctness and call-site 16-byte alignment.

Use callee-saved registers for long-lived locals in non-leaf functions; save caller-saved

registers only when the caller truly needs them after a call.

Chapter 8

Function Call and Return Mechanics

8.1 call and ret Instruction Behavior

In x86-64, function calls and returns are implemented using the call and ret instructions.
These instructions manipulate the stack and instruction pointer directly and form the

foundation of all ABI-level control flow.

8.1.1 Behavior of call

The call instruction performs two atomic actions:

* Pushes the return address (the address of the instruction following cal1l) onto the

stack.

* Transfers control to the call target by loading its address into RIP.
Formally:
e RSP := RSP - 8

64

65

e [RSP] := RIP_next
e RTP := target
8.1.2 Behavior of ret

The ret instruction reverses this process:

* Pops the return address from the stack into RIP.

* Increments RSP by 8.

Formally:
* RIP := [RSP]
* RSP := RSP + 8§

Example: Minimal call/return pair

.intel_syntax noprefix
.global caller
caller:
call callee # # pushes return address, jumps to callee

ret

callee:

ret # # pops return address, returns to caller

66

8.2 Return Address Handling

The return address is an implicit stack argument managed entirely by the CPU. It is not
passed in a register and must be treated as read-only control-flow data.

Key rules:

* The return address always resides at the top of the stack on function entry.
* It must remain intact until ret executes.

* Any stack manipulation must preserve its position relative to RSP.

Example: Stack layout at function entry

.intel_syntax noprefix
On entry to callee:
RSP -> [return address]

8.2.1 Saving and restoring around the return address

If a function needs stack space or must save registers, it must do so below the return address

by adjusting RSP.

Correct: allocating locals below the return address

.intel_syntax noprefix

.global func_with_ locals

func_with locals:
sub rsp, 16 # # allocate local space below return
— address

... use locals

67

add rsp, 16

ret

Incorrect: overwriting the return address

.intel_syntax noprefix
.global overwrite_retaddr_bug
overwrite_retaddr_bug:
mov gword ptr [rsp]l, O # # BUG: overwrites return address

ret # # undefined control flow

8.3 Stack State Before and After Calls

Understanding stack state transitions is critical for ABI correctness.

8.3.1 Stack state before call

Before executing call, the caller must ensure:

» All arguments are placed in the correct registers and/or stack slots.
* RSP is 16-byte aligned.

* Any required caller-saved registers are preserved.

Example: Correct pre-call setup

.intel_syntax noprefix

.extern callee

.global caller_setup

68

caller_ setup:
RSP is 16-byte aligned here
mov rdi, 10 # # argument 1
call callee

ret

8.3.2 Stack state immediately after call
Once call executes:

* RSP is decremented by 8.

¢ The return address is at [RSP].

* RSP % 16 == 8 on callee entry (assuming correct call-site alignment).

Example: Entry state inside callee

.intel_syntax noprefix

callee_entry:
RSP points to return address
RSP & 16 ==

ret

8.3.3 Stack state before ret

Before executing ret, the callee must ensure:
* All callee-saved registers have been restored.
* RSP has been restored to its incoming value.

* The return address remains at the top of the stack.

69

Example: Correct epilogue

.intel_syntax noprefix
.global func_epilogue

func_epilogue:

... body
add rsp, 16 # # deallocate locals
ret

8.3.4 Stack state after ret

After ret:

e RIP resumes at the caller’s next instruction.

* RSP has the same value it had immediately before the original call.

Example: Caller resumes execution

.intel_syntax noprefix
caller_resume:
call callee
execution resumes here after ret

ret

8.4 Nested Calls and Stack Integrity

Nested calls form a stack of return addresses. Each call pushes a new return address; each

ret pops exactly one.

70

Example: Nested calls

.intel_syntax noprefix

.global f1
.global f2
.global £3
£f1:
call f2
ret
B ¢
call £3
ret
3¢
ret

The return sequence is strictly LIFO:
3= f2—=f1

Any imbalance in stack adjustments breaks this chain.

Discipline Summary
* call pushes the return address and transfers control.
* ret pops the return address and restores control.

* The return address must never be overwritten or skipped.

71

* Callers must align the stack before calls; callees must restore it before returns.

* Stack imbalance or return-address corruption results in immediate undefined control

flow.

Chapter 9

Returning Values and Aggregates

9.1 Scalar Return Values

Under the System V AMDG64 ABI, scalar return values are returned in registers. The rules

are simple, strict, and heavily relied upon by compilers and debuggers.

* Integer and pointer returns: RAX
* Boolean returns: AL (observed via RAX as O or 1)

* Floating-point returns: XMM0

For integers smaller than 64 bits, the ABI relies on type-directed extension:
* Signed types are sign-extended to 64 bits.

* Unsigned types are zero-extended to 64 bits.

72

73

Example: Returning a 64-bit integer

.intel_syntax noprefix
.global ret_ic4
ret _i64:
mov rax, 0x1122334455667788

ret

Example: Returning a boolean

.intel_syntax noprefix
.global is_nonzero
long is_nonzero (long x) # x in RDI
is_nonzero:
XOor eax, eax
test rdi, rdi
setne al # # AL = 1 if x !'= 0

ret

Example: Returning a double

.intel_syntax noprefix
.global ret_double
ret double:
return value must be in XMMO

ret

74

9.2 Structure and Union Return Rules

Returning aggregates (structures or unions) is governed by size and classification. The ABI
classifies aggregates into register-returnable or memory-returned categories.

Core rules:

* Aggregates of size up to 16 bytes may be returned in registers.

* Aggregates larger than 16 bytes are returned via memory using a hidden pointer.

* Register-returnable aggregates are decomposed into up to two eight-byte chunks.
Each eight-byte chunk is classified independently:

* INTEGER class — RAX / RDX

¢ SSE class — XMMO / XMM1

Example: Returning a small integer-only struct (8 bytes)

.intel_syntax noprefix

struct S { long x; };

.global ret_struct_S8
ret struct 8:
mov rax, 123 # # entire struct in RAX

ret

Example: Returning a 16-byte integer struct

.intel_syntax noprefix

struct S { long a; long b; };

75

.global ret_struct_16

ret_struct_16:

mov rax, 1 # # first field
mov rdx, 2 # # second field
ret

Example: Returning a mixed FP/integer struct

Conceptual type:

.intel_syntax noprefix

struct M { double x; long y; };
Register assignment:

* x in XMMO
 vin RAX

.intel_syntax noprefix
.global ret_mixed_ struct
ret _mixed struct:
XMMO holds double field
mov rax, 42 # # integer field

ret

9.3 Hidden Pointer Mechanism

When an aggregate cannot be returned in registers, the ABI uses a hidden return pointer
supplied by the caller.
Rules:

76

The caller allocates space for the return object.

* A pointer to this space is passed as an implicit first argument.

The callee writes the result into the pointed memory.

The function formally returns void.

In System V AMDG64:
* The hidden pointer is passed in RDT.

» User-visible arguments are shifted to the next registers.

Example: Large struct returned via hidden pointer
Conceptual type:

.intel_syntax noprefix
struct Big { long a; long b; long c; };
Big make_big(void);

Calling convention:

* RDI points to caller-allocated return storage.

.intel_syntax noprefix

.global make_big

make_big:
mov gword ptr [rdi + 0], 1
mov gword ptr [rdi + 8], 2
mov gword ptr [rdi + 16], 3

ret

7

9.4 Large Object Return Handling

Large aggregates (greater than 16 bytes, or those failing register classification) are always
returned via memory. This mechanism is fundamental to ABI stability and cross-language
interoperability.

Key implications:
* The callee does not allocate return storage.
* Lifetime and alignment of the return object are the caller’s responsibility.

* Debuggers and exception-unwinding logic rely on this convention.

Caller-side perspective (conceptual)

.intel_syntax noprefix
Caller allocates space, passes pointer in RDI, then calls.

Returned object is already written on return.

Common bug: forgetting the hidden pointer

If handwritten assembly omits the hidden pointer or misplaces arguments, the callee writes

into an invalid address, often corrupting memory silently.

.intel_syntax noprefix

BUG: calling make_big without setting RDI to valid storage
leads to memory corruption.

Discipline Summary

* Scalars return in RAX (integers/pointers) or XMMO (floating-point).

78

» Aggregates up to 16 bytes may return in registers, split into 8-byte units.
» Larger or non-classifiable aggregates use a hidden return pointer in RDT.

* Correct handling of aggregate returns is mandatory for ABI correctness and

interoperability.

Chapter 10

Variadic Functions (System V Basics)

10.1 Default Argument Promotions

In C/C++ variadic functions (functions declared with . . .), the compiler cannot infer the
types of the unnamed arguments from the callee side alone. Therefore, the language applies
default argument promotions at the call site, and the callee must retrieve arguments using an
explicit type protocol (typically va_1ist and va_arg).

Core promotions (C language rules, inherited by C++ varargs):

* Integer promotions: char, signed char,unsigned char, short, unsigned

short are promoted to int or unsigned int.

* Floating promotions: float is promoted to double.

Practical implications for ABI-level reasoning:

* A variadic callee must never attempt to read a £1oat from the variadic pack; it will be

present as a double.

79

80

* A variadic callee must never attempt to read a char/short from the variadic pack; it

will be present as an int.

Example: Promotion consequences (conceptual)

.intel_syntax noprefix

In a call like:

v("x", (char)l, (short)2, (float)3.0f);
The variadic payload is actually:

int 1, int 2, double 3.0

10.2 Register Save Area

In the System V AMDG64 ABI, variadic functions require a special mechanism so that a callee
can reliably access arguments regardless of whether the caller placed them in registers or on
the stack.

Key ABI idea:

* Named arguments follow normal register/stack passing.
* Variadic access (va_arg) needs a uniform memory view of register-passed arguments.

* Therefore, a variadic callee typically uses a register save area (also called the register
argument home area) where incoming register arguments are spilled so they can be

walked like memory.
Practical model used by compilers:

* The callee saves (copies) the incoming argument registers into a local memory block.

* The va_l1ist structure maintains offsets/pointers indicating:

81

— where the next integer-class variadic argument is (GPR path),
— where the next SSE-class variadic argument is (XMM path),

— where stack overflow arguments begin.

You do not need the concrete internal layout of va_11i st to write correct assembly at a

boundary; you must, however, respect that:
* the callee may read register-passed arguments from its own save area,

* the callee may read overflow arguments from the caller-provided stack area.

Example: Why a save area is necessary

.intel_syntax noprefix

Without saving register arguments to memory, va_arg would have to:
— read "the next argument" sometimes from registers and sometimes
-~ from stack,

— but registers are not an addressable stream,

- and the callee may already have overwritten them.

The save area turns register arguments into a stable memory stream.

10.3 Accessing Variadic Arguments

At the source level, variadic arguments are accessed using:
* va_start
* va_arg

e va_end

82

At the ABI level, two independent streams exist:

* GPR stream for integer/pointer class arguments

* SSE stream for floating-point arguments

A variadic callee selects the stream based on the type requested in va_arg.

Example: C-like access pattern (conceptual)

.intel_syntax noprefix

Conceptual:

int i = va_arg(ap, int); # from GPR save area or stack

-~ overflow

double d

va_arg(ap, double); # from XMM save area or stack
-~ overflow

Assembly boundary discipline: preserve argument registers early

If you implement a variadic function in assembly (or mix inline assembly), you must assume:
* Argument registers used for the named parameters are live on entry.
* Additional register arguments for the variadic payload may also be live.
* If you overwrite these registers before saving them, you destroy the variadic payload.

.intel_syntax noprefix
.global vfunc_save_early_demo
viunc_save_early_demo:
Discipline: if you plan to parse variadic args, preserve the

— 1ncoming regs early.

83

Example saves of a few registers; real implementations save

— all needed ABI argument regs.

push rbp

mov rbp, rsp

sub rsp, 128 # # local save area (illustrative size)
mov [rbp - 8], rdi # # save first integer arg register
mov [rbp - 16], rsi

mov [rbp - 24], rdx

mov [rbp - 32], rcx

mov [rbp - 40], 8

mov [rbp — 48], r9

similarly, XMMO..XMM7 may need to be saved for FP variadic
< access

movdqu [rbp - 64], xmmO # # etc.
... parse arguments using a protocol

leave

ret

10.4 ABI Limitations and Pitfalls

Variadic functions are powerful but fragile. Many pitfalls are not “logic bugs”; they are ABI

and type-protocol violations.

84

10.4.1 Pitfall 1: Reading the wrong promoted type

If a caller passed f1loat in a variadic position, the callee must read a double. Reading
a float is invalid and will consume the wrong number of bytes/slots, desynchronizing

subsequent reads.

.intel_syntax noprefix

Bug pattern (conceptual):

float £ = va_arg(ap, float); # wrong: float was promoted to
— double

Correct:

double d = va_arg(ap, double);

10.4.2 Pitfall 2: Assuming a single linear stream

Because SysV maintains separate GPR and SSE tracks, reading types in a different order than

the caller used is catastrophic. The callee must follow the exact protocol of types.

.intel_syntax noprefix
If the caller did:
v("sd %$f", 7, 3.5);

int then double

#
#
The callee must read:
#
Not:

#

double then int

10.4.3 Pitfall 3: Implementing variadic functions in assembly without

saving XMM regs

Even if named parameters are integer-only, a variadic payload may include floating-point

arguments. If the callee overwrites XMM registers before capturing them into a save area,

85

those variadic FP values are lost.

.intel_syntax noprefix
.global clobber_xmm_bug_variadic
clobber_xmm_bug_variadic:
BUG: overwrites XMMO before saving it
xorps xmmO, xmmO

ret

10.4.4 Pitfall 4: Cross-ABI porting assumptions

System V variadic mechanics differ from Windows x64 (register count, home space, and
va_list layout rules differ). Variadic functions are one of the quickest ways to break code

when porting.

.intel_syntax noprefix
Discipline: treat SysV varargs and Win64 varargs as different ABIs.
Never assume a va_list layout or register-save strategy transfers

— across platforms.

10.4.5 Pitfall 5: Passing aggregates through . . .

Passing structs/unions through . . . is especially risky because the callee cannot infer the
layout or classification unless the protocol is explicitly defined. Robust interfaces avoid

aggregates in variadic positions and instead pass pointers or use typed wrappers.

.intel_syntax noprefix
Safer design pattern:
- pass pointer to struct, or

— use a typed API rather than varargs for non-trivial data.

86

Discipline Summary

* Default promotions: small integers — int, float — double.

» SysV variadic access depends on a register save area to provide a stable memory view of

register-passed args.

* Variadic access is type-driven and uses separate tracks for GPR and SSE arguments; the

callee must follow the exact type protocol.

* Major pitfalls: wrong promoted types, wrong read order, clobbering XMM regs early,

and cross-ABI assumptions.

Chapter 11

Common ABI Violations and Debugging
Symptoms

11.1 Stack Corruption Indicators

Stack corruption means the call/return chain or stack-owned data has been modified

incorrectly. Under System V AMD64, the most common root causes are:

* Unbalanced stack adjustments: sub rsp, N notmatchedby add rsp, N,or

mismatched push/pop.

* Overwriting the return address: writing to [rsp] (or [rbp+8] when using a frame

pointer).

* Writing beyond allocated locals: out-of-bounds stack writes (e.g., using [rsp—8]

without red-zone guarantees, or indexing into locals incorrectly).

* Wrong stack-argument offsets: reading stack arguments using incorrect offsets due to

missing frame pointer assumptions or wrong allocation size.

87

88

Typical symptoms:

Crash on ret (jumping to a garbage return address).

Backtrace stops early, shows nonsense addresses, or unwinds incorrectly.

“Works in debug, crashes in release” because the compiler’s stack frame differs.

Failure appears inside unrelated library code because the ABI violation occurred earlier.

Example: Unbalanced stack adjustment breaks return

.intel_syntax noprefix
.global unbalanced_stack_bug
unbalanced_stack_bug:
sub rsp, 16 # # allocate locals
... work
BUG: missing add rsp, 16
ret # # ret pops wrong address (stack shifted)

Correct version:

.intel_syntax noprefix
.global balanced_stack_ok
balanced _stack_ok:

sub rsp, 16

... work

add rsp, 16

ret

89

Example: Overwriting the return address

.intel_syntax noprefix
.global overwrite_retaddr_bug
overwrite_retaddr_bug:
mov gword ptr [rsp], 0xO0 # # BUG: overwrites return address

ret # # undefined control flow

Example: Wrong local offset corrupts saved state

.intel_syntax noprefix
.global wrong_offset_bug
wrong_offset_bug:

push rbp

mov rbp, rsp

sub rsp, 16

Suppose intended local is at [rbp-8], but a bug writes [rbp+8]
— 1nstead.
[rbp+8] is the return address in the canonical frame layout.

mov gword ptr [rbp + 8], 0x4141414141414141 # # BUG

leave

ret

11.2 Register Clobbering Errors

Register clobbering errors occur when caller/callee preservation responsibilities are violated.
System V AMD64 rules (GPRs):

90

* Callee-saved: RBX, RBP, R12--R15 (callee must preserve)

e Caller-saved: RAX, RCX, RDX, RSI, RDI, R8--R11 (caller must preserve if
needed)

Vector registers:

* XMM/YMM are caller-saved under System V AMDG64.
Typical symptoms:

* Values “randomly” change after calls.

* Bugs appear only with inlining disabled or with different optimization levels.

* Errors reproduce only when a particular call path executes (because clobber happens in

one callee).

Example: Callee clobbers RBX (ABI violation)

.intel_syntax noprefix
.global clobber_rbx_bug
clobber_rbx_bug:
mov rbx, 999 # # BUG: RBX is callee-saved on SysV

ret
Correct version:

.intel_syntax noprefix
.global preserve_rbx_ok
preserve_rbx_ok:

push rbx

mov rbx, 999

pop rbx

ret

91

Example: Caller assumes RDI survives a call (wrong on SysV)

.intel_syntax noprefix

.extern callee

.global caller_wrong_rdi_assumption
caller wrong_rdi_assumption:

mov rdi, 77

call callee # # callee may clobber RDI
mov rax, rdi # # BUG: assumes RDI still 77
ret

Correct caller strategy (save volatile register if needed):

.intel_syntax noprefix

.extern callee

.global caller_saves_rdi_ok
caller saves_rdi_ok:

mov rdi, 77

push rdi

call callee

pop rdi

mov rax, rdi

ret

Example: Caller forgets XMM registers are volatile

.intel_syntax noprefix

.extern callee

92

.global caller_forgets_xmm0O_bug

caller_forgets_xmmO_bug:
XMMO holds an important value here
call callee # # callee may clobber XMMO (SysV:
— caller—-saved)

ret

Correct preservation:

.intel_syntax noprefix

.extern callee

.global caller_saves_xmmO_ok
caller saves_xmmO_ok:

sub rsp, 16

movdqu [rsp]l, xmmO

call callee

movdqu xmm0, [rsp]

add rsp, 16

ret

11.3 Alignment-Related Crashes

System V AMD64 requires 16-byte alignment at call sites. Violations often produce failures
that look unrelated to the violating code.

Common causes:
* A push or odd number of pushes before a call without compensation.

* Manual local allocation sizes that do not preserve alignment.

93

* Incorrect stack argument reservation sizes.
Typical symptoms:

* Crash inside optimized code that uses vector spills or assumes aligned stack.
* Crash appears only on some CPUs or only with certain compiler flags.

* Unwinding/backtrace breaks when combined with other ABI violations.

Example: Misaligned call site due to one push

.intel_syntax noprefix

.extern callee

.global misaligned_call_bug

misaligned_call_bug:

push rbx # # toggles alignment

call callee # # BUG: call-site may violate 1l6-byte
— alignment

pop rbx

ret

Correct version (compensate with 8 bytes):

.intel_syntax noprefix

.extern callee

.global aligned_call_ok
aligned_call_ok:
push rbx

94

sub rsp, 8 # # restore alignment before call
call callee

add rsp, 8

pop rbx

ret

Example: Misalignment caused by wrong local allocation size

.intel_syntax noprefix

.extern callee

.global alloc_24_then_call_bug
alloc_24_then_call_bug:
push rbp
mov rbp, rsp
sub rsp, 24 # # BUG: may break call-site alignment
— depending on entry state
call callee
leave

ret
Corrected pattern: choose allocation with padding to satisfy alignment.

.intel_syntax noprefix

.extern callee

.global alloc_32_then_call_ok
alloc_32 then call ok:
push rbp

mov rbp, rsp

95

sub rsp, 32 # # locals + padding (keeps call-site
— alignment)

call callee

leave

ret

Debugging Checklist

When debugging an ABI symptom, validate these invariants first:

Stack balance: every sub rsp, N has a matching add rsp, N; every push has a

matching pop.
Return address integrity: never write to [rsp] (or [rbp+8] with frame pointer).

Register preservation: callee preserves RBX, RBP, R12--R15; caller saves

volatile registers it needs.
Call-site alignment: RSP is 16-byte aligned before each call.

XMM/YMM volatility: caller saves vector registers if needed across calls.

Chapter 12

Interoperability and Language Boundaries

12.1 C and C++ ABI Interaction

In System V AMDG64 user space, the calling convention for ordinary C functions is stable and

well-defined at the ABI level: argument registers, return registers, stack discipline, and register
preservation rules follow the System V AMD64 ABI.

C++ introduces additional binary-level mechanisms beyond the base calling convention,

including:

Name mangling: C++ encodes function names with type information.
Overloading: multiple functions with the same source name require mangled symbols.

Member functions: an implicit this pointer argument is passed like a normal pointer

argument.
Constructors/destructors: may have multiple entry points and special calling patterns.

Exceptions and unwinding: require runtime support and strict stack frame/unwind

metadata correctness.

96

97

Therefore, the safest interoperability boundary is C linkage.

Rule: Use C linkage for external boundaries

* Export boundary functions using C linkage so symbol names remain stable.
» Keep the boundary signature “plain”: integers, pointers, POD-like data, explicit sizes.

* Avoid C++ features at the boundary (overloads, templates, references, exceptions).

Example: Stable boundary symbol (conceptual)

.intel_syntax noprefix
In C++ source, the boundary is declared with C linkage:
extern "C" long api_add(long a, long b);

#

The SysV ABI then ensures:

a in RDI, b in RSI, return in RAX

Assembly implementation of a C-linkage boundary

.intel_syntax noprefix
.global api_add
long api_add(long a, long b) # SysV: a=RDI, b=RSI
api_add:
lea rax, [rdi + rsi]

ret

98

C++ member functions: implicit this

A non-static member function receives a hidden first argument: the this pointer. Under SysV,

it is passed like the first pointer argument (RDI).

.intel_syntax noprefix

Conceptual:

struct Obj { long x; long get () const; };
get (this) is called with:

this in RDI

.intel_syntax noprefix
.global obj_get_x
long obj_get_x(0Obj* this) # explicit form used at ABI boundary
obj_get_x:
mov rax, gword ptr [rdi + 0] # # load this—>x

ret

12.2 Inline Assembly Constraints

Inline assembly is not “‘just assembly”; it is a contract with the compiler. The compiler is still
responsible for register allocation, scheduling, stack layout, and ABI compliance across the
whole function.

Key constraints:

* You must declare all clobbered registers correctly (or the compiler may assume they

are unchanged).

* You must respect stack alignment and callee-saved preservation rules if your inline

assembly performs calls or changes preserved state.

99

* You must treat inline assembly as a black box to the optimizer unless constraints are

precise; incorrect constraints lead to miscompilation.

Example: The core danger — undeclared clobber

If inline assembly modifies a register that the compiler thinks is still live, the program can

break without any visible assembly error.

.intel_syntax noprefix

Conceptual bug:

— compiler keeps a live value in RBX across the asm block
— asm clobbers RBX

— compiler later uses the corrupted value

ABI discipline for inline asm that calls another function

If your inline assembly emits a call, it must behave like any other caller:
* Provide correct argument registers.
* Preserve any caller-saved registers needed after the call.
* Maintain 16-byte stack alignment at the call site.

.intel_syntax noprefix

.extern callee

.global inline_style_call_example

inline_style_call_example:
Treat this as 1f it were inline asm inside a compiler-managed
— function:

1) align stack before call

100

2) assume volatile regs may be clobbered

sub rsp, 8 # # alignment compensation (illustrative)
call callee

add rsp, 8

ret

12.3 Cross-Language Calling Safety

Cross-language calls are safe only if both sides agree on:

calling convention (SysV AMD64),

* type sizes and alignment,

* structure layout rules,

* name binding (symbol names),

» ownership and lifetime rules for pointers and buffers,

* exception/error propagation rules.

12.3.1 Safe design patterns

Pattern 1: C ABI boundary wrapper
* Use a C ABI boundary even if the implementation is C++.
* Export only flat functions with explicit pointers and lengths.

* Return errors via integer codes, not exceptions.

101

Example: ‘“buffer + length” boundary

.intel_syntax noprefix
Conceptual C ABRI:
long api_process (const unsigned charx buf, long len);

SysV: buf in RDI, len in RSI

.intel_syntax noprefix

.global api_process

api_process:
validate inputs without exceptions
test rdi, rdi
Jje .bad

test rsi, rsi

Jjle .bad
... process
XOor eax, eax # # success => 0
ret

.bad:
mov eax, -1 # # error => -1
ret

Pattern 2: Opaque handles
* Do not expose C++ object layout across the boundary.

* Pass an opaque pointer/handle and provide constructor/destructor functions.

Example: Handle-based ABI (conceptual)

.intel_syntax noprefix

102

Conceptual C ABI:

voidx obj_create();

#

#

void obj_destroy(voidx h);

long obj_do(voidx h, long x);
#
#

The foreign side never depends on the C++ class layout.

12.3.2 Pitfalls and failure modes
Pitfall 1: C++ exceptions across non-C++ boundaries

* Throwing across an FFI boundary is unsafe unless both sides share the same unwinding

model and runtime.
* A safe boundary converts exceptions to error codes.
Pitfall 2: Returning aggregates without matching ABI classification

 If two languages disagree on struct layout or return classification, the caller and callee

will use different registers/memory.
* Prefer returning simple scalars and writing complex results into caller-provided buffers.
Pitfall 3: Variadic interfaces across languages
* Variadic conventions depend on language-level promotions and va_11ist layout.

* Do not use varargs as a cross-language boundary; use explicit typed APIs instead.

Example: Safe alternative to returning a large object

.intel_syntax noprefix

Instead of:

103

Big make_big();

Prefer:

long make_big (Bigx out);

where 'out' is a caller—-allocated buffer and the return value is a

— status code.

Boundary Checklist

Use C linkage for exported symbols and keep boundary signatures simple.

Avoid C++-only features (overloads, templates, exceptions, references) across the

boundary.

Treat inline assembly as a compiler contract: declare clobbers and preserve ABI

invariants.

Prefer buffer+length and handle-based designs over exposing layouts or using varargs.

* Never assume portability of ABI details across operating systems or toolchains.

Chapter 13

ABI Discipline Checklist

13.1 Mandatory Rules Recap

This chapter is a compact, enforcement-oriented checklist for System V AMD64 correctness.
Treat every item as mandatory when writing assembly, inline assembly, JIT code, or cross-

language boundaries.

Argument passing (register-based)

Integer/pointer args (first 6): RDI, RSI, RDX, RCX, R8, R9

Floating-point args (first 8): XMM0——XMM7

Mixed lists: two independent streams (INTEGER and SSE); do not shift one stream

because of the other.

* Remaining args after registers: passed on the stack with correct layout and alignment.

104

105

Return values

* Integer/pointer returns: RAX
* Floating-point returns: XMMO

* Small aggregates (up to 16 bytes): returned in registers (RAX/RDX or XMMO/XMM1

depending on classification)
» Larger aggregates: returned via hidden pointer (caller-allocated storage, pointer passed

as implicit first argument)

Register preservation

e Callee-saved GPRs: RBX, RBP, R12, R13, R14, R15
e Caller-saved GPRs: RAX, RCX, RDX, RSI, RDI, R8, R9, R10, RI11

* Vector registers: XMM0O—--XMM15 and YMMO—--YMM15 are caller-saved on System V
AMDO64.

* RSP must be restored to its incoming value before ret.

Stack discipline and alignment

» Stack grows downward; call pushes an 8-byte return address.
* Before every call, the caller must ensure RSP is 16-byte aligned.
* On callee entry (after the return address is pushed): typically RSP % 16 ==

* Red zone: 128 bytes below RSP is usable mainly by leaf functions; never treat it as safe

across calls.

106

13.2 Safe Calling Convention Practices

The practices below reduce risk of hidden ABI bugs and make debugging predictable.

13.2.1 Practice 1: Establish a consistent prologue/epilogue

Use a clear frame strategy and preserve only what you touch.

.intel_syntax noprefix
.global disciplined_nonleaf
disciplined_nonleaf:

push rbp

mov rbp, rsp

push rbx # # preserve callee-saved used reg
sub rsp, 32 # # locals/spills/padding (example)
... body

If calling other functions, ensure call-site alignment holds.

add rsp, 32

pop rbx
pop rbp
ret

13.2.2 Practice 2: Audit alignment at every call site

A single push before a call is enough to violate alignment if not compensated.

.intel_syntax noprefix

107

.extern callee

.global aligned_call_pattern
aligned_call_pattern:
push rbx
sub rsp, 8 # # compensate to keep 1l6-byte alignment
—~ before call
call callee
add rsp, 8
pop rbx

ret

13.2.3 Practice 3: Preserve caller-saved registers only when needed

If you need a volatile value after a call, save it explicitly.

.intel_syntax noprefix

.extern callee

.global caller_keeps_rl10
caller_ keeps_rl0:

mov rl0, OxABCDEF

push rl0 # # save volatile
call callee

pop rl0 # # restore

mov rax, rl0

ret

108

13.2.4 Practice 4: Treat XMM/YMM as volatile across calls

If your caller relies on xmmN surviving, save it.

.intel_syntax noprefix

.extern callee

.global caller_ keeps_xmm0
caller_ keeps_xmmO:
sub rsp, 16
movdqu [rsp]l, xmmO
call callee
movdqu xmm0, [rsp]
add rsp, 16

ret

13.2.5 Practice 5: Keep cross-language boundaries ‘“flat”
Prefer C-linkage style boundaries and explicit pointer+length protocols.

.intel_syntax noprefix
.global api_sum_bytes
long api_sum_bytes (const unsigned charx p, long n)
SysV: p=RDI, n=RSI
api_sum_bytes:
test rdi, rdi
Jje .bad
test rsi, rsi

jle .bad

XOr eax, eax # # sum in RAX

109

.loop:
cmp rsi, O
je .done
movzx edx, byte ptr [rdi]

add rax, rdx

inc rdi

dec rsi

Jmp .loop
.done:

ret
.bad:

mov eax, -1

ret

13.3 Common Mistakes to Avoid

13.3.1 Mistake 1: Unbalanced stack adjustments

.intel_syntax noprefix
.global bug_unbalanced
bug_unbalanced:
sub rsp, 16
... work
ret # # BUG: stack not restored

13.3.2 Mistake 2: Clobbering callee-saved registers

.intel_syntax noprefix

.global bug_clobber_rbx

110

bug_clobber_rbx:

mov rbx, 7 # # BUG: RBX must be preserved

ret

13.3.3 Mistake 3: Assuming argument registers survive calls

.intel_syntax noprefix

.extern callee

.global bug_assume_rdi_survives
bug_assume_rdi_survives:

mov rdi, 77

call callee # # callee may clobber RDI
mov rax, rdi # # BUG
ret

13.3.4 Mistake 4: Misaligned call sites

.intel_syntax noprefix

.extern callee

.global bug_misaligned_call

bug_misaligned_call:
push rbx
call callee # # BUG: may violate 16-byte alignment
pop rbx

ret

111

13.3.5 Mistake 5: Using red zone across calls

.intel_syntax noprefix

.extern callee

.global bug_redzone_across_call

bug_redzone_across_call:

mov gword ptr [rsp - 8], 123 # # stored in red zone

call callee # # callee may overwrite below its
— RSP

mov rax, qword ptr [rsp - 8] # # BUG: value not reliable

ret

13.3.6 Mistake 6: Wrong aggregate return assumption

.intel_syntax noprefix

BUG pattern (conceptual):

— caller expects a struct returned in RAX/RDX

— callee actually uses hidden pointer return (or vice versa)

This mismatch corrupts memory or returns garbage.

Final Checklist (Print and Audit)

* Before every call: RSP is 16-byte aligned.

After function return: RSP equals its entry value.

Callee preserves RBX, RBP, R12--R15 if used.

Caller saves volatile registers it needs after calls (including XMM/ YMM).

112

Integer/pointer args in RDI, RSI, RDX, RCX, R8, R9;FPargsin
XMMQO—-—-XMM7.

Returns: scalars in RAX / XMMO; aggregates follow the 16-byte vs hidden-pointer rule.
Do not overwrite [rsp] or [rbp+8] (return address).
Use red zone only for leaf temporaries; never rely on it across calls.

Keep cross-language boundaries flat: C linkage, explicit sizes, no exceptions, no

varargs.

References

Architecture Manuals

The contents of this booklet are grounded in the authoritative architectural documentation for
the x86-64 platform. These materials define the instruction set behavior, register semantics,

stack operation, and control-flow mechanics that the ABI relies on.

* x86-64 instruction execution model, including call, ret, stack behavior, and register

effects.
* General-purpose register and SIMD register architecture (GPRs, XMM/YMM).
* Memory addressing rules, alignment requirements, and calling-related side effects.
* Architectural guarantees required for correct ABI implementation in user-space code.

These manuals form the non-negotiable foundation for understanding how ABI rules map onto

real hardware behavior.

ABI Specifications

This booklet follows the official System V AMD64 ABI specification, which defines the

binary interface contract between independently compiled translation units.

113

114

Core specification areas used throughout this booklet include:

* Register-based argument passing for integer and floating-point arguments.

 Stack layout rules and 16-byte alignment requirements.

Caller-saved and callee-saved register classification.

* Aggregate classification and return-value handling.

Hidden pointer mechanism for large return objects.

Variadic function handling and register save area concepts.

All calling convention rules, stack discipline constraints, and preservation responsibilities

described in this booklet are derived directly from this specification.

Compiler Calling Convention Documentation

Modern compilers implement the System V AMD64 ABI with strict conformance, but
also expose implementation-specific behavior that is essential for low-level debugging and
interoperability.

This booklet aligns with documented compiler behavior in the following areas:

» Register allocation and argument lowering for C and C++ frontends.

Stack frame generation, prologue/epilogue patterns, and frame pointer usage.

Inline assembly constraints and clobber rules.

ABI interactions with optimization levels and inlining.

* Debugging and unwinding expectations tied to correct ABI compliance.

Compiler documentation is treated as a confirmation layer: it demonstrates how the ABI rules

are realized in practice, not as an alternative definition of the ABI itself.

115

Cross-References to Other Booklets in This Series

This booklet is part of the CPU Programming Series and is designed to be read alongside

earlier and later volumes. Key conceptual dependencies and continuations include:

* Booklet 01 — How a CPU Executes Instructions Foundation for understanding

control flow, instruction retirement, and call/return mechanics.

* Booklet 02 — Registers, Flags, and Data Representation Required for correct

reasoning about register usage, data width, sign extension, and flag side effects.

* Booklet 03 — The Stack & Calling Conventions (ABI Foundations) Introduces stack

concepts, frame structure, and cross-architecture ABI principles.

* Booklet 04 — Memory, Caches, and the Cost of Access Provides essential

background for stack memory behavior, alignment costs, and performance implications.

* Booklet 08 — Windows x64 ABI: Calling Convention Differences That Break Code
Direct comparison volume highlighting incompatibilities between System V AMD64
and Windows x64 ABIs.

Together, these booklets form a coherent progression from CPU fundamentals to ABI-level

correctness and cross-platform interoperability.

	Contents
	Preface
	Purpose of This Booklet
	Scope and Assumptions
	How to Read and Use This Booklet Effectively

	Introduction to the System V AMD64 ABI
	What an ABI Defines and Guarantees
	Role of the ABI in Compiled Programs
	Relationship Between ABI, Compiler, and Operating System
	ABI and the compiler
	ABI and the operating system

	Practical Goal of This Booklet

	General-Purpose Register Roles
	Overview of x86-64 GPRs
	Registers Used for Argument Passing (System V AMD64)
	Registers Used for Return Values
	Volatile and Non-Volatile Register Classification
	Non-volatile (callee-saved)
	Volatile (caller-saved)

	Discipline Summary

	Floating-Point and Vector Registers
	XMM/YMM Register Purpose
	Floating-Point Argument Passing Rules
	Scalar floating-point arguments
	Floating-point return values

	SIMD Considerations in Function Calls
	Vector register volatility (System V AMD64)
	Stack alignment and SIMD
	AVX and call-boundary hygiene

	Discipline Summary

	Register-Based Argument Passing
	Integer and Pointer Argument Rules
	Floating-Point Argument Rules
	Mixed Argument Lists
	Argument Classification and Ordering
	Discipline Summary

	Stack Frame Layout
	Stack Growth and Organization
	Stack Frame Components
	Function Prologue and Epilogue
	Common prologue pattern (with frame pointer)
	Leaf function pattern (no frame pointer)
	Non-leaf functions must respect call-site alignment

	Red Zone Concept and Constraints
	Correct usage constraints

	Discipline Summary

	Stack Alignment Rules
	16-Byte Alignment Requirement
	Alignment at Function Call Boundaries
	Effects of Misalignment on Execution
	Correctness failures
	Performance degradation
	Debugging symptoms

	Discipline Summary

	Caller-Saved vs Callee-Saved Registers
	Preservation Responsibilities
	Register Save and Restore Mechanics
	Callee saving callee-saved registers
	Caller saving caller-saved registers
	Maintaining stack alignment while saving registers
	Saving vector registers in System V AMD64

	Practical Calling Scenarios
	Scenario 1: Non-leaf function needs stable locals across calls
	Scenario 2: Caller wants to keep an argument register value after calling
	Scenario 3: Bug pattern — callee clobbers callee-saved register
	Scenario 4: Leaf functions and the red zone

	Discipline Summary

	Function Call and Return Mechanics
	call and ret Instruction Behavior
	Behavior of call
	Behavior of ret

	Return Address Handling
	Saving and restoring around the return address

	Stack State Before and After Calls
	Stack state before call
	Stack state immediately after call
	Stack state before ret
	Stack state after ret

	Nested Calls and Stack Integrity
	Discipline Summary

	Returning Values and Aggregates
	Scalar Return Values
	Structure and Union Return Rules
	Hidden Pointer Mechanism
	Large Object Return Handling
	Discipline Summary

	Variadic Functions (System V Basics)
	Default Argument Promotions
	Register Save Area
	Accessing Variadic Arguments
	ABI Limitations and Pitfalls
	Pitfall 1: Reading the wrong promoted type
	Pitfall 2: Assuming a single linear stream
	Pitfall 3: Implementing variadic functions in assembly without saving XMM regs
	Pitfall 4: Cross-ABI porting assumptions
	Pitfall 5: Passing aggregates through ...

	Discipline Summary

	Common ABI Violations and Debugging Symptoms
	Stack Corruption Indicators
	Register Clobbering Errors
	Alignment-Related Crashes
	Debugging Checklist

	Interoperability and Language Boundaries
	C and C++ ABI Interaction
	Inline Assembly Constraints
	Cross-Language Calling Safety
	Safe design patterns
	Pitfalls and failure modes

	Boundary Checklist

	ABI Discipline Checklist
	Mandatory Rules Recap
	Safe Calling Convention Practices
	Practice 1: Establish a consistent prologue/epilogue
	Practice 2: Audit alignment at every call site
	Practice 3: Preserve caller-saved registers only when needed
	Practice 4: Treat XMM/YMM as volatile across calls
	Practice 5: Keep cross-language boundaries ``flat''

	Common Mistakes to Avoid
	Mistake 1: Unbalanced stack adjustments
	Mistake 2: Clobbering callee-saved registers
	Mistake 3: Assuming argument registers survive calls
	Mistake 4: Misaligned call sites
	Mistake 5: Using red zone across calls
	Mistake 6: Wrong aggregate return assumption

	Final Checklist (Print and Audit)

	References
	Architecture Manuals
	ABI Specifications
	Compiler Calling Convention Documentation
	Cross-References to Other Booklets in This Series

